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Abstract 

 

Transform theory plays a fundamental role in image processing, as working with the 

transform of an image instead of the image itself may give us more insight into the 

properties of the image. Two dimensional transforms are applied to image enhancement, 

restoration, encoding and description. 

 

 

1. UNITARY TRANSFORMS 
 

1.1 One dimensional signals 
 

For a one dimensional sequence }10 ),({  Nxxf  represented as a vector 

 TNffff
 

   )1()1()0(    of size N , a transformation may be written as 

10,)(),()(
1

0

 




NuxfxuTugfTg
N

x

  

where )(ug  is the transform (or transformation) of )(xf , and ),( xuT  is the so called forward 

transformation kernel. Similarly, the inverse transform is the relation 







1

0

10  ),(),()(
N

u

NxuguxIxf  

or written in a matrix form 

gTgIf 
1

 

where ),( uxI  is the so called inverse transformation kernel. 

If 
T

TTI



1

 

the matrix T  is called unitary, and the transformation is called unitary as well. It can be proven that 

the columns (or rows) of an N N  unitary matrix are orthonormal and therefore, form a complete set 

of basis vectors in the N  dimensional vector space. 

In that case 









1

0

)(),()(
N

u

T

ugxuTxfgTf  

The columns of 
T

T


, that is, the vectors  Tu NuTuTuTT
 

  )1,()1,()0,(  
  are called the basis 

vectors of T . 

 

1.2 Two dimensional signals (images) 
 

As a one dimensional signal can be represented by an orthonormal set of basis vectors, an image can 

also be expanded in terms of a discrete set of basis arrays called basis images through a two 

dimensional (image) transform. 

For an N N  image f x y( , )  the forward and inverse transforms are given below 

 









1

0

1

0

),(),,,(),(
N

x

N

y

yxfyxvuTvug  

 









1

0

1

0

),(),,,(),(
N

u

N

v

vugvuyxIyxf  

where, again, ),,,( yxvuT  and ),,,( vuyxI  are called the forward and inverse transformation 

kernels, respectively. 

The forward kernel is said to be separable if 

),(),(),,,( 21 yvTxuTyxvuT   
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It is said to be symmetric if 1T  is functionally equal to 2T  such that  

),(),(),,,( 11 yvTxuTyxvuT   

The same comments are valid for the inverse kernel. 

If the kernel ),,,( yxvuT  of an image transform is separable and symmetric, then the transform 

  

















1

0
1

1

0
1

1

0

1

0

),(),(),(),(),,,(),(
N

x

N

y

N

x

N

y

yxfyvTxuTyxfyxvuTvug  can be written in matrix form as 

follows 
T

TfTg 11   

where f  is the original image of size N N , and 1T  is an N N  transformation matrix with 

elements ),(1 jiTtij  . If, in addition, 1T  is a unitary matrix then the transform is called separable 

unitary and the original image is recovered through the relationship 


 11 TgTf

T

 

 

1.3 Fundamental properties of unitary transforms 
 

1.3.1 The property of energy preservation 

For a unitary transformation 

fTg   

and 
TTTT

TffTg


 )(  

and therefore, by using the relation T T
T 


1

 we have that 




fffTTffTTfgg
TTTTTT

)())((
22

fg   

Thus, a unitary transformation preserves the signal energy. This property is called energy 

preservation property. 

This means that every unitary transformation is simply a rotation of the vector f  in the N - 

dimensional vector space. 

For the 2-D case the energy preservation property is written as 

f x y g u v
y

N

x

N

v

N

u

N

( , ) ( , )
2

0

1

0

1 2

0

1

0

1

















   

 

1.3.2 The property of energy compaction 

Most unitary transforms pack a large fraction of the energy of the image into relatively few of the 

transform coefficients. This means that relatively few of the transform coefficients have significant 

values and these are the coefficients that are close to the origin (small index coefficients). 

This property is very useful for compression purposes. 

 

 

2. THE TWO DIMENSIONAL FOURIER TRANSFORM 
 

2.1 Continuous space and continuous frequency 
 

The Fourier transform is extended to a function f x y( , )  of two variables. If f x y( , )  is continuous 

and integrable and F u v( , )  is integrable, the following Fourier transform pair exists: 

 




 dxdyeyxfvuF vyuxj )(2),(),(   
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 




 dudvevuFyxf vyuxj )(2

2
),(

)2(

1
),( 


 

In general F u v( , )  is a complex-valued function of two real frequency variables u v,  and hence, it 

can be written as: 

),(),(),( vujIvuRvuF   

The amplitude spectrum, phase spectrum and power spectrum, respectively, are defined as follows. 

F u v R u v I u v( , ) ( , ) ( , ) 2 2  









 

),(

),(
tan),( 1

vuR

vuI
vu  

P u v F u v R u v I u v( , ) ( , ) ( , ) ( , )  
2 2 2

 

 

2.2 Discrete space and continuous frequency 
 

For the case of a discrete sequence ),( yxf  of infinite duration we can define the 2-D discrete space 

Fourier transform pair as follows 

 









x y

vyxujeyxfvuF )(),(),(  

dudvevuFyxf vyxuj

u v

)(

2
),(

)2(

1
),( 

 

 







 

F u v( , )  is again a complex-valued function of two real frequency variables u v,  and it is periodic 

with a period 2 2  , that is to say F u v F u v F u v( , ) ( , ) ( , )   2 2   

The Fourier transform of f x y( , )  is said to converge uniformly when F u v( , )  is finite and 

),(),(limlim
1

1

2

2
21

)( vuFeyxf
N

Nx

N

Ny

vyxuj

NN
 

 




 for all u v, . 

When the Fourier transform of f x y( , )  converges uniformly, F u v( , )  is an analytic function and is 

infinitely differentiable with respect to u  and v . 

 

2.3 Discrete space and discrete frequency: The two dimensional Discrete Fourier 

Transform (2-D DFT) 
 

If f x y( , )  is an NM   array, such as that obtained by sampling a continuous function of two 

dimensions at dimensions NM  and  on a rectangular grid, then its two dimensional Discrete Fourier 

transform (DFT) is the array given by 

 









1

0

1

0

)//(2),(
1

),(
M

x

N

y

NvyMuxjeyxf
MN

vuF   

1,,0  Mu  , 1,,0  Nv   

and the inverse DFT (IDFT) is 

f x y F u v e j ux M vy N

v

N

u

M

( , ) ( , ) ( / / ) 










2

0

1

0

1
  

When images are sampled in a square array, M N  and 

F u v
N

f x y e j ux vy N

y

N

x

N

( , ) ( , ) ( )/  










1 2

0

1

0

1
  

f x y
N

F u v e j ux vy N

v

N

u

N

( , ) ( , ) ( )/ 










1 2

0

1

0

1
  

It is straightforward to prove that the two dimensional Discrete Fourier Transform is separable, 

symmetric and unitary. 
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2.3.1 Properties of the 2-D DFT 

 

Most of them are straightforward extensions of the properties of the 1-D Fourier Transform. Advise 

any introductory book on Image Processing. 

 

2.3.2 The importance of the phase in 2-D DFT. Image reconstruction from amplitude or 

phase only. 

The Fourier transform of a sequence is, in general, complex-valued, and the unique representation of 

a sequence in the Fourier transform domain requires both the phase and the magnitude of the Fourier 

transform. In various contexts it is often desirable to reconstruct a signal from only partial domain 

information. Consider a 2-D sequence ),( yxf  with Fourier transform  ),(),( yxfvuF   so that 

),(
),(},({),(

vuj fevuFyxfvuF


  

It has been observed that a straightforward signal synthesis from the Fourier transform phase ),( vuf  

alone, often captures most of the intelligibility of the original image ),( yxf  (why?). A 

straightforward synthesis from the Fourier transform magnitude ),( vuF  alone, however, does not 

generally capture the original signal’s intelligibility. The above observation is valid for a large 

number of signals (or images). To illustrate this, we can synthesise the phase-only signal ),( yxf p  

and the magnitude-only signal ),( yxfm  by 

 ),(1 1),(
vuj

p
feyxf

  

 01 ),(),( j
m evuFyxf   

and observe the two results (Try this exercise in MATLAB). 

An experiment which more dramatically illustrates the observation that phase-only signal synthesis 

captures more of the signal intelligibility than magnitude-only synthesis, can be performed as 

follows.  

Consider two images ),( yxf  and ),( yxg . From these two images, we synthesise two other images 

),(1 yxf  and ),(1 yxg  by mixing the amplitudes and phases of the original images as follows: 

 ),(1
1 ),(),(

vuj fevuGyxf
  

 ),(1
1 ),(),(

vuj gevuFyxg
  

In this experiment ),(1 yxf  captures the intelligibility of ),( yxf , while ),(1 yxg  captures the 

intelligibility of ),( yxg  (Try this exercise in MATLAB). 

 

 

3. THE DISCRETE COSINE TRANSFORM (DCT) 
 

3.1 One dimensional signals 
 

This is a transform that is similar to the Fourier transform in the sense that the new independent 

variable represents again frequency. The DCT is defined below. 












 


1

0 2

)12(
cos)()()(

N

x N

ux
xfuauC


, 1,,1,0  Nu   

with )(ua  a parameter that is defined below. 















1,,1/2

0/1

)(

NuN

uN

ua


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The inverse DCT (IDCT) is defined below. 












 


1

0 2

)12(
cos)()()(

N

u N

ux
uCuaxf


 

 

3.2 Two dimensional signals (images) 
 

For 2-D signals it is defined as 








 







 
  







 N

vy

N

ux
yxfvauavuC

N

x

N

y 2

)12(
cos

2

)12(
cos),()()(),(

1

0

1

0


 








 







 
  







 N

vy

N

ux
vuCvauayxf

N

u

N

v 2

)12(
cos

2

)12(
cos),()()(),(

1

0

1

0


 

)(ua  is defined as above and 1,,1,0,  Nvu   

 

3.3 Properties of the DCT transform 
 

 The DCT is a real transform. This property makes it attractive in comparison to the Fourier 

transform. 

 The DCT has excellent energy compaction properties. For that reason it is widely used in image 

compression standards (as for example JPEG standards). 

 There are fast algorithms to compute the DCT, similar to the FFT for computing the DFT. 

 

 

4. WALSH TRANSFORM (WT) 
 

4.1 One dimensional signals 
 

This transform is slightly different from the transforms you have met so far. Suppose we have a 

function 1,,0 ),(  Nxxf   where nN 2  and its Walsh transform )(uW . 

If we use binary representation for the values of the independent variables x  and u  we need n  bits 

to represent them. Hence, for the binary representation of x  and u  we can write: 

 
202110 )()()()( xbxbxbx nn  ,  

202110 )()()()( ubububu nn   

with  1or  0 )(xbi  for 1,,0  ni  . 

 

Example 

If samples) 8( ,7,,0 ),( xxf  then 3n  and for 6x , 0)6( ,1)6( ,1)6((110)=6 0122  bbb  

 

We define now the 1-D Walsh transform as 

 













 

1

0

1

0

)()( 1)1()(
1

)(
N

x

n

i

ubxb inixf
N

uW  or 















1

0

)()( 1

1

0)1)((
1

)(
N

x

ubxb in

n

i

i

xf
N

uW  

The array formed by the Walsh kernels is again a symmetric matrix having orthogonal rows and 

columns. Therefore, the Walsh transform is  and its elements are of the form 







1

0

)()( 1)1(),(
n

i

ubxb inixuT . You can immediately observe that 1),( xuT  or 1  depending on the 

values of )(xbi  and )(1 ub in  . If the Walsh transform is written in a matrix form 

fTW   
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the rows of the matrix T  which are the vectors  )1,(  )1,( )0,( NuTuTuT   have the form of square 

waves. As the variable u  (which represents the index of the transform) increases, the corresponding 

square wave’s “frequency” increases as well. For example for 0u  we see that 

   2202110 000)()()()(    ubububu nn  and hence, 0)(1  ub in , for any i . Thus, 1),0( xT  and 







1

0

)(
1

)0(
N

x

xf
N

W . We see that the first element of the Walsh transform in the mean of the original 

function )(xf  (the DC value) as it is the case with the Fourier transform. 

 

The inverse Walsh transform is defined as follows. 

 













 

1

0

1

0

)()( 1)1()()(
N

u

n

i

ubxb iniuWxf  or 















1

0

)()( 1

1

0)1)(()(
N

u

ubxb in

n

i

i

uWxf  

 

4.2 Two dimensional signals 
 

The Walsh transform is defined as follows for two dimensional signals. 

 

 


















 

1

0

1

0

))()()()((
1

0

11)1(),(
1

),(
N

x

n

i

vbybubxb
N

y

iniiniyxf
N

vuW  or 

 

















1

0

))()()()((1

0

11

1

0)1)(,(
1

),(
N

x

vbybubxbN

y

iniini

n

iyxf
N

vuW  

The inverse Walsh transform is defined as follows for two dimensional signals. 

 


















 

1

0

1

0

))()()()((
1

0

11)1(),(
1

),(
N

u

n

i

vbybubxb
N

v

iniinivuW
N

yxf  or 

 

















1

0

))()()()((1

0

11

1

0)1(),(
1

),(
N

u

vbybubxbN

v

iniini

n

ivuW
N

yxf  

 

4.3 Properties of the Walsh Transform  
 

 Unlike the Fourier transform, which is based on trigonometric terms, the Walsh transform 

consists of a series expansion of basis functions whose values are only 1  or 1  and they have 

the form of square waves. These functions can be implemented more efficiently in a digital 

environment than the exponential basis functions of the Fourier transform. 

 The forward and inverse Walsh kernels are identical except for a constant multiplicative factor of 

N

1
 for 1-D signals.  

 The forward and inverse Walsh kernels are identical for 2-D signals. This is because the array 

formed by the kernels is a symmetric matrix having orthogonal rows and columns, so its inverse 

array is the same as the array itself. 

 The concept of frequency exists also in Walsh transform basis functions. We can think of 

frequency as the number of zero crossings or the number of transitions in a basis vector and we 

call this number sequency. The Walsh transform exhibits the property of energy compaction as 

all the transforms that we are currently studying. (why?) 

 For the fast computation of the Walsh transform there exists an algorithm called Fast Walsh 

Transform (FWT). This is a straightforward modification of the FFT. Advise any introductory 

book for your own interest. 
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5. HADAMARD TRANSFORM (HT) 
 

5.1 Definition 
 

In a similar form as the Walsh transform, the 2-D Hadamard transform is defined as follows. 

 

Forward 

 




















1

0

1

0

))()()()((
1

0

)1(),(
1

),(
N

x

n

i

vbybubxb
N

y

iiiiyxf
N

vuH , nN 2 or 

 












1

0

))()()()((1

0

1

0)1)(,(
1

),(
N

x

vbybubxbN

y

iiii

n

iyxf
N

vuH  

 

Inverse 

 




















1

0

1

0

))()()()((
1

0

)1(),(
1

),(
N

u

n

i

vbybubxb
N

v

iiiivuH
N

yxf  etc. 

 

5.2 Properties of the Hadamard Transform  
 

 Most of the comments made for Walsh transform are valid here. 

 The Hadamard transform differs from the Walsh transform only in the order of basis functions. 

The order of basis functions of the Hadamard transform does not allow the fast computation of it 

by using a straightforward modification of the FFT. An extended version of the Hadamard 

transform is the Ordered Hadamard Transform for which a fast algorithm called Fast 

Hadamard Transform (FHT) can be applied. 

 An important property of Hadamard transform is that, letting NH  represent the matrix of order 

N , the recursive relationship is given by the expression 













NN

NN

N
HH

HH
H2  

 

 

6. KARHUNEN-LOEVE (KLT) or HOTELLING TRANSFORM 
 

The Karhunen-Loeve Transform or KLT was originally introduced as a series expansion for 

continuous random processes by Karhunen and Loeve. For discrete signals Hotelling first studied 

what was called a method of principal components, which is the discrete equivalent of the KL series 

expansion. Consequently, the KL transform is also called the Hotelling transform or the method of 

principal components. The term KLT is the most widely used. 

 

6.1 The case of many realisations of a signal or image (Gonzalez/Woods) 
 

The concepts of eigenvalue and eigevector are necessary to understand the KL transform. 

 

If C  is a matrix of dimension nn  , then a scalar   is called an eigenvalue of C  if there is a 

nonzero column vector e  in nR  such that 

eeC   

The vector e  is called an eigenvector of the matrix C  corresponding to the eigenvalue  . 
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Consider a population of random column vectors of the form 





















nx

x

x

x

2

1

 

The mean vector of the population is defined as 

}{xEmx   

The operator E  refers to the expected value of the population, calculated theoretically using the 

probability density functions (pdf) of the elements ix . 

The covariance matrix of the population is defined as 

}))({( T
xxx mxmxEC   

The operator E  is now calculated theoretically using the probability density functions (pdf) of the 

elements ix  and the joint probability density functions between the elements ix  and jx . 

Because x  is n -dimensional, xC  and T
xx mxmx ))((   are matrices of order nn . The element 

iic  of xC  is the variance of ix , and the element ijc  of xC  is the covariance between the elements ix  

and jx . If the elements ix  and jx  are uncorrelated, their covariance is zero and, therefore, 

0 jiij cc . The covariance matrix xC  can be written as follows. 

}{)})({(}))({(
T

xx

T

x

T

x

TT

x

T

x
T

xxx mmxmmxxxEmxmxEmxmxEC   

It can be easily shown that 
T

x

T

x xmmx   

Therefore, 

}{}2{}{

}2{}{}{

T

xx

T

x

T

T

xx

T

x

TT

xx

T

x

T

x

TT

xx

T

x

T

x

T

mmExmExxE

mmxmxxEmmxmxmxxEmmxmmxxxE




 

Since the vector xm  and the matrix 
T

xx mm  contain constant quantities, we can write 

 }2{
T

xx

T

x

T
mmxmxxE

T

xx

T

x

T
mmxEmxxE  }{2}{  

Knowing that 
T

x

T
mxE }{  

we have 


T

xx

T

xx

TT

xx

T

x

T

x mmmmxxEmmxEmxxEC 2}{}{2}{  
T

xx

T

x mmxxEC  }{  

For M  vectors from a random population, where M  is large enough, the mean vector xm  and the 

covariance matrix xC  can be approximately calculated from the available vectors by using the 

following relationships where all the expected values are approximated by summations 





M

k
kx x

M
m

1

1
 

T

xx

T

k

M

k
kx mmxx

M
C  

1

1
 

Very easily it can be seen that xC  is real and symmetric. Let ie  and i , ni ,,2,1  , be a set of 

orthonormal eigenvectors and corresponding eigenvalues of xC , arranged in descending order so that 

1 ii   for 1,,2,1  ni  . Suppose that ie  are column vectors. 
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Let A  be a matrix whose rows are formed from the eigenvectors of xC , ordered so that the first row 

of A  is the eigenvector corresponding to the largest eigenvalue, and the last row the eigenvector 

corresponding to the smallest eigenvalue. Therefore, 























T

n

T

T

e

e

e

A

2

1

 and  n

T
eeeA 21  

Suppose that A  is a transformation matrix that maps the vectors x  into vectors y  by using the 

following transformation 

)( xmxAy   

The above transform is called the Karhunen-Loeve or Hotelling transform. The mean of the y  

vectors resulting from the above transformation is zero, since 

 0)()}{(}{)}({}{ xxxxx mmAmxEAmxEAmxAEyE  

0ym  

The covariance matrix of the y  vectors is  

}{}))({(
TT

yyy yyEmymyEC   

Using the relationships 

)( xmxAy   

TT
x

T
x

T
AmxmxAy )()]([   

we get 


TT

xx

T
AmxmxAyy ))((

TT

xx

TT

xx

T
AmxmxEAAmxmxAEyyE }))({(}))(({}{   

T

xy ACAC   

   nnnx

T

x eeeeeeCAC   221121   

 nn

T

n

T

T

T

xy eee

e

e

e

ACAC  


2211
2

1





















  

Because ie  is a set of orthonormal eigenvectors we have that: 

niee i

T

i ,,1 ,1   

njiee j

T

i ,,1, ,1   

and therefore, yC  is a diagonal matrix whose elements along the main diagonal are the eigenvalues 

of xC  





















n

yC















00

00

00

2

1

 

The off-diagonal elements of the covariance matrix of the population of vectors y  are 0 , and 

therefore, the elements of the y  vectors are uncorrelated.  
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Lets try to reconstruct any of the original vectors x  from its corresponding y . Because the rows of 

A  are orthonormal vectors we have 

  Ieee

e

e

e

AA n

T

n

T

T

T






















 


21
2

1

 

with I  the unity matrix. Therefore, 
T

AA 
1

, and any vector x  can by recovered from its 

corresponding vector y  by using the relation 

x

T
myAx   

Suppose that instead of using all the eigenvectors of xC  we form matrix KA  from the K  

eigenvectors corresponding to the K  largest eigenvalues, 























T

K

T

T

K

e

e

e

A

2

1

 

yielding a transformation matrix of order nK  . The y  vectors would then be K  dimensional, and 

the reconstruction of any of the original vectors would be approximated by the following relationship 

x

T

K myAx ˆ  

The mean square error between the perfect reconstruction x  and the approximate reconstruction x̂  is 

given by the expression 





n

Kj
j

K

j
j

n

j
jmse

111

 . 

By using KA  instead of A  for the KL transform we achieve compression of the available data. 

 

6.2 Properties of the Karhunen-Loeve transform 
 

Despite its favourable theoretical properties, the KLT is not used in practice for the following 

reasons. 

 Its basis functions depend on the covariance matrix of the image, and hence they have to 

recomputed and transmitted for every image. 

 Perfect decorrelation is not possible, since images can rarely be modelled as realisations of 

ergodic fields. 

 There are no fast computational algorithms for its implementation. 
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