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Motivation

e Information is sent between neurons by action potentials (‘spikes’).

e The goal of many experiments is to monitor a neuron’s spiking activity, written mathematically as a

K
stream of Diracs: z(t) = > 6(t — tx).
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Calcium imaging: functional imaging of neural activity

e Spiking activity is visualized by a fluorescent indicator, which causes a neuron to emit a pulse of
fluorescence with a characteristic shape, p(t), when a spike is fired.

e The signal from one neuron over time, f(t), is thus modelled as f(t) = z(t) * p(t):
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Advantages of calcium imaging

e Can monitor activity of 100s - 1000s of neurons
simultaneously, at single cell resolution.

e Can image in vivo in behaving animals.

e Canimage same cell populations over multiple months.

BUT the datasets present a challenging
signal processing problem.

[1] Dataset available online: http://neurofinder.codeneuro.org/. Accessed 01/07/2017.
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Detecting neuronal activity from calcium imaging data

DETECT CELL LOCATIONS DETECT SPIKES
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Estimating the boundary of an isolated cell

e We aim to partition the local region into two subregions: the cell (2™) and the background (£2°Ut).

e Starting with an initial estimate of Q'™ and Q°“t, we use the average signal from the respective subregions
(f"" and f°') as a feature with which to classify pixels into cell interior or background.

e We compare the temporal activity at pixel x = (x1,22), I(x) € RY, with the average subregion time
courses.
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Cost function for isolated cell

We define the optimal partition as the one that minimises the following cost function:

gext(Qin; Qout) — /

Q

inD(I(x), fi") dx + fﬂ OUtD(I(x)j fout) dx, (1)

where D is a non-negative dissimilarity metric that is zero when the two arguments are identical.

Depending on the fluorescent indicator, for the dissimilarity metric we use either the Euclidean dis-
tance or correlation:

D(I(x),f) = |[I(x) —f|> or D(I(x),f) =1— corr(I(x),f). (2)

fin ¢ RY
fout c RN
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Evolve contour to decrease cost function

e Starting from an initial estimate, the cell boundary evolves to minimise the cost function.
e The contour evolves with respect to an artifical time parameter 7.
minimum

decrease &t
>

e We implicitly represent the evolving boundary estimate
by a Level Set function, ¢(7).

e ¢(7) evolves to minimize £, which is the sum of the
cost function introduced earlier and a regularizer:

g — gext ‘I‘R
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Evolving the contour estimate using level set method

We find the level set function that is the steady state solution of the gradient flow equation

oo OE
ar 99 (1)

The velocity from the data-based cost function is:

agext
96 = V(x)de(x) and V(x

min
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Extension to multiple regions

When we have multiple cells with interiors {Q™1, Q"2 | Q"M and a global exterior £2°Ut, the cost
function is

Ear (UML) QM Qouty / D(I(x), f°“’°) dx + f D(I(x), 3 fi“’i) dx. (1)

Qout inside ieC(x)

e We evolve one function ¢; for each cell
interior.

e When cells are sufficiently separate they
can be evolved independently.
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Results on in vivo imaging data
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[1] Simon Peron, Jeremy Freeman, Vijay lyer, Caiying Guo, Karel Svoboda (2015); Volumetric calcium imaging data recorded during performance of a single whisker
object localization task, sampling activity in the majority of the relevant superficial barrel cortex neurons (75 %, 12,000 neurons per mouse). CRCNS.org.
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Detecting neuronal activity

GOAL: Infer a neuron’s spike train x(t) from the fluorescence signal f(t).
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e The parameters a and  are known and depend on the fluorescent indicator.
e The unknown parameter set to be estimated is {ay, tx }1_;.

e f(t) is a signal with Finite Rate of Innovation.
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FRI spike detection method

We identify a mapping from f(¢) to samples of the Fourier Transform of the spike train Z(w):

m — D)L

where T is the sampling period of f(¢) and the frequencies w,, are design parameters. The mapping
depends on the pulse shape:

p(t) =e ;>0 [1] p(t) = (e7* —e™") Lizo  [2]
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[1] Onativia, J et al. (2013). A finite rate of innovation algorithm for fast and accurate spike detection from two-photon calcium imaging. Journal of neural engineering, 10(4), 046017.
[2] Reynolds, S et al. An extension of the FRI framework for calcium transient detection in 2016 IEEE International Symposium on Biomedical Imaging (ISBI).
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Recovering spike times
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where uj, = e?*&/T  There are many methods then to recover t; from s,,.
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Mapping f(t) to x(w)

t=nT

WJ\—*@(—%) Aimeo i e

We prove that the above operations are equivalent to the samples obtained by filtering = (¢) with :

W(t) = @(t) * Boar(—t) * B_yr(—1). (1)
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Spike detection results on real data True positive

Average results on real in vivo mouse visual cortex data (total length 678s, 532 spikes). )
We compare against Vogelstein et al.'s deconvolution algorithm [1].
TT

We detect 90% of spikes within 0.033s of the true location.
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[1] Vogelstein, J T et al. "Fast nonnegative deconvolution for spike train inference from population calcium imaging." Journal of neurophysiology 104.6 (2010): 3691-3704.
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Conclusion

DETECT CELL LOCATIONS DETECT SPIKES

e Multi-photon calcium imaging is a
promising tool for monitoring
neuronal microcircuits at single-cell
resolution in behaving animals.

* We have presented a Level Set
method to detect the locations of
cells in calcium imaging data.

* We have presented an FRI algorithm e K bR fr
to detect spikes from the

corresponding time courses.
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Thanks for listening!
Any questions?




