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1-D Signal Transforms

Scalar form

{f(xX),0<x<N-1}

g(U)INZ_llT(U,X)f(x) O<u<N-1

Matrix form

g="T-1
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1-D Signal Transforms-Remember the 1-D DFY

General form

{f(x),0<x<N-1}

g(u)=f§jT(u,x)f(x> 0<u<N-_1
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1-D Inverse Signal Transforms-General Form

Scalar form

H@=§?WMMGD

Matrix form

f=T"g
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1-D Inverse Signal Transforms-Remember the 10 DFT

General form

{f(x),0<x<N-1}

f(X) = Nfl(x,u)g(u) 0<u<N-1

Inverse DFT
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1-D Unitary Transforms

Matrix form

g="T-1
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Why do we use Image Transforms?

Often, image processing tasks are best performed in a
domain other than the spatial domain.

Key steps:
 Transform the image
 Carry the task(s) of interest in the transformed domain.
* Apply inverse transform to return to the spatial domain.

T(u, v) b R[T(u, v)] e |
f(x, y)— Transform - Dpt’f&?lmn - :;lrril‘:::rm — g(x,y)
— dll:

Spatial = —————_— SDat1a]

domain Transform domain domain
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2-D (image) Transforms-General Form

N-1N-1

g(u,v) =2, 2TV, X y)T(XY)

x=0 y=0

N-1N-1

T y)=2 21X y,u,v)g(u,v)

u=0v=0
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2-D (image) Transforms-Special Cases

Separable

T(U,V, X1 y) :Tl(u1 X)TZ (V1 y)

Symmetric

T(U’V’ X’ y) :Tl(u’ X)Tl(v’ y)
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2-D (image) Transforms-Special Cases (cont)

Separable and Symmetric

Q=-|__1°i'IlT

Separable, Symmetric and Unitary

T
=1

Ll g '11*
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Energy Preservation
1-D
2 2
9" =/f]
2-D
M —1N-1 M —1N-1

X 2T [ =3 G V)|’

x=0 y=0 u=0 v=0
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« Most of the energy of the original data is
concentrated Iin only a few transform
coefficients, which are placed close to the
origin; remaining coefficients have small

values.

 This property facilitate compression of the
original image.
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Let's talk ahout DFT in images: Why is it useful?

« Itis easier for removing undesirable
frequencies.

« It is faster to perform certain operations in
the frequency domain than in the spatial
domain.

« The transform is independent of the signal.



Imperial College

Example of
removing a high
frequency using
the transform
domain
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 Low frequencies correspond to slowly
varying information (e.g., continuous

surface).

 High frequencies correspond to quickly
varying information (e.g., edges)

Original Image Low-passed version
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2-D Discrete Fourier Transform

M—-1N-1

F(U,V) = > > f(X, y)e—j27z(ux/M+vy/N)
x=0 y=0
M-IN-1 _
f (X, y) — i >y F(U,V)eJZ”(UX/M“LVy/N)
MN u=0 v=0

* Itis separable, symmetric and unitary

« Itresults in a sequence of two 1-D DFT
operations (prove this)
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Visualizing DFT

The dynamic range of F(u,Vv) is typically very large
Small values are not distinguishable

We apply a logarithmic transformation to enhance
small values.

D(u,v) =clog[l+|F(u,v)

],c Is aconstant

original image before transformation after transformation
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DFT properties: Separahility

N
F(u,v) = Z g~ 12XV f(x y)e 12N —

x=0 y= O
N -1
G(x,v)= 3 f(x,y)e /2N
y= O
M -1

F(u,v)= 3 e 12X MG(y v)
X=0
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DFT properties: Separahility

G(X,V) = Nil f(x,y)e 127N

N x DFT of rows of f(x.y)

1 M-1

F(u,v) = M(— > G(x,v)ejZ”“X’Mj
M x=0

M x DFT of columns of G(x,V)
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(0.0)

(M =1

A —
wv-n_,

f(x )

row transforms

(0.0)

A —
wv-n_,

o

multiplications by N

(M =1

Gx.v)

(0.0)

column transforms

DFT properties: Separahility

A —
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W
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DFT properties: Separahility

The DFT and its inverse are periodic.

Fuv)=Fu+M,v)=FUu,v+N)=FUu+M,v+N)
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DET properties: Conjugate Symmetry

If F(m,n) is an image of size M X N, then:

F(u,v)=F (-u+ pM,—v+gN), with p,qanyintegers
= |F(u,v)|=|F(-u,~v)

f (x,y) realandeven< F(u,v) realandeven

f (x,y) realandodd < F(u,v) imaginaryand odd
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DFT properties: Translation

Translation in spatial domain:

f (X—XO, Y — yO) < F(U,V)e_jZﬂ(UOX/MWOy/N)

Translation in frequency domain:

J27x(UgX/ M +vyy/ N)

f(X,y)e <> FU-uy,v—Vvy)
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DFT properties: Translation

Warning: to show a full period, we need to translate
the origin of the transform at (U,v) =(M /2,N /2)

. .'-.’, o_\n_—*\——h—‘f' -

b
F [ A
— o JFe-p)
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DFT properties: Translation

TomoveF(u,v)at(M/2,N/2)
replaceu, =M /2andv, =N/2

In thatcase
ej27z(u0x/M+v0y/N) _ ej7z(x+y) _ (_1)(x+y)

Using
f(X, y)ej'Zﬂ(uoX/l\/l+Voy/N)(_)I:(u_u()’v_vo):>

f (X, V) DY o FU-M/2,v—n/2)
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DFT properties: Translation

f(x, V)(D)Y) <> F(u-M/2,v—n/2)

without translation after translation
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DFT properties: Rotation

rotating f (x, y) by @rotatesF(u,,v) by &
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DFT properties: Addition and Multiplication

LT(xy)

g(x, y)I=3[1(x,y)]

3l9(x, )]

SLE(x,y)-g(x, y)] = 3T (% y)]-3g(x, y)]
where J[-]istheFouriertransform
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DFT properties: Average value of the signal

Averagevalueof theimage:
_ 1 M-1N-1

f (X, Y)=m Zo ZOf(X, y)
x=0 y=
M_1N_1
F(0,0) = ZO Zof(X, y) =
x=0 y=
f(X,Y) =ﬁF(0,0)
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Fourier Phase

Fourier Amplitude

iginal Image

Or
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Magnitude and Phase of DFT

What is more important?

magnitude - phase

Hint: use inverse DFT to reconstruct the image
using magnitude or phase only information
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Magnitude and Phase of DFT

Reconstructed image using
magnitude only

(i.e., magnitude determines the
contribution of each component!)

Reconstructed image using
phase only

(l.e., phase determines

which components are present!)
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Magnitude and Phase of DFT

abc

dizellf

FIGURE 4.27 (a) Woman. (b) Phase angle. (¢) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the

spectrum of the woman.
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Low pass filtering using DFT
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Experiment: Verify the Importance of phase in Images
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phase of cameraman phase of grasshopper
amplitude of grasshopper amplitude of cameraman
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Experiment: ¥erify the importance of phase in images
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phase of buffalo phase of rocks
amplitude of rocks amplitude of buffalo
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DFT of a single edge

« Consider DFT of image with single edge.
« For display, DC component is shifted to the centre.
* Log of magnitude of Fourier Transform is displayed

Image DFT
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DFT of a hox

Box DFT
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DFT of rotated hox

Rotated Box DFT
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DFT computation: Extended image

 DFT computation assumes image repeated
norizontally and vertically.

« Large intensity transition at edges = vertical and
norizontal line in middle of spectrum after shifting.
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e Can multiply image by windowing function before

DFT to reduce sharp transitions between borders of
repeated images.

« |deally, causes image to drop off towards ends,
reducing transitions

=3'd




