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Consider an image with intensity r,, k € [0,L — 1] and size M X N.
The number of pixels with intensity 7, is ny.

The histogram of the image is the function h(ry) = n,.

The normalized histogram is the function

p(r) =-Lfork=0,..,L—1
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Generic figures of histograms

The appearance of
histogram reveals a lot of
iInformation about

the contrast of the image and
the mean gray level.

An image of low contrast has

a histogram that is concentrated
around a small range of
Intensities.

Images of high contrast are
more interesting and pleasant
for the human eye.
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Two different images with the same histogram

The appearance of
histogram reveals a lot of
information about

the contrast of the image and
the mean gray level BUT :

It doesn’t give any information
regarding the location or the
type of objects present

In the image. This information
IS Important because it is related |, _ fres Title
to the image content. 1500

D)
a)Onginal image: b)Sorted version

Two images can have identical
histograms and still be 500
completely different in terms of

content. " 100 200 299
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Histogram Processing: definition of intensity transformation

Consider for the moment continuous intensity values r € [0, L — 1].

The value r = 0 represents black and the value r = L — 1 represents
white.

We are looking for intensity transformations of the form:
s=T{r),0<r<L-1.

The following conditions are imposed on T(r):

o T(r) is monotonically increasingin 0 < r < L — 1 or strictly

monotonically increasingin 0 <r < L — 1.

» The above condition guarantees that ordering of the output intensity
values will follow the ordering of the input intensity values (avoids
reversal of intensities).

» If T(r) is strictly monotonically increasing then the mapping from s
back to r will be 1-1.

o 0<T(rn<L-1for0<r<L-1.
This condition guarantees that the range of intensities of the output will
be the same as the range of inthe input.
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Monotonicity versus strict monotonicity
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* Inthe above Figure on the left we cannot perform inverse mapping
(from s to r).

* |In the above Figure on the right inverse mapping is possible.
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Modelling intensities as continuous variables

Assume that an original intensity r is mapped to an intensity s through the
transformation s = T(r).

We can view intensities r and s as random variables.

Instead of histograms we use probability density functions (pdf) p,-() and
ps(S).

Consider a minimal increment of the original intensity r to the intensity r +
dr.

The intensity r + dr is mapped to an intensity s + ds through the
transformation T'(r).

Since T(r) is (monotonically) increasing we can easily say that s + ds > s.

All values of the original intensity which are within the interval [r,r + dr]
will be mapped to new values within the interval [s, s + ds].

We can say that:
Probability(r < original intensity < r + dr)=Probabillity(s < new intensity <
s + ds) or in mathematical terms:

fr+dr D, (W)dW _ sz+ds De (W)dW

r
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Modelling intensities as continuous variabhles cont.

Probability(r < original intensity < r + dr)=Probability(s < new intensity <
s + ds) or in mathematical terms:
fr+d’r pT(W)dW _ fss+ds ps(w)dw

r
If dr is small enough we can assume that p,-(r) remains almost constant
within the interval [r,r + dr] and equal to p,.(1).

We can choose dr to be as small as to be able to assume that ds is small
enough and that p,(s) remains almost constant within the interval [s, s +
ds] and equal to p,(s).

fT'+d7‘ pr(w)dw = f:+ds ps(w)dw = p,.(r)dr = ps(s)ds

r
The above analysis is depicted in the Figure of the next slide.
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Modelling intensities as continuous variables

p(y)dy

p(¥)

' p(x)

p(y)dy=p(x)dx
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Histogram Equalization: continuous form

A transformation of particular importance in Image Processing is the
cumulative distribution function (CDF) of a random variable.

s=Tr)=(L-1) jrpr(w)dw
It is an increasing function since for r, 22’1 we see that:
s2=T(r) = (L= 1 [;* p,(W)dw
= (L -1 [ prw)dw + (L = 1) [ pr(w)dw

=T(r) + (L -1 [2p,(W)dw 2 T(r1)
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Histogram Equalization: continuous form

« We showed previously that p,.(r)dr = p.(s)ds

. Therefore, p,(s) = 222,

dr

*  From the definition

r
s=T(r)=(L- 1)J p-(w)dw
we have that: °

d ar d
S =0 = (L - 1)< [ pp(wdw = (L — Dp ()

_ pr (1) _ pr (1) _ 1 — —
Hence, p.(s) = s = Toop — 'S = 1,..,L—1.

Therefore, the new variable s is uniformly distributed.
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Histogram Equalization: discrete case

« The formula for histogram equalisation in the discrete case is given by a
straightforward modification of the formula that corresponds to the
continuous-time case.

» Instead of probability density functions (pdf) p,-(r) and ps(s) we now use
histograms.

« The discrete input intensity r;, is mapped onto a new discrete intensity s,
through the following transformation:

se =T = (L - DT ope () =2 5k o,

T iInput intensity
Sk new intensity
n;. frequency of intensity j

MN: total number of image pixels
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Histogram Equalization: discrete case cont.

In the ideal continuous case histogram equalization produces a new
variable s which is uniformly distributed.

In the discrete case the histogram of the new discrete variable s;, Is far
from flat but:

o The new histogram is still much more stretched (extended) than the
original histogram.

o The new intensity variable always reaches white since
L—-1
s, =T = L=1) ) pe() =L -1
j=0

o In other words, this process usually results in an enhanced
Image, with an increase in the dynamic range of pixel values.
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Histogram Equalization: discrete case cont.

In the Figures below you can see how histogram could look like after
equalizing a digital image.

It is more “extended” and slightly “flatter” compared to the original
histogram
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Histogram Equalization: Examples
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Histogram Equalization: Examples
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Left: original image, Right: histogram equalized image
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Histogram Equalization: Examples

1/

Histogram of the sLbimage Histagram of the equalized image
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Histogram Equalization: Examples
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Histogram Equalization: Examples
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Histogram Equalization is not always desirable

Histogram equalization may not always produce desirable results, particularly
If the given histogram is very narrow. It can produce false edges and false
regions. It can also increase image “graininess” and “patchiness.”

0.25

o
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« Example of image of Phobos (Mars moon) and its histogram.

« Histogram equalization (bottom of right image) does not always provide the
desirable results.
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A 3 —bhit 64 X 64 image with 8 intensities is described in the table.

Plscrgte histogram equqllsed N e Pt = m/MN
Intensity Ievel(sL alr)e obtained through: J— 00 01
= — rn=1 1023 0.25
sie = T (1) 21 =01} =2 850 0.21
After applying hlstogram equalisation: ry =3 656 0.16
(L 1) 7 7.790 ry =4 329 0.08
So = T(To) 2] =0 ] —Ng = = 1.33 rs =25 245 0.06
4996 4096 re = 6 122 0.03
s; =T(r) = 4096 Z] oM = (790 + 1023) =3.08| r, =7 81 0.02
s, =T(r,) = 40% f o = 409 (790 + 1023 + 850) = 4.55
s;3=T(rz) = M ] o = (790 + 1023 + 850 + 656) = 5.67
s, =T(r) = 40% ;* N 409 (790 + 1023 + 850 + 656 + 329) = 6.23
se = T(rs) —m ] o = T (790+1023+850+656+329+245) = 6.65
56 = T(16) = —— — YO on = 40% (790 +1023 + 850 + 656 + 329 + 245 + 122) = 6.86

7
S¢ =T(15) = ——

n;
4096 1 =o' =

(790 + 1023 + 850 + 656 + 329 + 245+ 122 +4+) =7
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By rounding to the nearest integer we get:
so =133 ->1,5s; =3.08 > 3,5, =4.55 > 5,53 =567 > 6
Sy =623 > 6,5c=665->75,=686->7,5,=7->7

' - - () = n/MN
The histogram of the new variable is found rj ; :;‘0 el ; 1:"
as follows: no1 103 0.25
p(0) =0 rn =2 850 0.21
p(1) = p(sy) = p(ry) = 0.19 r=3 656 0.16
p(2) = 0 ry =4 329 0.08

- rs=5 245 0.06
p(3) = p(sy) = p(ry) = 0.25 re = 6 122 0.03
p(4) =0 =1 81 0.02

p(5) =p(s,) =p(r) =0.21
p(6) = p(s3) +p(sy) = p(r3) + p(ry) = 0.24
p(7) = p(ss) + p(sg) + p(s;) = p(rs) + p(rs) + p(r;) = 0.1
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Refer to the following figures for original histogram, transformation function
and new histogram.

Pe(re) Sk Pps(sk)
A i
25+ e . . 25 0 .
204 | ® 5.6 - 204 | * |
15+ | o 24 T i .
] ' Nt b T
10+ | . 2.8 T | 10+ | o
05+ | R 1.4 05T ; o
e e e e —t—t—t———F> 7, s
01234567 0123 4567 01234567
abc

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original
histogram. (b) Transformation function. (c) Equalized histogram.
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Refer to the following figures for original histogram, transformation
function and new histogram.

Notice that due to discretization, the resulting histogram will rarely be
perfectly flat.

However, it will more “extended” compared to the original histogram.
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A 4
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FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original
histogram. (b) Transformation function. (¢) Equalized histogram.
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Histogram equalization applied to the dark Image
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Bright image

(2)

i



Imperial College




Imperial College

Transiormation functions for histogram equalization
for the previous example

The function T (r) used to equalize the four images of the previous example is
shown below.

Observe that the transformation function in cases 1,2,3 maps a small range of
Intensities to the entire range of intensities.

Observe that for an image which is already bright, the transformation is an almost
diagonal line. 1.00

0.75

0.50

0.25
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We are looking for a technique which can provide an image with any pre-
specified histogram.

This is called histogram specification.
We assume that the original image has pdf p,-(1).

We are looking for a transformation z = T (r) which provides an image
with a specific pdf p,(z) .

This technique will use histogram equalization as an intermediate step.
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Histogram Specification cont.

We first equalize the given image .
s=Tkr)=(L- 1)[ p,-(w)dw
0

If we had the desired image we could eunaIized it and obtain
s=T(z)=(L—- 1)J p,(w)dw
0

Based on the above we can assume that
G(z2)=Tk) = z=G6"YT{))

In the case of continuous variables, if p,.(r) and p,(z) are given we can
obtain z after formulating the functions T, G and G 1.
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Histogram Specification: continuous form

In the discrete case we first equalize the initial histogram of the image:

sk =T = (L — DIk op,(r;) =525k o,

Then we equalize the target histogram

Sk = G(Zq) =(L-1) Zz 0 Pz(1i) = (L 2 ZJ =01y

Finally, we try to obtain some type of inverse transform
zg =G (s) = GTH(T ()



Imperial College

Rgitd Fi(z)
0.251 Original histogram 0.251 Deesired histogram
02 r 02 r
Q.15 015
a1 01 r
Q.05 | 005
a | | a L1
o 1t 2 3 4 5 & 7 i o 1 2 3 4 5 & 7 i

0 790 0.19 0.19 1.33 1
B 1023 0.25 0.44 3.08 3
B ss0 0.21 0.65 4.55 5
B ss6 0.16 0.81 5.67 6
- 0.08 0.89 6.23 6
B 255 0.06 0.95 6.65 7
B 0.03 0.98 6.86 7
7 81 0.02 1 7 7
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Histogram Specification: Example cont.

Notice that due to discretization, the resulting histogram will
rarely be exactly the same as the desired histogram.

PAr) Pe(zy)
30 + 30 L]
25+ . 25 +
_ 204 |7 20 o | o
« Top left: original pdf Gt 15+ . | .
N : 10+ | . 10+ . |
« Top right: desired pdf st LT, ol
. : i S e
Bottom left: desired CDF T S A T T A
« Bottom right: resulting pdf ¢, p(z,)
7 25 . .
o1 I o Y A I
4+ st i
T - a7 e
gl I 05 +
| 2 — =z,
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Number of pixels ( X 104

| |

64 128

Intensity

192

255

ab

FIGURE 3.23

(a) Image of the
Mars moon
Phobos taken by
NASA’s Mars
Global Surveyor.
(b) Histogram.
(Original image
courtesy of
NASA.)
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Histogram Specification: Example cont.
255 |
ab
z 192 / c
5 FIGURE 3.24
c 18 (a) Transformation
£ function for
° o histogram
| | | equalization.
0 64 128 192 (b) Histogram-
Input intensity equalized image
7.00 | — (note the washed-
€ out appearance).
X 32 (c) Histogram
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Histogram Specification: Example cont.

7.00
? 5.25
% 3.50
g 175 d C
’ 0O 6|4 128 192 b

s InteTsity d
o FIGURE 3.25
P |0 (a) Specified
=2 1284 .
E Ao histogram.
0 2 (b) Transformations.

O (C) Enhanced image

. l Input ilJltensity | llSiIlg mappings
8 sl | from curve (2).
z (d) Histogram of (c).
2 350 - —
—é L75¢4—= —
>

0 | 1 !
0 64 128 192 255
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Histogram Specification: Example

Original Histogram

specified Histogram

£

|,
(| il W*ﬁ i “J\.'.' ] HIJ'F

Histogramm attatned on modification
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Local Histogram Equalization

In many cases histograms are needed for local areas of an image.
Possible applications could be:

Pattern detection based on histogram.

Adaptive enhancement.

Adaptive thresholding.

Object tracking based on histogram.

©)

O
O
O

TARGET
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Local Histogram Equalization for local image enhancement

The histogram processing methods discussed previously are global
(transformation is based on the intensity distribution of the entire image).

This global approach is suitable for overall enhancement.

There are cases in which it is necessary to enhance details over small
areas in an image.

The number of pixels in these areas may have negligible influence on
the computation of a global transformation.

The solution is to devise transformation functions based on the intensity
distribution in a neighbourhood around every pixel.

carry other tasks such as detection, tracking and spatially adaptive
thresholding.
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Example: Local Histogram Equalization

* Observe the details revealed with local (spatially adaptive) histogram

equalization.
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Example: Local Histogram Equalization

NS g

w size of [64 64].
Bottom left: A window size of [100 100]. Bottom right: A window size of [200 200].
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Example: Local Histogram Equalization

Top left: A window size of [15 15]. Top right: A window size of [30 30].
Bottom left: A window size of [75 75]. Bottom right: A window size of [150 150].
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Local Histogram Equali
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Image is split into smaller regions and the traditional histogram
equalization is applied to each region.
The smaller equalized images are combined into one to obtain a final

resultant image.

The final image appears to be very blocky in nature and has different
contrast levels for each individual region.

Post-processing is required to remove the blocking artifacts.




