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The concepts of eigenvalues and eigenvectors are important for 

understanding the KL transform. 

 

 

 

 

 

 

 

 

Eigenvalues and Eigenvectors 
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Vector population 

• Consider a population of random vectors of the following form: 

 

 

 

 

 

• The quantity 

of the image i . 

 

• The population may arise from the formation of the above 

vectors for different image pixels. 
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Example:  x vectors could be pixel values 

in several spectral bands (channels) 



Mean and Covariance Matrix 

• The mean vector of the population is defined as: 

 

 

 

• The covariance matrix of the population is defined as: 

 

 

 

• For M vectors of a random population, where M is large 

enough 

 

 

 

• Therefore, the array formed by the Walsh matrix is a real symmetric matrix. 

It is easily shown that it has orthogonal columns and rows. 
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Karhunen-Loeve Transform 

• Let A be a matrix whose rows are formed from the eigenvectors of the 

covariance matrix C of the population. 

 

• They are ordered so that the first row of A is the eigenvector 

corresponding to the largest eigenvalue, and the last row the 

eigenvector corresponding to the smallest eigenvalue. 

 

• We define the following transform: 

 

 

 

• It is called the Karhunen-Loeve transform. 

 

 

 

• The above is again equivalent to 

 

 

 

• The array formed by the inverse Walsh matrix is identical to the one 

formed by the forward Walsh matrix apart from a multiplicative factor N. 
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Karhunen-Loeve Transform 

• You can demonstrate very easily that: 
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Drawbacks of the KL Transform 

Despite its favourable theoretical properties, the KLT is not 

used in practice for the following reasons. 

 

• Its basis functions depend on the covariance matrix of the 

image, and hence they have to recomputed and 

transmitted for every image. 

 

• Perfect decorrelation is not possible, since images can 

rarely be modelled as realisations of ergodic fields. 

 

• There are no fast computational algorithms for its 

implementation. 



Example:  x vectors could be pixel values 

in several spectral bands (channels) 



Example of the KLT: Original images 

(Images from Rafael C. Gonzalez and Richard E.  

Wood, Digital Image Processing, 2nd Edition. 

6 spectral images 

from an airborne 

Scanner. 



(Images from Rafael C. Gonzalez and Richard E.  

Wood, Digital Image Processing, 2nd Edition. 

Example: Principal Components 

Component     

1      3210 

2        931.4 

3        118.5 

4          83.88 

5          64.00 

6          13.40 



Example: Principal Components (cont.) 

Original images (channels) 
Six principal components 

after KL transform 



Example: Original Images (left) 

and  Principal Components (right) 


