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Elements from Information Theory

* Any information generating process can be viewed as a source that
emits a sequence of symbols chosen from a finite alphabet.

» ASCII symbols (text)
» n —bit image values (2" symbols)

« The simplest form of an information source is the so called Discrete
Memoryless Source (DMS). Successive symbols produced by such a
source are statistically independent.

« A DMS is completely specified by the source alphabet S = {sy,s,, ..., s}
and the associated probabilities P = {p{,p,, ..., Pn}
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Elements from Information Theory

 The Self-Information of a symbol s; with probability p; is defined as:

1
I(s;) = log, — —log,p;

l

» The occurrence of a less probable event provides more information.

» The information of a sequence of independent events taken as a
single event equals the sum of their individual information.

» An event can be the occurrence of a symbol.

 The Average Information per Symbol or Entropy of a DMS is:

n n
H(S) = ZPiI(Si) - —zpilogzpi
i=1 =1

* The Entropy is measured in bits/symbol.
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What is actually entropy?

 Interpretation of entropy:

» By definition it is the average amount of information that symbols of
a specific source carry.

» Entropy is also a measure of the "disorder" (uncertainty) of a system.

* In Physics

» what "disorder” above refers to, is really the number of different
microscopic states a system can be in, given that the system has a
particular fixed composition, volume, energy, pressure, and
temperature. By "microscopic states", we mean the exact states of
all the molecules making up the system.

 When we design a coding scheme the average number of bits per
symbol we can achieve is always greater that the entropy. Therefore,
the entropy is the best we can do in term of bits/symbol!
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« Given a DMS of size n, it might be beneficial to group the original
symbols of the source into blocks of N symbols. Each block can now be
considered as a single source symbol generated by a source S which
has n" symbols.

 In this case the entropy of the new source is
H(SN) = N x H(s)

* We observe that when the source is extended, the entropy increases,
however, the symbols increase in length. The entropy per original
symbol remains the same.
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Noiseless source coding theorem

Let S be a source with alphabet size n and entropy H(s).

Consider coding blocks of N source symbols into binary codewords. For
any § > 0 (with 6 a small number), it is possible by choosing N large
enough to construct a code in such a way that the average number of
bits per original source symbol [,,,, satisfies the following:

H(S) < lgpg <H(s)+6

We observe that for § small enough, the average number of bits per
symbols converges to the entropy of the source. This is the best coding
we can achieve.

The above is not realistic since the alphabet size increases too much
with N!
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Examples of possible codes for a 4-symhbol source

* In the table below we see four different codes for a four-symbol
alphabet. The entropy of the source is 1.75bits/symbol.

Syimbols Probability | Code 1 | Code 2 | Code 3 | Code 4
S 1/2 () () () ()
59 1/4 () 1 10 01
Sa 1/8 1 (() 1110} 011
S 1/8 10 11 111 0111
Average length 1.125 1.25 1.75 1.875

« The Average Length of a code is

lavg = Z Lipi
[

e [; is the length of the codeword in bits which corresponds the symbol s;.
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Code characteristics

It is desirable for a code to exhibit Uniqgue Decodability.
Prefix Codes: no codeword is a prefix of another codeword.
A prefix code is always uniquely decodable. The reverse is not true.

A code can be possible depicted as a binary tree where the symbols are
the nodes and the branches are 0 or 1. The codeword of a symbold can
be found if we concatenate the Os and 1s that we have to scan until we
reach that symbol, starting from the “root “ of the tree.

In a prefix code the codewords are associated only with the external
nodes.

Y
A
s Cs\ > O/ \O "
o 0 TN 50
S / S\ S O O \/"'\
O ‘O Ss ~ Qf‘\ > LJ\
Code 2 ~ ~ S,
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Huffman coding (1992)

« Huffman coding is a very popular coding method.

 Huffman codes are:
> Prefix codes.
» Optimal for a given model (set of probabilities).

« Huffman coding is based on the following two observations:

» Symbols that occur more frequently will have shorter codewords
than symbols that occur less frequently.

» The two symbols that occur less frequently will have the same
length.



Imperial College

Huffman coding (1952)
- Wk
Symbol | Probability | |Codeword step 1
0.05 | |0.05
k 0.05 10101 (D){k ) (1 5
| 0.2 01 step 4 0@ () PR
u 0.1 100 U {kwh, ) tep 3
© ()
W 0.05 10100 0.1 0.2
O {{kow}, 73U e
: 0.2 oo %2 qnp 02 0.3 {{{{kw}.?}.ube} 0.3
? 0.1 1011 © step 6 (1)
0.4 0.6

l Merge Symbols

Generate Codewords
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Huffiman coding (1952)
Step1 Step2 Step3 Step4 Step 5 Step 6
k 1/20 e 03 e 03 e 03 €03 {l.r; 04 {{{{k,w},?},u}.e}
0.6
| 02 | 02 | 02 | 02 {{kw},?}u} € 03 {Ir10.4
0.3
u 01 ro2r ro2 ro2 |02 {{k,w},?},u}
0.3

w 1/20 u 01 u 01 {{kw}?} r 0.2
0.2

e 03 201 201 yo01

r 02 Kk 0.05{kw}0.1

? 0.1 w~O0.05
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H(S) < lgyg <H(S) +1

If Drmax < 0.5 then [, < H(S) + gy

If Drax = 0.5 then ly,; < H(S) + pmax + 0.086

H(S) = lgy, if the probabilities of the symbols are of the form 2%, with k
a negative integer.

For an N —th extension of a DMS we have H(S) < l;,5 < H(S) +%

The complement of a Huffman code is also a valid Huffman code.

A minimum variance Huffman code is obtained by placing the
combined letter in the sorted list as high as possible.

The code efficiency is defined as H(S)/lgyq4
The code redundancy is defined as {,,; — H(S)
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This method is a fixed-input bit rate but variable-output symbol rate
scheme. It consists of the following steps:

1. Read the input compressed stream bit by bit and traverse the tree
until a leaf node is reached.

2. As each bit in the input stream is used, it is discarded. When the leaf
node is reached, the Huffman decoder outputs the symbol at the leaf
node. This completes the decoding for this symbol.

We repeat these steps until all of the input is consumed. Since the
codewords are not of the same length, the decoding bit rate is not the
same for all symbols. Hence, this scheme has a fixed input bit rate but a
variable output symbol rate.
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Huifman Decoding: Lookup-Table-Based Decoding

Lookup-table-based methods have a variable input bit rate and constant
decoding symbol rate.

We have to construct the so called Lookup Table using the symbol-to-
codeword mapping table (Huffman code). If the longest codeword in this
table is L bits, then the lookup table will have 2t rows.

Let ¢; be the codeword that corresponds to symbol s;. Assume that c;
has [; bits. In this method we associate c; not with a single codeword but
with 2L~4 codewords. These are all the codewords where the first I; bits
are the codeword c; and the last L — [; bits can be all possible binary
numbers with L — [; bits. These are 2-~! on total. Therefore each
symbol s; is associated with 2L~% codewords of fixed length L.

The 2574 pairs (s;, codeword;;),j = 1, ..., 275 are stored in into the
Lookup Table.
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Huifman Decoding: Lookup-Table-Based Decoding (cont.)

When we receive the bit stream for decoding we read the first L bits.

By checking the Lookup Table we find the symbol s; which has the read
L-bit word as one if its possible codewords.

When we find this symbol we know that the “true” codeword for that
symbol is formed by the first [; bits only of the read L-bit word.

The first [; bits are discarded from the buffer.

The next [; bits are appended to the buffer so that the next L-bit word for
Investigation is formed.

We carry on this procedure until the entire bit stream is examined.
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« Consider the following example of the Huffman code of a 3-symbol
alphabet:

Symbols | Probability | Code
Sq 0.8 0
S9 0.02 11
S3 0.18 10

* Inthat case H = 0.816 bits/symbol.
 Average number of bits per symbol is [,,; = 1.2 bits/symbol.
- Redundancy l,,; — H = (1.2 — 0.816) = 0.384 bits/symbol, which is 47% of

entropy.
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Consider the previous example where the source is extended by 2.

Average number of bits per symbol is
lavg = 1.7516 bits/(new symbol).
Average number of bits per original
symbol is

lavg = 0.8758 bits/(original symbol).
Redundancy is

lavg — H = (0.8758 — 0.816) = 0.06 bits)
This is 7% of entropy.

Letter | Probability | Code
$159 0.016 10101
5153 0.144 11
$981 0.016 101000
5989 0.0004 10100101
$983 0.0036 1010011
$351 0.1440 100
5359 0.0036 10100100
$383 0.0324 1011
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Consider the following example of the Huffman code of a 3-symbol
alphabet:

Letter | Probability | Codeword
S1 0.95 0
S9 0.02 11
S3 0.03 10

In that case H = 0.335 bits/symbol.
Average number of bits per symbol is l,,,, = 1.05 bits/symbol.

Redundancy [,,; — H = (1.05 — 0.335) bits/symbol, which is 213% of
entropy.
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Consider the previous example where the source is extended by 2.

Average number of bits per symbol is
lavg = 1.222 bits/(new symbol).
Average number of bits per original
symbol is

lavg = 0.611 bits/(original symbol).
Redundancy is

lavg —H = (0.611 — 0.335) bits/symbol.
This is 72% of entropy.

Redundancy drops to acceptable values
for N = 8. The alphabet size is then
6561 symbols.

Letter | Probability | Code
S151 0.9025 0
S159 0.0190 111
S153 0.0285 100
S981 0.0190 1101
5959 0.0004 110011
$953 0.0006 110001
$351 0.0285 101
$359 0.0006 110010
$353 0.0009 110000
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Huffman coding works well when the distribution of probabilities of the
symbols deviate from uniform.

In case where the symbols are image intensities we can change the
distribution of probabilities by replacing each pixel intensity with its
differential.

The differential is the difference between the intensity of the pixel of interest
and a function of the neighboring intensities.

The function of the neighboring intensities attempts to approximate the
prediction of the pixel of interest.

This method falls within the so called predictive coding.

For example f(x,y) can be replaced by g(x,y) = f(x,y) — f(x,y — 1).
Another alternative is g(x,y) = f(x,y) = 1/3[f(x,y — D + f(x —1,y) +
fx =1,y —1)]



Imperial College

« Histogram of the original image

IS shown in top figure.

« Histogram of the difference image
obtained by using horizontal

Occurrence rate

pixel-to-pixel differencing is shown 0

in bottom figure. Gray el value
+ The dynamic range increases | ou|
0.14 1
from 256 to 512. £ 012
2 01
§ 0.08 1
8 006 1
0.04 -
0.02 -
1}.

=255 0 255
Difference value
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The Lossless JPEG Standard

We use Differential Coding to form prediction residuals.
Residuals then coded with either a Huffman coder or an arithmetic coder.
We will focus on Huffman coding.

In lossless JPEG, one forms a prediction residual using "previous" pixels
In the current line and/or the previous line.

If x is the pixel of interest, the prediction residual is r = y — x with

y = f(a,b,c), a, b, c the “previous” (we can define previous as the top and
left) neighbours.

y =0,
y=ay=by=c c b
y=a+b-c
b—c a—c
y—a+T,y—b+T a X

y=(a+b)/2
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The residual is expressed as a pair of symbols: the category and the
actual value (magnitude).

The magnitude is expressed in binary form with the Most Significant Bit
(MSB) always 1 if it is positive.

The category represents the number of bits needed to encode the
magnitude. This value ONLY is Huffman coded.

Example: Assume that the residual has magnitude 42.
(42)10= (101010), belongs to Category 6.
Codeword: (Huffman-code-for-6)u(Binary-number-for-42-with-MSB-1)

If the residual is negative, then the code for the magnitude is the one's
complement of its absolute value.

Codewords for negative residual always start wish a zero bit.
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Category — Range of Prediction Residual

Category Prediction Residual
0 0
1 -1,1
2 -3,-2,2.3
3 FPUE: B S
4 -15....,-8,8, ..., 15
5 -31, ...-16. 16, ..., 31
6 -63,...,-32,32,...,63
7 -127, ...,-64.64, ..., 127
8 -255, ..., -128, 128, ..., 255
9 -511, ..., -256, 256, ..., 511
10 -1023....,-512, 512, ..., 1023
11 -2047, ..., -1024, 1024, ..., 2047
12 -4095, ..., -2048, 2048, ..., 4095
13 -8191, ..., -4096, 4096, ..., 8191
14 -16383, ...,-8192, 8192, ..., 16383
15 -32767, ..., -16384, 16384, ..., 32767
16 32768
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a = 100,
b =191 o b
c =100
x =180

a+b a x
y = > = 145
r=y—x=-35

« Suppose Huffman code for six is 1110 then is coded by the 10 —bit
codeword 1110011100.

« Without entropy coding, —35 would require 16 bits.
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« Lossy compression of images deals with compression processes where
decompression yields an imperfect reconstruction of the original
Image data.

* Regardless of the compression method that being used, given the level
of image loss (or distortion), there is always a bound on the
minimum bit rate of the compressed bit stream.

« The analysis that relates signal distortion and minimum bit rate falls within
the so called Rate-Distortion theory.
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The figure below demonstrates the rate-distortion R(D) relationship.

For a discrete signal zero distortion coding is achieved when R(0) = the
source entropy. For a continuous source the rate rises without limit
(observe the dashed line ---).

&
I
i
|

R(0)

R(D)
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Block-based Coding

« Spatial-domain block coding

The pixels are grouped into blocks and the blocks are then compressed
In the spatial domain.

Example: Vector quantization

* Transform-domain block coding

The pixels are grouped into blocks and the blocks are then transformed to
another domain, such as the frequency domain.

Example: DCT
DFT
DHT
KL
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A Generic DCT-Based Image Goding System

Spatial to DCT Domain

s Transformation
8x8 DCT

l

Discard Unimportant
DCT Domain Samples
Quantisation

l

Lossless Coding
of DCT Domain Samples
Entropyv Coding

!

Lossy Compressed
Data
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DCT Based Coding Example - Low activity region

« The input block (labeled original) is taken from a low activity region; that
IS, there are very small differences among pixel values in that area.

168 161 161 150 154 168 164 154
171 154 161 150 157 171 150 164
171 168 147 164 164 161 143 154
164 171 154 161 157 157 147 132
161 161 157 154 143 161 154 132
164 161 161 154 150 157 154 140
161 168 157 154 161 140 140 132
154 161 157 150 140 132 136 128
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DCT Based Coding Examples

* |In order to provide for uniform processing, most standard DCT coders
require that image pixels are preprocessed so that their expected mean
value is zero.

« After subtracting 128 from each element of the block, the DCT output
block is given by

214 49 -3 20 -10 -1 1 —6]
34 =25 11 13 5 -1 15 -6
-6 -4 8 -9 3 -3 5 10
g -10 4 4 -15 10 6 6
—12 5 -1 -2 -15 9 -5 -1
5 9 -8 3 4 -7 -14 2
2 -2 3 -1 I 2 -3 -4
-1 I o0 2 3 -2 -4 -2
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DCT Based Coding Examples

It is the process of quantization which leads to compression in DCT
domain coding. Quantization of y;,; is expressed as:

ki
Y T [5
m]= {Z‘I,k,l=0,1,...,7
dki ki

qx; are the elements of a quantisation matrix Q

Zy; = round

The choice of Q depends on:
» Psychovisual characteristics.
» Compression ratio considerations.
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16
12
14
14
18
24
49
72

11
12
13
17
22
35
64
92

10
14
16
22
37
55
78
95

16
19
24
29
56
64

87 103
98 112

24
26
40
51
68
81

40
58
57
87
109
104
121
100

51 61
60 55
69 56
80 62
103 77
113 92
120 101
103 99 |
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Quantized DCT
 The quantized DCT matrix is given by:
[ 13 4 0 1 0 O
3 -2 1 100
0 0O 1 0 0 O
7 I -1 0 0 0 O
—1 0O 0 0 O O
0 0O 0 0 O O
0 0O 0 0 O O
0 00 00 0

* Only 11 values are needed to represent Z.
« Compression ratio of 5.8 is achieved.
« Z is entropy coded.

o O O o o o O O

o © O O O O o O
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* We do entropy decoding of the coded bit stream to get back Z.
* |Inverse quantization on Z gives Zy; = Zyqx;-

(208 44 016 0 0 0 0
36 —24 14 19 0 0 0 0
0 016 00 0 0 0
S| 14 -17 0 00000
18 0 0 0 0 0 0 0
0O 0 0 0000 0
0O 0 0 0000 0
0 0 0 000 O0 O
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Inverse IDTC on Z gives:

171
174
171
~ | 161
156
159
161
159

Observe that X # X.

160
164
164
157
155
160
161
158

8x8 1IDCT

149
155
157
154
155
160
160
155

149
154
156
154
156
160
156
148

158
160
158
155
156
157
150
139

166
164
158
151
152
153
144
132

166
161
151
144
145
148
141
129

162
156
145
137
140
145
139
128
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DCT Based Coding Exampie - High activity region

« The input block (labeled original) is taken from a high activity region;
that is, there are essential differences among pixel values in that area.

197 184 144 103 130 133 70 5l

200 158 111 141 179 151 70 73

172 110 111 179 192 135 95 144
118 77 139 193 156 102 128 193
73 75 151 163 110 84 154 197
54 84 142 122 73 90 160 162
50 95 130 71 52 101 146 117
68 115 106 55 63 116 118 72
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DCT Based Coding Exampie - High activity region

—60 -5 -14 -38 17 15 15 7]
127 139 —40 103 102 —41 12 -13
~76 123 22 110 -105 -46 1 -8
~20 -5 29 -53 -54 18 -1 11
4 4 5 -25 -6 4 2 5
-3 =10 9 -19 -5 8 7 6

30 1 1 4 0 -1 -2
-1 -4 5 -4 -2 -2 1 4]

198 182 153 136 145 145 95 32|
182 159 146 153 152 129 98 &l
153 124 135 174 159 105 104 150

-~ [120 95 125 180 153 86 112 203
88 84 120 159 130 81 121 211

62 93 120 114 92 92 131 173

45 112 123 64 52 110 139 114

37 127 126 31 27 123 143 72 |
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Let DC; and DC;_, denote the DC coefficients of blocks i and i — 1.

Due to the high correlation of DC values among adjacent blocks, JPEG
uses differential coding for the DC coefficients.

(DC;—DC;_;1) € [—2047,2047]; this range is divided into 12 size
categories.

Each DC differential can be described by the pair (size, amplitude).

From this pair of values, only the first (size) is Huffman coded.
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The DC differential has an amplitude of 195.
Size= 8.
Thus, 195 is described by the pair (8,11000011).

If the Huffman codeword for size=8is 111110, then 195 is coded as
11111011000011.

Similarly, —195 would he coded as 11111000111100.

Huffman decoding is obvious.
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Block 1-1
‘ Size size DC Huffman
L

:I- > Table Table Gize ‘ fitud ‘
— \
DC codeword
Blocki
Fy

AC value

Fun-length Size AC Huffiman

Coder *  Table ™ Table

AC codeword
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After quantization, most of the AC coefficients will be zero; thus, only the
nonzero AC coefficients need to be coded.

AC € [—1023,1023]; this range is divided into 10 size categories.
Each AC differential can be described by the pair (run/size, amplitude).

From this pair of values, only the first (run/size) is Huffman coded.

Size is what we called before category.
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Assume an AC coefficient is preceded by six zeros and has a value of
— 18.

—18 falls into category 5.
The one's complement of —18is 01101.
Hence, this coefficient is represented by (6/5,01101).

The pair (6/5) i1s Huffman coded, and the 5 —bit value of —18 is
appended to that code.

If the Huffman codeword for (6/5) is 1101, then the codeword for 6 zeros
followed by —18 is 110101101.
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* The run-length value cannot be larger than 15.

» Inthat case, JPEG uses the symbol (15/0) to denote a run-length of
15 zeros followed by a zero.

» Such symbols can be cascaded as needed: however, the codeword
for the last AC coefficient must have a non zero amplitude.

« |If after a nonzero AC value all the remaining coefficients are zero, then
the special symbol (0/0) denotes an end of block (EOB).
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« Assume that the values of a quantized DCT matrix are given by:

42 16 -21 10 -15 0 0 O
3 -2 0 2 -3 000
0O O 2 -1 0 0 0 O
0O O 0 O 0 00 O
0O O 0 O 0 0 0 O
0 O 0 O 0 0 0O
0 O 0 O 0 0 0 O
0O O 0 O 0 0 0 O

« If the DC value of the previous block is 40, then DC; — DC;_, = 2.
« This can be expressed as the (size, amplitude) pair (2,2).

e If the Huffman codeword for size 2 is 011, then the codeword for the DC
value is 01110.



42
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16 -21

o O O o O
oS O O O o oo

10 -15
2 -3
—1 0
0 0
0 0
0 0
0 0
0 0

o O ©O © o © o O

o O ©O © o © o O

o O O o o o o O

A coding example (cont): AC

Value |Run/Size| Huffman |Amplitude| Total

Code Bits
16 0/5 11010 10000 10
-21 0/5 11010 01010 10
10 0/4 1011 1010 8
-15 0/4 1011 0000 8
3 3/2 111110111 11 11
-2 0/2 01 01 4
2 72 11011 10 7
-3 0/2 01 00 4
2 5/2 11111110111 10 13
-1 0/1 00 0 3
EOB 0/0 1010 1
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A coding example (cont): AC

We require on total 82 bits to encode the AC coefficients.
We require 5 bit to encode the DC coefficients.

Average bit rate is % = 1.36 bits per pixel.

Compression ratio is % = 5.88.

Value |Run/Size| Huffman |Amplitude| Total

Code Bits
16 0/5 11010 10000 10
-21 0/5 11010 01010 10
10 0/4 1011 1010 8
-15 0/4 1011 0000 8
3 3/2 111110111 11 11
-2 0/2 01 01 4
2 2 11011 10 7
-3 0/2 01 00 4
2 5/2 11111110111 10 13
-1 0/1 00 0 3
EOB 0/0 1010 4
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Compression efficiency of entropy coding in JPEG

The DC and AC coefficients are treated separately. This is motivated by
the fact that the statistics for the DC and AC coefficients are quite
dissimilar.

Many of the AC coefficients within a block will be zero-valued.

Values for the DC differentials range between —2047 and 2047, and for
the AC coefficients range between —1023 and 1023.

Direct Huffman coding of these values would require code tables
with 4095 and 2047 entries!

By Huffman coding only the size or the (run/size) information, the size of
these tables is reduced to 12 and 162 entries, respectively!



