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1. Preliminaries 
 

Image enhancement refers to a class of procedures that aim at improving the quality and the information 

content of the original image data before processing. The common practices include contrast 

enhancement, spatial filtering, histogram processing and other techniques. 

 

1.1 Spatial domain methods 
 

Suppose we have a digital image which can be represented by a two dimensional random field ),( yxf . 

An image processing operator in the spatial domain may be expressed as a mathematical function  T  

applied to the image ),( yxf  to produce a new image  ),(),( yxfTyxg   as follows. 

 ),(),( yxfTyxg   

The operator T  applied on ),( yxf  may be defined over: 

(i) A single pixel ),( yx . In this case T  is a grey level transformation (or mapping) function. 

(ii) Some neighbourhood of ),( yx . 

(iii) T  may operate to a set of input images instead of a single image. 

 

Example 1 

The result of the transformation shown in the figure below is to produce an image of higher contrast than 

the original, by darkening the levels below m  and brightening the levels above m  in the original image. 

This technique is known as contrast stretching. 

 

                                

 

 

 

 

 

 

 

 

                                                                             

 

 

 

 

 

Example 2 

The result of the transformation shown in the figure below is to produce a binary image. 
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https://www.sciencedirect.com/topics/earth-and-planetary-sciences/augmentation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spatial-filtering
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1.2 Frequency domain methods 
 

Let ),( yxg  be a desired image formed by the convolution of an image ),( yxf  and a linear, position 

invariant operator ),( yxh , that is: 

),(),(),( yxfyxhyxg   

The following frequency relationship holds: 

),(),(),( vuFvuHvuG   

We can select ),( vuH  so that the desired image 

 ),(),(),( 1 vuFvuHyxg   

exhibits some highlighted features of ),( yxf . For instance, edges in ),( yxf  can be accentuated by 

using a function ),( vuH  that emphasises the high frequency components of ),( vuF .  

 

 

2. Spatial domain: Enhancement by point processing 
 

We are dealing now with image processing methods that are based only on the intensity of single pixels. 

 

2.1 Intensity transformations 
 

2.1.1 Image Negatives 

The negative of a digital image is obtained by the transformation function rLrTs  1)(  shown in 

the following figure, where L  is the number of grey levels. The idea is that the intensity of the output 

image decreases as the intensity of the input increases. This is useful in numerous applications such as 

displaying medical images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 Contrast Stretching 

Low contrast images occur often due to poor or non uniform lighting conditions, or due to nonlinearity, 

or small dynamic range of the imaging sensor. In the figure of Example 1 above you have seen a typical 

contrast stretching transformation. 

 

2.2 Histogram processing. Definition of the histogram of an image. 
 

By processing (modifying) the histogram of an image we can create a new image with specific desired 

properties. 

Suppose we have a digital image of size NN   with grey levels in the range ]1,0[ L . The histogram of 

the image is defined as the following discrete function: 

1L  

1L  

)(rTs   

r  
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2
)(

N

n
rp k
k   

where 

kr  is the thk  grey level, 1,,1,0  Lk   

kn  is the number of pixels in the image with grey level kr  

2N  is the total number of pixels in the image 

The histogram represents the frequency of occurrence of the various grey levels in the image. A plot of 

this function for all values of k  provides a global description of the appearance of the image. 

 

Question: Think how the histogram of a dark image, a bright image and an image of very low 

contrast would like. Plot its form in each case. 

 

2.3 Global histogram equalisation 
 

In this section we will assume that the image to be processed has a continuous intensity that lies within 

the interval ]1,0[ L . Suppose we divide the image intensity with its maximum value 1L . Let the 

variable r  represent the new grey levels (image intensity) in the image, where now 10  r  and let 

)(rpr  denote the probability density function (pdf) of the variable r . We now apply the following 

transformation function to the intensity  

                                                        
r

r dwwprTs
0

)()( , 10  r                                                         (1) 

By observing the transformation of equation (1) we immediately see that it possesses the following 

properties: 

 

(i) 10  s . 

(ii) )()( 1212 rTrTrr  , i.e., the function )(rT  is increase ng with r . 

(iii) 0)()0(
0

0

  dwwpTs r  and 1)()1(
1

0

  dwwpTs r . Moreover, if the original image has 

intensities only within a certain range ] ,[ maxmin rr  then 0)()(
min

0
min  

r

r dwwprTs  and 

1)()(
max

0
max  

r

r dwwprTs  since maxmin  and  ,0)( rrrrrpr  . Therefore, the new intensity s  

takes always all values within the available range [0 1]. 

 

Suppose that )(rPr , )(sPs  are the probability distribution functions (PDF’s) of the variables r  and s  

respectively. 

Let us assume that the original intensity lies within the values r  and drr   with dr  a small quantity. 

dr  can be assumed small enough so as to be able to consider the function )(wpr  constant within the 

interval ],[ drrr   and equal to )(rpr . Therefore, 

drrpdwrpdwwpdrrrP r

drr

r
r

drr

r
rr )()()(],[  



. 

Now suppose that )(rTs   and )(1 drrTs  . The quantity dr  can be assumed small enough so as to 

be able to consider that dsss 1  with ds  small enough so as to be able to consider the function )(wps  

constant within the interval ],[ dsss   and equal to )(sps . Therefore, 

dsspdwspdwwpdsssP s

dss

s
s

dss

s
ss )()()(],[  


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Since )(rTs  , )( drrTdss   and the function of equation (1) is increasing with r , all and only the 

values within the interval ],[ drrr   will be mapped within the interval ],[ dsss  . Therefore, 

 ],[],[ dsssPdrrrP sr

)(

)(

1

1

)()()()(
sTr

rss

sTr

r
ds

dr
rpspdsspdrrp









  

From equation (1) we see that 

)(rp
dr

ds
r  

and hence, 

10  ,1
)(

1
)()(

)(1













s
rp

rpsp

sTrr

rs  

 

Conclusion 

From the above analysis it is obvious that the transformation of equation (1) converts the original image 

into a new image with uniform probability density function. This means that in the new image all 

intensities are present [look at property (iii) above] and with equal probabilities. The whole range of 

intensities from the absolute black to the absolute white are explored and the new image will definitely 

have higher contrast compared to the original image. 

 

Unfortunately, in a real life scenario we must deal with digital images. The discrete form of histogram 

equalisation is given by the relation 

                                     



k

j
kjr

k

j

j

kk Lkrrp
N

n
rTs

00
2

1,,1,0  ,10  ),()(                                   (2) 

The quantities in equation (2) have been defined in Section 2.2. To see results of histogram equalisation 

look at any introductory book on Image Processing. 

The improvement over the original image is quite evident after using the technique of histogram 

equalisation. The new histogram is not flat because of the discrete approximation of the probability 

density function with the histogram function. Note, however, that the grey levels of an image that has 

been subjected to histogram equalisation are spread out and always reach white. This process increases 

the dynamic range of grey levels and produces an increase in image contrast. 

 

2.4 Local histogram equalisation 
 

Global histogram equalisation is suitable for overall enhancement. It is often necessary to enhance 

details over small areas. The number of pixels in these areas my have negligible influence on the 

computation of a global transformation, so the use of this type of transformation does not necessarily 

guarantee the desired local enhancement. The solution is to devise transformation functions based on the 

grey level distribution – or other properties – in the neighbourhood of every pixel in the image. The 

histogram processing technique previously described is easily adaptable to local enhancement. The 

procedure is to define a square or rectangular neighbourhood and move the centre of this area from pixel 

to pixel. At each location the histogram of the points in the neighbourhood is computed and a histogram 

equalisation transformation function is obtained. This function is finally used to map the grey level of 

the pixel centred in the neighbourhood. The centre of the neighbourhood region is then moved to an 

adjacent pixel location and the procedure is repeated. Since only one new row or column of the 

neighbourhood changes during a pixel-to-pixel translation of the region, updating the histogram obtained 

in the previous location with the new data introduced at each motion step is possible quite easily. This 

approach has obvious advantages over repeatedly computing the histogram over all pixels in the 

neighbourhood region each time the region is moved one pixel location. Another approach often used to 

reduce computation is to utilise non overlapping regions, but this methods usually produces an 

undesirable checkerboard effect. 
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2.5 Histogram specification 
 

Suppose we want to specify a particular histogram shape (not necessarily uniform) which is capable of 

highlighting certain grey levels in the image. 

Let us suppose that: 

)(rpr  is the original probability density function 

)(zpz  is the desired probability density function 

Suppose that histogram equalisation is first applied on the original image r  


r

r dwwprTs
0

)()(  

Suppose that the desired image z  is available and histogram equalisation is applied as well 


z

z dwwpzGv
0

)()(  

)(sps  and )(vpv  are both uniform densities and they can be considered as identical. Note that the final 

result of histogram equalisation is independent of the density inside the integral. So in equation 


z

z dwwpzGv
0

)()(  we can use the symbol s  instead of v . 

The inverse process )(1 sGz   will have the desired probability density function. Therefore, the process 

of histogram specification can be summarised in the following steps. 

(i) We take the original image and equalise its intensity using the relation 
r

r dwwprTs
0

)()( . 

(ii) From the given probability density function )(zpz  we specify the probability distribution 

function )(zG . 

(iii) We apply the inverse transformation function  )()( 11 rTGsGz    

 

 

3. Spatial domain: Enhancement in the case of many realisations of an 

image of interest available 
 

3.1 Image averaging 
 

Suppose that we have an image ),( yxf  of size NM   pixels corrupted by noise ),( yxn , so we obtain a 

noisy image as follows. 

),(),(),( yxnyxfyxg   

For the noise process ),( yxn  the following assumptions are made. 

(i) The noise process ),( yxn  is ergodic. 

(ii) It is zero mean, i.e.,    









1

0

1

0

0),(
1

),(
M

x

N

y

yxn
MN

yxnE  

(ii) It is white, i.e., the autocorrelation function of the noise process defined as 

 












kM

x

lN

y

lykxnyxn
lNkM

lykxnyxnElkR
1

0

1

0

),(),(
))((

1
)},(),({],[  is zero, apart for 

the pair ]0,0[],[ lk . 

Therefore,   ),(),(),(
))((

1
,

1

0

1

0

2
),( lklykxnyxn

lNkM
lkR

kM

x

lN

y
yxn  












  where 
2

),( yxn  

is the variance of noise. 

Suppose now that we have L  different noisy realisations of the same image ),( yxf  as 

),(),(),( yxnyxfyxg ii  , Li ,,1,0  . Each noise process ),( yxni  satisfies the properties (i)-(iii) 
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given above. Moreover, 22
),(  yxni

. We form the image ),( yxg  by averaging these L  noisy images as 

follows: 





L

i
i

L

i
i

L

i
i yxn

L
yxfyxnyxf

L
yxg

L
yxg

111

),(
1

),()),(),((
1

),(
1

),(  

Therefore, the new image is again a noisy realisation of the original image ),( yxf  with noise   





L

i
i yxn

L
yxn

1

),(
1

),( . 

The mean value of the noise ),( yxn  is found below. 

0)},({
1

)},(
1

{)},({
11





L

i
i

L

i
i yxnE

L
yxn

L
EyxnE  

The variance of the noise ),( yxn  is now found below. 

2

1

2

2

       

1 1
2

1

2

2

   

1 1
2

1

2

2

2

1
2

2

1

22
),(

1
0

1

)},(),({
1

)},({
1

))},(),(({(
1

)}),({(
1

),(
1

),(
1

)},({





LL

yxnyxnE
L

yxnE
L

yxnyxnE
L

yxnE
L

yxnE
L

yxn
L

EyxnE

L

i

ji

ji

L

i

L

j

L

i
iji

ji

L

i

L

j

L

i
i

L

i
i

L

i
iyxn



















































  







 



 



 

Therefore, we have shown that image averaging produces an image ),( yxg , corrupted by noise with 

variance less than the variance of the noise of the original noisy images. Note that if L  we have 

02
),( yxn , the resulting noise is negligible. 

 

 

4. Spatial domain: Enhancement in the case of a single image 
 

4.1 Spatial masks 
 

Many image enhancement techniques are based on spatial operations performed on local 

neighbourhoods of input pixels. 

The image is usually convolved with a finite impulse response filter called spatial mask. The use of 

spatial masks on a digital image is called spatial filtering. 

Suppose that we have an image ),( yxf  of size 2N  and we define a neighbourhood around each pixel. 

For example let this neighbourhood to be a rectangular window of size 33  

 

1w  2w  3w  

4w  5w  6w  

7w  8w  9w  

 

If we replace each pixel by a weighted average of its neighbourhood pixels then the response of the 

linear mask for the pixel 5z  is 


9

1i
ii zw . We may repeat the same process for the whole image. 

 

4.2 Lowpass and highpass spatial filtering 
 

A 33  spatial mask operating on an image can produce (a) a smoothed version of the image (which 

contains the low frequencies) or (b) it can enhance the edges and suppress essentially the constant 

background information. The behaviour is basically dictated by the signs of the elements of the mask. 
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Let us suppose that the mask has the following form 

 

a  b  c  

d  1  e  

f  g  h  

 

To be able to estimate the effects of the above mask with relation to the sign of the coefficients 

hgfedcba ,,,,,,, , we will consider the equivalent one dimensional mask 

 

d  1  e  

 

Let us suppose that the above mask is applied to a signal )(nx . The output of this operation will be a 

signal )(ny  as   )()()()()1()()1()( 1 zezXzXzXdzzYnexnxndxny  

  )()1()( 1 zXezdzzY ezdzzH
zX

zY
  1)(

)(

)( 1 . This is the transfer function of a system that 

produces the above input-output relationship. In the frequency domain we have 

)exp(1)exp()(  jejdeH j  . 

The values of this transfer function at frequencies 0  and    are: 

edeH j 


1)(
0

  

edeH j 


1)(


  

If a lowpass filtering (smoothing) effect is required then the following condition must hold 

0)()(
0




edeHeH jj







  

If a highpass filtering effect is required then 

0)()(
0




edeHeH jj







  

The most popular masks for lowpass filtering are masks with all their coefficients positive and for 

highpass filtering, masks where the central pixel is positive and the surrounding pixels are negative or 

the other way round. 

 

4.3 Popular techniques for lowpass spatial filtering 
 

4.3.1 Uniform filtering 

The most popular masks for lowpass filtering are masks with all their coefficients positive and equal to 

each other as for example the mask shown below. Moreover, they sum up to 1 in order to maintain the 

mean of the image. 

 

 

 

 

 

 

 

 

 

 

 

4.3.2 Gaussian filtering 

The two dimensional Gaussian mask has values that attempts to approximate the continuous function 


9

1
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1 

 

1 
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1 
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1 
 

1 

 

1 
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2

22

22

1
),(





yx

eyxG




  

In theory, the Gaussian distribution is non-zero everywhere, which would require an infinitely large 

convolution kernel, but in practice it is effectively zero more than about three standard deviations from 

the mean, and so we can truncate the kernel at this point. The following shows a suitable integer-valued 

convolution kernel that approximates a Gaussian with a   of 1.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3 Median filtering 

The median m  of a set of values is the value that possesses the property that half the values in the set are 

less than m  and half are greater than m . Median filtering is the operation that replaces each pixel by the 

median of the grey level in the neighbourhood of that pixel. 

Median filters are non linear filters because for two sequences )(nx  and )(ny  

     )(median)(median)()(median nynxnynx   

Median filters are useful for removing isolated lines or points (pixels) while preserving spatial 

resolutions. They perform very well on images containing binary (salt and pepper) noise but perform 

poorly when the noise is Gaussian. Their performance is also poor when the number of noise pixels in 

the window is greater than or half the number of pixels in the window (why?) 

 

 

 

 

 

 

 

 

 

 

 

4.3.4 Directional smoothing 

To protect the edges from blurring while smoothing, a directional averaging filter can be useful. Spatial 

averages ):,( yxg  are calculated in several selected directions (for example could be horizontal, 

vertical, main diagonals) 

 



),(

),(
1

):,(
lk W

lykxf
N

yxg


  

Isolated point 

Median filtering 
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1 0 
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and a direction   is found such that ):,(),(  yxgyxf  is minimum. (Note that W  is the 

neighbourhood along the direction  and N  is the number of pixels within this neighbourhood). 

Then by replacing ):,(  with):,(  yxgyxg we get the desired result. 

 

4.3.5 High Boost Filtering 

A high pass filtered image may be computed as the difference between the original image and a lowpass 

filtered version of that image as follows: 

(Highpass part of image)=(Original)-(Lowpass part of image) 

Multiplying the original image by an amplification factor denoted by A , yields the so called high boost 

filter: 

(Highboost image)= )(A (Original)-(Lowpass)= )1( A (Original)+(Original)-(Lowpass) 

= )1( A (Original)+(Highpass) 

The general process of subtracting a blurred image from an original as given in the first line is called 

unsharp masking. A possible mask that implements the above procedure could be the one illustrated 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   

 

 

 

 

 

The high-boost filtered image looks more like the original with a degree of edge enhancement, 

depending on the value of A . 

 

4.4 Popular techniques for highpass spatial filtering. Edge detection using derivative 

filters 
 

4.4.1 About two dimensional high pass spatial filters 

An edge is the boundary between two regions with relatively distinct grey level properties. The idea 

underlying most edge detection techniques is the computation of a local derivative operator. The 

magnitude of the first derivative calculated within a neighbourhood around the pixel of interest, can be 

used to detect the presence of an edge in an image. 

The gradient of an image ),( yxf  at location ),( yx  is a vector that consists of the partial derivatives of  

),( yxf  as follows. 


9

1
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-1 -1 
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-1 
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
9

1
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-1 
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-1 
 

-1 

 

-1 
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-1 
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
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yxf
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yxf
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),(

),(  

The magnitude of this vector, generally referred to simply as the gradient f  is 

2/1
22

),().(
)),((mag),(










































y

yxf

x

yxf
yxfyxf  

Common practice is to approximate the gradient with absolute values which is simpler to implement as 

follows. 

                                                           
y

yxf

x

yxf
yxf











),(),(
),(                                                       (1) 

Consider a pixel of interest 5),( zyxf   and a rectangular neighbourhood of size 933   pixels 

(including the pixel of interest) as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2 Roberts operator 

Equation (1) can be approximated at point 5z  in a number of ways. The simplest is to use the difference 

)( 85 zz   in the x  direction and )( 65 zz   in the y  direction. This approximation is known as the 

Roberts operator, and is expressed mathematically as follows. 

                                                               6585 zzzzf                                                            (2) 

Another approach for approximating (1) is to use cross differences 

                                                               8695 zzzzf                                                            (3) 

Equations (2), (3) can be implemented by using the following masks. The original image is convolved 

with both masks separately and the absolute values of the two outputs of the convolutions are added. 
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4.4.3 Prewitt operator 

 

Another approximation of equation (1) but using now a 33  mask is the following. 

                              )()()()( 741963321987 zzzzzzzzzzzzf                             (4) 

This approximation is known as the Prewitt operator. Equation (4) can be implemented by using the 

following masks. Again, the original image is convolved with both masks separately and the absolute 

values of the two outputs of the convolutions are added. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.4 Sobel operator. Definition and comparison with the Prewitt operator 

The most popular approximation of equation (1) but using a 33  mask is the following. 

                           )2()2()2()2( 741963321987 zzzzzzzzzzzzf                           (5) 

This approximation is known as the Sobel operator. 

 

 

 

 

 

 

 

 

 

 

 

 

If we consider the left mask of the Sobel operator, this causes differentiation along the y  direction. A 

question that arises is the following: What is the effect caused by the same mask along the x  direction? 

If we isolate the following part of the mask 

 

 

 

 

 

 

 

 

and treat it as a one dimensional mask, we are interested in finding the effects of that mask. We will 

therefore, treat this mask as a one dimensional impulse response ][nh  of the form  
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The above response applied to a signal ][nx  yields a signal ]1[][2]1[][  nxnxnxny  or in z-

transform domain )()1(cos2)()()2()( 1  jXjYzXzzzY   . Therefore, ][nh  is the 

impulse response of a system with transfer function )()1(cos2)(  jHjH   shown in the figure 

below for ],0[  . This is a lowpass filter type of response. Therefore, we can claim that the Sobel 

operator has a differentiation effect along one of the two directions and a smoothing effect along the 

other direction. 
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The same analysis for the Prewitt operator would give )()1()( 1 zXzzzY    

 )()1cos2()(  jXjY 1cos2)(  jH  shown in the figure below for ],0[  . This 

response looks “strange” since it decreases up to the point 5.0cos01cos2    and then starts 

increasing. 

 

][nh  

2 

1 

-1 1 0 n  



 13 

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

 
 

Based on the above analysis it is stated in the literature that the Sobel operator have the advantage of 

providing both a differencing a smoothing effect while Prewitt does not. However, if you implement 

both operators you cannot see any visual difference. 

 

4.4.5 Laplacian operator 

The Laplacian of a 2-D function ),( yxf  is a second order derivative defined as 

2

2

2

2
2 ),(),(

),(
y

yxf

x

yxf
yxf









  

In practice it can be also implemented using a 3x3 mask as follows (why?) 

)(4 86425
2 zzzzzf   

The main disadvantage of the Laplacian operator is that it produces double edges (why?). 

 

 

To see real images where all the above algorithms have been applied look at any Image Processing 

book. 

 

The material of these lecture notes on Image Enhancement was mainly taken from the following books, 

and modified for the needs of this course. 

 

[1] Digital Image Processing by R. C. Gonzales and R. E. Woods, Addison-Wesley Publishing 

Company, 1992. 

[2] Fundamentals of Digital Image Processing by A. K. Jain, Prentice Hall, 1989. 

 


