
Imperial College of Science Technology and Medicine

Department of Electrical and Electronic Engineering

Digital Image Processing

PART 4

IMAGE COMPRESSION

LOSSY COMPRESSION

NOT EXAMINABLE MATERIAL

 Academic responsible

 Dr. Tania STATHAKI

 Room 811b

 Ext. 46229

 Email: t.stathaki@ic.ac.uk

 1

1 INTRODUCTION

Lossy compression of images deals with compression processes where decompression yields an

imperfect reconstruction of the original image data. A wide range of lossy compression methods has

been developed for compressing still image data. In this section we describe some of the basic

concepts of lossy compression that have been adopted in practice and that form the basis of the image

and video compression standards.

As already discussed, the selection of a particular compression method involves many tradeoffs.

However, regardless of the compression method that being used, given the level of image loss (or

distortion), there is always a bound on the minimum bit rate of the compressed bit stream. The

class of theoretical methods that attempt to relate the allowed distortion of the original signal with the

minimum bit rate constitute what is referred to as Rate-Distortion or Distortion-Rate theory.

2 RATE-DISTORTION THEORY

At various points in their study of the image coding literature readers will come across with the

application of rate-distortion)(DR theory, or its equivalent, distortion-rate)(RD theory. The

significant introduction by Shannon (1959) of a fidelity criterion into his work on coding theory led to

an extensive body of work which sought to characterize the relationship between coding rate and

measured distortion in a consistent way.

Briefly, the general form of the)(DR curve is as shown in the following figure where, as expected,

for smaller levels of distortion we require a higher coding rate. If the attainable level of distortion is

no smaller than maxD then no information need be sent anyway.

For an initially analogue input signal, as the distortion falls to zero the quantisation intervals must

have a width which tends to zero and so the rate curve moves towards infinity (dotted curve in Figure

2.3). For a discrete signal we know that we can encode at a rate equivalent to the entropy and incur

zero distortion, at least in principle])0([HR  . We may therefore set our operating point anywhere

within the region max0 DD  . Deviations between the results achieved with practical algorithms

and the theory are to be expected, and are usually due to lack of knowledge of the true source

distribution (and the associated)(DR relation) and an inability to allocate fractional numbers of bits

to encoded symbols (some kinds of block schemes, vector quantisation, for example, allow this to be

done).

 2

Figure 2.1: Rate-distortion)(DR relationship. For a discrete signal zero distortion coding is

achieved when )0(R the source entropy. For a continuous source zero distortion

implies that the rate rises without limit (---).

3 BASIC CODING SCHEMES FOR LOSSY COMPRESSION

There are two classes of lossy compression schemes for images: sample-based coding and block-

based coding.

Sample-Based Coding

In sample-based coding, the image samples are compressed on a sample by-sample basis. The

samples can be either in the spatial domain or in the frequency domain. A simple sample-based

compression method is a scalar predictive coder such as the differential pulse code modulation

(DPCM) method shown in Figure 3.1. This scheme is very similar to the one used in lossless JPEG,

except that in lossless JPEG there is no quantization. For each input sample ijx , a residual signal ije

is formed using the prediction signal ijP . ijP is typically a weighted sum of previously decoded pixels

near ijx . If the image is highly correlated, ijP will track ijx , and ije will consequently be quite small.

A typical uniform quantization function is shown in Figure 3.1b. The quantizer maps several of its

inputs into a single output. This process is irreversible and is the main cause of information loss.

Since the variance of ije is lower than the variance of ijx quantizing ije will not introduce significant

distortion. Furthermore, the lower variance corresponds to lower entropy and thus to higher

compression. For typical images, the covariance function decays rapidly at distances longer than eight

pixels. (The covariance function is a strong indication of the degree of dependency between

)(DR

)0(R

D maxD

 3

neighboring pixels). This implies that there is no benefit in using more than an eight-pixel

neighborhood when forming ijP . Practical DPCM systems use three previously decoded pixels near

ijx . For example,

jijiijij xwxwxwP 1311211
ˆˆˆ
 

where 321 ,, www are constant weights and

ijijij qPx ˆ

denotes the decoder’s estimate for ijx .

If ijx represents 8-bit pixels then ije will be in the range [-255, 255]. The quantizer remaps ije into

the quantized data ijq , which may occupy the same dynamic range as ije , but require fewer bits in

their representation. For example, if there are only 16 quantization levels, then the quantized data can

be represented by only four bits.

DPCM coders do not yield performance close to the)(DR bound that we described in the previous

section. This motivates the use of other pre-processing techniques that are based on coding blocks of

samples.

Block-Based Coding

From rate-distortion theory, the source-coding theorem (refer to Image Compression: Part I) shows

that as the size of the coding block increases, we can find a coding scheme of rate)(DRR  whose

distortion is arbitrarily close to D . In other words, if a source is coded as an infinitely large block,

then it is possible to find a block-coding scheme with rate)(DR that can achieve distortion D . This

implies that a sample-based compression method, such as DPCM, cannot attain the)(DR bound and

that block-based coding schemes yield better compression ratios for the same level of distortion.

Many compression techniques have been developed to operate in a blockwise manner. These

techniques fall into one of two classes: spatial domain block coding and transform-domain block

coding.

In spatial-domain block coding, the pixels are grouped into blocks and the blocks are then compressed

in the spatial domain. Vector quantization based methods fall into this category. Vector quantization

(VQ) methods require far more processing in the encoder than in the decoder. From a rate-distortion

viewpoint, for the same rate, such coders yield images with at least 3dB better SNR than DPCM

methods.

In transform-domain block coding, the pixels are grouped into blocks and the blocks are then

transformed to another domain, such as the frequency domain.

The motivation for transforming the original image X into a transformed image Y is to obtain in Y

 4

a more compact representation of the data in X . Lossy transform based compression methods achieve

compression by first performing the transformation from X to Y and then by discarding the less

important information in Y .

Some of the most commonly used transforms are the Discrete Fourier Transform (DFT), the Discrete

Cosine Transform (DCT), the Discrete Sine Transform (DST), the Discrete Hadamard Transform

(DHT), and the Karhunen-Loeve Transform (KLT).

Figure 3.1a: A generic diagram of a scalar predictive coder

Figure 3.1b: Typical uniform quantization function

4 DCT-BASED CODING

DCT based image coding is the basis for all the image and video compression standards. The basic

computation in a DCT-based system is the transformation of an NN  image block from the spatial

domain to the DCT domain. For the image compression standards, 8N .

An 88 block size is chosen for several reasons. From a hardware or software implementation

viewpoint, an 88 block size does not impose significant memory requirements; furthermore the

computational complexity of an 88 DCT is manageable on most computing platforms. From a

ijP

+

-

ijx ije

ijq

ijL Quantizer

Predictor

ijq

ije

 5

compaction efficiency viewpoint, a block size larger than 88 does not offer significantly better

compression; this is attributable to the drop-off in spatial correlation when a pixel neighborhood is

larger than eight pixels.

The advantages of DCT are already mentioned in Image Transforms.

A Generic DCT-Based Image Coding System

Figure 4.1 shows the key functional blocks in a generic DCT based image coding system. In the

encoder, the DCT process transforms each 88 block X into a set of DCT coefficients Y . In the

lossy compression mode, some of the weights will be deleted and thus the corresponding waveforms

will not be used during decompression. The process of deleting some of the weights is referred to as

the quantization process in Figure 4.1. The quantization process is an irreversible process and is the

only source of loss in a DCT coding scheme. Strictly speaking, even with no quantization, there may

be additional losses related to the implementation accuracy of the DCT and IDCT. Furthermore, in a

transmission application, there may be additional losses due to noise in the transmission link. After

quantization, the nonzero quantized values are then compressed in a lossless manner using an entropy

coder. In most applications, the entropy coder combines a run/length coder with a Huffman coder.

Figure 4.1: A Generic DCT-Based Image Lossy Coding System

Spatial to DCT Domain

Transformation

8x8 DCT

Discard Unimportant

DCT Domain Samples

Quantisation

Lossless Coding

of DCT Domain Samples

Entropy Coding

Lossy Compressed Data

 6

DCT Based Coding Examples

Example 1

The DCT coding for a typical image is shown in Figure 4.2.

Figure 4.2: DCT coding-an example

Here, the input 88 block (labeled original) is taken from a low activity region; that is there are very

small differences among pixel values in that area. The pixel values for this block are given by



































128136132140150157161154

132140140161154157168161

140154157150154161161164

132154161143154157161161

132147157157161154171164

154143161164164147168171

164150171157150161154171

154164168154150161161168

X

Depending on the color space, image pixels of a color component may have zero or nonzero average

values. For example, in the RGB color space, all color components have a mean value of 128

(assuming 8-bit pixels). However, in the rbCYC color space (look Appendix), the Y component has

 7

an average value of 128, but the chroma components have an average value of zero. For uniform

processing, most standard DCT coders require that image pixels are preprocessed so that their

expected mean value is zero. The subtracted (or added) bias is then added (or subtracted) back by the

decoder after the inverse DCT. After subtracting 128 from each element of X , the 88 DCT output

block is given by



















































24232011

43211322

214743895

1591521512

66101544108

105339846

6151513112534

6111020349214

Y

At this point, no compression has been achieved. Note that, compared to X , the DCT-transformed

data Y has large amplitudes clustered close to 00y , commonly referred to as the DC coefficient. In

general, for a low-activity block, most of the high-amplitude data will be in the low-order coefficients,

as is the case in this example. It is the process of quantization of kly which leads to compression in

DCT domain and this is expressed as

 7,,1,0, ,
2

round 




































 lk

q

q
y

q

y
z

kl

kl
kl

kl

kl
kl (4.1) where

klq denotes the thkl element of an 88 quantization matrix Q . ( x denotes the largest integer

smaller or equal to x .) In order to ensure that the same type of clipping is performed for either

positive or negative valued kly in (4.1), if 0kly , then the two terms in the nominator are added;

otherwise they are subtracted. For this example, if the 88 quantization matrix is given by



































9910310011298959272

10112012110387786449

921131048164553524

771031096856372218

6280875129221714

5669574024161314

5560582619141212

6151402416101116

Q

then the quantized DCT output is given by

 8









































00000000

00000000

00000000

00000001

00000011

00000100

00001123

000010413

Z

The process of quantization has resulted in the zeroing out of many of the DCT coefficients kly . The

design of Q depends on psychovisual characteristics and compression-ratio considerations. All

compression standards provide default values for Q . The quantized DCT domain representation, Z ,

has resulted in significant savings, since only 11 values are needed to represent Z compared to the 64

values needed to represent X ; this represents a compression ratio of 5.8. The matrix Z can be

efficiently represented using a combination of a run/length coding scheme and a Huffman coding

scheme; we will describe the specifics of such an entropy coder later. Decompression begins with the

entropy decoding of the coded bit stream. Since entropy coding is a lossless compression scheme, the

decoder should be able to reconstruct an exact version of Z . Inverse quantization on Z is simply

performed as

klklkl qzz ˆ .

In this example, the inverse quantizer output matrix Z is









































00000000

00000000

00000000

000000018

0000001714

000001600

000019142436

000016044208

Ẑ

After the inverse quantization, the decoder computes an 88 IDCT given by



































128129132139148155158159

139141144150156160161161

145148153157160160160159

140145152156156155155156

137144151155154154157161

145151158158156157164171

156161164160154155164174

162166166158149149160171

X̂

Observe that XX ˆ and that the only cause of this coding error is the quantization of the DCT

 9

coefficients. However, in this example, as evidenced in Figure 4.2, the coding error is not perceptually

significant.

Example 2

To better illustrate the properties of the DCT, we include another example as depicted in Figure 4.3.

Figure 4.3: DCT coding-an example for a block in a high activity region

Here, we have chosen an 88 input block from a high-activity region. Zooming into this block, from

Figure 4.3, we note that the block has two edge regions. The pixel values for this block are given by



































72118116635510611568

11714610152711309550

16216090731221428454

197154841101631517573

19312810215619313977118

14495135192179111110172

7370151179141111158200

5170133130103144184197

X

and the corresponding DCT output is

 10



















































41224541

21041103

6785199103

524625544

11118545329520

81461051102212376

13124110210340139127

71515173814560

Y

Note that, compared with the Y output of the previous example, the dominant DCT values are not

clustered close to 00y . This is usually the case when the spatial domain block is a high-activity block.

For this example, we chose a quantization matrix that yields the same compression ratio as the one

obtained in the previous example. Repeating the same calculations as in the previous example, the

IDCT output is



































72143123273112612737

114139110526412311245

17313192921141209362

211121811301591208488

2031128615318012595120

150104105159174135124153

8198129152153146159182

3295145145136153182198

X̂

A comparison of the coding error images in Figure 4.2 and Figure 4.3 indicates that, for the same

compression ratio, we have incurred more error for the high-activity block. However, from a

perceptual viewpoint, the viewer may find the decompressed image block in Figure 4.3 to be the same

as the original image block; this is because the eye is less sensitive to quantization noise on edges.

5 THE LOSSY JPEG STANDARD

 11

Introduction

Until recently, the Group 3 and Group 4 standards for facsimile transmission were the only

international standard methods for the compression of images. However, these standards deal only

with bi-level images and do not address the problem of compressing continuous-tone color or

grayscale images.

Since the mid 1980s, members from both the International Telecommunication Union (ITU) and the

International Organization for Standardization (ISO) have been working together to establish a joint

international standard for the compression of multilevel still images. This effort has been known as

JPEG, the Joint Photographic Experts Group. Officially, JPEG corresponds to the ISO/IEC

international standard 1091 8-I, Digital compression and coding of continuous-tone still images, or to

the ITU-T Recommendation T. 81. The text in both these ISO and ITU-T documents is identical.

In recent years, there have been many new developments in the field of image compression. These

include new compression schemes based on transform coding, vector quantization, sub-band filtering,

wavelets, and fractals. The goal of JPEG has been to develop a general method for image compression

that meets a number of diverse requirements, including the following:

 Be as close as possible to the state of the art in image compression.

 Allow applications (or a user) to tradeoff easily between desired compression and image quality.

 Work independently of the image type. That is, the method should not be restricted by the type of

image source, image content, color spaces, dimensions, pixel resolution.

 Have modest computational complexity that would allow software-only implementations even on

low-end computers. Low-complexity hardware implementations should also be feasible.

 Allow both sequential (single scan) and progressive coding (multiple scans).

 Offer the option for hierarchical encoding, in which a low-resolution version of the image can be

accessed without a need to decompress the image at full resolution.

After evaluating a number of coding schemes, the JPEG members selected a DCT-based method

in 1988. From 1988 to 1990, the JPEG group continued its work by simulating, testing, and

documenting the algorithm. JPEG became a draft international standard in 1991 and an international

standard in 1992. The JPEG group has not yet completed its mission. It continues to work on future

enhancements. ISO 10918-3, which specifies recent extensions to JPEG, has already been approved as

a draft international standard.

JPEG includes two basic compression methods: a DCT-based lossy compression method and a

predictive method for lossless compression. We have already examined the lossless compression

method earlier. We provide here an overview of the lossy JPEG method.

 12

DCT-Based Coding

The JPEG standard specifies four modes of operation: sequential DCT-based, progressive DCT-based,

lossless, and hierarchical. Under the lossless mode, a predictive coder followed by either a Huffman

or an arithmetic coder is used instead of a DCT-based scheme. The details of operation under the

lossless mode were already discussed. To better understand the other modes of operation we need first

to review the DCT-based coder.

JPEG Encoding

The following Figure 5.1 shows a block diagram of the DCT-based JPEG encoder for an image with a

single color component (grayscale).

Figure 5.1: Block diagram of a JPEG encoder

For color images, the process is repeated for each of the color components. From Figure 5.1, the

image is first divided into non-overlapping blocks. Each block has 88 pixels. If any of the

dimensions of the image is not a multiple of eight, then the pixels of the last row or the last column in

the image are duplicated appropriately.

Each block is transformed into the frequency domain by a 2-D DCT. The standard does not specify a

unique DCT algorithm. Consequently, users may choose the algorithm that is best suited for their

applications. The DCT output coefficients are quantized and entropy coded.

The entropy coder consists of two stages. The first stage is either a predictive coder for the DC (or

[0,0]) coefficients or a run/length coder for the AC coefficients. The second stage is either a Huffman

coder or an arithmetic coder. Arithmetic coding provides better compression than Huffman coding;

however, there are very few JPEG implementations that support arithmetic coding. There are three

main reasons for this. First, the improvement in compression (2 percent to 10 percent) does not justify

DCT
Quantiser Entropy

Coder

Quantisation

Tables

Coding

Tables
Headers

Tables

Data

 13

the additional complexity (especially for hardware implementations). Second, many of the algorithms

on arithmetic coding are covered by patents in the United States and Japan. Therefore, most

implementors are reluctant to pay license fees for minimal gains in performance. Third, the baseline

implementation, that is, the implementation with the minimum set of requirements for a JPEG

compliant decoder, uses only Huffman coding. In order to facilitate the acceptance of JPEG as an

international standard and because of the various options available during JPEG encoding, the JPEG

committee also defined an interchange format. This interchange format embeds image and coding

parameters (type of compression, coding tables, quantization tables, image size, etc.) within the

compressed bit stream. This allows JPEG compressed bit streams to be interchanged among different

platforms and to be decompressed without any ambiguity.

JPEG Decoding.

Figure 5.2 shows a block diagram of a JPEG decoder. After extracting the coding and the quantization

tables from the compressed bit stream, the compressed data passes through an entropy decoder. The

DCT coefficients are first dequantized and then translated to the spatial domain via a 2-D inverse

DCT.

Figure 5.2: Block diagram of a JPEG decoder

The Processing of Color Images and the various methods for the Design of Quantization Tables are

out of the scope of this course.

Entropy Coding

We already studied in detail the first two parts of a lossy compression scheme, namely, the DCT

followed by quantization. The last processing block in JPEG is the entropy coder. This block

improves overall performance by performing lossless coding on the quantized DCT coefficients. The

Entropy

Decoder

Inverse

Quantiser

IDCT

Quantisation

Tables

Coding

Tables
Headers

Tables

Data

 14

entropy coder employed in the JPEG standard is not a straightforward implementation of the Huffman

or arithmetic coding methods already described; instead, the quantized data are preprocessed by a

run/length coder whose operation will be described later in this section. If the entropy coder employs

Huffman coding, then one or more sets of Huffman tables need to be specified by the application.

There are no default tables, but most applications use the Huffman tables listed in the standard. JPEG

imposes only two restrictions on the Huffman tables: (1) no codeword may exceed 16 bits and (2) no

codeword may be the all ones sequence (that is, FF16). The arithmetic coding option in JPEG requires

no external table specifications since it is able to adapt to the image characteristics. However, for

improved performance, optional statistical tables can he used.

The baseline JPEG implementation uses Huffman coding only. Details for the baseline Huffman

coder are presented next.

Huffman Coding of the DC Coefficients

Figure 5.3 shows a block diagram of the Huffman coder in baseline JPEG. Let iDC and 1iDC

denote the DC coefficients of blocks i and 1i . Due to the high correlation of DC values among

adjacent blocks, JPEG uses differential coding for the DC coefficients. For 8-bit-per-pixel data, DC

differentials)(1 ii DCDC can take values in the range [-2047, 2047]. This range is divided into 12

size categories, where the thi category includes all differentials that can be represented by i bits.

The entries for these categories are the same as the first 12 categories in Table 4.2 (Image

Compression: Part II). Thus, after a table lookup, each DC differential can be described by the pair

(size, amplitude) where size defines the number of bits required to represent the amplitude and

amplitude is simply the amplitude of the differential. Given a DC residual value, its amplitude is

computed as follows: if the residual is positive, then the amplitude is simply its binary representation

with size bits of precision; and if the residual is negative, then we take the one's complement of its

absolute value. From this pair of values, only the first (the size) is Huffman coded.

For example, if the DC differential has an amplitude of 195, then from Table 4.2, size=8. Thus, 195 is

described by the pair (8,11000011). If the Huffman codeword for size=8 is 111110, then 195 is coded

as 11111011000011. Similarly, -195 would he coded as 11111000111100. Huffman decoding is quite

simple. From the input bit stream, we first decode the size=8 information. Then, the next eight bits in

the input bit stream directly give the amplitude of the DC differential, which we decode according to

the value of its most significant bit.

size value

DC codeword

size Size

Table

Block i

Block i-1

D

C
D

C

A

-

+ size amplitude

amplitude

calculation

DC Huffman

Table

 15

Figure 5.3: Huffman coding in baseline JPEG.

Huffman Coding of the AC Coefficients

For 8-bit pixels, AC coefficients make take any value in the range [-1023, 1023]. As before, this range

is divided into 10 size categories. However, after quantization, most of the AC coefficients will be

zero; thus, only the nonzero AC coefficients need to be coded. AC coefficients are processed in zig-

zag order. Figure 5.4 shows the conventional and the zig-zag ordering of elements in an 88 matrix.

Zig-zag ordering allows for a more efficient operation of the run/length coder.

A run/length coder yields the value (amplitude) of the next nonzero AC coefficient and a run. The

run is the number of zero AC coefficients preceding this one. The number of bits required for the

amplitude is again represented by the size (length). Hence, each nonzero AC coefficient can be

described by the pair (run/size, amplitude). The value of run/size is Huffman coded, and the value of

the amplitude is appended to that code.

For example, assume an AC coefficient is preceded by six zeros and has a value of -18. From Table

4.2, -18 falls into category 5. The one's complement of -18 is 01101. Hence, this coefficient is

represented by (6/5, 01101). The pair (6/5) is Huffman coded, and the 5-bit value of-18 is appended to

that code. If the Huffman codeword for (6/5) is 1101, then the codeword for –18 is 110101101.

There are two special cases in the coding of AC coefficients as follows:

(1) The run/length value may be larger than 15. In that case, JPEG uses the symbol (15/0) to denote a

run/length of 15 zeros followed by a zero. Such symbols can be cascaded as needed: however, the

codeword for the last AC coefficient must have a non zero amplitude.

(2) If after a nonzero AC value all the remaining coefficients are zero, then the special symbol (0/0)

denotes an end of block (EOB).

 16

 (a) Conventionl order (b) Zig-zag order

Figure 5.4: Conventional and zig-zag ordering in an 88 matrix

A Coding Example: Assume that the values of a quantized DCT matrix are given (in zig-zag order)

by

00000000

00000000

00000000

00000000

00000000

00001200

00032023

0001510211642







If the DC value of the previous block is 40, then 21  ii DCDC . This can be expressed as the (size,

amplitude) pair (2, 2). If the Huffman codeword for size 2 is 011, then the codeword for the DC value

is 01110.

Table 5.1 shows the codewords for the AC values. For Huffman codewords, we use tables taken from

the JPEG standard. For this example, we need 82 bits to encode the AC coefficients and five bits to

encode the DC coefficient, for a total of 87 bits or an average bit rate of 36.1
64

87
 bits per pixel. If

the input resolution was eight bits per pixel, then the compression ratio is 88.5
36.1

8
 .

Value Run/Size Huffman Code Amplitude Total Bits

16 0/5 11010 10000 10

-21 0/5 11010 01010 10

 17

10 0/4 1011 1010 8

-15 0/4 1011 0000 8

3 3/2 111110111 11 11

-2 0/2 01 01 4

2 1/2 11011 10 7

-3 0/2 01 00 4

2 5/2 11111110111 10 13

-1 0/1 00 0 3

EOB 0/0 1010 4

Table 5.1: Example for the Huffman coding of AC coefficients

Compression Efficiency of Entropy Coding in JPEG

From the discussion on entropy coding of the DC and AC coefficients, we note that the entropy coder

employed in the JPEG standard is not a straightforward implementation of the Huffman or arithmetic

coding methods. In JPEG, Huffman or arithmetic coding is preceded by a run/length coder.

Furthermore, entropy coding in the JPEG standard includes the following features:

1. The DC and AC coefficients are treated separately. This is motivated by the fact that the statistics

for the DC and AC coefficients are quite dissimilar; hence, better coding efficiencies can be

obtained using different Huffman tables.

2. For typical values of the quality factor q many of the AC coefficients within an 88 block will

be zero-valued. Zig-zag scanning of the AC coefficients leads to an efficient (run/length, value)

representation for the nonzero AC coefficients. Note that the quality factor is a scalar that is used

to scale uniformly the original quantization table. The choice of the quality factor has been

studied thoroughly in the design of quantization tables.

3. Values for the DC differentials range between -2047 and 2047, and for the AC coefficients range

between -1023 and 1023. Direct Huffman coding of these values would require code tables with

4,095 and 2,047 entries, respectively. By Huffman coding only the size or the (run/size)

information, the size of these tables is reduced to 12 and 162 entries, respectively.

To illustrate the benefits of run/length coding, Figure 5.5 shows for a typical grayscale image the

output bit rate with and without a run/length coder. The top plot shows the output bit rate when an

ideal Huffman or arithmetic coder is applied directly to the output of the DCT quantizer. The bottom

plot shows the output bit rate when the ideal Huffman or arithmetic coder is preceded by a run/length

coder. Bit rates are measured for various settings of the quality factor used to scale the quantization

table. For a quality factor of one, the bit rate with a run/length coder is nearly four bits per pixel lower

 18

than the bit rate of an entropy coder alone. This is largely attributable to the efficient run/length

representation of the zig-zag ordered AC coefficients. As the quality factor increases, more of the

quantized AC values will be zero, and as expected the benefits from a run/length coder are even

higher.

Figure 5.5: Effects of run/length coding on data compression

6 JPEG MODES OF OPERATION

As mentioned before, in addition to the lossless mode of operation, JPEG defines the following other

modes: sequential, progressive, and hierarchical.

Sequential Coding

Sequential coding is the most common mode of operation. Image blocks are coded in a scan-like

sequence, from left to right and from top to bottom. Transformed and encoded blocks can be

transmitted before the end of the image. Similarly, the decoder may begin sequential decoding before

it receives the complete compressed image. Figure 6.1 shows an example of sequential coding.

 19

Figure 6.1: Example of sequential coding

Progressive Coding

In progressive mode, image blocks are also processed sequentially, but the coding is completed in

multiple scans. The first scan yields the full image but without all the details, which are provided in

successive scans. This mode requires that the output of the DCT is buffered so that during each scan

only partial information from the DCT coefficients is encoded. Progressive coding allows a user to

preview a rough version of an image and decode the additional information only if necessary. There

are two procedures that are allowed for progressive coding: spectral selection and successive

approximation.

Consider 88 blocks of quantized DCT coefficients as shown in Figure 6.2. We view each block as a

three-dimensional (3-D) object, where depth denotes the arithmetic precision of the quantized

coefficients. Under spectral selection, each block is divided into frequency bands, and each band is

transmitted during a different scan. For example, in Figure 6.2a, the DCT output is divided into four

scans.

Scan 1 includes the DC coefficient and the first two AC coefficients (counted in zig-zag order).

Scan 2 includes the next seven AC coefficients.

Scan 3 includes another 11 AC coefficients.

Scan 4 includes the remaining AC coefficients.

For most images, most of the information is contained in the DC and the first few AC coefficients.

Thus, encoding and transmission of the first scan of coefficients will provide adequate information for

a rough preview of the image. Encoding and transmission of the remaining scans just adds

progressively additional detail.

Figure 6.3 shows an example of progressive coding based on spectral selection. Figure 6.3a shows the

output image after decoding only the DC coefficients. The image is rather blocky, but we can still get

a rough preview of the image. Figure 6.3b shows the output image after decoding the DC and the first

three AC coefficients. The diagonal edges of the house are still blocky. Figure 6.3c shows the decoded

 20

image at full spectral resolution.

(a) Spectral selection (b) Successive approximation

Figure 6.2: Description of progressive coding in JPEG

Under successive approximation, given a frequency band, the DCT coefficients are divided by a

power of two before encoding. This scheme allows the encoder to transmit the most significant bits

first, for a rough preview, and the least significant bits later, for decoding at full resolution. For

example, in Figure 6.2b, the DCT output is encoded using three successive approximation scans. In

the decoder, the coefficients are scaled back by the same power of two before computing the IDCT.

The two progressive schemes may be combined or used separately.

Figure 6.3: Example of JPEG progressive coding using spectral selection

zero

frequency

scan 1
scan 2

highest

frequency

       

       

       

       

       

       

       

       

scan 3
scan 4

LSB

MSB

       

       

       

       

       

       

       

       

scan 1

scan 2

scan 3

 21

Hierarchical Coding

In hierarchical mode, each image component is encoded as a sequence of frames. The first frame is

usually a low-resolution version of the original image (possibly down sampled). Subsequent frames

are differential frames between source components (possibly up sampled) and reference reconstructed

components (possibly up sampled). Frames can be coded using either lossy JPEG or lossless JPEG.

The two modes can be mixed only when lossless JPEG is used for the last stage of DCT-based

hierarchical process. Hierarchical coding is useful when there are multiresolution requirements. For

example, an application may support both high-resolution displays on workstations and low resolution

displays on personal computers.

Figure 6.4 shows an example of a three level hierarchical coder. From the original image X , we

generate two sub-sampled versions: 2X , where the image is sub-sampled by a factor of two on both

dimensions; and 4X , where the image is sub-sampled by a factor of four on both dimensions. Note

that, sub-sampling may also be preceded by a low-pass filtering operation to reduce aliasing effects.

JPEG poses no requirements on these preprocessing operations.

The encoded image consists of three frames: 21, SS , and 3S . Frame 1S is simply the 4X image

compressed. Using only 1S , the decoder can extract a low-resolution estimate of the original image

'
lX . 2S (uncompressed) is the difference image between 2X and an estimate of 2X)('

2X after

upsampling 4X by a factor or two. Using 1S and 2S , the decoder can extract a medium resolution

estimate of the input X)('
mX . Similarly, 3S (uncompressed) is the difference image between X

and an estimate of X based on 2X and 4X . The reader can verify that, under lossless compression,

XX ' .

 22

Figure 6.4: Three-level hierarchical coder

Figure 6.5 shows an example of hierarchical coding. The first image (a) is the original image shown at

full resolution (200 dpi). Images (b) and (c) are sub sampled versions of the original (sub sampled by

factors of two and four, respectively).

Figure 6.5: Example of hierarchical coding. (a) original; (b) subsanpled by a factor of two; (c)

subsampled by a factor of four.

To summarize, the essential characteristics of the main JPEG coding processes are given as follows.

1. Baseline Process

 Coding: DCT-based, sequential, one to four color components.

 Resolution: eight bits per pixel.

 Huffman coding; two AC and two DC tables.

2. Extended DCT-based Process

 Coding: DCT-based, sequential or progressive.

 Resolution: 8 or 12 bits per pixel.

 Huffman coding or arithmetic coding; four AC and four DC tables.

3. Lossless Process

 Coding: Predictive, sequential.

 Resolution: From two bits per pixel to 16 bits per pixel. Huffman coding or arithmetic coding;

four DC tables.

4. Hierarchical Process

 Coding: DCT-based or lossless process.

 23

 Multiple frames (non differential and differential).

JPEG has been developed for the compression of still-images; however, the proliferation of low-cost

hardware for JPEG has led to the development of an additional mode of operation for video

sequences: motion-JPEG. Under motion-JPEG, each frame of a video stream is compressed

independently using the baseline JPEG algorithm. However, there is no standard syntax for motion-

JPEG coded streams, and encoded data may not be able to be decoded across different platforms.

APPENDIX

rbCYC is a color co-ordinate system used for the transmission and storage of image and video signals.

Given the primary RGB inputs in [0,1] then

)(114.0)(299.0 GBGGRY 

)(564.0 YBCb 

)(713.0 YRCr 





















































B

G

R

C

C

Y

r

b

081.0419.05.0

5.0331.0169.0

114.0587.0299.0

