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METHODS AND STANDARDS FOR LOSSLESS 

COMPRESSION 

 

1 PRELIMINARIES 

 

Lossless compression refers to compression methods for which the original uncompressed data set can 

be recovered exactly from the compressed stream. The need for lossless compression arises from the 

fact that many applications, such as the compression of digitized medical data, require that no loss be 

introduced from the compression method. Bitonal image transmission via a facsimile device also 

imposes such requirements. In recent years, several compression standards have been developed for 

the lossless compression of such images. We discuss these standards later. In general, even when 

lossy compression is allowed, the overall compression scheme may be a combination of a lossy 

compression process followed by a lossless compression process. Various image, video, and audio 

compression standards follow this model, and several of the lossless compression schemes used in 

these standards are described in this section. 

 

The general model of a lossless compression scheme is as depicted in the following figure. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: A generic model for lossless compression 

 

Given an input set of symbols, a modeler generates an estimate of the probability distribution of the 

input symbols. This probability model is then used to map symbols into codewords. The combination 

of the probability modeling and the symbol-to-codeword mapping functions is usually referred to as 

entropy coding. The key idea of entropy coding is to use short codewords for symbols that occur 
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with high probability and long codewords for symbols that occur with low probability. 

The probability model can be derived either from the input data or from a priori assumptions about the 

data. Note that, for decodability, the same model must also be generated by the decoder. Thus, if the 

model is dynamically estimated from the input data, causality constraints require a delay function 

between the input and the modeler. If the model is derived from a priori assumptions, then the delay 

block is not required; furthermore, the model function need not have access to the input symbols. The 

probability model does not have to be very accurate, but the more accurate it is, the better the 

compression will be. Note that, compression is not always guaranteed. If the probability model is 

wildly inaccurate, then the output size may even expand. However, even then the original input can be 

recovered without any loss. 

Decompression is performed by reversing the flow of operations shown in the above Figure 1.1. This 

decompression process is usually referred to as entropy decoding. 

 

Message-to-Symbol Partitioning 

 

As noted before, entropy coding is performed on a symbol by symbol basis. Appropriate partitioning 

of the input messages into symbols is very important for efficient coding. For example, typical images 

have sizes from 256256  pixels to 6400064000  pixels. One could view one instance of a 

256256  multi-frame image as a single message, 655362562   long; however, it is very difficult to 

provide probability models for such long symbols. In practice, we typically view any image as a string 

of symbols. In the case of a 256256  image, if we assume that each pixel takes values between zero 

and 255, then this image can be viewed as a sequence of symbols drawn from the alphabet 

255,,2,1,0  . The modeling problem now reduces to finding a good probability model for the 256 

symbols in this alphabet. 

 

For some images, one might partition the data set even further. For instance, if we have an image with 

12  bits per pixel, then this image can be viewed as a sequence of symbols drawn from the alphabet 

4095,,1,0  . Hardware and/or software implementations of the lossless compression methods may 

require that data be processed in ,32 ,16 ,8   or 64 bit units. Thus, one approach might be to take 

the stream of 12 bit pixels and artificially view it as a sequence of 8 bit symbols. In this case, we 

have reduced the alphabet size. This reduction compromises the achievable compression ratio; 

however, the data are matched to the processing capabilities of the computing element. 

 

Other data partitions are also possible; for instance, one may view the data as a stream of 24 bit 

symbols. This approach may result in higher compression since we are combining two pixels into one 

symbol. In general, the partitioning of the data into blocks, where a block is composed of several 
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input units, may result in higher compression ratios, but also increases the coding complexity. 

 

Differential Coding 

 

Another preprocessing technique that improves the compression ratio is differential coding. 

Differential coding skews the symbol statistics so that the resulting distribution is more amenable to 

compression. Image data tend to have strong inter-pixel correlation. If, say, the pixels in the image are 

in the order Nxxxx ,,,, 321  , then instead of compressing these pixels, one might process the 

sequence of differentials 1 iii xxy , where Ni ,,2,1  , and 00 x . In compression 

terminology, iy  is referred to as the prediction residual of ix . The notion of compressing the 

prediction residual instead of ix  is used in all the image and video compression standards. For 

images, a typical probability distribution for ix  and the resulting distribution for iy  are shown in 

Figure 1.2. 

Let symbol is  have a probability of occurrence ip . From coding theory, the ideal symbol-to-

codeword mapping function will produce a codeword requiring )/1(log2 ip  bits. A distribution close 

to uniform for ip  )255/1( ip , such as the one shown in the left plot of Figure 1.2, will result in 

codewords that on the average require eight bits; thus, no compression is achieved. On the other hand, 

for a skewed probability distribution, such as the one shown in the right plot of Figure 1.2, the 

symbol-to-codeword mapping function can on the average yield codewords requiring less than eight 

bits per symbol and thereby achieve compression.  

We will understand these concepts better in the following Huffman encoding section. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Typical distribution of pixel values for ix  and iy . Here, the pixel values are shown on 

the horizontal axis and the corresponding probability of occurrence is shown on the 

0 255 255 0 -255 
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vertical axis. 

 

2 HUFFMAN ENCODING 

 

In 1952, D. A. Huffman developed a code construction method that can be used to perform lossless 

compression. In Huffman coding, the modeling and the symbol-to-codeword mapping functions of 

Figure 1.1 are combined into a single process. As discussed earlier, the input data are partitioned 

into a sequence of symbols so as to facilitate the modeling process. In most image and video 

compression applications, the size of the alphabet composing these symbols is restricted to at most 

64000 symbols. The Huffman code construction procedure evolves along the following parts: 

 

1. Order the symbols according to their probabilities. 

For Huffman code construction, the frequency of occurrence of each symbol must be known a 

priori. In practice, the frequency of occurrence can be estimated from a training set of data that is 

representative of the data to be compressed in a lossless manner. If, say, the alphabet is 

composed of N  distinct symbols Nssss ,,,, 321   and the probabilities of occurrence are 

Npppp ,,,, 321  , then the symbols are rearranged so that Npppp  321 . 

 

2. Apply a contraction process to the two symbols with the smallest probabilities. 

Suppose the two symbols are 1Ns  and Ns . We replace these two symbols by a hypothetical 

symbol, say, ),( 11 NNN ssH    that has a probability of occurrence NN pp 1 . Thus, the new 

set of symbols has 1N  members 12321 ,,,,,  NN Hssss  . 

 

3. We repeat the previous part 2 until the final set has only one member. 

 

The recursive procedure in part 2 can be viewed as the construction of a binary tree, since at each step 

we are merging two symbols. At the end of the recursion process all the symbols Nssss ,,,, 321   will 

be leaf nodes of this tree. The codeword for each symbol is  is obtained by traversing the binary tree 

from its root to the leaf node corresponding to is . 

We illustrate the code construction process with the following example depicted in Figure 2.1. The 

input data to be compressed is composed of symbols in the alphabet ?,,,,,, rewulk . First we sort the 

probabilities. In Step 1, we merge the two symbols k  and w  to form the new symbol ),( wk . The 

probability of occurrence for the new symbol is the sum of the probabilities of occurrence for k  and 

w . We sort the probabilities again and perform the merge on the pair of least frequently occurring 
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symbols which are now the symbols ),( wk  and ? . We repeat this process through Step 6. By 

visualizing this process as a binary tree as shown in this figure and traversing the process from the 

bottom of the tree to the top, one can determine the codewords for each symbol. For example, to reach 

the symbol u  from the root of the tree, one traverses nodes that were assigned the bits 0,1  and 0 . 

Thus, the codeword for u  is 100. 

                                                                                     w       k                 step 1 

                                                                              0.05              0.05 

                                                                                 (0)             (1) 

                                                                                     ),( wk             ?  

                                                                                                                    step 2 

                                                                                            (0)       (1) 

                                                                                    0.1                       0.1 

                                                                            u                ?]),,[( wk  

                                                                                                                    step 3 

                                               step 4                       (0)            (1) 

                                           r           l              0.1                            0.2 

                                                                              }?],),,{[( uwk                         e  

                                             (0)  (1)                                   (0)      step 5      (1) 

                                    0.2   ),( rl      0.2                     0.3      }},?],),,{{[( euwk    0.3 

                                                 (0)                              step 6                      (1) 

                                            0.4                                                                        0.6 

                                                                                               Generate Codewords 

 

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

k  0.05 e  0.3 e  0.3 e  0.3 e  0.3 ),( rl  0.4 }},?],),,{{[( euwk  0.6 

l  0.2 l  0.2 l  0.2 l  0.2 }?],),,{[( uwk  0.3 e  0.3 ),( rl  0.4 

u  0.1 r  0.2 r  0.2 r  0.2 l  0.2 }?],),,{[( uwk  0.3  

w  0.05 u  0.1 u  0.1 ?]),,[( wk  0.2 r  0.2   

e  0.3 ?  0.1 ?  0.1 u  0.1    
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r  0.2 k  0.05 ),( wk  0.1     

?  0.1 w  0.05      

 

Symbol Probability Codeword 

k 0.05 10101 

l 0.2 01 

u 0.1 100 

w 0.05 10100 

e 0.3 11 

r 0.2 00 

? 0.1 1011 

 

Figure 2.1: An example of Huffman codeword construction 

 

 

In this example, the average codeword length is 2.6 bits per symbol. In general, the average codeword 

length is defined as 

                                                                            iiavg pll                                                              (2.1) 

where il  is the codeword length (in bits) for the codeword corresponding to symbol is . The average 

codeword length is a measure of the compression ratio. Since our alphabet has seven symbols, a 

fixed-length coder would require at least three bits per codeword. In this example, we have reduced 

the representation from three bits per symbol to 2.6 bits per symbol; thus, the corresponding 

compression ratio can be stated as 3/2.6=1.15. For the lossless compression of typical image or video 

data, compression ratios in excess of two are hard to come by. 

 

Properties of Huffman Codes 

 

According to Shannon, the entropy of a source S  is defined as 

                                                               )/1(log)( 2 ii ppnsH                                                 (2.2) 

where, as before, ip  denotes the probability that symbol is  from S  will occur. From information 

theory, if the symbols are distinct, then the average number of bits needed to encode them is always 

bounded from below by their entropy. For example, for the alphabet used in the previous section, the 

average length is bounded by 2.6 bits per symbol. It can be shown that Huffman codewords satisfy the 

constraints 1 nln avg ; that is, the average length is very close to the optimum. A tighter bound is 
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086.0 pln avg , where p  is the probability of the most frequently occurring symbol. The 

equality is achieved when all symbol probabilities are inverse powers of two. 

The Huffman code table construction process, as was described here, is referred to as a bottom-up 

method, since we perform the contraction process on the two least frequently occurring symbols. In 

recent years, top-down construction methods have also been published in the literature. 

The code construction process has a complexity of )log( 2 NNO . With presorting of the input symbol 

probabilities, code construction methods with complexity )(NO  are presently known. 

In the example, one can observe that no codeword is a prefix for another codeword. Such a code is 

referred to as a prefix-condition code. Huffman codes satisfy always the prefix-condition. 

Due to the prefix-condition property, Huffman codes are uniquely decodable. Not every uniquely 

decodable code satisfies the prefix-condition. A code such as 0, 01, 011, 0111 does not satisfy the 

prefix-condition, since zero is a prefix for all of the codewords; however, every codeword is uniquely 

decodable, since a zero signifies the start of a new codeword. 

If we have a binary representation for the codewords, the complement of this representation is also a 

valid set of Huffman codewords. The choice of using the codeword set or the corresponding 

complement set depends on the application. For instance, if the Huffman codewords are to be 

transmitted over a noisy channel where the probability of error of a one being received as a zero is 

higher than the probability of error of a zero being received as a one, then one would choose the 

codeword set for which the bit zero has a higher probability of occurrence. This will improve the 

performance of the Huffman coder in this noisy channel. 

In Huffman coding, fixed-length input symbols are mapped into variable-length codewords. Since 

there are no fixed-size boundaries between codewords, if some of the bits in the compressed stream 

are received incorrectly or if they are not received at all due to dropouts, all the data are lost. This 

potential loss can be prevented by using special markers within the compressed bit stream to designate 

the start or end of a compressed stream packet. 

 

Extended Huffman Codes 

 

Suppose we have three symbols with probabilities as shown in the following table. The Huffman 

codeword for each symbol is also shown. 

 

Symbol Probability Code 

1s  0.8 0 

2s  0.02 11 

3s  0.18 10 
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For the above set of symbols we have: 

Entropy 816.0)(  nsH  bits/symbol. 

Average number of bits per symbol 2.1avgl  bits/symbol. 

Redundancy 384.0816.02.1 nlavg  or %47% 


n

nlavg
 of entropy. 

For this particular example Huffman code gives a poor compression. This is because one of the 

symbols ( 1s ) has significantly higher probability of occurrence compared to the others. Suppose we 

merge the symbols in groups of two symbols. In the next table the extended alphabet and 

corresponding probabilities and Huffman codewords are shown. 

 

Symbol Probability Code 

11ss  0.64 0 

21ss  0.016 10101 

31ss  0.144 11 

12ss  0.016 101000 

22ss  0.0004 10100101 

32ss  0.0036 1010011 

13ss  0.144 100 

23ss  0.0036 10100100 

33ss  0.0324 1011 

 

Table: The extended alphabet and corresponding Huffman code 

 

For the new extended alphabet we have 

7516.1avgl  bits/new symbol or 8758.0avgl  bits/original symbol. 

Redundancy 0598.0816.08758.0 nlavg  or %7% 


n

nlavg
 of entropy. 

We see that by coding the extended alphabet a significantly better compression is achieved. The above 

process is called Extended Huffman Coding. 

 

Main Limitations of Huffman Coding 
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 To achieve the entropy of a DMS (Discrete Memoryless SourCe), the symbol probabilities should 

be negative powers of 2 (i.e. iplog  is an integer). 

 Can not assign fractional codelengths. 

 Can not efficiently adapt to changing source statistics. 

 To improve coding efficiency avglsH /)(  we can encode the symbols of an extended source. 

However number of entries in Huffman table grows exponentially with block size. 

There are also cases where even the extended Huffman does not work. Suppose we have the 

following case: 

 

Symbol Probability Code 

1s  0.95 0 

2s  0.02 11 

3s  0.03 10 

 

Table: Huffman code for three symbol alphabet 

 

Entropy 335.0)(  nsH  bits/symbol. 

Average number of bits per symbol 05.1avgl  bits/symbol. 

Redundancy 715.0335.005.1 nlavg  or %213% 


n

nlavg
 of entropy! 

Suppose we merge the symbols in groups of two symbols. In the next table the extended alphabet 

and corresponding probabilities and Huffman codewords are shown. 

 

Symbol Probability Code 

11ss  0.9025 0 

21ss  0.019 111 

31ss  0.0285 100 

12ss  0.019 1101 

22ss  0.0004 110011 

32ss  0.0006 110001 

13ss  0.0285 101 

23ss  0.0006 110010 

33ss  0.0009 110000 
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Table: The extended alphabet and corresponding Huffman code 

 

For the new extended alphabet we have 

222.1avgl  bits/new symbol or 611.0avgl  bits/original symbol. 

Redundancy %72% 


n

nlavg
 of entropy. 

For this example it is proven that redundancy drops to acceptable values by merging the original 

symbols in groups of 8 symbols! and in that case the alphabet size is 6561 new symbols! 

Arithmetic coding solves many limitations of Huffman coding. Arithmetic coding is out of the scope 

of this course. 

 

3 HUFFMAN DECODING 

 

The Huffman encoding process is relatively straightforward. The symbol-to-codeword mapping table 

provided by the modeler is used to generate the codewords for each input symbol. On the other hand, 

the Huffman decoding process is somewhat more complex. 

 

Bit-Serial Decoding 

 

Let us assume that the binary coding tree is also available to the decoder. In practice, this tree can be 

reconstructed from the symbol-to-codeword mapping table that is known to both the encoder and the 

decoder. The decoding process consists of the following steps: 

 

1. Read the input compressed stream bit by bit and traverse the tree until a leaf node is reached. 

2. As each bit in the input stream is used, it is discarded. When the leaf node is reached, the 

Huffman decoder outputs the symbol at the leaf node. This completes the decoding for this 

symbol. 

 

We repeat these steps until all of the input is consumed. For the example discussed in the previous 

section, since the longest codeword is five bits and the shortest codeword is two bits, the decoding bit 

rate is not the same for all symbols. Hence, this scheme has a fixed input bit rate but a variable output 

symbol rate. 

 

Lookup-Table-Based Decoding 
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Lookup-table-based methods yield a constant decoding symbol rate. The lookup table is constructed 

at the decoder from the symbol-to-codeword mapping table. If the longest codeword in this table is L  

bits, then a L2  entry lookup table is needed. Recall the first example that we presented in that section 

where 5L . Specifically, the lookup table construction for each symbol is  is as follows: 

 

 Let ic  be the codeword that corresponds to symbol is . Assume that ic  has il  bits. We form an 

L  bit address in which the first il  bits are ic  and the remaining ilL   bits take on all possible 

combinations of zero and one. Thus, for the symbol is  there will be ilL
2  addresses. 

 At each entry we form the two-tuple ),( ii ls . 

 

Decoding using the lookup-table approach is relatively easy: 

 

1. From the compressed input bit stream, we read in L  bits into a buffer. 

2. We use the L bit word in the buffer as an address into the lookup table and obtain the 

corresponding symbol, say ks . Let the codeword length be kl . We have now decoded one 

symbol. 

3. We discard the first kl  bits from the buffer and we append to the buffer, the next kl  bits from the 

input, so that the buffer has again L  bits. 

4. We repeat Steps 2 and 3 until all of the symbols have been decoded. 

 

The primary advantages of lookup-table-based decoding are that it is fast and that the decoding rate is 

constant for all symbols, regardless of the corresponding codeword length. However, the input bit rate 

is now variable. For image or video data, the longest codeword could be around 16 to 20 bits. Thus, in 

some applications, the lookup table approach may be impractical due to space constraints. 

Variants on the basic theme of lookup-table-based decoding include using hierarchical lookup tables 

and combinations of lookup table and bit-by-bit decoding. 

There are codeword construction methods that facilitate lookup-table-based decoding by constraining 

the maximum codeword length to a fixed-size L , but these are out of the scope of this course. 

 

4 STANDARDS FOR LOSSLESS COMPRESSION 

 

Standards related to the coding and transmission of signals over public telecommunication channels 

are developed under the auspices of the telecommunication standardization sector of the International 

Telecommunication Union (ITU-T). This sector was formerly known as the CCITT. The first 

standards for lossless compression were developed for facsimile applications. Scanned images used in 
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such applications are bitonal, that is, the pixels take on one of two values, black or white, and these 

values are represented with one bit per pixel. 

Facsimile Compression Standards and Run-Length Coding Scheme 

 

In every bitonal image there are large regions that are either all white or all black. For instance, in 

Figure 4.1, we show a few pixels of a line in a bitonal image. Note that, the six contiguous pixels of 

the same color can be described as a run of six pixels with value 0 . Thus, if each pixel of the image is 

remapped from say, its (position, value) to a run and value, then a more compact description can be 

obtained. In our example, no more than four bits are needed to describe the six-pixel run. In general, 

for many document type images, significant compression can be achieved using such preprocessing. 

Such a mapping scheme is referred to as a run-length coding scheme. 

 

 

 

 

Figure 4.1: Sample scanline of a bitonal image 

 

The combination of a run-length coding scheme followed by a Huffman coder forms the basis of 

the image coding standards for facsimile applications. These standards include the following: 

 

 ITU-T Rec. T.4 (also known as Group 3). There are two coding approaches within this standard. 

 

1. Modified Huffman (MH) code. The image is treated as a sequence of scanlines, and a run-

length description is first obtained for each line. A Huffman code is then applied to the (run, 

value) description. A separate Huffman code is used to distinguish between black and white 

runs, since the characteristics of these runs are quite different. The Huffman code table is 

static: that is, it does not change from image to image. For error-detection purposes, after each 

line is coded, an EOL (end of line) codeword is inserted. 

 

2. Modified Read (MR) code. Here, pixel values in a previous line are used as predictors for the 

current line. This is followed by a run-length description and a static Huffman code as in the 

MH code. An EOL codeword is also used. To prevent error propagation, MR coding is mixed 

with MH coding periodically. 

 

 ITU-T Rec. T.6 (also known as Group 4). The coding technique used here is referred to as a 

Modified Modified Read (MMR) code. This code is a simplification of the MR code, wherein the 
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error-protection mechanisms in the MR code are removed so as to improve the overall 

compression ratio. 

These compression standards yield good compression (20:1 to 50:1) for business-type scanned 

documents. For images composed of natural scenes and rendered as bitonal images using a halftoning 

technique the compression ratio is severely degraded. In Figure 4.2, the image on the left possesses 

characteristics representative of business document images whereas the image on the right is a typical 

halftone image. The former is characterized by long runs of black or white, and the static Huffman 

code in the facsimile compression standards is matched to these run-lengths. In the latter image, the 

run-lengths are relatively short, spanning only one to two pixels and the static Huffman code is not 

matched to such runs. An adaptive arithmetic coder is better suited for such images. 

 

Figure 4.2: Typical bitonal images 

 

 

The JBIG Compression Standard 

 

Recently, a compression standard was developed to efficiently compress halftone as well as business 

document type images. This is the JBIG (Joint Binary Image Experts Group) compression standard. 

Its standard nomenclature is ISO/IEC IS 11544, ITU-T Rec. T.82. The JBIG compression standard 

consists of a modeler and an arithmetic coder. The modeler is used to estimate the symbol 

probabilities that are then used by the arithmetic coder. The JBIG is out of the scope of this course. 

In Tables 4.1 below, we provide a simple complexity analysis between the JBIG coding scheme and 

the ITU-T Rec. T.6 facsimile compression standard. We also provide compression ratios for two 

typical images: a 202 Kbyte halftone image and a 1 Mbyte image, primarily comprised of text. The 

latter image is referred to as letter in the table. For business-type documents, JBIG yields 20 percent 
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to 50 percent more compression than the facsimile compression standards ITU-T Rec. T.4 and Rec. 

T.6. For halftone images, compression ratios with JBIG are two to five times more than those 

obtained with the facsimile compression standards. However, software implementations of JBIG 

compression on a general purpose computer are two to three times slower than implementations of the 

ITU-T Rec. T.4 and T.6 standards. 

 

The JBIG standard can also handle grayscale images by processing each bit-plane of a grayscale 

image as separate bitonal images. 

 

 JBIG-Baselayer ITU-T Rec. T.6 

Complexity 

Parameters 

Three-line template, 

AT-max=16 

2-D runlength, 

Huffman code 

Memory 1589 bytes 1024 bytes 

Buffer Three scanlines Two scanlines 

Operations Add, shift Add, shift, compare 

 

Compression   

Halftone Image 5.2:1 1.5:1 

Letter Image 48:1 33.3:1 

 

Tables 4.1: Comparative analysis between JBIG and the ITU-T Rec. T.6 facsimile compression 

standards 

 

The Lossless JPEG Standard 

 

Most people know JPEG as a transform-based lossy compression standard. JPEG (Joint Photographic 

Experts Group), like JBIG, has been developed jointly by both the ITU-T and the ISO. We will 

describe this standard in greater detail in a subsequent section; however, here, we describe briefly the 

lossless mode of compression supported within this standard. The lossless compression method within 

JPEG is fully independent from transform-based coding. Instead, it uses differential coding to form 

prediction residuals that are then coded with either a Huffman coder or an arithmetic coder. As 

explained earlier, the prediction residuals usually have a lower entropy; thus, they are more amenable 

to compression than the original image pixels. 

 

In lossless JPEG, one forms a prediction residual using previously encoded pixels in the current line 

and/or the previous line. The prediction residual for pixel X  in Figure 4.3 is defined as Xyr   
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where y  can be any of the following functions: 

0y  

ay   

by   

cy   

cbay   

2/)( cbay   

2/)( caby   

2/)( bay   

Note that, pixel values at pixel positions ba  , , and c , are available to both the encoder and the 

decoder prior to processing X . The particular choice for the y  function is defined in the scan header 

of the compressed stream so that both the encoder and the decoder use identical functions. Divisions 

by two are computed by performing a one-bit right shift. 

 

 

 

 

 

 

Figure 4.3: Lossless JPEG prediction kernel 

 

The prediction residual is computed modulo 2. This residual is not directly Huffman coded. Instead, it 

is expressed as a pair of symbols: the category and the magnitude. The first symbol represents the 

number of bits needed to encode the magnitude. Only this value is Huffman coded. The magnitude 

categories for all possible values of the prediction residual are shown in Table 4.2. If, say, the 

prediction residual for X  is 42, then from Table 4.2 we determine that this value belongs to category 

6; that is, we need an additional six bits to uniquely determine the value 42. The prediction residual is 

then mapped into the two-tuple (6, 6-bit code for 42). Category 6 is Huffman coded, and the 

compressed representation for the prediction residual consists of this Huffman codeword followed by 

the 6-bit representation for the magnitude. In general, if the value of the residual is positive, then the 

code for the magnitude is its direct binary representation. If the residual is negative, then the code for 

the magnitude is the one's complement of its absolute value. Therefore, codewords for negative 

residual always start wish a zero bit. 

 

Example 3: Consider Figure 4.3 with pixel values 100a , 191b , 100c , and 180X . Let 

X 

b c 

a 
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2/)( bay  ; then 145y , and the prediction residual is 35180145 r . From Table 4.2, 

35  belongs to category 6. The binary number for 35 is 100011, and its one's complement is 011100. 

Thus, 35  is represented as (6,011100). If the Huffman code for six is 1110, then 35  is coded by 

the 10-bit codeword 1110011100. Without entropy coding, 35  would require 16 bits. 

 

In the decoder, the category (that is, 6) is extracted first. Thus, the next six bits, 011100, correspond to 

the magnitude of the residual. Since the most significant bit is zero, the residual is negative. After 

taking the one's complement of 011100, the decoded value of the residual r is 35 . The a  and b  

bits have already been decoded; thus, 145y  as before, and 18035 yX . 

 

Category Prediction Residual 

0 0 

1 -1, 1 

2 -3, -2, 2, 3 

3 -7, …, -4, 4, …, 7 

4 -15, …, -8, 8, …, 15 

5 -31, …,-16, 16, …, 31 

6 -63, …, -32, 32, …, 63 

7 -127, ..., -64, 64, …, 127 

8 -255, ..., -128, 128, ..., 255 

9 -511, ..., -256, 256, ..., 511 

10 -1023,..., -512, 512, ..., 1023 

11 -2047, ..., -1024, 1024, ..., 2047 

12 -4095, ..., -2048, 2048, ..., 4095 

13 -8191, ..., -4096, 4096, ..., 8191 

14 -16383, …,-8192, 8192, ..., 16383 

15 -32767, ..., -16384, 16384, ..., 32767 

16 32768 

 

Table 4.2: Prediction residual categories for lossless JPEG compression. 

 

This notion of using a category table is a form of context modeling and simplifies the Huffman coder. 

Without categorization of the prediction residuals, we would require a Huffman table for an alphabet 

of 162  symbols. Such a large codeword table would complicate both the codeword construction 

process and the decoding process. 
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Lossless JPEG outperforms JBIG for typical grayscale images with more than six bits per pixel. At six 

bits per pixel or below, JBIG yields better compression ratios than JPEG. For typical images, such as 

the grayscale version of the halftone image of Figure 4.2, compression ratios in excess of 1.5 to 1 are 

quite difficult to achieve. The standards committee is currently working on developing new lossless 

compression techniques that can outperform the simple single-prediction, single-Huffman table 

coding method currently used in the lossless JPEG compression standard. 

 

5 TO PROBE FURTHER 

 

We have reviewed some of the algorithms and standards for lossless compression. Huffman coding, in 

particular, is the most widely used entropy coder in the standards. A general discussion on entropy 

coders can be found in any textbook on information theory.  

 

In many practical implementations, the maximum codeword length of a Huffman code needs to be 

constrained. Several approaches for constructing such a code have been developed, but are out of the 

scope of this course.  

 

Huffman coding methods are amenable to simpler software and hardware implementations; however, 

techniques based on arithmetic coding tend to yield a higher compression ratio. Arithmetic coding is 

quite complicated, and therefore is also out of the scope of this course. 
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