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ABSTRACT

Diffusive phenomena are ubiquitous in nature and society, and have been extensively studied in various fields,
such as natural sciences and engineering. Recently, however, the more challenging inverse problem of diffusion
source detection in a network has started to receive a significant amount of attention. A lot of research has
concentrated on finding origins in tree-like networks, however these approaches cannot be easily extended to
generic networks. Furthermore, only some methods consider realistic temporal diffusion dynamics. We introduce
a novel method to localise the source of multiple rumours in an arbitrary network of known topology, using partial
observations of the network nodes. We first present two mathematical models of the discrete-time, susceptible-
infected propagation dynamics, which accurately capture the diffusion process and have low computational
complexity. The first one is a simplified likelihood of infection at a node, at a certain time after the rumour is
initiated. The second is a formulation of the infection likelihood of a node, as a function of its shortest distance
to the source. We then design an efficient single source detection algorithm, which leverages these mathematical
models of diffusion, and the assumption that the start time of the propagation is known. Finally, we show how
these methods can be extended to the case when the start time of the rumour is unknown, by taking advantage
of the dissimilarity in dynamics of infection, of different nodes in the network. Simulation results show that a
high source estimation probability is achieved using a small number of observations.

Keywords: social networks, diffusion of information, susceptible-infected epidemic model, rumour source iden-
tification, unknown start time of the epidemic.

1. INTRODUCTION

As social networks have developed and the spreading of information has greatly amplified, the dynamics of
information dissemination within a network have attracted considerable attention. Recently, however, several
authors have started to consider the more challenging inverse problem, of detecting the source responsible for
the spreading of information.1 This problem is motivated by interesting applications, such as: estimating the
origin of rumours and finding influencers in social networks, determining the causes of cascading failures in large
systems such as financial markets or sensor networks, and identifying the origin of infectious diseases or computer
viruses.

Most state-of-the-art approaches focus on estimating diffusion sources in simple topologies such as trees
or random geometric graphs,2–6 with a few other methods tailored for generic topologies.7–12 Many source
identification methods are based on the assumption that there is access to information at all the nodes in
the network, which is unrealistic for large graphs.1,13–16 On the other hand, only a few methods leverage
partial observations of the network.9,17–22 Furthermore, regarding the epidemic model, most methods assume
the susceptible-infected (SI) model, where the nodes can either be infected or susceptible and once a node
has received the rumour, it cannot recover from it. Some other typical epidemic models include the susceptible-
infected-recovered (SIR) model,20 where nodes can transition from an infected to a recovered state (in which case
they never become infected again), as well as the susceptible-infected-susceptible (SIS) model,18,23 where nodes
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can transition from a susceptible to an infected state and vice-versa. Most algorithms focus on the detection
of a single source and there are a few methods that can be used to identify multiple sources, however these are
typically more computationally expensive and challenging to implement.3

The objective of this work is to estimate the source of information on a general graph of known topology,
using observations from a finite set of monitor nodes. Moreover, we assume that the source emits multiple
rumours of information at the same time, which spread independently within the network, according to the
susceptible-infected epidemic model. The assumption of multiple rumours increases the diversity of observations
and makes the estimation of the source more reliable.

This paper is structured as follows. In Section 2, we introduce the problem of estimating the source of
rumours in a network. Then, in Section 3, we describe two mathematical models of information propagation
over graphs, previously introduced by Alexandru et al. in the context of rumour source detection with known
activation time.24 We also present an algorithm for estimating a single rumour source in Section 4.1, when we
assume that the activation time of the rumour is known.24 Furthermore, in Section 4.2 we develop an algorithm
which achieves inference of a single rumour source, when the start time of the rumour is unknown. In Section 5
we assess the performance of the algorithms on synthetic as well as real-world graphs. Finally, we conclude in
Section 6.

2. PROBLEM SETTING

2.1 Network Model

A graph is defined as a set of nodes (or vertices) connected by edges (or links), and is mathematically
represented via an adjacency matrix G, where the entry gi,j = 1 if nodes i and j are connected, and gi,j = 0
otherwise.

Graphs can be classified according to the attributes they exhibit. Some of these attributes are: the node
degree (the number of neighbours of a node), the average shortest path length (the average of all the shortest
distances in the network), and the clustering coefficient (a measure of the tendency of nodes in a network
to cluster together). Regular networks exhibit great clustering coefficient and long average shortest distance,
whereas random networks typically have small clustering coefficient and short average distance. Real-world
networks are neither completely regular nor completely random, and typically exhibit small-world and scale-free
properties. In a small-world graph, most nodes are not neighbours of each other, but they can be reached from
any other node in a small number of hops (edges). This leads to small average shortest distance and great
clustering coefficient. Scale-free networks also have these attributes, and their node degree follows a power-law
distribution, which means that the network will contain very high degree nodes (or hubs). The presence of hubs
is very common in real-world networks, as highlighted in Fig. 1. Here, the small-world network was generated
using the Watts-Strogatz model,25 the scale-free graph with the Barabási-Albert model,26 and the Facebook
subgraphs are extracted from the SNAP dataset.27

Graphs can also be categorized according to the type of relationships between nodes. The first category is that
of directed networks, where the links between nodes have a certain directionality. The second class is represented
by the undirected graphs, where there is a two-way relationship between any connected nodes. Throughout this
work, we primarily focus on undirected graphs, with small-world and scale-free properties, which model a wide
range of social networks (e.g. Facebook or Linkedin), as well as biological networks (e.g. protein interaction
networks).

2.2 Epidemic Model

We consider a discrete-time version of the susceptible-infected epidemic model. Initially all the nodes are in
a susceptible state. Then, once the rumour starts propagating, each susceptible node can get infected from any
of its infected neighbours at any discrete time step, with a certain probability µ. Moreover, once a node becomes
infected, it cannot recover from this state. This epidemic model is depicted in Fig. 2, where the epidemic starts
spreading at t = 2 in a small-world graph of 10 nodes. At subsequent discrete times, each infected node can
transmit the infection to any of its susceptible neighbours, with probability µ = 0.5. At time instance t = 5, all
the network nodes are infected.



Figure 1. Topology of small-world network (left), scale-free network (second left), and two Facebook subgraphs (right).

Figure 2. Spreading of information using the discrete-time susceptible-infected model, in a small-world graph of 10 nodes.

2.3 Rumour Source Localization

We assume that a single node in the network starts emitting multiple rumours of related information, at
the same time instance. This is a realistic assumption, as influencers tend to disseminate multiple pieces of
information in order to increase their presence in a social network. Then, we allow the rumours to spread
independently of each other, according to the susceptible-infected epidemic model described in Section 2.2, and
monitor a small set of nodes in the network throughout an observation window. We aim to localize the source
of the rumours, using the observations at these monitors at different time instances. The problem statement is
depicted in Fig. 3, where we monitor the state of three nodes (highlighted in red), at all the time instances in
the observation window up to time t = 5.

Figure 3. Observations at a small set of nodes (i, j and k), in a small-world network of 10 nodes.

We assume the source emits R rumours, and that we have knowledge of how many of these rumours reach
each monitor node, at any time instance t. Then, we can define the observed probability of infection of a monitor
i at time t as follows:

F̃i(t) =
Ri(t)

R
, (1)

where Ri(t) is the number of rumours that reached node i by time t.



3. MATHEMATICAL MODEL OF DIFFUSION OVER NETWORKS

In this section we describe two mathematical models which accurately capture the diffusion process in a
network, and which were previously introduced in the context of rumour source identification in social networks.24

3.1 Exact and Simplified Likelihood of Infection

Given a node s initiates the rumour at t = 0, the probability of first infection of node i at time t is given by:

fi|s(t) = [1−
∏
j∈Ni

(1− µF (xj(t− 1) = 1|xi(t− 1) = 0))]×
t−1∏
τ=1

(1− f(xi(τ) = 1)), (2)

where the conditional probability can be further expanded using Bayes’ rule and the law of total probability, as
follows:

F (xj(t− 1) = 1|xi(t− 1) = 0) =
F (xj(t− 1) = 1, xi(t− 1) = 0)

F (xi(t− 1) = 0)

=

∑
Kt−1

F (xj(t− 1) = 1, xi(t− 1) = 0, xk(t− 1),∀k ∈ G \ {i, j})
F (xi(t− 1) = 0)

=

∑
Qt−2

F (xj(t− 1) = 1, xi(t− 1) = 0, xk(t− 1),∀k ∈ G \ {i, j}|xq(t− 2),∀q ∈ G)× F (xq(t− 2),∀q ∈ G)

F (xi(t− 1) = 0)
,

where:

Ni = set of neighbours of node i,
µ = constant edge transmission likelihood in the network,
G = the set of all nodes in the graph,
Kt−1 = set of possible states of nodes k ∈ G \ {i, j}, at time t− 1,
Qt−2 = set of possible states of nodes q ∈ G, at time t− 2,
xk(t) = state of node k at time t.

The above likelihood can be simplified, based on the observation that the state of node j is not significantly
influenced by the state of a single node i.24 The simplified likelihood is less computationally expensive, and is
given by:

fi|s(t) ≈ [1−
∏
j∈Ni

(1− µF (xj(t− 1) = 1))]×
t−1∏
τ=1

(1− f(xi(τ) = 1)). (3)

Finally, a node i is infected at time t if it first got infected at any time instance before. This means that the
probability of a node i to have the infection at time t, given node s initiates the rumour at t0 = 0, is given by:

Fi|s(t) = F (xi(t) = 1|xs(0) = 1) =

t∑
τ=1

fi|s(τ). (4)

3.2 Distance-dependent Likelihood of Infection

Alexandru et al.24 also propose a distance-dependent likelihood of infection, which gives the probability of
infection of a node as a function of its shortest distance to the source of the rumours. This is computed as:

Fd(t) =

t∑
τ=d

(αdµ)d(1− αdµ)τ−d
(
τ − 1

d− 1

)
, (5)

where:



d = shortest distance between the node and the source,
µ = constant edge transmission likelihood in the network,
αd = parameter which captures the properties of the network.

The derivation of the distance-dependent likelihood in Eq. (5) is based on finding the average number of
paths in which the rumour can reach a node at distance d from the source (the term

(
τ−1
d−1
)
), and the probability

of each of these paths (the term (αdµ)d(1−αdµ)τ−d).24 For example, in Fig. 4 we show that there are 4 different
ways to reach node j located 3 hops away from the source s, in 3 time steps. At the same time there are only
two ways to reach node i at distance d = 3 hops from the source, in exactly 3 time steps. As a result, the average
number of paths from s to a node at distance d = 3 is equal to 3. Moreover, given the constant edge transmission
rate of µ, the probability of each path is µ3. Hence, the overall probability of a node located at distance d = 3
from the source, to get infected at t = 3 is F3(t = 3) = 3µ3.

Furthermore, the parameter αd captures the avalanche effect of the propagation of the rumour in the network.
In other words, in a sufficiently dense network, the probability that a node at distance d from the source is infected
at time t ≥ d increases for larger values of d, and this should be captured in a larger value of αd.

Figure 4. Different ways for node i (left subplots) and j (right subplots), located at shortest distance d = 3 hops from the
source s, to get infected at time t = 3, given node s starts spreading the rumour at t = 0.

In Fig. 5, we show a comparison between the simplified likelihood of infection in Eq. (3) and (4) and the
distance-dependent infection likelihood in Eq. (5). The results were obtained by simulating a spreading of 1000
rumours from a randomly selected node s, in a small-world network of 200 nodes, with average node degree 6.
Even though the simplified and the distance-dependent likelihoods defined in Eq. (3) and Eq. (5) respectively,
assume that the edge transmission rate µ is constant, in these results we allow µ to vary. In particular, we draw
µ uniformly at random from [0, 1]. The average value of the edge transmission likelihood is µ = 0.5, which we
use for the computations of the likelihoods in Eq. (3) and Eq. (5).

We notice that the simplified infection likelihood follows more closely the infection pattern of individual nodes
(top plots). On the other hand, the distance-dependent likelihood of infection has the same shape for any nodes
i and j, since their shortest distances to the source are equal, di = dj = 2.

4. RUMOUR SOURCE DETECTION

4.1 Rumour Source Detection with Known Activation Time

Let us consider the case when a single source emits R rumours of related information. Moreover, we assume
that all these rumours are sent at the same time instance, which is known, and which we set as t0 = 0 for
simplicity. Our aim is to localize the source of the rumours, based on measurements at a small set of monitors
SM , througout an observation window [0, T ]. The source detection algorithm we present in this section leverages
the analytical infection likelihoods presented in Section 3.1 and 3.2, as well as the diversity of observations F̃i(t)
in Eq. (1), created by multiple rumours being spread.

4.1.1 Computing the Distance-dependent Infection Likelihoods

In the first step of the algorithm, we compute the shortest distances between any two nodes in the network,
using the Dijkstra algorithm.28 Then, we learn the parameters αd used in Eq. (5) as follows. We artificially
simulate a spreading of rumours from a randomly selected node s in the network, and compute the observed



Figure 5. Comparison between the observed and simplified infection likelihoods of nodes i (top left) and j (top right).
Comparison between the observed and distance-dependent likelihoods of infection of nodes i (bottom left) and j (bottom
right). The distances between nodes i and j to the rumour source are equal, di = dj = 2 hops.

likelihood of infection F̃ learningi (t) using Eq. (1), at all the nodes i in the network. Using the shortest distances
we have calculated, we find the optimal parameter αd for each shortest distance to the source s, by minimizing
the divergence between the analytical infection likelihood Fd(t) and the observations F̃ learningi (t):

αoptd = arg min
αd∈(1, 1µ )

[
∑
i∈Nd

T∑
t=0

∥∥∥Fd(t)− F̃ learningi (t)
∥∥∥2], (6)

where Nd is the set of nodes at shortest distance d from the source s, µ is the constant edge transmission rate
and the upper bound 1

µ of αd ensures stability of Eq. (5).

4.1.2 Creating a Set of Potential Sources

By fitting the observations F̃i(t) at each monitor i to the distance-dependent infection likelihoods Fd(t) in
Eq. (5), we estimate the shortest distance between node i and the source. The optimal distance dOPTi for a
monitor i is the one which minimises the divergence between Fdi(t) and F̃i(t):

dOPTi = arg min
di∈[1,r]

[

T∑
t=0

∥∥∥Fdi(t)− F̃i(t)∥∥∥2], , (7)

where r is the network diameter (i.e. largest shortest distance between any two nodes in the network), and T is
the length of the observation window.



Then, leveraging the estimated distances between all the monitors and the source, we build a set of potential
sources using triangulation, as follows. For each monitor i whose estimated shortest distance to the source is di,
we keep all the nodes at distance di from i as potential sources, and denote their set with Gi. We then repeat
this for all the monitors in the set SM . The final set of candidate sources PS is the intersection of the sets of
candidate sources found for all monitors: Ps =

⋂
i∈SM

Gi.

For example, using the measurements at nodes i, j and q depicted in Fig. 6, we estimate the shortest distances
between these nodes and the origin of the rumours as di = 2, dj = 2 and dq = 1. As highlighted in Fig. 7,
we then use the estimated distances and triangulation to build a set of potential sources. In this example, the
intersection of the three sets of potential sources contains node n only.

Figure 6. Observations at nodes i, j and q, when multiple rumours are initiated by node n, in a small-world network of
10 nodes.

Figure 7. Using the estimated shortest distances between the source and monitors i, j and q, to build a set of potential
sources. The final set of candidate sources (right subplot) contains node n only.

4.1.3 Finding a Unique Rumour Source

In some cases, we may only observe a very small set of monitors. Then, it may not be possible to find a
unique source using triangulation based on the estimated shortest distances. This is illustrated in the example
in Fig. 8, where we only monitor nodes i and j and estimate their distances to the source as di = 2 and dj = 2
respectively. The final set of candidate sources contains both nodes n and k.



Figure 8. Using the estimated shortest distances between the source and monitors i and j, in order to build a set of
potential sources. The final set of candidate sources (right subplot) contains nodes n and k.

The distance-dependent formulation described in Section 3.2 assigns the same infection likelihood to a node
i at distance di from the source s, no matter where the source is localized. As a result, we cannot use this
analytical likelihood to differentiate between the two potential sources n and k in Fig. 8. Nevertheless, the
infection pattern of node i may be different, depending on the source node which started the spreading of the
rumours. This is highlighted in Fig. 9, where we see that monitor i is more likely to get infected sooner if the
rumour is initiated by node n, than in the case when the rumour is started by node k. An explanation for this
infection pattern could be the fact that, even though the shortest distances between i and nodes k and n are
equal, i.e. dik = din = 2, there are more paths of length equal to 2 between nodes k and i, than there are between
n and i.

The analytical likelihood Fi|s(t) defined in Eq. (4) captures the different infection patterns of the monitors,
depending on which node initiates the rumours. Hence, we can fit this simplified analytical likelihood of infection
Fi|s(t) to the observations F̃i(t), in order to estimate the most likely origin of the rumours, from a set of candidate

sources. The most likely rumour source sOPT minimises the divergence between Fi|s(t) and F̃i(t):

sOPT = arg min
s∈PS

[

T∑
t=0

∥∥∥Fi|s(t)− F̃i(t)∥∥∥2], , (8)

where PS is the set of potential sources found using triangulation and T is the length of the observation window.

Figure 9. Spreading of multiple rumours initiated by node k (top), and node n (bottom), in a small-world network of 10
nodes. The infection pattern of node i is different depending on where the rumour starts.



4.1.4 Overall Algorithm

The overall source detection method is summarized in Algorithm 1. The required inputs are the network
topology, the set of monitors SM , the edge transmission likelihood µ and the observed likelihoods of infection
F̃i(t) of each monitor node i ∈ SM , computed using Eq. (1), at all the time instances within the observation
window [0, T ].

Algorithm 1 Single Source Detection Algorithm, with Known Activation Time

Require: Network topology, measurements F̃i(t), for t ∈ [0, T ] and i ∈ SM , edge transmission likelihood µ.
1: Compute the shortest distances between any two nodes in the network, using Dijkstra algorithm,28 and find

the network diameter r (i.e. the largest shortest distance between any two nodes).
2: Learn the optimal parameters αd as in Eq. (6), using an artificial spreading of rumours from a random

node in the network, which generates a set of measurements F̃ learningi (t). Hence, find the theoretic infection
distributions Fd(t) using Eq. (5), for all shortest distances d ∈ {1, 2, ..., r} and for t ∈ {0, 1, ..., T}.

3: By fitting the observations F̃i(t) to Fd(t) as in Eq. (7), estimate the shortest distances between any monitor
node i and the source.

4: Leveraging the estimated shortest distance between a monitor i and the source, create a set of candidate
sources. Repeat this for all the monitors in the set SM and find the intersection PS of all the sets of potential
sources.

5: If the set PS contains more than one node, we find the most likely origin of the rumours as follows. We
compare the simplified infection likelihoods Fi|s(t) in Eq. (4) for each node s in the set PS , to the observed

likelihoods F̃i(t), of all the monitor nodes. We then use Eq. (8) to select the most likely rumour source. This
is node s for which the cumulative divergence between Fi|s(t) and F̃i(t) for i ∈ SM , is minimised.

4.2 Rumour Source Detection with Unknown Activation Time

Let us now consider the case when a single source emits R rumours of related information, at the same time,
which is unknown. For simplicity, let us assume that the observation starts at t = 0, and that the rumour is
initiated at instance t0 ≥ 0. Our aim is to use the discrete observations of a small set of monitors SM to estimate
both the location of the source, as well as the activation time of the rumour. We first estimate the shortest
distances between the monitors and the source, and then use a triangulation method to find a set of potential
sources, based on these estimated distances.

4.2.1 Estimation of the Shortest Distances between the Monitors and the Source

We consider a K-medoids approach,29 which uses the measurements F̃i(t) at all the monitor nodes i ∈ SM ,
to estimate the shortest distances between the monitors and the source.

We define a medoid (or cluster) as a set of nodes Cd which are located at shortest distance d from the source.
Moreover, each medoid Cd will be assigned a prototype funtion Pd, which is the distance-dependent likelihood of
infection in Eq. (5), delayed by a certain time tstart:

Pd = Fd(t+ tstart) =

tstart+t∑
τ=tstart+d

(αdµ)d(1− αdµ)τ−d
(
τ − 1

d− 1

)
, (9)

where :

αd = parameter which reflects the properties of the network, and which is specific to the cluster Cd,
tstart = the expected start time of the rumours.

We initialise the parameter αd corresponding to each medoid Cd as follows:

αd = 1 + xd, (10)



where the parameter x is chosen to guarantee that α ∈ (1, 1
µ ), in order to ensure stability of Fd(t) in Eq. (5).

If we denote the network diameter with r (the largest shortest distance between any two nodes in the network),
then setting x < 1−µ

µr ensures that αd < αr < 1 + 1−µ
µr r = 1

µ .

In addition, we initialise the start time tstart as follows:

tstart = tf −
1

µ
, (11)

where tf is the infection time of the first infected monitor f in the set SM .

This initialisation is based on the assumption that the delay between the time of infection of monitor f in
the set SM , and the rumour start time, is 1

µ . In other words, we assume monitor f is located at a small distance
from the source of the rumour. In reality, this may not be true, especially if the set of observers SM is sparse.
Nevertheless, we shall see how to optimize tstart in the next part of the algorithm.

Once both parameters αd and tstart have been initialised, we repeat the following two steps of the K-medoids
algorithm until convergence to a local optimum. In the first step of the algorithm, each monitor in the set SM is
assigned to the closest medoid. For each monitor i, the closest medoid is the one for which the mean-squared error
between the cluster’s prototype defined in Eq. (9), and the observed infection probability F̃i(t), is minimised.
This error is computed as follows:

ẽ(i, Cd) =

T∑
t=0

∥∥∥Fd(t+ tstart)− F̃i(t)
∥∥∥2 , (12)

where T is length of observation window, Fd(t + tstart) is the cluster’s prototype, and F̃i(t) is the observed
probability of infection of monitor i at time t.

In the second step of the algorithm, we adjust αd and tstart such that the dissimilarity of the medoid is
minimised. The overall dissimilarity is the cumulative mean-squared error between all the data points belonging
to the medoid Cd, and its prototype Pd(t) = Fd(t+ tstart):

Ẽ(Cd) =
1

|Cd|
∑
i∈Cd

T∑
t=0

∥∥∥Fd(t+ tstart)− F̃i(t)
∥∥∥2 , (13)

where |Cd| is the number of data points in medoid Cd.

The two steps of the algorithm are repeated until convergence to a local optimum. When this is achieved,
each monitor i will be assigned to the closest medoid Cd, which corresponds to the estimated shortest distance
d between this monitor and the source.

In Algorithm 2 we formally present the K-medoids approach, which estimates the shortest distances be-
tween the monitors and the source. The inputs to the algorithm are the network topology, the constant edge
transmission rate µ and the observations F̃i(t) computed using Eq. (1), of all the monitor nodes i ∈ SM .

4.2.2 Estimation of a Set of Potential Sources

Once the shortest distances between the monitor nodes and the source have been estimated, we use the
following triangulation method to build a set of potential sources. Suppose the estimated shortest distances
between monitors i and j to the source are d̃i and d̃j respectively. Then, the set of potential sources will contain

all the nodes located d̃i − d̃j hops closer to node j, compared to node i. Since the start time of the rumours is

unknown, the estimation of the absolute shortest distances d̃i and d̃j may not always be accurate. Nevertheless,

the relative distance d̃i − d̃j is likely to be correct.



Algorithm 2 K-medoids algorithm for estimation of the shortest distances between the monitors and the source,
when the rumour start time is unknown.

Require: Network topology, measurements F̃i(t), for t ∈ [0, T ] and i ∈ SM , edge transmission probability µ.
1: Compute the pairwise shortest distances in the network, using Dijkstra algorithm,28 and find the network

diameter r.
2: Initialise the parameter x in Eq. (10) with x = 1−µ

µ(r+1) , which ensures αd ∈ (1, 1
µ ), ∀d. Hence, initialise the

parameters αd corresponding to each medoid Cd (the cluster of monitors at distance d from the source).
3: Initialise the start time of the rumours as in Eq. (11), with tstart = tf − 1

µ , where tf is the infection time of
the first infected monitor in the set SM .

4: Using the initial values of αd and tstart, compute the prototype function Pd, of each medoid Cd.
5: Assign each monitor to the closest medoid, by minimising the error in Eq. (12).
6: While the dissimilarity of the medoid decreases, iterate:

1. Adjust the parameters αd ∈ (1, 1
µ ) and tstart such that the cumulative divergence defined in Eq. (13),

of all data points to the cluster prototype is minimised. Hence, re-compute the prototype Pd of each
medoid Cd as in Eq. (9).

2. Re-assign each monitor to the closest medoid, by minimising the error in Eq. (12).

5. EXPERIMENTAL RESULTS

5.1 Rumour Source Detection with Known Activation Time

We validate the proposed algorithms for three different network types: small-world graph, scale-free network
and graphs extracted from Facebook. In all cases, a single source emits R = 10 rumours at time t = 0, and
these propagate independently across different edges, with varying edge probability. In particular, the edge
transmission likelihood is uniformly drawn from the interval [0, 1]. In Fig. 10, we highlight the high accuracy
of estimation of a single rumour source, when the start time of the rumours is known. For example, when we
observe 20% of the nodes in the small-world network, the probability of correctly estimating the rumour source
is 1. When we observe at least 10% of the network nodes, the probability of correct source estimation is above
95%. The likelihood of correct estimation in scale-free networks and real-world graphs is slightly lower, and this
may be due to the high node degree variability in these networks (see left subplots in Fig. 10 showing the degree
of the nodes).

5.2 Rumour Source Detection with Unknown Activation Time

We first evaluate the efficiency of the K-medoids algorithm in estimating the parameters αd used in Eq.
(9), as well as the start time of the rumours tstart, as described in Section 4.2. For the results in Fig. 11, the
observation begins at t = 0, and a random node in the network starts spreading R = 1000 rumours at time
t = 5. Then, the prototype distance-dependent infection likelihoods Fd(t + tstart) are learnt using the method
described in Section 4.2. From the results in Fig. 11, we notice that as expected, nodes at distance d = 1, 2 and
3 from the source, have a positive probability of infection at times t = 6, 7 and 8 respectively. Moreover, the
shape of the analytical distance-dependent likelihoods follows closely the observations F̃i(t), which shows that
the parameters αd were correctly learnt.

The performance of the source detection algorithm is analysed in a small-world network of 200 nodes, when
10 rumours are initiated by the same source at time t = 5, following the start of the observation at t = 0. The
results in Fig. 12 are averaged over 100 experiments. These show that the probability of correctly estimating
the rumour source is above 90%, even when the fraction of observed nodes is small, in the case when we allow
the edge probability µ to vary. In particular, the likelihood of transmission of each edge is uniformly drawn from
the interval [0, 1]. When we fix µ = 0.5, the probability of correct estimation increases above 95%.



Figure 10. Probability of correctly estimating a single rumour source, when the activation time of the rumour is known,
in a small-world network of 200 nodes (top), scale-free network of 243 nodes (middle), and Facebook subgraph of 182
nodes (bottom). In all cases, we show the network topology (left), and the probability of correctly estimating the rumour
source for different fractions of observed nodes (right).



Figure 11. Comparison between the distance-dependent infection likelihoods Fd(t + tstart) and the average observations
F̃i(t) at nodes at distance d = 1, d = 2 and d = 3 respectively, from the rumour source. The distance-dependent infection
likelihoods are learnt using the K-medoids algorithm.

Figure 12. Probability that the true rumour source is in the set of estimated sources, when the rumours are spread in a
small-world network, with varying edge transmission probability (left) and constant edge likelihood (right). The top plots
show the probability of correct estimation of the rumour source, whereas the bottom ones show the number of nodes in
the set of potential sources.

6. CONCLUSION

In this paper we described two mathematical models which accurately capture the diffusion process over
complex networks. The first model gives the probability of infection of a node in the network, given a particular
source initiates the rumour. The second formulates the probability of infection of a node, as a function of its
shortest distance to the origin of the rumours. We then presented an algorithm for estimating a single rumour
source from sparse observations, when the activation time of the rumours is known. This algorithm leverages
the distance-dependent infection likelihood in order to estimate the distances between all monitor nodes and
the source. Based on these estimated shortest distances, triangulation is then used to build a set of potential
sources. The most likely rumour origin is found using the former mathematical model of infection, which gives the
infection likelihood, given a particular node started the rumour. Furthermore, we have extended the single source
estimation method to the case of unknown rumour start time. Finally, we evaluated the proposed algorithms in
small-world and scale-free networks, as well as in real-world graphs, and results showed that the probability of
correctly estimating the rumour source is high, even when the set of observations is small.
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