

Imperial College of Science Technology and Medicine

Department of Electrical and Electronic Engineering

Digital Image Processing

PART 4

IMAGE COMPRESSION

LOSSLESS COMPRESSION

 Academic responsible

 Dr. Tania STATHAKI

 Room 812

 Ext. 46229

 Email: t.stathaki@ic.ac.uk

 1

METHODS AND STANDARDS FOR LOSSLESS

COMPRESSION

1 PRELIMINARIES

Lossless compression refers to compression methods for which the original uncompressed data set can

be recovered exactly from the compressed stream. The need for lossless compression arises from the

fact that many applications, such as the compression of digitized medical data, require that no loss be

introduced from the compression method. Bitonal image transmission via a facsimile device also

imposes such requirements. In recent years, several compression standards have been developed for

the lossless compression of such images. We discuss these standards later. In general, even when

lossy compression is allowed, the overall compression scheme may be a combination of a lossy

compression process followed by a lossless compression process. Various image, video, and audio

compression standards follow this model, and several of the lossless compression schemes used in

these standards are described in this section.

The general model of a lossless compression scheme is as depicted in the following figure.

Figure 1.1: A generic model for lossless compression

Given an input set of symbols, a modeler generates an estimate of the probability distribution of the

input symbols. This probability model is then used to map symbols into codewords. The combination

of the probability modeling and the symbol-to-codeword mapping functions is usually referred to as

entropy coding. The key idea of entropy coding is to use short codewords for symbols that occur

Delay

Symbol-

to-

Codeword

Mapping

Probability

Model

Input Symbol

Codeword

 2

with high probability and long codewords for symbols that occur with low probability.

The probability model can be derived either from the input data or from a priori assumptions about the

data. Note that, for decodability, the same model must also be generated by the decoder. Thus, if the

model is dynamically estimated from the input data, causality constraints require a delay function

between the input and the modeler. If the model is derived from a priori assumptions, then the delay

block is not required; furthermore, the model function need not have access to the input symbols. The

probability model does not have to be very accurate, but the more accurate it is, the better the

compression will be. Note that, compression is not always guaranteed. If the probability model is

wildly inaccurate, then the output size may even expand. However, even then the original input can be

recovered without any loss.

Decompression is performed by reversing the flow of operations shown in the above Figure 1.1. This

decompression process is usually referred to as entropy decoding.

Message-to-Symbol Partitioning

As noted before, entropy coding is performed on a symbol by symbol basis. Appropriate partitioning

of the input messages into symbols is very important for efficient coding. For example, typical images

have sizes from 256256 pixels to 6400064000 pixels. One could view one instance of a

256256 multi-frame image as a single message, 655362562 long; however, it is very difficult to

provide probability models for such long symbols. In practice, we typically view any image as a string

of symbols. In the case of a 256256 image, if we assume that each pixel takes values between zero

and 255, then this image can be viewed as a sequence of symbols drawn from the alphabet

255,,2,1,0 . The modeling problem now reduces to finding a good probability model for the 256

symbols in this alphabet.

For some images, one might partition the data set even further. For instance, if we have an image with

12 bits per pixel, then this image can be viewed as a sequence of symbols drawn from the alphabet

4095,,1,0 . Hardware and/or software implementations of the lossless compression methods may

require that data be processed in ,32 ,16 ,8 or 64 bit units. Thus, one approach might be to take

the stream of 12 bit pixels and artificially view it as a sequence of 8 bit symbols. In this case, we

have reduced the alphabet size. This reduction compromises the achievable compression ratio;

however, the data are matched to the processing capabilities of the computing element.

Other data partitions are also possible; for instance, one may view the data as a stream of 24 bit

symbols. This approach may result in higher compression since we are combining two pixels into one

symbol. In general, the partitioning of the data into blocks, where a block is composed of several

 3

input units, may result in higher compression ratios, but also increases the coding complexity.

Differential Coding

Another preprocessing technique that improves the compression ratio is differential coding.

Differential coding skews the symbol statistics so that the resulting distribution is more amenable to

compression. Image data tend to have strong inter-pixel correlation. If, say, the pixels in the image are

in the order Nxxxx ,,,, 321 , then instead of compressing these pixels, one might process the

sequence of differentials 1 iii xxy , where Ni ,,2,1 , and 00 x . In compression

terminology, iy is referred to as the prediction residual of ix . The notion of compressing the

prediction residual instead of ix is used in all the image and video compression standards. For

images, a typical probability distribution for ix and the resulting distribution for iy are shown in

Figure 1.2.

Let symbol is have a probability of occurrence ip . From coding theory, the ideal symbol-to-

codeword mapping function will produce a codeword requiring)/1(log2 ip bits. A distribution close

to uniform for ip)255/1(ip , such as the one shown in the left plot of Figure 1.2, will result in

codewords that on the average require eight bits; thus, no compression is achieved. On the other hand,

for a skewed probability distribution, such as the one shown in the right plot of Figure 1.2, the

symbol-to-codeword mapping function can on the average yield codewords requiring less than eight

bits per symbol and thereby achieve compression.

We will understand these concepts better in the following Huffman encoding section.

Figure 1.2: Typical distribution of pixel values for ix and iy . Here, the pixel values are shown on

the horizontal axis and the corresponding probability of occurrence is shown on the

0 255 255 0 -255

Preprocessing

 4

vertical axis.

2 HUFFMAN ENCODING

In 1952, D. A. Huffman developed a code construction method that can be used to perform lossless

compression. In Huffman coding, the modeling and the symbol-to-codeword mapping functions of

Figure 1.1 are combined into a single process. As discussed earlier, the input data are partitioned

into a sequence of symbols so as to facilitate the modeling process. In most image and video

compression applications, the size of the alphabet composing these symbols is restricted to at most

64000 symbols. The Huffman code construction procedure evolves along the following parts:

1. Order the symbols according to their probabilities.

For Huffman code construction, the frequency of occurrence of each symbol must be known a

priori. In practice, the frequency of occurrence can be estimated from a training set of data that is

representative of the data to be compressed in a lossless manner. If, say, the alphabet is

composed of N distinct symbols Nssss ,,,, 321 and the probabilities of occurrence are

Npppp ,,,, 321 , then the symbols are rearranged so that Npppp 321 .

2. Apply a contraction process to the two symbols with the smallest probabilities.

Suppose the two symbols are 1Ns and Ns . We replace these two symbols by a hypothetical

symbol, say,),(11 NNN ssH that has a probability of occurrence NN pp 1 . Thus, the new

set of symbols has 1N members 12321 ,,,,, NN Hssss .

3. We repeat the previous part 2 until the final set has only one member.

The recursive procedure in part 2 can be viewed as the construction of a binary tree, since at each step

we are merging two symbols. At the end of the recursion process all the symbols Nssss ,,,, 321 will

be leaf nodes of this tree. The codeword for each symbol is is obtained by traversing the binary tree

from its root to the leaf node corresponding to is .

We illustrate the code construction process with the following example depicted in Figure 2.1. The

input data to be compressed is composed of symbols in the alphabet ?,,,,,, rewulk . First we sort the

probabilities. In Step 1, we merge the two symbols k and w to form the new symbol),(wk . The

probability of occurrence for the new symbol is the sum of the probabilities of occurrence for k and

w . We sort the probabilities again and perform the merge on the pair of least frequently occurring

 5

symbols which are now the symbols),(wk and ? . We repeat this process through Step 6. By

visualizing this process as a binary tree as shown in this figure and traversing the process from the

bottom of the tree to the top, one can determine the codewords for each symbol. For example, to reach

the symbol u from the root of the tree, one traverses nodes that were assigned the bits 0,1 and 0 .

Thus, the codeword for u is 100.

 w k step 1

 0.05 0.05

 (0) (1)

),(wk ?

 step 2

 (0) (1)

 0.1 0.1

 u ?]),,[(wk

 step 3

 step 4 (0) (1)

 r l 0.1 0.2

 }?],),,{[(uwk e

 (0) (1) (0) step 5 (1)

 0.2),(rl 0.2 0.3 }},?],),,{{[(euwk 0.3

 (0) step 6 (1)

 0.4 0.6

 Generate Codewords

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

k 0.05 e 0.3 e 0.3 e 0.3 e 0.3),(rl 0.4 }},?],),,{{[(euwk 0.6

l 0.2 l 0.2 l 0.2 l 0.2 }?],),,{[(uwk 0.3 e 0.3),(rl 0.4

u 0.1 r 0.2 r 0.2 r 0.2 l 0.2 }?],),,{[(uwk 0.3

w 0.05 u 0.1 u 0.1 ?]),,[(wk 0.2 r 0.2

e 0.3 ? 0.1 ? 0.1 u 0.1

 6

r 0.2 k 0.05),(wk 0.1

? 0.1 w 0.05

Symbol Probability Codeword

k 0.05 10101

l 0.2 01

u 0.1 100

w 0.05 10100

e 0.3 11

r 0.2 00

? 0.1 1011

Figure 2.1: An example of Huffman codeword construction

In this example, the average codeword length is 2.6 bits per symbol. In general, the average codeword

length is defined as

 iiavg pll (2.1)

where il is the codeword length (in bits) for the codeword corresponding to symbol is . The average

codeword length is a measure of the compression ratio. Since our alphabet has seven symbols, a

fixed-length coder would require at least three bits per codeword. In this example, we have reduced

the representation from three bits per symbol to 2.6 bits per symbol; thus, the corresponding

compression ratio can be stated as 3/2.6=1.15. For the lossless compression of typical image or video

data, compression ratios in excess of two are hard to come by.

Properties of Huffman Codes

According to Shannon, the entropy of a source S is defined as

)/1(log)(2 ii ppnsH (2.2)

where, as before, ip denotes the probability that symbol is from S will occur. From information

theory, if the symbols are distinct, then the average number of bits needed to encode them is always

bounded from below by their entropy. For example, for the alphabet used in the previous section, the

average length is bounded by 2.6 bits per symbol. It can be shown that Huffman codewords satisfy the

constraints 1 nln avg ; that is, the average length is very close to the optimum. A tighter bound is

 7

086.0 pln avg , where p is the probability of the most frequently occurring symbol. The

equality is achieved when all symbol probabilities are inverse powers of two.

The Huffman code table construction process, as was described here, is referred to as a bottom-up

method, since we perform the contraction process on the two least frequently occurring symbols. In

recent years, top-down construction methods have also been published in the literature.

The code construction process has a complexity of)log(2 NNO . With presorting of the input symbol

probabilities, code construction methods with complexity)(NO are presently known.

In the example, one can observe that no codeword is a prefix for another codeword. Such a code is

referred to as a prefix-condition code. Huffman codes satisfy always the prefix-condition.

Due to the prefix-condition property, Huffman codes are uniquely decodable. Not every uniquely

decodable code satisfies the prefix-condition. A code such as 0, 01, 011, 0111 does not satisfy the

prefix-condition, since zero is a prefix for all of the codewords; however, every codeword is uniquely

decodable, since a zero signifies the start of a new codeword.

If we have a binary representation for the codewords, the complement of this representation is also a

valid set of Huffman codewords. The choice of using the codeword set or the corresponding

complement set depends on the application. For instance, if the Huffman codewords are to be

transmitted over a noisy channel where the probability of error of a one being received as a zero is

higher than the probability of error of a zero being received as a one, then one would choose the

codeword set for which the bit zero has a higher probability of occurrence. This will improve the

performance of the Huffman coder in this noisy channel.

In Huffman coding, fixed-length input symbols are mapped into variable-length codewords. Since

there are no fixed-size boundaries between codewords, if some of the bits in the compressed stream

are received incorrectly or if they are not received at all due to dropouts, all the data are lost. This

potential loss can be prevented by using special markers within the compressed bit stream to designate

the start or end of a compressed stream packet.

Extended Huffman Codes

Suppose we have three symbols with probabilities as shown in the following table. The Huffman

codeword for each symbol is also shown.

Symbol Probability Code

1s 0.8 0

2s 0.02 11

3s 0.18 10

 8

For the above set of symbols we have:

Entropy 816.0)(nsH bits/symbol.

Average number of bits per symbol 2.1avgl bits/symbol.

Redundancy 384.0816.02.1 nlavg or %47%

n

nlavg
 of entropy.

For this particular example Huffman code gives a poor compression. This is because one of the

symbols (1s) has significantly higher probability of occurrence compared to the others. Suppose we

merge the symbols in groups of two symbols. In the next table the extended alphabet and

corresponding probabilities and Huffman codewords are shown.

Symbol Probability Code

11ss 0.64 0

21ss 0.016 10101

31ss 0.144 11

12ss 0.016 101000

22ss 0.0004 10100101

32ss 0.0036 1010011

13ss 0.144 100

23ss 0.0036 10100100

33ss 0.0324 1011

Table: The extended alphabet and corresponding Huffman code

For the new extended alphabet we have

7516.1avgl bits/new symbol or 8758.0avgl bits/original symbol.

Redundancy 0598.0816.08758.0 nlavg or %7%

n

nlavg
 of entropy.

We see that by coding the extended alphabet a significantly better compression is achieved. The above

process is called Extended Huffman Coding.

Main Limitations of Huffman Coding

 9

 To achieve the entropy of a DMS (Discrete Memoryless SourCe), the symbol probabilities should

be negative powers of 2 (i.e. iplog is an integer).

 Can not assign fractional codelengths.

 Can not efficiently adapt to changing source statistics.

 To improve coding efficiency avglsH /)(we can encode the symbols of an extended source.

However number of entries in Huffman table grows exponentially with block size.

There are also cases where even the extended Huffman does not work. Suppose we have the

following case:

Symbol Probability Code

1s 0.95 0

2s 0.02 11

3s 0.03 10

Table: Huffman code for three symbol alphabet

Entropy 335.0)(nsH bits/symbol.

Average number of bits per symbol 05.1avgl bits/symbol.

Redundancy 715.0335.005.1 nlavg or %213%

n

nlavg
 of entropy!

Suppose we merge the symbols in groups of two symbols. In the next table the extended alphabet

and corresponding probabilities and Huffman codewords are shown.

Symbol Probability Code

11ss 0.9025 0

21ss 0.019 111

31ss 0.0285 100

12ss 0.019 1101

22ss 0.0004 110011

32ss 0.0006 110001

13ss 0.0285 101

23ss 0.0006 110010

33ss 0.0009 110000

 10

Table: The extended alphabet and corresponding Huffman code

For the new extended alphabet we have

222.1avgl bits/new symbol or 611.0avgl bits/original symbol.

Redundancy %72%

n

nlavg
 of entropy.

For this example it is proven that redundancy drops to acceptable values by merging the original

symbols in groups of 8 symbols! and in that case the alphabet size is 6561 new symbols!

Arithmetic coding solves many limitations of Huffman coding. Arithmetic coding is out of the scope

of this course.

3 HUFFMAN DECODING

The Huffman encoding process is relatively straightforward. The symbol-to-codeword mapping table

provided by the modeler is used to generate the codewords for each input symbol. On the other hand,

the Huffman decoding process is somewhat more complex.

Bit-Serial Decoding

Let us assume that the binary coding tree is also available to the decoder. In practice, this tree can be

reconstructed from the symbol-to-codeword mapping table that is known to both the encoder and the

decoder. The decoding process consists of the following steps:

1. Read the input compressed stream bit by bit and traverse the tree until a leaf node is reached.

2. As each bit in the input stream is used, it is discarded. When the leaf node is reached, the

Huffman decoder outputs the symbol at the leaf node. This completes the decoding for this

symbol.

We repeat these steps until all of the input is consumed. For the example discussed in the previous

section, since the longest codeword is five bits and the shortest codeword is two bits, the decoding bit

rate is not the same for all symbols. Hence, this scheme has a fixed input bit rate but a variable output

symbol rate.

Lookup-Table-Based Decoding

 11

Lookup-table-based methods yield a constant decoding symbol rate. The lookup table is constructed

at the decoder from the symbol-to-codeword mapping table. If the longest codeword in this table is L

bits, then a L2 entry lookup table is needed. Recall the first example that we presented in that section

where 5L . Specifically, the lookup table construction for each symbol is is as follows:

 Let ic be the codeword that corresponds to symbol is . Assume that ic has il bits. We form an

L bit address in which the first il bits are ic and the remaining ilL bits take on all possible

combinations of zero and one. Thus, for the symbol is there will be ilL
2 addresses.

 At each entry we form the two-tuple),(ii ls .

Decoding using the lookup-table approach is relatively easy:

1. From the compressed input bit stream, we read in L bits into a buffer.

2. We use the L bit word in the buffer as an address into the lookup table and obtain the

corresponding symbol, say ks . Let the codeword length be kl . We have now decoded one

symbol.

3. We discard the first kl bits from the buffer and we append to the buffer, the next kl bits from the

input, so that the buffer has again L bits.

4. We repeat Steps 2 and 3 until all of the symbols have been decoded.

The primary advantages of lookup-table-based decoding are that it is fast and that the decoding rate is

constant for all symbols, regardless of the corresponding codeword length. However, the input bit rate

is now variable. For image or video data, the longest codeword could be around 16 to 20 bits. Thus, in

some applications, the lookup table approach may be impractical due to space constraints.

Variants on the basic theme of lookup-table-based decoding include using hierarchical lookup tables

and combinations of lookup table and bit-by-bit decoding.

There are codeword construction methods that facilitate lookup-table-based decoding by constraining

the maximum codeword length to a fixed-size L , but these are out of the scope of this course.

4 STANDARDS FOR LOSSLESS COMPRESSION

Standards related to the coding and transmission of signals over public telecommunication channels

are developed under the auspices of the telecommunication standardization sector of the International

Telecommunication Union (ITU-T). This sector was formerly known as the CCITT. The first

standards for lossless compression were developed for facsimile applications. Scanned images used in

 12

such applications are bitonal, that is, the pixels take on one of two values, black or white, and these

values are represented with one bit per pixel.

Facsimile Compression Standards and Run-Length Coding Scheme

In every bitonal image there are large regions that are either all white or all black. For instance, in

Figure 4.1, we show a few pixels of a line in a bitonal image. Note that, the six contiguous pixels of

the same color can be described as a run of six pixels with value 0 . Thus, if each pixel of the image is

remapped from say, its (position, value) to a run and value, then a more compact description can be

obtained. In our example, no more than four bits are needed to describe the six-pixel run. In general,

for many document type images, significant compression can be achieved using such preprocessing.

Such a mapping scheme is referred to as a run-length coding scheme.

Figure 4.1: Sample scanline of a bitonal image

The combination of a run-length coding scheme followed by a Huffman coder forms the basis of

the image coding standards for facsimile applications. These standards include the following:

 ITU-T Rec. T.4 (also known as Group 3). There are two coding approaches within this standard.

1. Modified Huffman (MH) code. The image is treated as a sequence of scanlines, and a run-

length description is first obtained for each line. A Huffman code is then applied to the (run,

value) description. A separate Huffman code is used to distinguish between black and white

runs, since the characteristics of these runs are quite different. The Huffman code table is

static: that is, it does not change from image to image. For error-detection purposes, after each

line is coded, an EOL (end of line) codeword is inserted.

2. Modified Read (MR) code. Here, pixel values in a previous line are used as predictors for the

current line. This is followed by a run-length description and a static Huffman code as in the

MH code. An EOL codeword is also used. To prevent error propagation, MR coding is mixed

with MH coding periodically.

 ITU-T Rec. T.6 (also known as Group 4). The coding technique used here is referred to as a

Modified Modified Read (MMR) code. This code is a simplification of the MR code, wherein the

 13

error-protection mechanisms in the MR code are removed so as to improve the overall

compression ratio.

These compression standards yield good compression (20:1 to 50:1) for business-type scanned

documents. For images composed of natural scenes and rendered as bitonal images using a halftoning

technique the compression ratio is severely degraded. In Figure 4.2, the image on the left possesses

characteristics representative of business document images whereas the image on the right is a typical

halftone image. The former is characterized by long runs of black or white, and the static Huffman

code in the facsimile compression standards is matched to these run-lengths. In the latter image, the

run-lengths are relatively short, spanning only one to two pixels and the static Huffman code is not

matched to such runs. An adaptive arithmetic coder is better suited for such images.

Figure 4.2: Typical bitonal images

The JBIG Compression Standard

Recently, a compression standard was developed to efficiently compress halftone as well as business

document type images. This is the JBIG (Joint Binary Image Experts Group) compression standard.

Its standard nomenclature is ISO/IEC IS 11544, ITU-T Rec. T.82. The JBIG compression standard

consists of a modeler and an arithmetic coder. The modeler is used to estimate the symbol

probabilities that are then used by the arithmetic coder. The JBIG is out of the scope of this course.

In Tables 4.1 below, we provide a simple complexity analysis between the JBIG coding scheme and

the ITU-T Rec. T.6 facsimile compression standard. We also provide compression ratios for two

typical images: a 202 Kbyte halftone image and a 1 Mbyte image, primarily comprised of text. The

latter image is referred to as letter in the table. For business-type documents, JBIG yields 20 percent

 14

to 50 percent more compression than the facsimile compression standards ITU-T Rec. T.4 and Rec.

T.6. For halftone images, compression ratios with JBIG are two to five times more than those

obtained with the facsimile compression standards. However, software implementations of JBIG

compression on a general purpose computer are two to three times slower than implementations of the

ITU-T Rec. T.4 and T.6 standards.

The JBIG standard can also handle grayscale images by processing each bit-plane of a grayscale

image as separate bitonal images.

 JBIG-Baselayer ITU-T Rec. T.6

Complexity

Parameters

Three-line template,

AT-max=16

2-D runlength,

Huffman code

Memory 1589 bytes 1024 bytes

Buffer Three scanlines Two scanlines

Operations Add, shift Add, shift, compare

Compression

Halftone Image 5.2:1 1.5:1

Letter Image 48:1 33.3:1

Tables 4.1: Comparative analysis between JBIG and the ITU-T Rec. T.6 facsimile compression

standards

The Lossless JPEG Standard

Most people know JPEG as a transform-based lossy compression standard. JPEG (Joint Photographic

Experts Group), like JBIG, has been developed jointly by both the ITU-T and the ISO. We will

describe this standard in greater detail in a subsequent section; however, here, we describe briefly the

lossless mode of compression supported within this standard. The lossless compression method within

JPEG is fully independent from transform-based coding. Instead, it uses differential coding to form

prediction residuals that are then coded with either a Huffman coder or an arithmetic coder. As

explained earlier, the prediction residuals usually have a lower entropy; thus, they are more amenable

to compression than the original image pixels.

In lossless JPEG, one forms a prediction residual using previously encoded pixels in the current line

and/or the previous line. The prediction residual for pixel X in Figure 4.3 is defined as Xyr

 15

where y can be any of the following functions:

0y

ay

by

cy

cbay

2/)(cbay

2/)(caby

2/)(bay

Note that, pixel values at pixel positions ba , , and c , are available to both the encoder and the

decoder prior to processing X . The particular choice for the y function is defined in the scan header

of the compressed stream so that both the encoder and the decoder use identical functions. Divisions

by two are computed by performing a one-bit right shift.

Figure 4.3: Lossless JPEG prediction kernel

The prediction residual is computed modulo 2. This residual is not directly Huffman coded. Instead, it

is expressed as a pair of symbols: the category and the magnitude. The first symbol represents the

number of bits needed to encode the magnitude. Only this value is Huffman coded. The magnitude

categories for all possible values of the prediction residual are shown in Table 4.2. If, say, the

prediction residual for X is 42, then from Table 4.2 we determine that this value belongs to category

6; that is, we need an additional six bits to uniquely determine the value 42. The prediction residual is

then mapped into the two-tuple (6, 6-bit code for 42). Category 6 is Huffman coded, and the

compressed representation for the prediction residual consists of this Huffman codeword followed by

the 6-bit representation for the magnitude. In general, if the value of the residual is positive, then the

code for the magnitude is its direct binary representation. If the residual is negative, then the code for

the magnitude is the one's complement of its absolute value. Therefore, codewords for negative

residual always start wish a zero bit.

Example 3: Consider Figure 4.3 with pixel values 100a , 191b , 100c , and 180X . Let

X

b c

a

 16

2/)(bay ; then 145y , and the prediction residual is 35180145 r . From Table 4.2,

35 belongs to category 6. The binary number for 35 is 100011, and its one's complement is 011100.

Thus, 35 is represented as (6,011100). If the Huffman code for six is 1110, then 35 is coded by

the 10-bit codeword 1110011100. Without entropy coding, 35 would require 16 bits.

In the decoder, the category (that is, 6) is extracted first. Thus, the next six bits, 011100, correspond to

the magnitude of the residual. Since the most significant bit is zero, the residual is negative. After

taking the one's complement of 011100, the decoded value of the residual r is 35 . The a and b

bits have already been decoded; thus, 145y as before, and 18035 yX .

Category Prediction Residual

0 0

1 -1, 1

2 -3, -2, 2, 3

3 -7, …, -4, 4, …, 7

4 -15, …, -8, 8, …, 15

5 -31, …,-16, 16, …, 31

6 -63, …, -32, 32, …, 63

7 -127, ..., -64, 64, …, 127

8 -255, ..., -128, 128, ..., 255

9 -511, ..., -256, 256, ..., 511

10 -1023,..., -512, 512, ..., 1023

11 -2047, ..., -1024, 1024, ..., 2047

12 -4095, ..., -2048, 2048, ..., 4095

13 -8191, ..., -4096, 4096, ..., 8191

14 -16383, …,-8192, 8192, ..., 16383

15 -32767, ..., -16384, 16384, ..., 32767

16 32768

Table 4.2: Prediction residual categories for lossless JPEG compression.

This notion of using a category table is a form of context modeling and simplifies the Huffman coder.

Without categorization of the prediction residuals, we would require a Huffman table for an alphabet

of 162 symbols. Such a large codeword table would complicate both the codeword construction

process and the decoding process.

 17

Lossless JPEG outperforms JBIG for typical grayscale images with more than six bits per pixel. At six

bits per pixel or below, JBIG yields better compression ratios than JPEG. For typical images, such as

the grayscale version of the halftone image of Figure 4.2, compression ratios in excess of 1.5 to 1 are

quite difficult to achieve. The standards committee is currently working on developing new lossless

compression techniques that can outperform the simple single-prediction, single-Huffman table

coding method currently used in the lossless JPEG compression standard.

5 TO PROBE FURTHER

We have reviewed some of the algorithms and standards for lossless compression. Huffman coding, in

particular, is the most widely used entropy coder in the standards. A general discussion on entropy

coders can be found in any textbook on information theory.

In many practical implementations, the maximum codeword length of a Huffman code needs to be

constrained. Several approaches for constructing such a code have been developed, but are out of the

scope of this course.

Huffman coding methods are amenable to simpler software and hardware implementations; however,

techniques based on arithmetic coding tend to yield a higher compression ratio. Arithmetic coding is

quite complicated, and therefore is also out of the scope of this course.

References

[1] Digital Image Processing by R. C. Gonzales and R. E. Woods, Addison-Wesley Publishing

Company, 1992.

[2] Two-Dimensional Signal and Image Processing by J. S. Lim, Prentice Hall, 1990.

 18

