

1. (i) The three reconstruction levels are:

𝑠1 =
1

2

255

3
≅ 43, 𝑠2 = 43 + 85 = 128, 𝑠3 = 128 + 43 = 171.

(ii) The equation which describes the pdf function is of the form 𝑦 =
2

255⋅255
𝑥. Based on this we

can find the probabilities of the 3 reconstruction levels.

The probability of 𝑠1 is 1/9.

The probability of 𝑠2 is 1/3. The probability of 𝑠3 is 5/9.

Huffman coding of the above set of symbols is obvious.

Symbol Probability Code

𝒔𝟏 = 𝟒𝟑 1/9 11

𝒔𝟐 = 𝟏𝟐𝟖 3/9 10

𝒔𝟑 = 𝟏𝟕𝟏 5/9 0

Average number of bits per symbol 𝑙𝑎𝑣𝑔 =
1

9
⋅ 2 +

3

9
⋅ 2 +

5

9
⋅ 1 = 1.444 bits/symbol.

(iii) Entropy 𝐻(𝑠) = 𝑛 = 1.35164 bits/symbol.

Redundancy 𝑙𝑎𝑣𝑔 − 𝑛 = 1.444 − 1.35164 = 0.09236 or
𝑙𝑎𝑣𝑔−𝑛

𝑛
% = 6% of entropy.

Huffman code exhibits a low redundancy for the specific alphabet and therefore is efficient

enough.

2. (i) A possible histogram of a real-life image is shown below.

(ii) Due to the fact that natural images contain large areas of slowly varying intensity we may

assume that image g contains a very large number of small values and furthermore it has

both positive and negative values which have equal probabilities. Therefore, a possible

histogram is shown below.

(iii) Huffman coding 𝑔(𝑥, 𝑦) instead of 𝑓(𝑥, 𝑦) is more meaningful since the pdf of 𝑔(𝑥, 𝑦) is

less uniform.

3. (i) The probability of appearance of each intensity is shown in Table 1 below:

Letter Probability Codeword

White 1s 0.95 0

Black 2s 0.02 11

Grey 3s 0.03 10

Table 1

The entropy of the source is 335.0log)()(2

3

1

3

1

=−== 
==

i
i

ii
i

i ppsIpSH bits/symbol.

(ii) The Huffman code is shown in Table 1 above.

(iii) Since we have 3 symbols, a fixed-length code would require 2fixed =l bits per symbol.

With the use of the above Huffman code the average number of bits per symbol is

05.1
3

1
avg == 

=
i

i
ilpl bits/symbol.

(ii) The ratio of image size (in bits) between using the fixed length coding and Huffman

coding is 9.1
05.1

2

avg

fixed ==
l

l
. The coding redundancy is 715.0)(avg =− sHl bits per

symbol.

(iii) The extended by two Huffman code is shown in Table 2 below.

Letter Probability Codeword

11ss 0.9025 0

21ss 0.019 111

31ss 0.0285 100

12ss 0.019 1101

22ss 0.0004 110011

32ss 0.0006 110001

13ss 0.0285 101

23ss 0.0006 110010

33ss 0.0009 110000

Table 2

(iv) With the use of the above Huffman code the average number of bits per symbol is

611.0
9

1
avg == 

=
i

i
ilpl bits/symbol. The ratio of image size (in bits) between using the

fixed length coding and Huffman coding is 27.3
611.0

2

avg

fixed ==
l

l
. The coding

redundancy is 276.0)(avg =− sHl bits per symbol.

(v) Obviously, the extended Huffman code is more efficient.

4. (i) The discrete memoryless source (DMS) has the property that its output at a certain time does

not depend on its output at any earlier time.

(ii) The minimum number of bits per symbol we can achieve is the entropy of the source. In order

to achieve this, the probabilities of the symbols must be negative powers of 2.

(iii) This happens when the probabilities of the symbols are equal.

5. (i) While merging branches 1 is preferred to 0 since it has zero probability of being wrongly

transmitted and therefore, we assign 1s to branches that correspond to symbols with higher

probabilities.

 w k step 1

 0.05 0.05

 (0) (1)

),(wk ?

 step 2

 (0) (1)

 0.1 0.1

 u ?]),,[(wk

 step 3

 step 4 (0) (1)

 r l 0.1 0.2

 }?],),,{[(uwk e

 (0) (1) (0) step 5 (1)

 0.2),(rl 0.2 0.3 }},?],),,{{[(euwk 0.3

 (0) step 6 (1)

 0.4 0.6

 Generate Codewords

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

k 0.05 e 0.3 e 0.3 e 0.3 e 0.3),(rl 0.4 }},?],),,{{[(euwk 0.6

l 0.2 l 0.2 l 0.2 l 0.2 }?],),,{[(uwk 0.3 e 0.3),(rl 0.4

u 0.1 r 0.2 r 0.2 r 0.2 l 0.2 }?],),,{[(uwk 0.3

w 0.05 u 0.1 u 0.1 ?]),,[(wk 0.2 r 0.2

e 0.3 ? 0.1 ? 0.1 u 0.1

r 0.2 k 0.05),(wk 0.1

? 0.1 w 0.05

Symbol Probability Codeword

k 0.05 10101

l 0.2 01

u 0.1 100

w 0.05 10100

e 0.3 11

r 0.2 00

? 0.1 1011

(ii) In this example, the average codeword length is 2.6 bits per symbol. In general, the

average codeword length is defined as

iiavg pll =

where il is the codeword length (in bits) for the codeword corresponding to symbol is . The

average codeword length is a measure of the compression ratio. Since our alphabet has seven

symbols, a fixed-length coder would require at least three bits per codeword. In this example,

we have reduced the representation from three bits per symbol to 2.6 bits per symbol; thus the

corresponding compression ratio can be stated as 3/2.6=1.15.

(ii) The probability of 100 to be transmitted correctly is 0.95*0.95=0.9025. Therefore, the

probability of 1.

6. (i) 1. To save disk space. 2. To decrease transmission time when transferring files over networks.

3. To make some programs work faster (e.g. by decreasing disk access time).

(ii) It must deviate from uniform.

(iii) After differential coding using the given formula, the resulting image has only 3 values 1, -1,

0 and 0 dominates, therefore it is must more efficient to use differential coding.

7. (i)

(ii) Derive the Huffman code.

(iii) Calculate the average length of the fixed code and that of the derived Huffman code.

 Fixed length: 3 bits/symbol

 Huffman: Lavg=2.48 bits/symbol

(iv) Compression ratio 3/2.48

Redundancy=3-2.48

8. (i) The four reconstruction levels are:

8/11 =r with probability 8/1

8/32 =r with probability 8/1

8/53 =r with probability 4/1

8/74 =r with probability 2/1

(ii) Uniform quantization does not exploit the pdf of the alphabet to be quantized.

(iii) The Huffman code is found below.

Step 1 Step 2 Step 3

4r 1/2 4r 1/2 4r 1/2

3r 1/4 3r 1/4 }},{,{ 123 rrr 1/2

2r 1/8 },{ 12 rr 1/4

1r 1/8

Symbol Codeword

1r 001

2r 000

3r 01

4r 1

Average number of bits to represent f

4

7

8

1
6

4

1
2

2

1
=++=avgl bits/symbol

(iv) Entropy)
8

1
log

8

1

8

1
log

8

1

4

1
log

4

1

2

1
log

2

1
()(log)(22222

3

1

+++−=−= 
=

i
i

i ppsH

4

7

8

14

8

3

8

3

8

4

8

4

8

3

8

3

4

2

2

1
==+++=+++= bits/symbol

Redundancy 0= bits/symbol

Coding efficiency %100/)(=avglsH

9.

The pdf of)1,1(−−− yxf is shown on the left and the pdf of),(yxg is shown on the right

(convolution of the 2 pdf’s). The pdf of),(yxg is more skewed and therefore more appropriate

for symbol encoding.

10. (i) The integral of the pdf between 0 and 1 must be 1 and according to this restriction we find

64.5=c .

(ii) The three reconstruction levels are 1/6, 3/6, 5/6.

(iii) Using Huffman code we get:

Symbol Probability Code

6/11 =s 0.02 11

6/32 =s 0.03 10

6/53 =s 0.95 0

Average number of bits per symbol 05.1=avgl bits/symbol.

(iv) Entropy 335.0)(== nsH bits/symbol.

Redundancy 715.0335.005.1 =−=− nlavg or %213% =
−

n

nlavg
 of entropy! Huffman code

exhibits a very high redundancy for the specific alphabet and therefore is not efficient enough.

(v) Suppose we merge the symbols in groups of two symbols. In the next table the extended

alphabet and corresponding probabilities and Huffman codewords are shown.

Symbol Probability Code

11ss 0.0004 110011

21ss 0.0006 110001

31ss 0.019 1101

12ss 0.0006 110010

22ss 0.0009 110000

32ss 0.0285 101

13ss 0.019 111

23ss 0.0285 100

33ss 0.9025 0

Table: The extended alphabet and corresponding Huffman code

For the new extended alphabet we have

222.1=avgl bits/new symbol or 611.0=avgl bits/original symbol.

Redundancy %72% =
−

n

nlavg
 of entropy. Huffman code exhibits a very high redundancy for

the specific alphabet and therefore is not efficient enough.

