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1.
(a)
Explain why direct image synthesis from the phase response of the Fourier transform alone retains most of the significant features of the original image and why direct image synthesis from the amplitude response of the Fourier transform alone does not.

(b) (i)
Define the property of energy compaction of a unitary transform and give reasons why this property is useful in image processing.

(ii)
In a specific experiment it is observed that the amplitude response of an image exhibits energy concentration along a straight line in the 2-D frequency plane. State, with full justification, the implications of this observation as far as the original image is concerned.

(c) Let 
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(i) Define the sequence 
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(ii) Comment on the energy compaction property of the DCT as compared to that of the DFT by sketching an example of 
[image: image10.wmf])

,

(

y

x

f

 and 
[image: image11.wmf])

,

(

y

x

g

.

(iii) Explain why the even symmetric DCT is more commonly used than the odd symmetric DCT.

(d)
Consider a population of random vectors 
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 of the form


[image: image13.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

)

,

(

)

,

(

)

,

(

2

1

y

x

f

y

x

f

y

x

f

f

n

M

.

Each component 
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 represents an image. The population arises from their formation across the entire range of pixels.

Consider now a population of random vectors of the form
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where the vectors 
[image: image16.wmf]g

 are the Karhunen-Loeve transforms of the vectors 
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. 

(i)
Write down the relationship between 
[image: image18.wmf]g

 and 
[image: image19.wmf]f

.

(ii)
It is known that the covariance matrix of 
[image: image20.wmf]g

 is diagonal. Define the elements of this matrix.

(iii)
Suppose some elements of the diagonal are very small. Comment on their significance.

2.
(a)
(i)
Knowing that adding uncorrelated images convolves their histograms, how would you expect the intensity range of the sum of two uncorrelated images to compare with the intensity range of its component images?

(ii)
Consider an 
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Comment on the histogram of 
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(b)
Suppose that an image is corrupted by random noise. One of the properties of human vision is that the noise is much less visible in the edge regions that in the uniform background regions.

(i)
Give a possible explanation by considering the local signal-to-noise ratio of the image.

(ii)
Taking into consideration the above observation, propose a method that uses variable size spatial filters to reduce background noise without blurring the image significantly.

(c)
Band pass filters are useful in the enhancement of edges and other high pass image characteristics in the presence of noise. Propose a method to obtain a bandpass filtered version of an image using spatial masks.

(d)
Give examples of 
[image: image27.wmf]3
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 Prewitt, Sobel and Laplacian spatial masks that approximate local first derivative operators and compare the results arising from their use.

3.
We are given the degraded version 
[image: image28.wmf]g

 of an image 
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 such that in lexicographic ordering
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where 
[image: image31.wmf]H

 is the degradation matrix which is assumed to be block-circulant, and 
[image: image32.wmf]n

 is the noise term which is assumed to be zero mean, independent and white. We propose to restore the degraded image using Wiener filtering.

(a)
(i)
Write down, but do not derive, the expressions for both the Wiener filter estimator and the restored image in both spatial and frequency domains and explain all symbols used.

(ii)
The autocorrelation matrix of the original image 
[image: image33.wmf]f

 and of the additive noise 
[image: image34.wmf]n

 are necessary for Wiener filtering. Since both 
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 and 
[image: image36.wmf]n

 are unknown, suggest a way to obtain estimates of them. Justify your answer.

(b)
Describe briefly the Wiener smoothing filter.

(c)
Describe briefly what is meant by an inverse filter and how it is related to the Wiener filter.

(d)
Describe the technique of Iterative Wiener Filtering. What is the motivation for using this technique?

4.
(a)
Explain briefly why uniform quantization of an image may not be optimal.

(b)
Consider an image 
[image: image37.wmf])
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 with intensity 
[image: image38.wmf]r

 that can be modelled as a sample obtained from the probability density function sketched below:
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(i)
Suppose four reconstruction levels are assigned to quantize the intensity 
[image: image41.wmf]r

. Determine these reconstruction levels using a uniform quantizer.

(ii)
Determine the codeword to be assigned to each of the four reconstruction levels using Huffman coding. Specify what the reconstruction level is for each codeword. For your codeword assignment, determine the average number of bits required to represent 
[image: image42.wmf]r

.

(c)
Discuss the limitations of Huffman coding.

(d)
In the table below you see an example of a three-symbol source with their probabilities.

	Symbol
	Probability
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	0.02
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	0.18


(i)
Determine the codeword to be assigned to each of the three symbols using Huffman coding.

(ii)
Determine the entropy, the redundancy and the coding efficiency of the Huffman code for this example.

(iii)
By observing the above measurements, explain why in this case the extended Huffman code is expected to be more efficient than the conventional Huffman code. Justify your answer without determining the extended Huffman code. What  disadvantages, if any, does the extended Huffman code have?

QUESTION 1

(a)

In viewing a picture, some of the most important visual information is contained in the edges and regions of high contrast. Intuitively, regions of maximum and minimum intensity in a picture are places at which complex exponentials at different frequencies are in phase.

Therefore, it seems plausible to expect the phase of the Fourier transform of a picture to contain much of the information in the picture, and in particular, the phase should capture the information about the edges.

(b)

(i)
Most unitary transforms pack a large fraction of the average energy of the image into a relatively few components of the transform coefficients. Since the total energy is preserved, this means many of the transform coefficients will contain very little energy. These coefficients may be neglected and replaced by zeros for the recovery of the original signal. Thus, the property of energy compaction is useful for compression purposes.

(ii)
In the original signal we should expect a straight line vertical to the one observed in the frequency plane.

(c)

(i)
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(ii)
The function 
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 does not contain the artificial boundary discontinuities of 
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 has better energy compaction properties than its DFT.

(iii)
The even symmetric DCT is more comminly used, since the odd symmetric DCT involves computing an odd-length DFT, which is not very convenient when one is using FFT algorithms.
(d)

(i)
The mean vector of the population is defined as
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The covariance matrix of the population is defined as
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For 
[image: image57.wmf]M

 vectors from a random population, where 
[image: image58.wmf]M

 is large enough, the mean vector and covariance matrix can be approximately calculated by summations
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Very easily it can be seen that 
[image: image61.wmf]f
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 is real and symmetric. In that case a set of 
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 orthonormal eigenvectors always exists.

Let 
[image: image63.wmf]A

 be a matrix whose rows are formed from the eigenvectors of 
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C

, ordered so that the first row of 
[image: image65.wmf]A

 is the eigenvector corresponding to the largest eigenvalue, and the last row the eigenvector corresponding to the smallest eigenvalue.

The Karhunen-Loeve transform maps the vectors 
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(ii)
The mean of the 
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 vectors resulting from the above transformation is zero (
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The off-diagonal elements of the covariance matrix are 
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, so the elements of the 
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 vectors are uncorrelated.

(iii)
The element 
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 represents the variance of the image 
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 is very small. Practically, 
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 does not contain any useful information so it can be neglected in the computation of the inverse KL transform. This is very useful for compression purposes.

QUESTION 2
(a)

(i)
Since adding uncorrelated images convolves their histogram we can expect the sum of uncorrelated images to occupy a broader gray level range that that of its component images.

(ii)
In a real image most pixels belong to background areas. If 
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 will have a very small value. The new image 
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 will have a very large number of very small intensities and high intensities only around the edges of the original image 
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(b)

(i)
The local image power in a background area is lower than the local power in an edge area, so that the local SNR in a background area is higher.

(ii)
We can use spatial masks that approximate local lowpass filters, with variable size. We use a larger size for the background areas.

(c)

We can use the following

(Lowpass filtered version 1 of original)- (Lowpass filtered version 2 of original) where version 1 is obtained with a lowpass spatial mask of size 
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 and version 2 is obtained with a lowpass spatial mask of size 
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(d)

The gradient of an image 
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Common practice is to approximate the magnitude of the local first derivative as follows
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                                                         (1) The Prewitt operator approximates the local first derivative using the following 
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The Sobel operator approximates the local first derivative using the following 
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 masks.
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In real life only the Sobel operators are useful because they provide a differencing effect in one direction and a smoothing effect in its vertical direction, whereas the Prewitt operators provide a differencing effect in one direction and mess up its vertical direction.

The Laplacian of a 2-D function 
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In practice it can be also implemented using a 3x3 mask as follows
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It is seldom used in practice for edge detection for several reasons. As a second order derivative the Laplacian usually is unacceptably sensitive to noise. Moreover, the Laplacian produces double edges and it is unable to detect edge direction.
QUESTION 3

(a)

(i)
Suppose the original image is of size 
[image: image102.wmf]N
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The Wiener filter and the estimate for the original image in space domain are
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[image: image105.wmf]ff
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 and 
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 are the autocorrelation matrices of the original image and additive noise respectively, and 
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 is the degradation matrix. Note that knowledge of 
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If 
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 (and therefore 
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) is block circulant, the Wiener filter and the estimate for the original image in frequency domain are
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(ii)
The noise autocorrelation matrix of the form 
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 is the unitaly matrix. The noise variance can be estimated from a flat region of the observed image where the local variance of the original image is approximately zero. The autocorrelation matrix of the original can be approximately calculated from the autocorrelation matrix of the degraded image.

(b)

In the absence of any blur, 
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[image: image120.wmf])
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 is high in low spatial frequencies and low in high spatial frequencies so 
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 can be implemented with a lowpass (smoothing) filter.

(c)

In the technique of Inverse Filtering the objective is to minimize
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We set the first derivative of the cost function equal to zero
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If 
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If 
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 (and therefore 
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Therefore, in the Wiener filtering technique, if 
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 which is the inverse filter.

If 
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which is the pseudoinverse filter.

(d)

In practical cases where a single copy of the degraded image is available, it is quite common to use 
[image: image135.wmf])

,

(

v

u

S

yy

 as an estimate of 
[image: image136.wmf])

,

(

v

u

S

ff

. This is very often a poor estimate.

Iterative Wiener filters refer to a class of iterative procedures that successively use the Wiener filtered signal as an improved prototype to update the covariance estimates of the original image.

Brief description of the algorithm

Step 0:
Initial estimate of 
[image: image137.wmf]ff
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Step 1:
Construct the 
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 restoration filter
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Step 2:
Obtain the 
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Step 3:
Use 
[image: image143.wmf])

1

(

ˆ

+

i

f

 to compute an improved estimate of 
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Step 4:
Increase 
[image: image146.wmf]i

 and repeat steps 1,2,3,4.

QUESTION 4

(a)

Suppose that the intensity values 
[image: image147.wmf]r

 of an image are more likely to be in one particular region than in others. It is reasonable to assign more reconstruction levels to that region. In that case uniform quantization is not optimal.

(b)
Reconstruction levels are at 
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(c)

The Huffman code is found below. Probabilities for each 
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r

 are found by evaluating the integral of the PDF over the relevant decision region. The result is shown below.
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(d)

Average number of bits to represent 
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(e)

Limitations of Huffman code:

•
Best for symbol probabilities
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 (i.e. 
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 is integer).

•
Code lengths always integer.

•
Can use extended code to improve coding efficiency, but number of alphabets grows exponentially with block size.

•
Difficult to adapt to changing source statistics.

(f)

(i)
The Huffman code for the three symbols 
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 is shown below.
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(ii)
For the above example we have:

Entropy 
[image: image174.wmf]816

.

0

)

(

=

s

H

bits/symbol

Average length of code 
[image: image175.wmf]å

=

=

i

i

i

avg

p

l

l

2

.

1

bits/symbol

Redundancy 
[image: image176.wmf]384

.

0

=

bits/symbol

Coding efficiency 
[image: image177.wmf]%

68

/

)

(

=

avg

l

s

H


We see that the Huffman code is not sufficient in cases where there is a high variation in the values of the probabilities of different symbols of a source. In such cases it is even more desirable to assign as less as possible bits to symbols with high probabilities even if we will have to assign long words to symbols with low probabilities, since practically these symbols occur very rare. 

(iii)
The disadvantage of the extended Huffman code is that the number of alphabets grows exponentially with block size.
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