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Abstract  

 

Transform theory plays a fundamental role in image processing, as working with the 

transform of an image instead of the image itself may give us more insight into the 

properties of the image. Two-dimensional transforms are applied to image enhancement, 

restoration, encoding and description. 

 

 

1. UNITARY TRANSFORMS 

 

1.1 One-dimensional signals 

 

For a one-dimensional sequence {𝑓(𝑥), 0 ≤ 𝑥 ≤ 𝑁 − 1} of size 𝑁, represented as a column vector 𝑓 =

[𝑓(0) 𝑓(1) …  𝑓(𝑁 − 1)] 𝑇, a transformation may be written as 

𝑔(𝑢) = ∑ 𝑇(𝑢, 𝑥)𝑓(𝑥)

𝑁−1

𝑥=0

, 0 ≤ 𝑢 ≤ 𝑁 − 1 

where 𝑔(𝑢) is the transform (or transformation) of 𝑓(𝑥), and 𝑇(𝑢, 𝑥) is the so-called forward 

transformation kernel function. 

If we represent the sequence {𝑔(𝑢), 0 ≤ 𝑢 ≤ 𝑁 − 1} of size 𝑁, as a column vector 𝑔 =

[𝑔(0) 𝑔(1) …  𝑔(𝑁 − 1)] 𝑇 as well, the transformation may be written in a matrix form as follows 

𝑔 = 𝑇 ⋅ 𝑓 

where the square matrix 𝑇 of size 𝑁 × 𝑁 contains the forward transformation kernel function values. 

Similarly, the inverse transform is given by the relationship 

𝑓(𝑥) = ∑ 𝐼(𝑥, 𝑢)𝑔(𝑢),  0 ≤ 𝑥 ≤ 𝑁 − 1

𝑁−1

𝑢=0

 

where 𝐼(𝑥, 𝑢) is the so-called inverse transformation kernel function. 

In matrix form the above is written as 

𝑓 = 𝐼 ⋅ 𝑔 = 𝑇−1 ⋅ 𝑔 

where the matrix 𝐼 of size 𝑁 × 𝑁 contains the inverse transformation kernel function values. 

In order to recover 𝑓 from 𝑔 the matrix 𝐼 = 𝑇−1 is required. If 

𝐼 = 𝑇−1 = 𝑇∗𝑇
 

the square matrix 𝑇 is called unitary, and the transformation is called unitary as well. It can be proven 

that the columns (or rows) of an 𝑁 × 𝑁 unitary matrix are orthonormal and therefore, form a complete 

set of basis vectors in the N − dimensional vector space. In other words, both the column and row 

vectors of a unitary matrix are orthogonal (perpendicular to each other) and of unit length. If we denote 

the columns of 𝑇 with 𝑡𝑥 = [𝑇(0, 𝑥) 𝑇(1, 𝑥) …𝑇(𝑁 − 1, 𝑥)], 0 ≤ 𝑥 ≤ 𝑁 − 1, the following 

relationship holds: 

𝑡𝑖
∗𝑇

⋅ 𝑡𝑗 = {
1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗

 

with 0 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1. 

In the case of a unitary transform, we can recover the original signal as follows: 

𝑓 = 𝑇∗𝑇 ⋅ 𝑔 ⇒ 𝑓(𝑥) = ∑ 𝑇∗(𝑢, 𝑥)𝑔(𝑢)

𝑁−1

𝑢=0
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The columns of 𝑇∗𝑇
 are the vectors 𝑇𝑢

∗ = [𝑇∗(𝑢, 0) 𝑇∗(𝑢, 1) …𝑇∗(𝑢, 𝑁 − 1)] 𝑇. 

 

1.2 Two-dimensional signals (images) 

 

As a one-dimensional signal of size 𝑁 can be represented by a set of 𝑁 orthonormal basis vectors of 

size 𝑁, an image can also be expanded to a discrete set of basis arrays called basis images through a 

two-dimensional (image) transform. 

For an 𝑀 × 𝑁 image f x y( , )  the forward and inverse transforms are given below 

𝑔(𝑢, 𝑣) = ∑ ∑ 𝑇

𝑁−1

𝑦=0

(𝑢, 𝑣, 𝑥, 𝑦)𝑓(𝑥, 𝑦)

𝑀−1

𝑥=0

 

𝑓(𝑥, 𝑦) = ∑ ∑ 𝐼

𝑁−1

𝑣=0

(𝑥, 𝑦, 𝑢, 𝑣)𝑔(𝑢, 𝑣)

𝑀−1

𝑢=0

 

where, again, 𝑇(𝑢, 𝑣, 𝑥, 𝑦) and 𝐼(𝑥, 𝑦, 𝑢, 𝑣) are called the forward and inverse transformation kernel 

functions, respectively. 

The forward kernel is said to be separable if 

𝑇(𝑢, 𝑣, 𝑥, 𝑦) = 𝑇1(𝑢, 𝑥)𝑇2(𝑣, 𝑦) 

It is said to be symmetric if 𝑇1 is functionally equal to 𝑇2 such that  

𝑇(𝑢, 𝑣, 𝑥, 𝑦) = 𝑇1(𝑢, 𝑥)𝑇1(𝑣, 𝑦) 

The same comments are valid for the inverse kernel. 

For the property of symmetry to be valid the condition 𝑀 = 𝑁 must hold. 

If the kernel 𝑇(𝑢, 𝑣, 𝑥, 𝑦) of an image transform is separable and symmetric, then the transform 

𝑔(𝑢, 𝑣) = ∑ ∑ 𝑇𝑁−1
𝑦=0 (𝑢, 𝑣, 𝑥, 𝑦)𝑓(𝑥, 𝑦) =𝑁−1

𝑥=0 ∑ ∑ 𝑇1
𝑁−1
𝑦=0 (𝑢, 𝑥)𝑇1(𝑣, 𝑦)𝑓(𝑥, 𝑦)𝑁−1

𝑥=0  can be written in 

matrix form as follows 

𝑔 = 𝑇1 ⋅ 𝑓 ⋅ 𝑇1
𝑇 

where 𝑓 is the original image of size 𝑁 × 𝑁, and 𝑇1 is an N N  transformation matrix. Basically 𝑇1 is 

the transformation matrix of the one-dimensional version of the transform under consideration. If 𝑇1 is 

a unitary matrix then the transform is called separable, symmetric and unitary and the original image 

is recovered through the relationship 

𝑓 = 𝑇1
∗𝑇 ⋅ 𝑔 ⋅ 𝑇1

∗ 

 

1.3 Fundamental properties of unitary transforms 

 

Most of the signal transformations that we use in engineering are unitary and possess the following two 

very important properties. 

 

1.3.1 The property of energy preservation 

For a unitary transformation 

𝑔 = 𝑇 ⋅ 𝑓 

and 

𝑔∗𝑇 = (𝑇∗ ⋅ 𝑓∗)𝑇 = 𝑓∗𝑇 ⋅ 𝑇∗𝑇
 

and therefore, by using the relation T T
T− 

=
1

 we have that 

𝑔∗𝑇 ⋅ 𝑔 = (𝑓∗𝑇 ⋅ 𝑇∗𝑇) ⋅ (𝑇 ⋅ 𝑓) = 𝑓∗𝑇 ⋅ (𝑇∗𝑇 ⋅ 𝑇) ⋅ 𝑓 = 𝑓∗𝑇 ⋅ 𝑓 ⇒ ‖𝑔‖
2

= ‖𝑓‖
2
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Thus, a unitary transformation preserves the signal energy. In mathematics we say that a unitary 

transformation preserves the inner product. This property is called energy preservation property. 

This means that every unitary transformation is simply a rotation of the vector 𝑓 in the 𝑁- dimensional 

vector space. 

For the 2-D case the energy preservation property is written as 

∑ ∑|𝑓(𝑥, 𝑦)|2 =

𝑁−1

𝑦=0

𝑀−1

𝑥=0

∑ ∑|𝑔(𝑢, 𝑣)|2
𝑁−1

𝑣=0

𝑀−1

𝑢=0

 

 

1.3.2 The property of energy compaction 

Most unitary transforms pack a large fraction of the energy of the image into relatively few of the 

transform coefficients. This means that relatively few of the transform coefficients have significant 

values and these are the coefficients that are close to the origin (small index coefficients). 

This property is called energy compaction and it is very useful for compression purposes. This is 

because we can only keep a few of the transformed signal values, namely the large values and discard 

the rest of the values (the small values). We can recover the original signal using the inverse transform 

by replacing the values we discarded with zeros, without losing a significant amount of signal 

information. 

 

 

2. THE TWO-DIMENSIONAL FOURIER TRANSFORM 

 

2.1 Continuous space and continuous frequency 

 

The Fourier Transform (FT) is extended to a function 𝑓(𝑥, 𝑦) of two variables. If 𝑓(𝑥, 𝑦) is continuous 

and integrable and 𝐹(𝑢, 𝑣) is integrable, the following Fourier Transform pair exists: 

𝐹(𝑢, 𝑣) = ∫ ∫ 𝑓(𝑥, 𝑦)𝑒−𝑗2𝜋(𝑢𝑥+𝑣𝑦)

−∞

𝑑𝑥𝑑𝑦
∞

 

𝑓(𝑥, 𝑦) =
1

(2𝜋)2
∫ ∫ 𝐹(𝑢, 𝑣)𝑒𝑗2𝜋(𝑢𝑥+𝑣𝑦)

−∞

𝑑𝑢𝑑𝑣
∞

 

In general, 𝐹(𝑢, 𝑣)  is a complex-valued function of two real frequency variables 𝑢, 𝑣  and hence, it can 

be written as: 

𝐹(𝑢, 𝑣) = 𝑅(𝑢, 𝑣) + 𝑗𝐼(𝑢, 𝑣) 

The amplitude spectrum, phase spectrum and power spectrum, respectively, are defined as follows. 

|𝐹(𝑢, 𝑣)| = √𝑅2(𝑢, 𝑣) + 𝐼2(𝑢, 𝑣) 

𝜑(𝑢, 𝑣) = tan−1 [
𝐼(𝑢, 𝑣)

𝑅(𝑢, 𝑣)
] 

𝑃(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)|2 = 𝑅2(𝑢, 𝑣) + 𝐼2(𝑢, 𝑣) 

At this stage we have assumed that the independent variables are continuous in both space and 

frequency domain. 

 

2.2 Discrete space and continuous frequency 

 

The Discrete Space Fourier Transform is the member of the 2D Fourier Transform family that operates 

on aperiodic, 2D discrete images. It is the 2D equivalent of the Discrete Time Fourier Transform 
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(DTFT). For the case of a discrete image 𝑓(𝑥, 𝑦), we can define the 2D Discrete Space Fourier 

Transform pair as follows 

𝐹(𝑢, 𝑣) = ∑∑𝑓(𝑥, 𝑦)𝑒−𝑗(𝑥𝑢+𝑣𝑦)

𝑦𝑥

 

𝑓(𝑥, 𝑦) =
1

(2𝜋)2
∫ ∫ 𝐹(𝑢, 𝑣)

𝜋

𝑣=−𝜋

𝜋

𝑢=−𝜋

𝑒𝑗(𝑥𝑢+𝑣𝑦)𝑑𝑢𝑑𝑣 

𝐹(𝑢, 𝑣)  is again a complex-valued function of two real frequency variables 𝑢, 𝑣 and it is periodic with 

a period 2𝜋 × 2𝜋, that is to say 𝐹(𝑢, 𝑣) = 𝐹(𝑢 + 2𝜋, 𝑣) = 𝐹(𝑢, 𝑣 + 2𝜋). 

The Fourier Transform of 𝑓(𝑥, 𝑦) is said to converge uniformly when 𝐹(𝑢, 𝑣) is finite and 

𝑙𝑖𝑚
𝑁1→∞

𝑙𝑖𝑚
𝑁2→∞

∑ ∑ 𝑓(𝑥, 𝑦)𝑒−𝑗(𝑥𝑢+𝑣𝑦)𝑁2
𝑦=−𝑁2

𝑁1
𝑥=−𝑁1

= 𝐹(𝑢, 𝑣) for all 𝑢, 𝑣. 

When the Fourier Transform of 𝑓(𝑥, 𝑦) converges uniformly, 𝐹(𝑢, 𝑣) is an analytic function and is 

infinitely differentiable with respect to 𝑢 and 𝑣. 

 

2.3 Discrete space and discrete frequency: The two-dimensional Discrete Fourier 

Transform (2-D DFT) 

 

Obviously working with digital computers arise the need of dealing exclusively with discrete signals. 

If  𝑓(𝑥, 𝑦) is an 𝑀 × 𝑁 array, such as that obtained by sampling a continuous function of two dimensions 

at dimensions 𝑀 and 𝑁 on a rectangular grid, then its two-dimensional Discrete Fourier Transform 

(DFT) is the array given by 

𝐹(𝑢, 𝑣) =
1

𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝑒−𝑗2𝜋(𝑢𝑥/𝑀+𝑣𝑦/𝑁)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

𝑢 = 0,… ,𝑀 − 1, 𝑣 = 0,… ,𝑁 − 1 

and the inverse DFT (IDFT) is 

𝑓(𝑥, 𝑦) = ∑ ∑ 𝐹(𝑢, 𝑣)𝑒𝑗2𝜋(𝑢𝑥/𝑀+𝑣𝑦/𝑁)

𝑁−1

𝑣=0

𝑀−1

𝑢=0

 

 

When images are sampled in a square array, 𝑀 = 𝑁 and 

𝐹(𝑢, 𝑣) =
1

𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝑒−𝑗2𝜋(𝑢𝑥/𝑀+𝑣𝑦/𝑁)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

 

𝑓(𝑥, 𝑦) =
1

𝑁
∑ ∑ 𝐹(𝑢, 𝑣)𝑒𝑗2𝜋(𝑢𝑥/𝑀+𝑣𝑦/𝑁)

𝑁−1

𝑣=0

𝑀−1

𝑢=0

 

 

It is straightforward to prove that the two-dimensional Discrete Fourier Transform is separable, 

symmetric and unitary. 

 

2.3.1 Properties of the 2-D DFT 

 

Most of them are straightforward extensions of the properties of the 1-D Fourier Transform. Advise any 

introductory book on Image Processing. 
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2.3.2 The importance of the phase in 2-D DFT. Image reconstruction from amplitude or phase 

only. 

The Fourier Transform of a sequence is, in general, complex-valued, and the unique representation of 

a sequence in the Fourier Transform domain requires both the phase and the magnitude of the Fourier 

Transform. In various contexts it is often desirable to reconstruct a signal from only partial domain 

information. Consider a 2-D sequence 𝑓(𝑥, 𝑦) with Fourier Transform 𝐹(𝑢, 𝑣) = ℱ{𝑓(𝑥, 𝑦)} so that 

𝐹(𝑢, 𝑣) = ℱ{𝑓(𝑥, 𝑦} = |𝐹(𝑢, 𝑣)|𝑒𝑗𝜑𝑓(𝑢,𝑣) 

It has been observed that a straightforward signal synthesis from the Fourier Transform phase 𝜑𝑓(𝑢, 𝑣) 

alone, often captures most of the intelligibility of the original image 𝑓(𝑥, 𝑦). A straightforward synthesis 

from the Fourier Transform magnitude |𝐹(𝑢, 𝑣)| alone, however, does not generally capture the original 

signal’s intelligibility. To illustrate this, we can synthesise the phase-only signal 𝑓𝑝(𝑥, 𝑦) and the 

magnitude-only signal 𝑓𝑚(𝑥, 𝑦) by 

𝑓𝑝(𝑥, 𝑦) = ℱ−1[1 ∙ 𝑒𝑗𝜑𝑓(𝑢,𝑣)] 

𝑓𝑚(𝑥, 𝑦) = ℱ−1[|𝐹(𝑢, 𝑣)| ∙ 𝑒𝑗0] 

and observe the two results (Try this exercise in MATLAB). 

An experiment which more dramatically illustrates the observation that phase-only signal synthesis 

captures more of the signal intelligibility than magnitude-only synthesis, can be performed as follows.  

Consider two images 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦). From these two images, we synthesise two other images 

𝑓(𝑥, 𝑦) and 𝑔1(𝑥, 𝑦) by mixing the amplitudes and phases of the original images as follows: 

𝑓1(𝑥, 𝑦) = ℱ−1[|𝐺(𝑢, 𝑣)|𝑒𝑗𝜑𝑓(𝑢,𝑣)] 

𝑔1(𝑥, 𝑦) = ℱ−1[|𝐹(𝑢, 𝑣)|𝑒𝑗𝜑𝑔(𝑢,𝑣)] 

In this experiment 𝑓(𝑥, 𝑦) captures the intelligibility of 𝑓(𝑥, 𝑦), while 𝑔1(𝑥, 𝑦) captures the 

intelligibility of 𝑔(𝑥, 𝑦) (Try this exercise in MATLAB). 

 

 

3. THE DISCRETE COSINE TRANSFORM (DCT) 

 

3.1 One-dimensional signals 

 

A Discrete Cosine Transform (DCT) expresses a finite sequence of data points in terms of a sum 

of cosine functions at different frequencies. DCTs are important to numerous applications in science 

and engineering, from compression of images (e.g. JPEG), video (e.g. MPEG) and audio (e.g. MP3), 

to spectral methods for the numerical solution of partial differential equations. 

 

There DCT is not uniquely defined. There is a number of variants of it, each one possessing slightly 

different properties. The DCT we will learn in this course is defined below. 

𝐶(𝑢) = 𝑎(𝑢)∑ 𝑓(𝑥) 𝑐𝑜𝑠 [
(2𝑥+1)𝑢𝜋

2𝑁
]𝑁−1

𝑥=0 , 𝑢 = 0,1,… ,𝑁 − 1 

with 𝑎(𝑢) a parameter that is defined below. 

𝑎(𝑢) = {

√1/𝑁 𝑢 = 0

√2/𝑁 𝑢 = 1,… ,𝑁 − 1

 

The inverse DCT (IDCT) is defined below. 

https://en.wikipedia.org/wiki/Data_points
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Image_compression
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/Video_coding_format
https://en.wikipedia.org/wiki/MPEG
https://en.wikipedia.org/wiki/Audio_compression_(data)
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Spectral_method
https://en.wikipedia.org/wiki/Partial_differential_equations
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𝑓(𝑥) = ∑ 𝑎(𝑢)𝐶(𝑢) 𝑐𝑜𝑠 [
(2𝑥 + 1)𝑢𝜋

2𝑁
]

𝑁−1

𝑢=0

 

The DCT in MATLAB is the orthogonal DCT which, for both forward and inverse transform, has a 

scale factor of √1/𝑁 for the DC term an of √2/𝑁 for the other terms. Because this is orthogonal, it 

preserves the energy of the signal. 

 

3.2 Two-dimensional signals (images) 

 

For 2-D signals it is defined as 

𝐶(𝑢, 𝑣) = 𝑎(𝑢)𝑎(𝑣) ∑ ∑ 𝑓

𝑁−1

𝑦=0

(𝑥, 𝑦) 𝑐𝑜𝑠 [
(2𝑥 + 1)𝑢𝜋

2𝑁
]

𝑁−1

𝑥=0

𝑐𝑜𝑠 [
(2𝑦 + 1)𝑣𝜋

2𝑁
] 

𝑓(𝑥, 𝑦) = ∑ ∑ 𝑎(𝑢)𝑎(𝑣)𝐶

𝑁−1

𝑣=0

(𝑢, 𝑣) 𝑐𝑜𝑠 [
(2𝑥 + 1)𝑢𝜋

2𝑁
]

𝑁−1

𝑢=0

𝑐𝑜𝑠 [
(2𝑦 + 1)𝑣𝜋

2𝑁
] 

𝑎(𝑢) is defined as above and 𝑢, 𝑣 = 0,1, … ,𝑁 − 1 

 

3.3 Properties of the DCT 

 

 The DCT is a real transform. This property makes it attractive in comparison to the Fourier 

Transform. 

 The DCT has excellent energy compaction properties. For that reason, it is widely used in image 

compression standards (as for example JPEG standards). 

 There are fast algorithms to compute the DCT, similar to the FFT algorithm for computing the DFT. 

 

 

4. WALSH TRANSFORM (WT) 

 

4.1 One-dimensional signals 

 

This transform is slightly different from the transforms you have met so far. Suppose we have a function 

𝑓(𝑥), 𝑥 = 0,… ,𝑁 − 1 where 𝑁 = 2𝑛 and its Walsh Transform 𝑊(𝑢). 

If we use binary representation for the values of the independent variables 𝑥 and 𝑢, we need 𝑛 bits to 

represent them. Hence, for the binary representation of 𝑥 and 𝑢 we can write: 

(𝑥)10 = (𝑏𝑛−1(𝑥)𝑏𝑛−2(𝑥)…𝑏0(𝑥))2, (𝑢)10 = (𝑏𝑛−1(𝑢)𝑏𝑛−2(𝑢)… 𝑏0(𝑢))2 

with  𝑏𝑖(𝑥) 0 or 1 for 𝑖 = 0,… , 𝑛 − 1. 

 

Example 

If 𝑓(𝑥), 𝑥 = 0,… ,7, (8 samples) then 𝑛 = 3 and for 𝑥 = 6, 6=(110)2 ⇒ 𝑏2(6) = 1, 𝑏1(6) =

1, 𝑏0(6) = 0 

 

We define now the 1-D Walsh Transform as 

𝑊(𝑢) =
1

𝑁
∑ 𝑓(𝑥)[∏ (−1)𝑏𝑖(𝑥)𝑏𝑛−1−𝑖(𝑢)𝑛−1

𝑖=0 ]𝑁−1
𝑥=0  or 

𝑊(𝑢) =
1

𝑁
∑ 𝑓(𝑥)(−1)∑ 𝑏𝑖

𝑛−1
𝑖=0 (𝑥)𝑏𝑛−1−𝑖(𝑢)

𝑁−1

𝑥=0
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The array formed by the Walsh Transform kernels is again a symmetric matrix having orthogonal rows 

and columns. Therefore, the Walsh Transform kernel elements are of the form 𝑇(𝑢, 𝑥) =

∏ (−1)𝑏𝑖(𝑥)𝑏𝑛−1−𝑖(𝑢)𝑛−1
𝑖=0 . You can immediately observe that 𝑇(𝑢, 𝑥) = −1 or 1 depending on the values 

of 𝑏𝑖(𝑥) and 𝑏𝑛−1−𝑖(𝑢). If the Walsh Transform is written in a matrix form 

𝑊 = 𝑇 ⋅ 𝑓 

the rows of the matrix 𝑇 which are the vectors [𝑇(𝑢, 0) 𝑇(𝑢, 1) …  𝑇(𝑢, 𝑁 − 1)] have the form of square 

waves. 

For 𝑢 = 0 we see that (0)10 = (𝑏𝑛−1(0)𝑏𝑛−2(0)…𝑏0())2 = (00…0)2 and hence, 𝑏𝑛−1−𝑖(𝑢) = 0, for 

any 𝑖. Thus, 𝑇(0, 𝑥) = 1 and 𝑊(0) =
1

𝑁
∑ 𝑓(𝑥)𝑁−1

𝑥=0 . Therefore, we see that the first element of the 

Walsh Transform is the mean of the original function 𝑓(𝑥) (the DC value) as it is in the case of Fourier 

Transform. 

However, as a general rule, we see that as the variable 𝑢 (which represents the index of the transform) 

increases, the corresponding basis function’s (a square wave in that case) “frequency” does not 

necessarily increases as well. 

 

The inverse Walsh Transform is defined as follows. 

𝑓(𝑥) = ∑ 𝑊(𝑢)[∏ (−1)𝑏𝑖(𝑥)𝑏𝑛−1−𝑖(𝑢)𝑛−1
𝑖=0 ]𝑁−1

𝑢=0  or 

𝑓(𝑥) = ∑ 𝑊(𝑢)(−1)∑ 𝑏𝑖
𝑛−1
𝑖=0 (𝑥)𝑏𝑛−1−𝑖(𝑢)

𝑁−1

𝑢=0

 

 

4.2 Two-dimensional signals 

 

The Walsh Transform is defined as follows for two-dimensional signals. 

 

𝑊(𝑢, 𝑣) =
1

𝑁
∑ ∑ 𝑓𝑁−1

𝑦=0 (𝑥, 𝑦)[∏ (−1)(𝑏𝑖(𝑥)𝑏𝑛−1−𝑖(𝑢)+𝑏𝑖(𝑦)𝑏𝑛−1−𝑖(𝑣))𝑛−1
𝑖=0 ]𝑁−1

𝑥=0  or 

𝑊(𝑢, 𝑣) =
1

𝑁
∑ ∑ 𝑓

𝑁−1

𝑦=0

(𝑥, 𝑦)(−1)∑ (𝑛−1
𝑖=0 𝑏𝑖(𝑥)𝑏𝑛−1−𝑖(𝑢)+𝑏𝑖(𝑦)𝑏𝑛−1−𝑖(𝑣))

𝑁−1

𝑥=0

 

The inverse Walsh Transform is defined as follows for two-dimensional signals. 

𝑓(𝑥, 𝑦) =
1

𝑁
∑ ∑ 𝑊(𝑢, 𝑣)𝑁−1

𝑣=0 [∏ (−1)(𝑏𝑖(𝑥)𝑏𝑛−1−𝑖(𝑢)+𝑏𝑖(𝑦)𝑏𝑛−1−𝑖(𝑣))𝑛−1
𝑖=0 ]𝑁−1

𝑢=0  or 

𝑓(𝑥, 𝑦) =
1

𝑁
∑ ∑ 𝑊(𝑢, 𝑣)

𝑁−1

𝑣=0

(−1)∑ (𝑛−1
𝑖=0 𝑏𝑖(𝑥)𝑏𝑛−1−𝑖(𝑢)+𝑏𝑖(𝑦)𝑏𝑛−1−𝑖(𝑣))

𝑁−1

𝑢=0

 

 

4.3 Properties of the Walsh Transform  

 

 Unlike the Fourier Transform, which is based on trigonometric terms, the Walsh Transform consists 

of a series expansion of basis functions whose values are only −1 or 1 and they have the form of 

square waves. These functions can be implemented more efficiently in a digital environment than 

the exponential basis functions of the Fourier Transform. 

 The forward and inverse Walsh kernels are identical except for a constant multiplicative factor of 
1

𝑁
 for 1-D signals.  

 The forward and inverse Walsh kernels are identical for 2-D signals. This is because the array 

formed by the kernels is a symmetric matrix having orthogonal rows and columns, so its inverse 

array is the same as the array itself. 
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 The concept of frequency exists also in Walsh Transform basis functions. We can think of frequency 

as the number of zero crossings or the number of transitions in a basis vector and we call this number 

sequency. 

 

 

5. HADAMARD TRANSFORM (HT) 

 

5.1 Definition 

 

In a similar form as the Walsh Transform, the 2-D Hadamard Transform is defined as follows. 

 

Forward 

𝐻(𝑢, 𝑣) =
1

𝑁
∑ ∑ 𝑓𝑁−1

𝑦=0 (𝑥, 𝑦)[∏ (−1)(𝑏𝑖(𝑥)𝑏𝑖(𝑢)+𝑏𝑖(𝑦)𝑏𝑖(𝑣))𝑛−1
𝑖=0 ]𝑁−1

𝑥=0 , 𝑁 = 2𝑛or 

𝐻(𝑢, 𝑣) =
1

𝑁
∑ ∑ 𝑓

𝑁−1

𝑦=0

(𝑥, 𝑦)(−1)∑ (𝑛−1
𝑖=0 𝑏𝑖(𝑥)𝑏𝑖(𝑢)+𝑏𝑖(𝑦)𝑏𝑖(𝑣))

𝑁−1

𝑥=0

 

 

Inverse 

𝑓(𝑥, 𝑦) =
1

𝑁
∑ ∑ 𝐻𝑁−1

𝑣=0 (𝑢, 𝑣)[∏ (−1)(𝑏𝑖(𝑥)𝑏𝑖(𝑢)+𝑏𝑖(𝑦)𝑏𝑖(𝑣))𝑛−1
𝑖=0 ]𝑁−1

𝑢=0  etc. 

 

5.2 Properties of the Hadamard Transform  

 

 Most of the comments made for Walsh Transform are valid here. 

 The Hadamard Transform differs from the Walsh Transform only in the order of basis functions.  

 An important property of Hadamard Transform is that, letting 𝐻𝑁 represent the matrix of order 𝑁, 

the recursive relationship is given by the expression 

𝐻2𝑁 = [
𝐻𝑁 𝐻𝑁

𝐻𝑁 −𝐻𝑁
] 

 

Extended versions of the Walsh and Hadamard Transforms are their so-called ordered versions. In these 

versions the order of basis functions has been rearranged so that the sequency of the basis function 

increases by its index. Only the ordered versions of the above transforms exhibit the property of energy 

compaction and therefore, only these versions are used in real life applications. 

 

For the fast computation of the Ordered Walsh or the Ordered Hadamard Transform there exist 

algorithms called Fast Walsh Transform (FWT) and Fast Hadamard Transform (FHT), 

respectively. These algorithms are straightforward modification of the FFT. Advise any introductory 

book for your own interest. 

 

 

6. KARHUNEN-LOEVE (KLT) or HOTELLING TRANSFORM 

 

The Karhunen-Loeve Transform or KLT was originally introduced as a series expansion for continuous 

random processes by Karhunen and Loeve. For discrete signals Hotelling first studied what was called 

a method of principal components, which is the discrete equivalent of the KL series expansion. 
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Consequently, the KL Transform is also called the Hotelling Transform or the method of principal 

components. The term KLT is the most widely used. 

 

6.1 The case of many realisations of a signal or image (Gonzalez/Woods) 

 

The concepts of eigenvalue and eigevector are necessary to understand the KL transform. 

 

If 𝐶 is a matrix of dimension 𝑛 × 𝑛, then a scalar 𝜆 is called an eigenvalue of 𝐶 if there is a nonzero 

column vector 𝑒 in 𝑅𝑛 such that 

𝐶 ∙ 𝑒 = 𝜆𝑒 

The vector 𝑒 is called an eigenvector of the matrix 𝐶 corresponding to the eigenvalue 𝜆. 

 

Consider a population of random column vectors of the form 

 

𝑥 = [

𝑥1

𝑥2

⋮
𝑥𝑛

] 

 

The quantity 𝑥𝑖 may represent the value (grey level) of an image 𝑖. We have 𝑛 images, all of equal size 

𝑀 × 𝑁. Each of the above vectors refers to the exact same location across the 𝑛 images (please look at 

the next figure). 

Therefore, it is more accurate to write  

𝑥(𝑘,𝑙) = [

𝑥1(𝑘, 𝑙)
𝑥2(𝑘, 𝑙)

⋮
𝑥𝑛(𝑘, 𝑙)

] 

with 𝑘 ∈ [0…𝑀 − 1] and 𝑙 ∈ [0…𝑁 − 1].  

 

 
 

The mean vectors of the population are defined as: 

𝑚𝑥(𝑘,𝑙)
= 𝐸{𝑥(𝑘,𝑙)} = [𝑚1,(𝑘,𝑙) 𝑚2,(𝑘,𝑙) … 𝑚𝑛,(𝑘,𝑙)]𝑇 
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As you can see, we assume that the mean of each pixel (𝑘, 𝑙) in each image 𝑖 is different.  

In that case we would require a large number of realizations of each image 𝑖 in order to calculate the 

means 𝑚𝑖,(𝑘,𝑙) . However, if we assume that each image signal is ergodic we can calculate a single mean 

value for all pixels from a single realization using the entire collection of pixels of this particular image.  

(Note that in signal processing, a stochastic process is said to be ergodic if its statistical properties can 

be deduced from a single, sufficiently long, random sample of the process. The reasoning is that any 

collection of random samples from a process must represent the average statistical properties of the 

entire process. In other words, regardless of what the individual samples are, a birds-eye view of the 

collection of samples must represent the whole process. Conversely, a process that is not ergodic is a 

process that changes erratically at an inconsistent rate.  

In that case: 

𝑚𝑖,(𝑘,𝑙) = 𝑚𝑖 =
1

𝑀𝑁
∑ ∑ 𝑥𝑖,(𝑘,𝑙)

𝑁−1
𝑙=0

𝑀−1
𝑘=0  

and  

𝑚𝑥(𝑘,𝑙)
= 𝑚𝑥 = [𝑚1 𝑚2 … 𝑚𝑛]𝑇 = [𝐸{𝑥1} 𝐸{𝑥2} … 𝐸{𝑥𝑛}]𝑇 = 𝐸{𝑥} 

The operator 𝐸 refers to the expected value of the population, calculated theoretically using the 

probability density functions (pdf) of the elements 𝑥𝑖. 

The covariance matrix of the population is defined as 

𝐶𝑥 = 𝐸{(𝑥 − 𝑚𝑥)(𝑥 − 𝑚𝑥)
𝑇} 

The operator 𝐸 is now calculated theoretically using the probability density functions (pdf) of the 

elements 𝑥𝑖 and the joint probability density functions between the elements 𝑥𝑖 and 𝑥𝑗. 

Because 𝑥 is 𝑛 -dimensional (𝑥 − 𝑚𝑥)(𝑥 − 𝑚𝑥)
𝑇 and 𝐶𝑥 are matrices of order 𝑛 × 𝑛. The diagonal 

element 𝑐𝑖𝑖 of matrix 𝐶𝑥 is the variance of 𝑥𝑖, and the element 𝑐𝑖𝑗 of 𝐶𝑥 is the covariance between the 

elements 𝑥𝑖 and 𝑥𝑗. If the elements 𝑥𝑖 and 𝑥𝑗 are uncorrelated, their covariance is zero and, therefore, 

𝑐𝑖𝑗 = 𝑐𝑗𝑖 = 0. The covariance matrix 𝐶𝑥 can be written as follows. 

𝐶𝑥 = 𝐸{(𝑥 − 𝑚𝑥)(𝑥 − 𝑚𝑥)
𝑇} = 𝐸{(𝑥 − 𝑚𝑥)(𝑥

𝑇 − 𝑚𝑥
𝑇)} = 𝐸{𝑥𝑥𝑇 − 𝑥𝑚𝑥

𝑇 − 𝑚𝑥𝑥
𝑇 + 𝑚𝑥𝑚𝑥

𝑇} 

It can be easily shown that 

𝐸{𝑥𝑚𝑥
𝑇} = 𝐸{𝑚𝑥𝑥

𝑇} 

Therefore, 

𝐸{𝑥𝑥𝑇 − 𝑥𝑚𝑥
𝑇 − 𝑚𝑥𝑥

𝑇 + 𝑚𝑥𝑚𝑥
𝑇} = 𝐸{𝑥𝑥𝑇 − 2𝑚𝑥𝑥

𝑇 + 𝑚𝑥𝑚𝑥
𝑇} 

= 𝐸{𝑥𝑥𝑇} − 𝐸{2𝑚𝑥𝑥
𝑇} + 𝐸{𝑚𝑥𝑚𝑥

𝑇} 

Since the vector 𝑚𝑥 and the matrix 𝑚𝑥𝑚𝑥
𝑇 contain constant quantities, we can write 

𝐸{𝑥𝑥𝑇 − 2𝑚𝑥𝑥
𝑇 + 𝑚𝑥𝑚𝑥

𝑇} = 𝐸{𝑥𝑥𝑇} − 2𝑚𝑥𝐸{𝑥𝑇} + 𝑚𝑥𝑚𝑥
𝑇 

Knowing that 

𝐸{𝑥𝑇} = 𝑚𝑥
𝑇 

we have 

𝐶𝑥 = 𝐸{𝑥𝑥𝑇} − 2𝑚𝑥𝐸{𝑥𝑇} + 𝑚𝑥𝑚𝑥
𝑇 = 𝐸{𝑥𝑥𝑇} − 2𝑚𝑥𝑚𝑥

𝑇 + 𝑚𝑥𝑚𝑥
𝑇 ⇒ 

𝐶𝑥 = 𝐸{𝑥𝑥𝑇} − 𝑚𝑥𝑚𝑥
𝑇 

In most real-life applications, the probability density functions (pdf) of the elements 𝑥𝑖 and the joint 

probability density functions between the elements 𝑥𝑖 and 𝑥𝑗 are not known. 

For 𝑀 vectors from a random population, where 𝑀 is large enough, the mean vector 𝑚𝑥 and the 

covariance matrix 𝐶𝑥 can be approximately calculated from the available vectors by using the following 

relationships where all the expected values are approximated by summations 

https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Stochastic_process
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𝑚𝑥 = 𝐸{𝑥} ≅
1

𝑀
∑ 𝑥𝑘

𝑀

𝑘=1

 

𝐶𝑥 = 𝐸{𝑥𝑥𝑇} − 𝑚𝑥𝑚𝑥
𝑇 ≅

1

𝑀
∑ 𝑥𝑘

𝑀

𝑘=1

𝑥𝑘
𝑇 − 𝑚𝑥𝑚𝑥

𝑇 

Very easily it can be seen that, for real images, 𝐶𝑥 is real and symmetric. Let 𝑒𝑖 and 𝜆𝑖, 𝑖 = 1,2, … , 𝑛, 

be a set of orthonormal eigenvectors and corresponding eigenvalues of 𝐶𝑥, arranged in descending order 

so that 𝜆𝑖 ≥ 𝜆𝑖+1 for 𝑖 = 1,2, … , 𝑛 − 1. Suppose that 𝑒𝑖 are column vectors. 

(Note that real and symmetric matrices of dimension 𝑛 × 𝑛, always have a set of 𝑛 orthonormal 

eigenvectors.) 

Let 𝐴 be a matrix whose rows are formed from the eigenvectors of 𝐶𝑥, ordered so that the first row of 

𝐴 is the eigenvector corresponding to the largest eigenvalue, and the last row the eigenvector 

corresponding to the smallest eigenvalue. Therefore, 

𝐴 =

[
 
 
 
 
𝑒1

𝑇

𝑒2
𝑇

⋮
𝑒𝑛

𝑇]
 
 
 
 

 and 𝐴𝑇 = [𝑒1 𝑒2 … 𝑒𝑛] 

Suppose that 𝐴 is a transformation matrix that maps the vectors 𝑥 into vectors 𝑦 by using the following 

transformation: 

𝑦 = 𝐴(𝑥 − 𝑚𝑥) 

The above transform is called the Karhunen-Loeve or Hotelling transform. The mean of the 𝑦 vectors 

resulting from the above transformation is zero, since 

𝐸{𝑦} = 𝐸{𝐴(𝑥 − 𝑚𝑥)} = 𝐴𝐸{𝑥 − 𝑚𝑥} = 𝐴(𝐸{𝑥} − 𝑚𝑥) = 𝐴(𝑚𝑥 − 𝑚𝑥) = 0 ⇒ 

𝑚𝑦 = 0 

The covariance matrix of the 𝑦 vectors is  

𝐶𝑦 = 𝐸{(𝑦 − 𝑚𝑦)(𝑦 − 𝑚𝑦)𝑇} = 𝐸{𝑦𝑦𝑇} 

Using the relationships 

𝑦 = 𝐴(𝑥 − 𝑚𝑥) 

𝑦𝑇 = [𝐴(𝑥 − 𝑚𝑥)]
𝑇 = (𝑥 − 𝑚𝑥)

𝑇𝐴𝑇 

we get 

𝑦𝑦𝑇 = 𝐴(𝑥 − 𝑚𝑥)(𝑥 − 𝑚𝑥)
𝑇𝐴𝑇 ⇒ 𝐸{𝑦𝑦𝑇} = 𝐸{𝐴(𝑥 − 𝑚𝑥)(𝑥 − 𝑚𝑥)

𝑇𝐴𝑇}

= 𝐴𝐸{(𝑥 − 𝑚𝑥)(𝑥 − 𝑚𝑥)
𝑇}𝐴𝑇 

𝐶𝑦 = 𝐴 𝐶𝑥𝐴
𝑇 

𝐶𝑥𝐴
𝑇 = 𝐶𝑥[𝑒1 𝑒2 … 𝑒𝑛] = [𝜆1𝑒1 𝜆2𝑒2 … 𝜆𝑛𝑒𝑛] 

𝐶𝑦 = 𝐴𝐶𝑥𝐴
𝑇 =

[
 
 
 
 
𝑒1

𝑇

𝑒2
𝑇

⋮
𝑒𝑛

𝑇]
 
 
 
 

[𝜆1𝑒1 𝜆2𝑒2 … 𝜆𝑛𝑒𝑛] 

Because 𝑒𝑖 is a set of orthonormal eigenvectors we have that: 

𝑒𝑖
𝑇𝑒𝑖 = 1, 𝑖 = 1,… , 𝑛 

𝑒𝑖
𝑇𝑒𝑗 = 0, 𝑖, 𝑗 = 1,… , 𝑛 and 𝑖 ≠ 𝑗 

and therefore, 𝐶𝑦 is a diagonal matrix whose elements along the diagonal are the eigenvalues of 𝐶𝑥 
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𝐶𝑦 = [

𝜆1 0 … 0
0 𝜆2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝑛

] 

The off-diagonal elements of the covariance matrix of the population of vectors 𝑦 are 0, and therefore, 

the elements of the 𝑦 vectors are uncorrelated.  

Let’s try to reconstruct any of the original vectors 𝑥 from its corresponding 𝑦. Because the rows of 𝐴 

are orthonormal vectors we have 

𝐴𝐴𝑇 =

[
 
 
 
 
𝑒1

𝑇

𝑒2
𝑇

⋮
𝑒𝑛

𝑇]
 
 
 
 

[𝑒1 𝑒2 … 𝑒𝑛] = 𝐼 

with 𝐼 the unity matrix. Therefore, 𝐴−1 = 𝐴𝑇, and any vector 𝑥 can by recovered from its corresponding 

vector 𝑦 by using the relation 

𝑥 = 𝐴𝑇𝑦 + 𝑚𝑥 

Suppose that instead of using all the eigenvectors of 𝐶𝑥 we form matrix 𝐴𝐾 from the 𝐾 eigenvectors 

corresponding to the 𝐾 largest eigenvalues, 

𝐴𝐾 =

[
 
 
 
 
𝑒1

𝑇

𝑒2
𝑇

⋮
𝑒𝐾

𝑇]
 
 
 
 

 

yielding a transformation matrix of order 𝐾 × 𝑛. The 𝑦 vectors would then be 𝐾 dimensional, and the 

reconstruction of any of the original vectors would be approximated by the following relationship 

𝑥 = 𝐴𝐾
𝑇𝑦 + 𝑚𝑥 

The mean square error between the perfect reconstruction 𝑥 and the approximate reconstruction 𝑥 is 

given by the expression 

𝑒𝑚𝑠 = ∑ 𝜆𝑗
𝑛
𝑗=1 − ∑ 𝜆𝑗 =𝐾

𝑗=1 ∑ 𝜆𝑗
𝑛
𝑗=𝐾+1 . 

By using 𝐴𝐾 instead of 𝐴 for the KL transform we achieve compression of the available data. 

 

6.2 Properties of the Karhunen-Loeve Transform 

 

Despite its favourable theoretical properties, the KLT is not used often in practice for the following 

reasons. 

 Its basis functions depend on the covariance matrix of the image, and hence they have to 

recomputed and transmitted for every image. 

 Perfect decorrelation is not possible, since images can rarely be modelled as realisations of ergodic 

fields. 

 There aren’t any computationally fast algorithms for its implementation. 
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