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Motivation for PEVD

EVD of Hermitian matrices is commonly used in
subspace decomposition for data compression
blind source separation
adaptive beamforming

⇒ Assumption: Sources are narrowband
Broadband signals need to model the correlation between
sensor pairs across different time lags
−→ Polynomial matrices
Development of PEVD algorithms and applications in

subspace decomposition using polynomial MUSIC
[Alrmah et al. 2011]
blind source separation [Redif et al. 2017]
adaptive beamforming [Weiss et al. 2015]
source identification [Weiss et al. 2017]
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Polynomial Matrices

The data vector at time index n collected from M -sensors is

x(n) = [x1(n), x2(n), . . . , xM(n)]T ∈ CM .

The space-time covariance matrix for N time snapshots is

A(τ) = E{x(n)xH(n−τ)} ≈ 1
N

N−1∑
n=0

x(n)xH(n−τ) ∈ CM×M ,

and its z-transform is a para-Hermitian polynomial matrix,

A(z) =
W∑

τ=−W

A(τ)z−τ .

Introduction SBR2 with Householder Reduction for PEVD - 5 / 25



Polynomial Eigenvalue Decomposition

The PEVD of A(z) according to [McWhirter et al. 2007] is

A(z) ≈ U(z)Λ(z)UP (z),

where
UP (z) = UH(z−1),
Λ(z) is the eigenvalue polynomial matrix and
U(z) is the eigenvector polynomial matrix, such that

U(z) = UL(z) . . . U2(z)U1(z),

constructed using L para-unitary polynomial matrices.
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Comparison between EVD and PEVD



9.30 5.12 4.23

5.12 8.61 4.50

4.23 4.50 8.27
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Comparison between EVD and PEVD



18.0 0 0
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0 0 3.66
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Λ using EVD. Λ(z) using SBR2 with δ = 0.087.
δ ≤

√
N1/3× 10−2 where N1 is the trace-norm of A(z0)

[McWhirter et al. 2007].
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SBR2 Algorithm [McWhirter et al. 2007]

At each iteration, SBR2 will

(i) search for the largest
off-diagonal, |g|,

(ii) delay and bring |g| to
the zero-lag plane,

(iii) zero |g| using a Givens
rotation and

(iv) trim negligible high
order terms.

Introduction SBR2 with Householder Reduction for PEVD - 9 / 25



Family of PEVD Algorithms

SBR2 provided a framework for extensions based on (i)-(iv).
(i) search: norm-2 instead of inf-norm

Householder-like PEVD [Redif et al. 2011]
sequential matrix diagonalisation (SMD) [Redif et al.
2015]

(ii) delay: multiple-shift (MS) instead of single-shift
MS-SBR2 [Wang et al. 2015]
MS-SMD [Corr et al. 2014]

(iii) zero : one-step diagonalisation of z0 instead of using the
Givens rotation

SMD [Redif et al. 2015]
Householder-like PEVD [Redif et al. 2011]
approximate PEVD [Tkacenko 2011].

(iv) trim: row-shifted truncation SMD [Corr et al. 2015].
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Proposed Method
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Jacobi’s Method for Symmetric EVD

Consider the principal plane of a polynomial matrix,
A(z0) ∈ CM×M .

a1,1 a1,2 a1,3 a1,4 . . . a1,M

a2,1 a2,2 a2,3 a2,4 . . . a2,M

a3,1 a3,2 a3,3 a3,4 . . . a3,M
... ... ... . . . . . . ...

aM−1,1 aM−1,2 aM−1,3 . . . aM−1,M−1 aM−1,M

aM,1 aM,2 aM,3 . . . aM,M−1 aM,M


⇒ Cycling through all the off-diagonal elements using Jacobi’s
algorithm requires M(M−1)

2 Givens rotations.
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Householder Reduction in EVD

(M − 1) Householder reflections first reduce the principal
plane to tridiagonal form [Golub et al. 1996].

a1,1 a1,2 0 . . . . . . 0
a2,1 a2,2 a2,3 0 . . .

...
0 a3,2 a3,3 a3,4

. . . ...
... . . . . . . . . . . . . ...
... . . .

. . . . . . aM−1,M−1 aM−1,M

0 . . . . . . . . . aM,M−1 aM,M


⇒ In this reduced form, there are fewer elements to zero.
⇒ Cycling through all the off-diagonal elements uses (M − 2)
Householder reflections followed by (M − 1) Givens rotations.
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Householder Reduction in EVD
Comparison of diagonalisation using Householder + Givens
(HG) and Givens-only (G) using 1000 randomly generated
symmetric matrices for every M with δ ≤

√
N1/3× 10−2.
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⇒ The reduction in L achieved by Householder + Givens over
Givens-only method scales with matrix dimension, M .
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SBR2 with Householder Reduction
Inputs: A(z) ∈ CM×M , δ, maxIter, µ.
initialise: l←0, g← 1 + δ, Λ̃(z) = A(z),Ũ(z) = I.

while (l <maxIter and g> δ) do
g ← max |rjk(zt)|, k > j, ∀t. // search
if (g> δ) then

l← l + 1.
Λ̃(z)← Dj(z)Λ̃(z)DP

j (z),
Ũ(z)← Dj(z)Ũ(z) // delay
Λ̃(z)← HΛ̃(z)HH

Ũ(z)← HŨ(z) // reflect
Λ̃(z)← G(θ, ϕ)Λ̃(z)GH(θ, ϕ),
Ũ(z)← G(θ, ϕ)Ũ(z) // rotate
Λ̃(z)←trim(Λ̃(z), µ),
Ũ(z)←trim(Ũ(z), µ) // trim

end if
end while
return Ũ(z), Λ̃(z).
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Simulations and Results
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Experiment Setup

The setup was based on the 3 sensors, 2 sources decorrelation
simulation in [McWhirter et al. 2007] which used

i.i.d. source signals of 1000 samples each and each
sample was assigned ±1 with equal probability
each channel was modelled as a 5-th order FIR filter and
each coefficent was drawn from U [−1, 1]
additive white Gaussian noise with σ = 1.8
PEVD parameters: W = 10, µ = 10−4,
δ ≤

√
N1/3× 10−2

This was repeated 1000 times for the Monte-Carlo simulation.
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Evaluation Measures

For each algorithm, we computed the
Number of iterations, L

Reconstruction error, ϵ ≜ ∑
∀z ∥Ã(z)−A(z)∥F

For comparisons of both algorithms, we used
Relative L difference, ∆L(%) = LProposed−LSBR2

LSBR2
× 100%

Relative ϵ difference, ∆ϵ(%) = ϵProposed−ϵSBR2∑
∀z

∥A(z)∥F
× 100%
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Tridiagonal Reduction in PEVD
Diagonalisation target: Maximum off-diagonal |g| ≤ 0.087

SBR2 took 169 iterations. Our method took 101 iterations.
⇒ Tridiagonal reduction prior to applying the Givens rotations
reduces the number of iterations for PEVD.
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Monte-Carlo Results: Iteration Counts
Histogram of relative iteration difference
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⇒ Our method achieved an average of 12% reduction in L
over SBR2.
⇒ Reduction in L was achieved in 82% of the trials.
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Monte-Carlo Results: Reconstruction Error
Histogram of relative  difference
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⇒ Our method achieved an average of 0.1% reduction in ϵ.
⇒ Both methods were consistent to ±1% in ϵ.
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Conclusion
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Conclusion

Proposed the use of Householder reduction before
applying the Givens rotations at the zeroing step in SBR2.
An average of 12% reduction in iteration counts is
achievable.
An average of 0.1% improvement in reconstruction error
is achievable.
Further reduction in iteration counts is expected as the
matrix dimension increases.
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