
1. a)
(i)
Plot the image intensity.[image: image80.wmf]0
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(iii) Compare the plots found in (i) and (ii) above.

As seen a straight line in space implies a straight line perpendicular to the original one in frequency.

b)
Figure (c) is the right answer since it contains edges which are perpendicular to the edges of the original image. As we know, each image in space produces a perpendicular image in the amplitude of the DFT.

c) (i)
The first image 
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 has a solid horizontal edge. Its mean is 
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 is zero. In that case the covariance matrix of the population is 
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. The eigenvalues of the covariance matrix are 
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are simply the zero mean versions of the original images.
(ii)
There is no point of using the KL transform since it is obvious visually that the images are uncorrelated.
2. [image: image82.wmf]x

a)
(i)
The intensities of the two inner squares are very similar and therefore, the inner pattern is not visible by the human eye. It basically looks like a single square instead of the following pattern: 
The probabilities of the three intensities are as follows:
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After histogram equalisation we obtain the following mapping:
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 and with normalisation we get 
[image: image35.wmf]12

255

64

1

»

´

.

[image: image36.wmf]1

)

(

1

1

=

=

r

T

s

 and with normalization we get 
[image: image37.wmf]255

255

1

»

´

.
The intensities 4 and 12 are quite close and therefore, the inner pattern will still not be clearly visible to the human eye.
(ii)
In case we opt for local histogram equalisation the inner patch with the pattern will perfectly fit in a scanning patch. For that patch we have the following intensity transformations:
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After histogram equalisation we obtain the following mapping:
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 and with normalization we get 
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The difference between the new intensities is quite substantial and therefore, the inner pattern is now clearly visible.

The rest of the image will turn white after histogram equalisation.

(iii)
Based on the above analysis local histogram equalisation is more beneficial.
b)
We assume that the images are extended by zeros.

The responses of the various pixels to a smoothing mask are as follows.

For the left image we have:

Response of black corners (2 on total): 0

Response of white corners (2 on total): 4/9

White non-border pixels next to the image’s edge (6 on total): 6/9=2/3
Black non-border pixels next to the image’s edge (6 on total): 6/9=2/3

White border pixels next to the image’s edge (2 on total): 4/9

Black border pixels next to the image’s edge (2 on total): 4/9

Rest of white border pixels (10 on total): 6/9=2/3

Rest of black border pixels (10 on total): 0
Rest of white (inner) pixels (12 on total): 1

Rest of black (inner) pixels (12 on total): 0

For the right image we have:

Response of black corners (2 on total): 2/9

Response of white corners (2 on total): 2/9

Rest of white border pixels (12 on total): 3/9=2/3

Rest of black border pixels (12 on total): 2/3

Rest of white (inner) pixels (18 on total): 5/9

Rest of black (inner) pixels (18 on total): 4/9

It is straightforward to see that the two histograms are different.

3. a)
(i)
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The expressions for Inverse Filtering are book work.

(ii)
In order to find the frequency points for which 
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The expression for the CLS estimator is book work.

(iii) 
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By comparing the frequency points for which 
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 we see that there are not any frequency points for which both functions are zero and therefore the CLS estimator can be obtained for all frequencies.
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b)
(i)
The probability of appearance of each intensity is shown in Table 4b(i) below:

	Letter
	Probability
	Codeword

	White 
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	0.95
	0

	Black 
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	0.02
	11

	Grey 
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	0.03
	10


Table 4b(i)

The entropy of the source is 
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(ii)
The Huffman code is shown in Table 4b(i) above.

(iii)
Since we have 3 symbols, a fixed-length code would require 
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(iv) The ratio of image size (in bits) between using the fixed length coding and Huffman coding is 
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(v) The extended by two Huffman code is shown in Table 2b(v) below.
	Letter
	Probability
	Codeword
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Table 2b(v)

(vi) With the use of the above Huffman code the average number of bits per symbol is 
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bits/symbol. The ratio of image size (in bits) between using the fixed length coding and Huffman coding is 
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(vii) Obviously the extended Huffman code is more efficient.
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