DCT-DHT Sample Exam Problems

- 1. Let f(x, y) denote a digital image of size 256×256 . In order to compress this image, we take its Discrete Cosine Transform C(u, v), u, v = 0, ..., 255 and keep only the Discrete Cosine Transform coefficients for u, v = 0, ..., n with $0 \le n < 255$. The percentage of total energy of the original image that is preserved in that case is given by the formula an + b + 85 with a, b constants. Furthermore, the energy that is preserved if n = 0 is 85%. Find the constants a, b.
- 2. Let f(x, y) denote a digital image of size $M \times N$ pixels that is zero outside $0 \le x \le M 1$, $0 \le y \le N 1$, where *M* and *N* are integers and powers of 2. In implementing the standard Discrete Hadamard Transform of f(x, y), we relate f(x, y) to a new $M \times N$ point sequence H(u, v).
 - (i) State the main disadvantage of the Discrete Hadamard Transform.
 - (ii) In the case of M = N = 2 and $f(x, y) = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ calculate the Hadamard transform coefficients of f(x, y).
- 3. Let f(x, y) denote the following constant 4×4 digital image that is zero outside $0 \le x \le 3, 0 \le y \le 3$, with *r* a constant value.

٢	r	r	r_1
r	r	r	r
r	r	r	r
Lr	r	r	r

- (i) Give the standard Hadamard Transform of f(x, y) without carrying out any mathematical manipulations.
- (ii) Comment on the energy compaction property of the standard Hadamard Transform.
- 4. Let f(x, y) denote the following constant 4×4 digital image that is zero outside $0 \le x \le 3, 0 \le y \le 3$, with *r* a constant value.

г ^r	r	r	r_1
r	r	r	r
0	0	0	0
L0	0	0	0]

Give the standard Hadamard Transform of f(x, y).

Hint: Use the recursive relationship of the Hadamard matrix and the separability property of the Hadamard Transform.