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1.
(a)
(i)
Explain why the Fourier transform phase of an image alone often captures most of the intelligibility of the image. 
(ii)
Explain why it is common to work with the transform of an image instead of the image itself. 
(iii)
In a specific experiment it is observed that the amplitude of the Fourier transform of an image exhibits high values only very close to the origin and takes very small values within the rest of the two-dimensional frequency plane. State the implications of this observation as far as the original image is concerned. 
(b) Let 
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 are integer powers of 2. In implementing the standard Hadamard Transform of 
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(i)
Define the sequence 
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(ii)
Define the concept of sequency in Hadamard transform. 
(iii)
Define the Ordered Hadamard Transform without giving any mathematical equations. 
(iv)
Comment on the energy compaction property of the Ordered Hadamard transform as compared to that of the standard Hadamard Transform and as a result of your answer explain which from the two transforms is more commonly used in image processing. 
(c)
Consider the population of random vectors 
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 of the form
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Each component 
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 represents an image. The population arises from their formation across the entire collection of pixels. Suppose that 
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, i.e. you have at least three images.

Consider now a population of random vectors of the form


[image: image17.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

)

,

(

)

,

(

)

,

(

2

1

y

x

g

y

x

g

y

x

g

g

n

M


where the vectors 
[image: image18.wmf]g

 are the Karhunen-Loeve transforms of the vectors 
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.

(i)
Write down the relationship between 
[image: image20.wmf]g

 and 
[image: image21.wmf]f

. 
(ii)
It is known that the covariance matrix of 
[image: image22.wmf]g

 is diagonal. Explain the relationship between these diagonal elements and the covariance matrix of 
[image: image23.wmf]f

.
(iii)
Suppose some elements of the diagonal are very small. Comment on the significance of this in relation to processing the images.
(iv)
Suppose that a credible job could be done of reconstructing approximations to the 
[image: image24.wmf]n

 original images by using only the two principal component images associated with the largest eigenvalues. What would be the mean square error incurred in doing so? Express your answer as a percentage of the maximum possible error. 
(v)
Suppose that the covariance matrix of 
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 turns out to be the identity matrix. What would be the mean square error between the original images and the set of images reconstructed using only half of the original eigenvectors? 
2.
(a)
(i)
Describe the technique of histogram specification. 
(ii)
An image has the gray level probability density function 
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 shown in the following diagram. It is desired to transform the gray levels of this image so that they will have the specified probability density function 
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 shown. Assume continuous quantities and find the transformation (in terms of 
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(b)
Suppose that you have 
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 realizations of an image 
[image: image33.wmf])
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, all corrupted by white, zero mean noise. The noise is statistically independent from the signal.

(i)
Propose a noise reduction technique that utilizes the 
[image: image34.wmf]M

 realizations to obtain a new version of the original image 
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 that will contain less amount of noise compared to the initial noisy images. Give a mathematical justification of your answer. 
(ii)
Modify the proposed technique for the case of a single realization of a noisy image 
[image: image36.wmf])
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. State the main disadvantage of the proposed technique for this case. 
(c)
The objective of an edge detection algorithm is to locate the regions where the intensity is changing rapidly.

(i)
Searching for regions of rapidly changing intensity corresponds to searching for regions where the local first derivative of the image intensity is large. Illustrate this statement using an appropriate figure. 
(ii)
Another possible way to search for regions of rapidly changing intensity corresponds to searching for regions where the local second derivative of the image intensity has a zero crossing. Illustrate this statement using an appropriate figure. 
(iii)
Give examples of 
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 Prewitt and Sobel spatial masks that approximate local first derivative operators and compare the results arising from their use. Give a mathematical justification of your answer. 
(iv)
Propose a technique that takes any gray level image and produces a binary image in a way such that the white pixels correspond to edge regions and the black pixels correspond to constant background regions. 
(v)
Give an example of a 
[image: image38.wmf]3
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 Laplace spatial mask. Show that this mask approximates local second derivative operator. 
(vi)
State the main disadvantage of the Laplacian mask when it is used to detect edges. Justify your answer. 
3.
We are given the degraded version 
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 of an image 
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 such that in lexicographic ordering
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where 
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 is the degradation matrix which is assumed to be block-circulant, and 
[image: image43.wmf]n

 is the noise term which is assumed to be zero mean, independent and white.

(a)
Explain why the assumption that the degradation matrix is block-circulant is convenient in image restoration. 
(b)
(i)
Describe the image restoration technique of inverse filtering. 
(ii)
Explain why the technique of inverse filtering normally gives very poor results in both the cases of restoration of a noiseless or a noisy blurred image. Justify your answer. 
(iii)
Propose a modification of the inverse filtering technique that aims to improve the quality of the restored image. 
(c)
(i)
Write down the expressions for both the constrained least squares (CLS) filter estimator and the restored image both in the spatial domain and explain all symbols used. 
(ii)
Comment on the choice of the regularization parameter in the CLS method. 
(d)
(i)
Explain the technique of iterative constrained least squares restoration. 
(ii)
Describe the technique of the constrained least square restoration using weighted regularization. What is the advantage of this technique? 
4.
(a)
Consider an image with intensity 
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 that can be modelled as a sample obtained from the probability density function sketched below:
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(i)
Suppose five reconstruction levels are assigned to quantize the intensity 
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. Determine these reconstruction levels using a uniform quantizer. 
(ii)
Explain briefly why uniform quantization of an image may not be optimal in terms of the mean squared error. 
(iii)
Determine the codeword to be assigned to each of the five reconstruction levels using Huffman coding. Specify what the reconstruction level is for each codeword. For your codeword assignment, determine the average number of bits required to represent 
[image: image48.wmf]r

. 
(iv)
Determine the entropy, the redundancy and the coding efficiency of the Huffman code for this example. 
(b)
Describe the technique of differential coding. 
(c)
In lossless JPEG, one forms a prediction residual using previously encoded pixels in the current line and/or the previous line. Suppose that the prediction residual for pixel with intensity 
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 in the following figure is defined as 
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(i)
Describe the procedure of coding the prediction residual in the Lossless JPEG Standard. 
(ii)
Consider the case with pixel values 
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. Find the codeword of the prediction residual 
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, knowing that the Huffman code for six is 1110. 
QUESTION 1

(a)

(i)
In viewing a picture, some of the most important visual information is contained in the edges and regions of high contrast. Intuitively, regions of maximum and minimum intensity in a picture are places at which complex exponentials at different frequencies are in phase.

Therefore, it seems plausible to expect the phase of the Fourier transform of a picture to contain much of the information in the picture, and in particular, the phase should capture the information about the edges.







[8]

(ii)
Most unitary transforms pack a large fraction of the average energy of the image into a relatively few components of the transform coefficients (energy compaction property). Since the total energy is preserved, this means many of the transform coefficients will contain very little energy. These coefficients may be neglected. Therefore by working in the transform domain we may have to manipulate much less amount of numbers. The coefficients that were previously neglected may be replaced by zeros for the recovery of the original signal.
[8]

(iii)
We should expect the original image to be very smooth.
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(b)

(i)
The 2-D Hadamard transform is defined as
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(ii)
The concept of frequency exists also in Hadamard transform basis functions. We can think of frequency as the number of zero crossings or the number of transitions in a basis vector and we call this number sequency.
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(iii)
The Ordered Hadamard transform differs from the Hadamard transform only in the order of basis functions. The order of basis functions of the Ordered Hadamard transform is such that the sequency of the basis functions increase as the index pair 
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(iv)
The Ordered Hadamard transform exhibits the property of energy compaction while the standard Hadamard transform does not.
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(c)

(i)
The mean vector of the population is defined as
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The covariance matrix of the population is defined as
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For 
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 vectors from a random population, where 
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 is large enough, the mean vector and covariance matrix can be approximately calculated by summations


[image: image70.wmf]å

=

=

M

k

k

f

f

M

m

1

1

, 
[image: image71.wmf]T

f

f

T

k

M

k

k

f

m

m

f

f

M

C

-

=

å

=

1

1


Very easily it can be seen that 
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 is real and symmetric. In that case a set of 
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 orthonormal eigenvectors always exists.

Let 
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 be a matrix whose rows are formed from the eigenvectors of 
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, ordered so that the first row of 
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 is the eigenvector corresponding to the largest eigenvalue, and the last row the eigenvector corresponding to the smallest eigenvalue.

The Karhunen-Loeve transform maps the vectors 
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(ii)
The mean of the 
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 vectors resulting from the above transformation is zero (
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The off-diagonal elements of the covariance matrix are 
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, so the elements of the 
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 vectors are uncorrelated.
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(iii)
The element 
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 represents the variance of the image 
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 does not contain any useful information so it can be neglected in the computation of the inverse KL transform. This is very useful for compression purposes.
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(iv)
Mean square error 
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(v)
Mean square error 
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QUESTION 2

(a)

(i)
Suppose we want to specify a particular histogram shape (not necessarily uniform) which is capable of highlighting certain grey levels in the image.

Let us suppose that:
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Suppose that the histogram equalisation is first applied on the original image 
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Suppose that the desired image 
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 is available and histogram equalisation is applied as well
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(ii) In the specific example 
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(b)

(i)
Suppose we have 
[image: image116.wmf]M

 different noisy images 
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 noisy images as follows:
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The above procedure reduces the variance of noise.
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(ii)
In the case of a single image, the image is usually convolved with a finite impulse response filter called spatial mask, where all the coefficients are 1 so a spatial averaging takes place. Noise reduction is again achieved but at the same time the high frequency components of the image are eliminated and the image gets blurred.
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(c)

(i)
An edge is the boundary between two regions with relatively distinct grey level properties. The magnitude of the first derivative can be used to detect the presence of an edge in an image.
[10]

(ii)
The areas where the second derivative has zero crossings can be also used to detect the presence of an edge in an image.
[10]

(iii)
An approximation of the local first derivative using a 
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 mask is the Prewitt operator
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and the Sobel operator
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The Sobel operator has the advantage of providing both a differencing a smoothing effect. Lets consider the first Sobel mask that results in a differentiation along the vertical direction. Along the horizontal direction we have the effect of a filtering process through the filter 
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(iv)
Take the Sobel of an image. Define a threshold. If the Sobel response at a specific location is larger than this threshold then assign the value of 1 at this location. Otherwise assign the value of zero.
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(v)
The Laplacian of a 2-D function 
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In practice it can be also implemented using a 3x3 mask as follows
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Suppose the first derivative along the horizontal direction is 
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 and the second derivative along the horizontal direction is 
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, then we have 
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. If we follow the same procedure for the vertical direction we obtain the Laplacian mask.
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(vi) The main disadvantage of the Laplacian operator is that it produces double edges.

If we represent an edge as the change from intensity 
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Then the response of the Laplacian mask will be
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QUESTION 3

(a)


The block-circulant assumption enables us to work with DFT’s.
[12]

(b)

(i)
In inverse filtering the objective is to minimize
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We set the first derivative of the cost function equal to zero
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According to the previous analysis if 
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[image: image176.wmf]N

M

´

 scalar problems as follows


[image: image177.wmf]ú

ú

û

ù

ê

ê

ë

é

Á

=

Þ

=

*

-

*

2

1

2

)

,

(

)

,

(

)

,

(

)

,

(

)

,

(

)

,

(

)

,

(

)

,

(

v

u

H

v

u

Y

v

u

H

j

i

f

v

u

H

v

u

Y

v

u

H

v

u

F


[12]

(ii)
Suppose first that the additive noise 
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 is negligible. A problem arises if 
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 plane. In that region inverse filtering cannot be applied. Note that in most real applications 
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 drops off rapidly as a function of distance from the origin.

In the presence of external noise we have that
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If 
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(iii)
The solution is to carry out the restoration process in a limited neighborhood about the origin where 
[image: image188.wmf])
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 is not very small.

This procedure is called pseudoinverse filtering.

In that case we set
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In general, the noise may very well possess large components at high frequencies 
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(c)

(i)
It refers to a very large number of restoration algorithms.

The problem can be formulated as follows.

minimize


[image: image193.wmf]2

2

)

(

)

(

Hf

y

f

n

f

-

=

=

J


subject to 
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where
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 is a high pass filtered version of the image.

The idea behind the above constraint is that the highpass version of the image contains a considerably large amount of noise!

Algorithms of the above type can be handled using optimization techniques.

Constrained least squares (CLS) restoration can be formulated by choosing an 
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 to minimize the Lagrangian
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 represents either a Lagrange multiplier or a fixed parameter known as regularisation parameter.
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The minimization of the above leads to the following estimate for the original image
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(ii)
One possible choice is of 
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 based on a set theoretic approach: a restored image is approximated by an image which lies in the intersection of the two ellipsoids defined by


[image: image204.wmf]}

|

{

2

2

E

Q

£

-

=

Hf

y

f

y

|

f

 and


[image: image205.wmf]}

|

{

2

2

e

£

=

Cf

f

f

Q


The center of one of the ellipsoids which bounds the intersection of 
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With larger values of 
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, and thus more regularisation, the restored image tends to have more ringing.

With smaller values of 
[image: image214.wmf]a

, the restored image tends to have more amplified noise effects. [13]

(d)

(i)
The following functional is minimized
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The necessary condition for a minimum is that the gradient of 
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 is equal to zero. That is
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The initial estimate and the updating rule for obtaining the restored image are now given by 
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It can be proved that the above iteration (known as Iterative CLS or Tikhonov-Miller Method) converges if
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If the matrices 
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 and 
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 are block-circulant the iteration can be implemented in the frequency domain.
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(ii)
The functional to be minimized takes the form
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 are diagonal matrices, the choice of which can be justified in various ways. The entries in both matrices are non-negative values and less than or equal to unity.

In that case


[image: image229.wmf]y

W

H

f

C

W

C

H

W

H

f

f

1

T

2

T

1

T

f

-

+

=

Ñ

=

F

)

(

)

,

(

)

(

a

a

M


A more specific case is 
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where the weighting matrix is incorporated only in the regularization term. This method is known as weighted regularised image restoration. The entries in matrix 
[image: image231.wmf]W

 will be chosen so that the high-pass filter is only effective in the areas of low activity and a very little smoothing takes place in the edge areas.
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QUESTION 4

(a)

(i)
Reconstruction levels are at 
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(ii)
Suppose that the intensity values 
[image: image237.wmf]r

 of an image are more likely to be in one particular region than in others. It is reasonable to assign more reconstruction levels to that region. In that case uniform quantization is not optimal.






[13]

(iii)
The Huffman code is found below. Probabilities for each 
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 are found by evaluating the integral of the PDF over the relevant decision region. The result is shown below.
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(iv)
For the above example we have:
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(b)


Differential coding skews the symbol statistics so that the resulting distribution is more amenable to compression. Image data tend to have strong interpixel correlation. If, say, the pixels in the image are in the order 
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. In compression terminology, 
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 is referred to as the prediction residual of 
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. The notion of compressing the prediction residual instead of 
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 is used in all the image and video compression standards. Let symbol 
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 have a probability of occurrence 
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 (left plot), will result in codewords that on the average require eight bits; thus, no compression is achieved. On the other hand, for a skewed probability distribution (right plot), the mapping function can on the average yield codewords requiring less than eight bits per symbol and thereby achieve compression.
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(c)

(i)
The lossless compression method within JPEG is fully independent from transform-based coding. It uses differential coding to form prediction residuals that are then coded with either a Huffman coder or an arithmetic coder. The prediction residuals usually have a lower entropy; thus, they are more amenable to compression than the original image pixels.

In lossless JPEG, one forms a prediction residual using previously encoded pixels in the current line and/or the previous line. The prediction residual for pixel 
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 is defined as 
[image: image283.wmf]x

y

r

-

=

 where 
[image: image284.wmf]y

 can be any of the following functions:
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Note that, pixel values at pixel positions 
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, and 
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, are available to both the encoder and the decoder prior to processing 
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. The particular choice for the 
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 function is defined in the scan header of the compressed stream so that both the encoder and the decoder use identical functions. Divisions by two are computed by performing a one-bit right shift.

The prediction residual is computed modulo 
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. This residual is not directly Huffman coded. Instead, it is expressed as a pair of symbols: the category and the magnitude. The first symbol represents the number of bits needed to encode the magnitude. Only this value is Huffman coded. The magnitude categories for all possible values of the prediction residual are shown in Table 2.2. If, say, the prediction residual for 
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 is 
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, then from Table 2.2 we determine that this value belongs to category 6; that is, we need an additional six bits to uniquely determine the value 42. The prediction residual is then mapped into the two-tuple (6, 6-bit code for 42). Category 6 is Huffman coded, and the compressed representation for the prediction residual consists of this Huffman codeword followed by the 6-bit representation for the magnitude. In general, if the value of the residual is positive, then the code for the magnitude is its direct binary representation. If the residual is negative, then the code for the magnitude is the one's complement of its absolute value. Therefore, codewords for negative residual always start wish a zero bit.
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(ii)
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. -35 belongs to category 6. The binary number for 35 is 100011, and its one's complement is 011100. Thus, -35 is represented as (6,011100). If the Huffman code for six is 1110, then -35 is coded by the 10-bit codeword 1110011100. Without entropy coding, -35 would require 16 bits.
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