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SCALAR AND VECTOR QUANTISATION

1
SCALAR QUANTISATION

Let 
[image: image1.wmf]f

 represent a continuous scalar quantity which could be one of the following:

(
pixel intensity

(
transform coefficient

(
image model parameter

(
other

Suppose that only 
[image: image2.wmf]L

 levels are used to represent 
[image: image3.wmf]f

. This process is called amplitude quantisation. The process of quantisation may be classified in two main categories:

Scalar quantisation:
each scalar is quantised independently.

Vector quantisation:
two or more scalars are quantised jointly, i.e., the vector formed by two or more scalars is quantised.

Let 
[image: image4.wmf]f

ˆ

 denote an 
[image: image5.wmf]f

 that has been quantised.

We can express 
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quantisation operation
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If 
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 falls between 
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, it is mapped to the reconstruction level 
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 can be expressed as
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quantisation noise

In general, the quantity 
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 defined as above, can be viewed as a special case of a distortion measure 
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, which is a measure of distance or dissimilarity between 
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 and 
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Other examples of 
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The reconstruction and decision levels are often determined by minimizing some error criterion based on 
[image: image32.wmf])
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Example:
Minimise the average distortion 
[image: image33.wmf]D

, defined as follows:
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Uniform quantisation
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In uniform quantisation the reconstruction and decision levels are uniformly spaced.
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Figure 1.1:
Example of uniform quantisation. The number of reconstruction levels is 4, 
[image: image39.wmf]f

 is assumed to be between 0 and 1, and 
[image: image40.wmf]f

ˆ

 is the result of quantising 
[image: image41.wmf]f

. The reconstruction levels and decision boundaries are denoted by 
[image: image42.wmf]i

r

 and 
[image: image43.wmf]i

d

, respectively.
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Figure 1.2:
Illustration of signal dependence of quantisation noise in uniform quantisation

Uniform quantisation may not be optimal!

Suppose 
[image: image44.wmf]f

 is much more likely to be in one particular region that in others. 

It is reasonable to assign more reconstruction levels to that region!

Quantisation in which reconstruction and decision levels do not have even spacing is called non-uniform quantisation.

Optimum determination of 
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 and 
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 depends on the error criterion used.

Quantisation using the MMSE criterion

Suppose 
[image: image47.wmf]f

 is a random variable with a pdf 
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Using the minimum mean squared error (MMSE) criterion, we determine 
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 and 
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 by minimising the average distortion 
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 given by
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Noting that 
[image: image53.wmf]f

ˆ

 is one of the 
[image: image54.wmf]L

 reconstruction levels we write
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To minimize 
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It is proven that from the above we get
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Note that:

(
The reconstruction level 
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 is the centroid of 
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The decision level 
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 except 
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 is the middle point between two reconstruction levels 
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The above set of equations is a necessary set of equations for the optimal solution.

(
For a certain class of pdf's including uniform, Gaussian, Laplacian, is also sufficient.

A quantiser based on the MMSE criterion is often referred to as Lloyd-Max quantiser.
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Figure 1.3:
Example of a Lloyd-Max quantiser. The number of reconstruction levels is 4, and the probability for 
[image: image77.wmf]f

 is Gaussian with mean 0 and variance 1.

2
VECTOR QUANTISATION

Let 
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 denote an 
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-dimensional vector that consists of 
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 real-valued, continuous-amplitude scalars 
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[image: image85.wmf]y

 is chosen from 
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 possible reconstruction or quantisation levels
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VQ is the vector quantisation operation
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distortion measure:
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quantisation noise:
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PROBLEM:
determine 
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 and boundaries of cells 
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SOLUTION:
minimise some error criterion such as the average distortion measure 
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 given by
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EMBED Equation.3[image: image97.wmf]0
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EMBED Equation.3[image: image98.wmf]0
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MAJOR ADVANTAGE OF VQ: performance improvement over scalar quantisation of a vector source.

That means

(
VQ can lower the average distortion 
[image: image99.wmf]D

 with the number of reconstruction values held constant.

(
VQ can reduce the required number of reconstruction values when 
[image: image100.wmf]D

 is held constant.
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Figure 2.1:
Example of vector quantisation. The number of scalars in the vector is 2, and the number of reconstruction levels is 9.
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