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SCALAR AND VECTOR QUANTISATION 

 

1 SCALAR QUANTISATION 

 

Let f  represent a continuous scalar quantity which could be one of the following: 

 pixel intensity 

 transform coefficient 

 image model parameter 

 other 

Suppose that only L  levels are used to represent f . This process is called amplitude quantisation. 

The process of quantisation may be classified in two main categories: 

Scalar quantisation: each scalar is quantised independently. 

Vector quantisation: two or more scalars are quantised jointly, i.e., the vector formed by two or 

more scalars is quantised. 

Let f̂  denote an f  that has been quantised. 

We can express f̂  as irfQf  )(ˆ , ii dfd 1  

Q : quantisation operation 

ir : the L  reconstruction levels, Li 1  

id : 1L  decision boundaries, Li 0  

If f  falls between 1id  and id , it is mapped to the reconstruction level ir . 

f̂  can be expressed as 

QeffQf  )(ˆ , where ffeQ  ˆ  

Qe : quantisation noise 

In general, the quantity 2
Qe , with Qe  defined as above, can be viewed as a special case of a distortion 

measure )ˆ,( ffd , which is a measure of distance or dissimilarity between f  and f̂ . 

Other examples of )ˆ,( ffd  

 ff ˆ  

 

p
pp

ff

/1

ˆ   

The reconstruction and decision levels are often determined by minimizing some error criterion based 

on )ˆ,( ffd . 
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Example: Minimise the average distortion D , defined as follows: 
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Uniform quantisation 

In uniform quantisation the reconstruction and decision levels are uniformly spaced. 
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Figure 1.1: Example of uniform quantisation. The number of reconstruction levels is 4, f  is assumed 

to be between 0 and 1, and f̂  is the result of quantising f . The reconstruction levels and 

decision boundaries are denoted by ir  and id , respectively. 

 

 

 

 

 

 

 

 

Figure 1.2: Illustration of signal dependence of quantisation noise in uniform quantisation 

Uniform quantisation may not be optimal! 
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Suppose f  is much more likely to be in one particular region that in others.  

It is reasonable to assign more reconstruction levels to that region! 

Quantisation in which reconstruction and decision levels do not have even spacing is called non-

uniform quantisation. 

Optimum determination of ir  and id  depends on the error criterion used. 

 

Quantisation using the MMSE criterion 

 

Suppose f  is a random variable with a pdf )( 0fp f . 

 

Using the minimum mean squared error (MMSE) criterion, we determine kr  and kd  by minimising 

the average distortion D  given by 
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Noting that f̂  is one of the L  reconstruction levels we write 
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It is proven that from the above we get 
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Note that: 
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 The reconstruction level kr  is the centroid of )( 0fp f  over the interval kk dfd  01 . 

 The decision level kd  except 0d  and Ld  is the middle point between two reconstruction levels kr  

and 1kr . 

 The above set of equations is a necessary set of equations for the optimal solution. 

 For a certain class of pdf's including uniform, Gaussian, Laplacian, is also sufficient. 

A quantiser based on the MMSE criterion is often referred to as Lloyd-Max quantiser. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Example of a Lloyd-Max quantiser. The number of reconstruction levels is 4, and the 

probability for f  is Gaussian with mean 0 and variance 1. 

 

2 VECTOR QUANTISATION 

 

Let T
kfff ],,,[ 21 f  denote an k -dimensional vector that consists of k  real-valued, continuous-

amplitude scalars if . 

f  is mapped to another k -dimensional vector T
kyyy ],,,[ 21 y  

y  is chosen from N  possible reconstruction or quantisation levels 

ii C fyff   ,)(VQˆ  

VQ is the vector quantisation operation 

iC  is called the th i cell. 

distortion measure: Q
T
Qd eeff ),ˆ(  

f  

f̂  

0.9816 -0.9816 

-1.5104 

-0.4528 

1.5104 
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quantisation noise: ffffe  )(VQˆ
Q  

 

PROBLEM: determine iy  and boundaries of cells iC  

SOLUTION: minimise some error criterion such as the average distortion measure D  given 

by 
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MAJOR ADVANTAGE OF VQ: performance improvement over scalar quantisation of a vector 

source. 

That means 

 VQ can lower the average distortion D  with the number of reconstruction values held constant. 

 VQ can reduce the required number of reconstruction values when D  is held constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Example of vector quantisation. The number of scalars in the vector is 2, and the number 

of reconstruction levels is 9. 
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