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Abstract

As social networks have developed and the spreading of information has greatly amplified, the dynamics of
information dissemination within a network have attracted considerable attention in the past years. Recently,
however, several authors have begun considering the more challenging reverse problem, of detecting the
source responsible for the spreading of rumors. The state-of-the-art approaches focus on detecting rumor
sources in simple topologies such as trees or random geometric graphs, based on the ideal assumption that
there is access to information at all the nodes in the network.

This project addresses the problem of estimating the source of an infection on a general graph of known
topology, using observations from a finite set of monitor nodes, at well-known times after the initial infection.
This report describes the network topologies, the infection model and the Matlab environment required to
simulate a spreading of rumors, and the mathematical formulas which model the probability of rumor
dissemination. The theoretical derivations are compared against observations from the randomly selected
sensor nodes, in order to allow the exploitation of an algorithm for the inference of the rumor source.
Experiments were carried out on synthetic networks, and the results obtained show the convergence of the
derived theoretic probabilities to the ones obtained through simulations, as well as an accurate identification
of the rumor source, with higher probability of correct detection compared to state-of-the-art solutions.



Acknowledgements

| would like to extend my gratitude to my project supervisor Prof. Pier-Luigi Dragotti for giving me the
opportunity to work this very interesting and challenging project, for his invaluable advice and continuous
support and insightful feedback at every stage of the project.

| would also like to express thanks to John Murray-Bruce for his support, help in brainstorming and in
overcoming challenges, as well as encouragement throughout the project.

Last but not least, | would like to thank my parents for their love, and continuous support throughout my
studies, and for providing me with the opportunity of an outstanding education at Imperial College London.



Contents
A 0L - Uod TSRO |
ACKNOWIBAGEIMENTS ...ttt ettt b s bbb ettt e s st eb e e bt b e st e b e e et et ese e st eneebenaeenenee I
LISE OF FIGUIES ...ttt b bttt ettt e et e bt e bt e b e ne b et e s e e esseneebeebens e b e v
LIST OF TADIES ..ottt sttt et ettt e bt b e e b s b et et et et e neene e VI
Chapter L. INTrOQUCTION .......c.eoiicieeiecteeeeecet ettt st e st e st e st e e b e s teesaestesreessesesssestesreesaessensnans 1
0] LAY ] S S 1
Mathematical Formulation of the ProbIEM..........coouiire e 2
ASSUMPLIONS ...ttt et e et st e e st e ebe et e s beesa e besreessesbeeseasesbeeasesteessenseessansebeessessesreensestaessensesreenes 3
Project AImS and ODJECLIVES .......cccviiiiieeiicie ettt ettt e e e e e e aesbeesaesbeebaestesbeessesesssensesseensessesseans 4
ChallENGING ASPECES ... evieiecteeieete ettt ettt et et e e e e s e e e te e b e besbe e besteesaesbesseessesbeessesesseentesseessensesseensesseennas 5
Chapter 2. STAtE-0F-TNE-ATT......c.ooiiiieee ettt ettt s e bbbt e e e et ebeebesbesbentens 6
SUrVey Of REIGtEA LITEIATUIE ......c.ovuiitirtiteieieie ettt sttt ettt sttt eae b b e nan 6
SUMMArY OF StAtE-0F-thE-AIT......ccuiieeeieeee ettt sbe et e s re et e sreenaesbeennas 9
N Yo I oTo] [0 | ORI 10
RANAOM WALKS THEOIY .....veeieiecteetecte ettt ettt ettt et st et e st e ebe e besteesbesbeeasastesbeensasteeseentenseenns 11
Mathematical Methods for Expression SimplifiCation..........cccocveveeiriecenieceeceeese e 14
Chapter 3. ANAlYSIS QNG DESIN ....ccvicvieiiriieierie ettt st e sttt et e et e s e sseesbesreestesseessessesseessesseessensesseenes 15
INOVEIL ASPECES......eitecteetiete ettt sttt e sttt e e s te et e beete et e sbeesaesbeebeesbasbeessastesssessesbeessesteessenbestsesaenseessessesseennas 15
Theoretic Probability of Rumor Dissemination: Initial SOIUION ..........ccoceieeeeiieieieceeeceeee e, 15
Theoretic Probability of Rumor Dissemination: A RobuSt SOIULION..........ccceeeevirciericeeeseeeeee e 26
Chapter 4. IMPIEMENTATION.........ccceiiiieiereetere ettt ste e et e s e st e sesreessesseessessesseensessesseensessennes 34
Matlab Environment: NetWOrK MOTE .........cooeuiriiriniinieieieieesesee et 34
Matlab Environment: EPIidemic MOUEI ........c.ooueeviiiieee ettt ettt et s be e st b e beeanas 37
SoUrce DeteCtion AlGOTTTNM .. ....c.oi ettt sttt e st aesbe et e nseeneetesseenseseenaeens 41
O T 1o (T T Y 7= LU U] o [P 47
EVAIUALION CIITEIIA. .....eeueitiitietirtesiet ettt sb sttt et b e bt e bt s b e s b et et et e st eseenesbesbesbentens 47
Evaluation of Theoretical Probability Formula: Initial SOIUtION...........cocoiiirieiiiieeeee e 49
Evaluation of Mathematical Approximations: Initial SOIULION ..........c.cceoiririiiinee e 54
Evaluation of Theoretical Probability Formula: A Robust SOIULION ..........ccoeieiiiieiiceeceeeeee 55
Evaluation of the Algorithm for Estimation of Shortest Paths (ACCUraCY) ......ccveeevverieeceerereeeseeiesie s 59
Evaluation of the Algorithm for Estimation of Shortest Paths (RODUSINESS) ......ccceevveviieieviiieereeiee e 62
Evaluation of the Source Detection AlGOFtNM ..........ccooiiiieee et 64

Enhancement 1. Sensor Confidence Levels and Adaptive Connectivity INdexX ......c.ccoceveveveeierenencrennee 64



Enhancement 2. Source RUMOT CENEFAlITY .......ccovveruiieiiieieeeeee e 69
Evaluation of Final Algorithm on All Network TOPOIOGIES.......c.evirerieieieinieiereseseeee e 81

B I =TC I T - SRS 81

Tl (o] I CT=Tol g1 ol € 1 o] TSR 82
SMAN-WOTTA NEIWOTK ..ottt sttt be b e e 83
RANAOM NEIWOTK.......eeiee ettt st b ettt b b b e nes 84
SCAIE-TIEE INEIWOTK ...ttt sttt 85
ALGOTTTNM COMPIEXITY ...ouvieeeeiictieece ettt st e s te et e s re et e s b e e e e s tesbeesbesteersensesenensesreeneas 86
Chapter 6. SUMMANY OF RESUILS ..........ooiiiieieecececeeee ettt sttt et s re et e steesaenaesreenes 87
SEAEE-OT-TNE-ATT. .t a bbbt et e bt b e s b et et et enteae bt aeebenaen 87
INEW ADPIOACK ...ttt ettt sttt ettt a bt s bt s bt et e e st e s e e bt e bt e bt st e b et et eneenteneeneebe st e ebeee 88
CRAPLEr 7. CONCIUSIONS ....c.veeeieie ettt ettt te st e et s te et e st e e e e s besbeesbesbeeseesbesbeensesbeessastesseensesteesaensesseanes 91
FULUIE DIFECEIONS ...ttt ettt b et b et bt e h et bt ne bbb b 91
CONCIUAING REMAIKS ...ttt ettt e st s e et et e s be e b e s beess e tesbeenbesteesaensesssensesreensestenseens 92
BIDIOGIAPNY ..t h b bbbttt be e nen 93
AAPPENTICES ..ttt ettt b bbbt b et et a e h bt bbb A bt a e h e bt bt bt bt b et et en e en e eheehe b e eeneen 95

AppendiX A. Matlah ENVIFONMENT ........ooiiiieiecieceeeeeetese ettt sttt te b b e s beesa e besasentesreeneas 95



List of Figures

Figure 1: From top left to bottom right: Tree Graph, Random Geometric Graph, Small-world Network,

Random and Deterministic Scale-fre@ NETWOIK......c.uuii i e e 11
Figure 2: Illustration of possible Paths of Random Walk of Rumor in the Network .........cccocceeviiiiiiiiniennnneen. 19
Figure 3: Possible Paths the Rumor can follow starting from one Node in the Network ..........ccccocevveeeiinnennn. 20

Figure 4: Simulated Rumor Probability for Two Different Rumor Spreading Models: Exactly 1 Neighbour
(further or at the same distance from source) with Probability Ps=1 (left), Exactly 2 Neighbours (further from
the source) and 1 Neighbour (at the same distance from source) with probability Ps=1 (middle), Any

Neighbours with Probability PS = 0.5 (FIZNT) .c.eeeecieiiiieeie ettt ee et e e e e e ba e e saaee s 25
Figure 5: Reflection Principle of Random Walk in ID.........coiiiiiiiiiciiie et e e e 29
Figure 6: Illustration of lllegal Path and its Reflection, of k =9 Time Steps, and Distance d =2 ........cccceuuveen.. 30
Figure 7: Implementation of a Scale-free Network using Method | (left) and Method Il (right), for N=81 Nodes
........................................................................................................................................................................... 36
Figure 8: Average Spreading of Rumors in Random Geometric Graph of N=1000 nodes, at Different Time

R =T o N 37
Figure 9: Average Spreading of Rumors in Tree Graph of N=1365 nodes, at Different Time Steps ................. 37
Figure 10: Simulation of Rumor Spreading in a Tree Graph for a Spreading Probability of Ps=0.7 ................ 38
Figure 11: Simulation of Rumor Spreading in a Random Geometric Graph for a Spreading Probability of Ps =
0.7 et e et et ——eeeeeeeetta———aeeeeeettet——aeeeeetetta—aeeteeetat b aeeeeeeeteaaaaeeeeeart e eeeeeeeerarns 38

Figure 12: Simulation of Rumor Spreading in a Small World Network for a Spreading Probability of Ps = 0.7 38
Figure 13: Simulation of Rumor Spreading in a Deterministic Scale-free Network for a Spreading Probability

OF P = 0.7 ettt ettt ettt sttt b et e e s bt e e b et e s be e e h bt e et e e e b ee e e b e e e hteeaabeeebaeesabeesbeesbaeesbeeenares 39
Figure 14: Simulation of Rumor Spreading in a Random Scale-free Network around a High-Degree Node, for a
Spreading Probability Of PS = 0.5t e e et e e e e et e e e e be e e e e nbaee e eareeas 39
Figure 15: Average Spreading of Rumors in Random Geometric Graph of N=300 nodes, at Different Time

) =T o F N 40

Figure 16: Simulated Probabilities of Nodes being infected, for Different Values of Spreading Probability.... 49
Figure 17: Estimated Probabilities of Nodes being infected, for Different Values of Spreading Probability.... 50
Figure 18 Simulated and Theoretic Probabilities in a Small-world Network, for Spreading Probability Ps=0.2

(16Ft) @NA PS = 0.3 (FIZNT) .eeieriieiiee ettt ettt ettt et e et e et e e et e e e bae e s tteeebaeesabeesasaeeseeesabaeensseessseeensaeessrenan 50
Figure 19: Simulated and Theoretic Probabilities in a Small-world Network, for Spreading Probability Ps=0.4
(16Ft) @NA PS = 0.5 (FIZNT) .veiiriieeiiee ettt ettt ettt et e et e e rte e e s be e e bae e s tteeeabaeesabeeeasaeasseesasasensseessseesnsaeessrennn 50
Figure 20: Simulated and Theoretic Probabilities in a Small-world Network, for Spreading Probability Ps=0.6
(=Yg I Ta Lo I e O A (7= 1 [OOSR ST 51
Figure 21: Simulated and Theoretic Probabilities in a Small-world Network, for Spreading Probability Ps=0.8
(1€ft) AN PS = 0.9 (FIZNT) ceurriee ettt et e et e e et e e e et e e e e et e e e eeaabaeeeenaseeeeensbesaeasseeasanstaeaeensenas 51
Figure 22: Simulated and Theoretic Probabilities, in a Scale-Free Network (left) and Random Geometric
Graph (right), using the INItial SOIULION .....c.uii ittt s e e e be e e tbe e ebeeeennas 52
Figure 23: Simulated and Theoretic Probabilities in a Tree Graph, using the Initial Solution ...........ccccuueeee.. 52
Figure 24: Simulated and Theoretic Rumor Probabilities for Pspreading = 0.5 ......ccccceeviivieiiieeeciieee e, 53
Figure 25: Simulated and Theoretic Rumor Probabilities for Pspreading = 0.5 ......ccccceevvvivieiicieeeeiieee e, 53
Figure 26: Simulated and Theoretic Rumor Probabilities for Pspreading = 0.3 .........ccoeoeiireeiiieeeecieee e, 53

Figure 27: Theoretical Probabilities of Rumor Infection, with and without Mathematical Approximations ... 54
Figure 28: Simulated and Theoretical Probability with no Mathematical Approximations (left), and with
APProxXimMatioNs (FINT) c...eeeiieiiie ettt e eett e e e ettt e e e e bt eeeeeebaeeeeebbeeeeetbaeeseasseeaeassaeesanssaeaesnes 55



Vi

Figure 29: Simulated and Theoretic Probabilities assuming no Reflected Paths, for 50 Time Steps (left) and 20

TR TCI =T oL (= oo USRI 56
Figure 30: Simulated and Theoretic Probabilities with Calculation of Reflected Paths using Two Different
V=1 o Yo PP 57
Figure 31: Simulated and Theoretic Probabilities with Calculation of Reflected Paths using Two Different
Methods, with no Constraints on the First Path SEEmMeNnt ......c..ooviviiiiiiiiiiie e 58
Figure 32: Distance Estimation Error for Different Numbers of Rumors, in a Small-world Network of 200
Nodes, with Increased Accuracy of Theoretical Probability Parameters ........cccceevccieeeeciieeecciee e 59
Figure 33: Distance Estimation Error for Different Numbers of Monitors, in a Small-world Network of 200
Nodes, with Increased Accuracy of SENSOr MEASUIEMENTS .......eeiieiiiieiciiieeeecieee e ecree e errre e e esrreeeesraeeeessreeeeas 60
Figure 34: Distance Estimation Error for Different Numbers of Monitors, in a Small-world Network of 200
Nodes, with Low Accuracy of SENSOr MEASUIEMENTS ...cc.uviiiiiiiiieeiciieeeecreee e et e e et e e s srre e e ssraeeessaraeeeesnseeeeens 61
Figure 35: Distance Estimation Error for Different Numbers of Monitors, in a Small-world Network of 200
Nodes, with Highest Accuracy of SENSOr MEaSUIrEMENTS ....ccccuiiieiiciiieiiciiieeeciree et e e ssrre e e s sbre e e e sereeeeas 61
Figure 36: Distance Estimation Error in a Small-world Network, using Different Values of the Connectivity
Index with Maximum Deviation from the Optimal Value Ak = 0.2 ....coccuiieieiieee et 63
Figure 37: Distance Estimation Error in a Small-world Network, using Different Values of the Connectivity
Index with Maximum Deviation from the Optimal Value Ak = 0.1 ....ocoriiiieiiee et 63
Figure 38: Average Number of Estimated Sources against Number of Available Monitor Nodes, Small-world
NETWOIK WIth N=200 ..eiiiiiiiiiciiiee e e st e e e st e e e e s at e e e e sateeeeesaeeesassseeesnsseaesassaeeeennsaeesennsseeenns 65
Figure 39: Best Detection Probability (from left to right), for Sensor Maximum Distance d=3, d=5, d=9, and
using the Union of the Set of Estimated SOUMCES ........vuiiiiiiiiii et ree e e s 66
Figure 40: Best Detection Probability (from top left to bottom right), for Sensor Maximum Distance d=3, d=5,
d=9, and using the Union of the Set of EStiMated SOUICES ........ccuviieriiiieeeiiie et teee et e e e e e e 68
Figure 41: Best Detection Probability and Number of Estimated Sources for Set Cardinality of Minimum 1
Source and Constant Source Set Cardinality €qual tO 1........oeiieiiiiiecee e e 70
Figure 42: Best Detection Probability and Number of Estimated Sources for Set Cardinality of Minimum 2
Sources and Constant Source Set Cardinality equal to 1, and2 ........cccveiiiiiiiiiiiee e 71
Figure 43: Best Detection Probability and Number of Estimated Sources for Set Cardinality of Minimum 1
source and Constant Source Set Cardinality @qual tO L .....cc.eeiiiiiiiiiiiiie e e 72
Figure 44: Best Detection Probability and Number of Estimated Sources for Set Cardinality of Minimum 2
sources and Constant Source Set Cardinality equal to 1 and 2........cocuiiiiieiiie e e 73
Figure 45: Best Detection Probability using Enhancement 2.3, for a Cardinality of the Candidate Sources of
Minimum 1 (left) and EXActly 1 (FISNT) coccueeeeeeiiee ettt e e rre e e et r e e e s eara e e e esaraeeeeennreeaeas 74
Figure 46: Best Detection Probability using Enhancement 2.3, for a Cardinality of the Candidate Sources of
Minimum 2 (left) and Exactly 1 (middle), and 2 (FIght) ......ccueeeoiiiiiiieeeeee et 75
Figure 47: Best Detection Probability using Enhancement 2.3, for a Cardinality of the Candidate Sources of
Minimum 5 (left) and Exactly 1 (middle), and 2 (Fight) ......ccueeeoiiiioiieee e 75
Figure 48: Best Detection Probability in a Small-world Network, using Enhancement 2.4, for a Cardinality of
the Candidate Sources of Minimum 1 (left) and Exactly 1 (right) .......cccoeeeieeiiieiciiee e 77
Figure 49: Best Detection Probability using Enhancement 2.4, for a Cardinality of the Candidate Sources of
Minimum 2 (left) and Exactly 1 (middle), and 2 (FIZhT) ......eeeeeciieeeeeeeee e e 77
Figure 50: Illustration of Probability of Detection of all the Nodes in a Small-world Network of size N=200,

[ LY =0 K1Y/ o oV o RN 78
Figure 51: Illustration of Probability of Detection of all the Nodes in a Small-world Network of size N=200,

(VR [ oYY/ To] a1 1 (] £ PP PPPPPPPPPPRPPRE 78

Figure 52: Best Detection Probability in a Small-world Network with Average Vertex Degree V=4, using
Enhancement 2.4, for a Cardinality of the Candidate Sources of Minimum 1 (left) and Exactly 1 (right)........ 79



Vi

Figure 53: Best Detection Probability in a Small-world Network with Average Vertex Degree V=10, using
Enhancement 2.4, for a Cardinality of the Candidate Sources of Minimum 1 (left) and Exactly 1 (right)........ 80
Figure 54: Probability of Correct Detection in a Tree Graph with N=, C=, D=, using Enhancement 2.3 and
Cardinality of the Set of Potential Sources with Minimum 1 (left) and Exactly 1 Source (right) .........ccc.u........ 81
Figure 55: Distance Estimation Error in a Tree Graph of N=156 NOdES ........ccccivvriiiiiiiieeiiiieeeeiiiee e ecvree e 82
Figure 56: Probability of Correct Detection in a Random Geometric Graph with N=200 and R = 0.2, using
Enhancement 2.4, and Cardinality of the Set of Potential Sources with Minimum 1 (left) and Exactly 1 Source

Figure 57: Probability of Correct Detection in a Small-world Network with N=200 and beta = 0.2, using
Enhancement 2.4, and Cardinality of the Set of Potential Sources with Minimum 1 (left) and Exactly 1 Source

(8742 OSSR 83
Figure 58: Probability of Correct Detection in a Random Network with N=200, using Enhancement 2.4, and
Cardinality of the Set of Potential Sources with Minimum 1 (left) and Exactly 1 Source (right) ........c.cc......... 84

Figure 59: Probability of Correct Detection in a Scale-free Network with N=200, using Enhancement 2.4, and
Cardinality of the Set of Potential Sources with Minimum 1 (left) and Exactly 1 Source (right) ........c.cc......... 85



VIl

List of Tables

Table 1: Stirling’s ApProxXimation ACCUIACY .....c.uviiiiiieieeeiieeeeeiieeeeecieeeeeeteeeeesiteeeessssreeessaseeeesassaeeesansseeessnsseeenan 14
Table 2: De Moivre-Laplace ApproXimation ACCUNACY ....cuueiiiciieeiriieieeeiireeeeiireeessrreeessareeeesssseeeesssseessnssseeesas 14
Table 3: lllustration of the Simulated and Theoretic Spreading Probabilities for K=6 Steps.......cccccccvvvrivvenn. 42
Table 4: Confidence LeVel CalCUIQtioN .......ciiiiiiiiiiciee ettt ettt s ree e st sa e e sbe e e s abeesateesnneeesabeeenes 44
Table 5: lllustration of Noise in SENSOr MEASUIEMENTS .....ueiiiciiiiiiiiiieeecieee e eiree e e e et ee e srree e e sssreeesseseeeeas 62

Table 6: Summary of Detection Probability for Different Algorithm Enhancements .........cccocovveeeicieeeeiineeenn. 90



1|Motivation

Chapter 1

Introduction

This Project Report aims to give a description of the problem of localizing diffusion sources of rumors in social
networks, and to present a mathematical formulation of a solution to this problem, as well as the evaluation
methods used to assess the performance of this solution.

The structure of this report is the following. Firstly, Chapter 1 presents a mathematical formulation of the
problem. Chapter 2 provides a description of the state-of-the-art approaches related to this problem, and lays
out the required mathematical and graph theory-related background.

Furthermore, Chapter 3 describes the analysis and design involved in the derivation of a mathematical
formulation for the theoretic probability of rumor spreading in a network of arbitrary topology. The design
includes the initial derivation of the probability of dissemination, as well as a refined solution to the problem.

Moreover, Chapter 4 presents a description of the Matlab environment, including the design of the synthetic
networks used for simulations and the epidemic model used to simulate the spreading of rumors. In addition,
a rumor source detection algorithm is presented, with a description of the motivation behind each algorithm
enhancement.

Chapter 5 presents the evaluation methods used to assess the performance of the estimation algorithm, which
includes tests assessing the individual enhancements presented in Chapter 4, as well as tests for the complete
algorithm. Finally, the results are discussed in Chapter 6, and conclusions are drawn in Chapter 7, which include
any future works to be conducted.

Motivation

The aim of this project is to successfully infer the source responsible for spreading of data within a certain
network, motivated by applications such as: localizing individuals who set trends in social networks and who
successfully spread rumors or images, determining the causes of cascading failures in large systems such as
financial markets or sensor networks, finding the contaminant in a water distribution network, and identifying
the origin of infectious diseases.

One of the most interesting of these applications is the dissemination of information in social networks and
finding the influencer in this case could be of great interest, for example, in the case of identifying the leader
of a spy or political network. Described as the Achilles” heel property of social networks, this property ensures
that such networks are robust to random failures, but fragile to attacks. Moreover, as social networks expand
and become more popular, the information propagation becomes faster and less controllable, with some
influential people having the power to disseminate pervasive rumors without confirmation or certainty to
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facts. Consequently, finding the source of the rumor is very important, as it could help control and prevent the
risk of allowing information to be disseminated within the network, as well increase the resistance of the
network to attacks.

The project could also motivated by other interesting applications such as: determining the causes of
cascading failures in large systems such as financial markets or sensor networks, identifying the origin of
infectious diseases or computer viruses, or identifying the leader of a spy or political network. Some other
applications of interest could be biological systems such as metabolic networks, protein-protein interaction
networks, or diseases links through shared genes.

Itis also of interest to analyse the problem of detecting multiple diffusion sources in the network. For example,
recurring email spam and virus attacks are generally organized by criminal networks. Hence, if we consider
the detection of multiple sources, we can assume that these sources are connected, consequently identifying
any of them would provide necessary information to further identify all the rumor sources [1].

Mathematical Formulation of the Problem

Definition of a Rumor

A rumor can be defined as a story, a statement or any other type of information such as images, which enters
circulation within a network. Generally a piece of information can either true, false or unknown, based on the
judgements made after the spreading phenomenon. Only the latter two will be defined as rumors, while the
former is an information confirmed as true after some time after the spreading [2].

Rumor Spreading Model

The model assumes a uniform prior probability of the source node among all nodes in the network. This
assumption ensures tractability and is common in literature [1].

The problem of detecting who is spreading rumors in a social network can be translated to the problem of
estimating the source node which starts disseminating information within a network of fixed topology. We
will assume a susceptible-infected (SI) epidemic model, where there are two types of nodes:

e Susceptible nodes: which are not infected with the rumor yet;
o Infected nodes: which have the rumor and can spread it to any other node, including already infected
nodes.

The main approach is to relate this problem to the one of estimating the sources of continuous diffusion fields.
In this case, the recent results developed in the Communications and Signal Processing group address the
problem by taking discrete spatiotemporal measurements of the field obtained with a network of arbitrarily
distributed sensors, and by providing reconstruction schemes to recover the field by estimating the sources
that induced it [3].

In a similar manner, the problem of finding the source of rumors in social networks will be addressed by
collecting data from a network of randomly chosen sensors and using the available data to localize the source
of rumors in the network. Nevertheless, in the case of a fixed topology network, the problem becomes more
challenging as the estimation depends on the fixed topology of the network. This makes it difficult to assign a
well-defined location to the nodes in the network, compared to the case of the physical phenomena of
diffusion where we can give a precise location in space to the points where the field spreads. In addition, the
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topology affects the dynamics of the spreading of rumors due to additional connectivity constraints, compared
to a continuous field where there is no notion of connectivity between any points in the diffusion medium. [4]

Assumptions

The following assumptions are made and justified below:

a.

Network Topology: We will study the dynamics of spreading of rumors and test the source estimation
algorithms on the following network types: tree structure, random geometric graph, small world graph
and scale-free networks. The motivation for choosing these network types is the following: the tree
represents a simple graph which allows more insight into the dynamics of rumors, the random geometric
graph is a mathematically simple spatial network with real-world applications in the modelling of ad-hoc
networks, while the small-world and scale-free properties describe more complex graphs and are
generally used to model the social networks.

Network Topology: The number of nodes in the network, and in addition, the network topology (the
connections between any two nodes) are known in advance. This agrees to a real-world application, where
the connections between the members of a social network are known.

Network Evolution: We will assume that the network is constant at least for the duration of the
observation. Hence, the connections between the nodes in the network are fixed. In addition, there is no
network growth over the time window when observations are taken.

Number of Sources: The research will focus on estimating a single instantaneous source of spreading of
rumors. Moreover, as a future development, the solution could be adapted to the problem of detecting
multiple rumor sources.

Number of Rumors: The main motivation of this project is to successfully localize the information
dissemination source in a network. This assumes that the source of rumor will start a large number of
attacks (as is the case of a source of rumors in a social networks or a hacker launching a series of (viral)
attacks on an institution’s infrastructure etc.). Therefore, the model assumes that data resulted from
multiple rumors will be available (e.g. 20 rumors).

Rumor Persistence: The source is assumed to be instantaneous, with time-invariant intensity, based on
the fact that typically, the information does not change while being transmitted from one person to
another. In addition, once a node is infected with the rumor information, it will not be possible for it to
eliminate the information.

Probability of Rumor Spreading: We will assume that the rumor spreads with constant probability, defined
as the probability to pass the rumor between any two connected nodes. Even though in a social network,
some people have a higher tendency to spread the rumors than others, we can assume that on average,
the rumor will spread with a constant probability.

Monitoring Nodes: The sensor nodes are selected randomly from the set of all nodes in the network. Since
we have access to a limited number of sensor nodes, we can gain additional information through
measurements over time.

Time Measurements: We will assume that we have access to measurements at various nodes in the
network, at well-defined time instants after the rumor spreading has started. This is the only assumption
which may not agree entirely with a real-world application, as in a real-life case we would not be able to
precisely know at what point in time we are taking measurements in the network, after the source
emission has started. However, this assumption is necessary in the initial phase in order to provide a
starting point for tackling the problem.
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Project Aims and Objectives

The main project deliverables are the following: research and clear formulation of the problem, derivations of
expressions to recover a single source responsible for spreading of multiple rumors, development of Matlab
environment and Matlab simulations to evaluate the proposed solutions and the algorithms developed, on
synthetic data.

The following objectives have been achieved. Firstly, the initial requirement of the project revolved around
diffusion processes, Markov chains and random walks and how these theories could be applied to the problem
of spreading of rumors in a social network. A set of research papers have been read and understood and more
in-depth knowledge was gained using other materials such as books or reviewing previous modules. The initial
research helped understand the dynamics of the rumor spreading in networks, as a similar phenomenon to a
diffusion field and how this could be related to a Markov process.

Secondly, a Matlab environment has been set-up in order to better visualize the dynamics of rumor spreading
and to understand how the different network topologies and parameters affect this spreading. This
environment consists of a network defined through a matrix, and artificially generated, rumor spreading
processes. This gave an initial understanding of the dynamics of the rumors in various network topologies:
tree, random geometric graph, small-world and scale-free graph.

The subsequent research focused on identifying related research topics and on the state-of-the-art solutions
to the problem of detection of the diffusion source in social networks. This helped further understand the
problem, the challenges associated with it, and various evaluation methods typically used for the solutions
proposed.

Based on the research of the state-of-the-art solutions, as well as vast research concerning topics such as
graph theory, statistics, probability distributions, or mathematical simplifications, an initial approach to the
problem was developed. This approach has not been studied before, and involves the derivation of an
analytical formulation for the theoretic probability of a node being infected, as a function of the time since
the rumor initiation, as well as of the shortest distance to the source emitting the rumor. The research
completed as part of this approach includes: shortest-path Dijkstra algorithm, mathematical tools such as
Stirling’s formula, approximating the sum of binomial distribution into a Gaussian distribution, topics related
to Markov processes such as path counting of constrained random walks.

The mathematical formulation of the theoretic probability of rumor infection further lead to the development
of an algorithm for detection of the source. Herein, robust schemes will be developed, which have a high
probability of correct detection, on an arbitrary network whose topology is known and in particular on graphs
which accurately model the properties of a real social networks, such as small-world or scale-free.

The problem of recovering multiple sources responsible for the spreading of data within a network is a
challenging problem and will remain as part of the requirements for future work. Moreover, some other topics
which will be included in the future works are: relaxing the assumption that the rumor spreads with constant
probability within the network, or assuming that the time at which we take sensor measurements is unknown.
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Challenging Aspects

The problem of identifying rumors and their sources in social networks is a hard problem to solve, which has
largely remained unexplored until recently.

Besides this, one other challenging aspect of the project is due to the limited related research literature on
the topic of rumor detection in a social network. Most of the current research focuses on identifying how the
dynamics of various networks affect the spreading of rumors, and not on the inverse problem of detecting the
source. In addition, there exists some related research, which aims to find a detection algorithm, however the
problem is often over-simplified by: in some cases only simple networks such as tree graphs are considered,
others assume that we have snapshots of all the infected nodes in the network.

Furthermore, deriving a precise analytical formula for the probability of spreading of rumor is mathematically
challenging and the approximations used to simplify these derivations may decrease the accuracy of the
results, hence leading to erroneous detection of the source. Moreover, modelling complex real-world
networks could be challenging. In addition, a wide range of simulations and analysis of results are required in
order to understand the dynamics of spreading of rumors in various networks, and to evaluate the source
detection solution.
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Chapter 2

State-of-the-Art

Survey of Related Literature

This section gives an overview of the relevant literature research, summarizing some of the state-of-the-art
approaches used to solve the problem of rumor source detection.

In the paper “Rumors in a Network: Who’s the culprit?” [5] the authors propose a rumor spreading model
based on the susceptible-infected (SI) model. In this model, there are two types of nodes: nodes susceptible
to infection, and nodes which currently infected and can thus continue spreading the rumor. The paper then
addresses the source estimation problem, simplified by considering the case of regular trees, where every
nodes has the same degree, and where only one node can be a source of rumors. The estimation is done by
modelling the time for a node i to transmit the rumor to its neighbor j as an exponential random variable.
Since each node is equally likely to be the source, the best estimator of the actual rumor source will be the
Maximum Likelihood (ML) estimator. The ML estimator is given by ¥ = arg max,eg, P(Gy|v" = v), where v*
is the actual rumor source. The paper then proves the fact that in a regular tree network, the ML estimation
is equivalent to a combinatorial problem, if we have access to the rumor graph, i.e. if we know exactly all the
nodes that have the rumor at a certain time, which form a subgraph Gy . This is equivalent to a metric called
rumor centrality which represents the likelihood of a particular node to be a source node and hence, the source
would be the node in the infected subgraph with the highest rumor centrality. The evaluation of the solution
is given by calculating the rumor source estimator detection probability for line and geometric trees, versus
the number of nodes in the graph and for various values of the parameter characterizing the tree, denoted
by a. This parameter is used to give upper and lower bounds on the maximum number of nodes located at a
distance d from a node. In addition, the solution is also evaluated by looking at the estimator error, given by
the number of hops between the estimated source and the actual one. It is shown that the detection
probability of the rumor source estimator is approximately P = 0.9, for a small geometric tree with less than
100 nodes, decreasing to P = (0.2 for a size of N = 400 nodes. In both cases, the parameter of the regular
tree is @ = 0. When the parameter @ = 1,2,3,0r 4, the probability of correct detection is P € [0.9,1]. In
addition, the frequency of an estimator error equal to e = 1 hop is approximately 80%. The algorithm was
also tested on small-world and scale-free networks, where the performance is reduced compared to the case
of tree graphs. In this case, the source estimator error is 0 only in 15% of the time.

In the paper “Rumor centrality: A universal source detector” [6] the authors extend the solution to random
graphs. In this work, the authors propose an approach that takes advantage of knowing all infected nodes in
the graph. As such, this approach might not be best suited for a real-world application, considering the
challenges of having access to this information, as well as the complexity of the algorithm for large network
sizes.
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In the paper “Spotting Culprits in Epidemics: How many and which ones?” [7] the authors provide an
algorithm to identify the likely sets of source nodes, given a snapshot of the network after the rumor has been
spreading for some time. This is achieved through the Minimum Description Length method, which simulated
the spreading of rumors starting from the estimated set of seed nodes and chooses the set which best
described the given snapshot. The best set of nodes can be identified without knowing the number of
spreaders a priori.

In the paper “Rumor Source Detection under Probabilistic Sampling” [8] the authors analyse the problem
where the nodes in the network randomly report their infection state, hence having access to an incomplete
snapshot of the infection state. The evaluation is done on regular trees, using the susceptible-infected model.

In the paper “Inferring the origin of an epidemic with a dynamic message-passing algorithm” [9] the authors
study the problem of detecting the single source of an epidemic outbreak, by having access to a snapshot of
the network at a certain time and using the susceptible-infected-recovered model. The algorithm proposed is
based on dynamic message-passing equations, giving the probabilities that a certain node i is in a given state
at time t, where the possible states are susceptible, infected or recovered.

Furthermore, in the paper “ldentifying Rumors and their sources in social networks” [10] the authors are
analysing the problem of finding the rumor source using observations at a finite set of monitors. The algorithm
proposed finds a minimal set of candidate sources, based on the number of infected nodes that the candidate
source reaches (which should be high for a more likely source), as well as the number of susceptible nodes
that can be reached from the source (which should be low for a more likely source). The method is evaluated
using different strategies of selecting the monitor nodes, such as random selection or selection based on the
largest betweeness centrality which depends on the distance and number of edges between the monitor
nodes. The solution is evaluated on a directed graph of 30146 nodes. The results show that as the number of
monitors increases, the rank of the actual source decreases. For example, for 20 monitors (0.06%), the rank of
the actual source is approximately 1000, dropping to below 10 when more than 650 monitors (2.15%) are
used. In addition, the distance between the main suspect (rank 1) and the actual source is in all cases smaller
than 3 hops.

In the paper “Routing out the rumor culprit from suspects” [11] the authors are using a priori knowledge of
the set of suspect nodes and a single observation of all the nodes in the network, in order to construct a
maximum a posteriori estimator to identify the rumor source. This is based on the assumption that in a real-
life application, some individuals might be more likely to initiate the rumor spreading, or another example are
the frequent travellers who will be more likely to cause an epidemic outbreak. The evaluation of the method
is performed on a regular tree network of 1000 nodes, where the infection is started by a source randomly
selected from a set of suspects. The results show that as the suspect size decreases, the probability of correct
detection increases. For example, when the set of suspects has cardinality k = 2, the detection probability is
P = (0.55 for a node degree of § = 3, increasing for a larger node degree of § = 20 to P = 0.95. For a larger
suspect size, there is a small drop in the correct detection probability. In summary the authors consider the
problem of identifying a single source out of a pre-defined set of suspected nodes, using the susceptible-
infected model, along with a single observation of the entire network. The results prove that the performance
of the detection algorithm is improved when a set of suspects is known. Nevertheless, this assumption, as well
the assumption of having access to the state of the entire network, might be unrealistic for most real-world
applications.

In the paper “Rooting our Rumor Sources in Online Social Networks: The Value of Diversity from Multiple
Observations” [1], the authors address the problem of detecting the source of rumor spreading, using multiple
observations, which increase the reliability of source detection in a network. The authors study the problem
of a single rumor source and evaluate the solution in degree-regular trees. In addition, the case of multiple
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connected sources is also studied for general trees, as well as general graphs. Moreover, the detection
algorithm assumes that multiple snapshots of the entire network are available, i.e. all the nodes need to be
observed. The source detection method consists of observing the entire network at some time and finding a
subset of infected nodes. Then, a Maximum Likelihood detector is calculated for each potential source s, as
the maximum of the probability of observing the subset of infected nodes, assuming the rumor was initiated
at node s. The detection algorithm is evaluated by computing the asymptotic correct detection probability
against the node degree in a regular tree. As the node degree increases, so does the detection probability
asymptotically. For example, for the case of two independent observations, and a node degree d = 3, the
probability of detection is P = 0.5, while for a node degree d = 16, P = 0.9. Under three independent
observations, a node degree d = 6 is sufficient to obtain a probability of detection of P = 0.9. Hence, it can
be seen that the authors also show that in addition to the diversity of observations, richer connectivity also
enhances the detection. They also evaluate their method by looking at the frequency of the detection error,
measured as the shortest path between the estimated source and the real rumor source. The results obtained
showed that for the estimation of a single source using k observations of the entire scale-free network, the
frequency of nopeps = 0is f < 5% for k = 1, increasing to f = 90% for k = 5 observations. The method
performs less well for a small-world network, where the frequency of correct detection is f < 20% for any
number of observations k < 5. The method using multiple observations leads to a better performance in the
case of multiple connected sources as well. While the method proposed in this paper is highly performant, it
requires knowledge of the state of all the nodes in the network, for multiple observations. This would be hard
to achieve in a real-world application, where the number of nodes in the network can be several orders of
magnitude.

In the paper “A fast Monte Carlo algorithm for source localization on graphs” [12] the authors describe a
method of estimating the source of rumors from a small set of sensor nodes, by considering measurements
within a fixed time interval at some unknown time after the initial rumor spreading. Within the considered
time window, it is assumed that the nodes observed could be classified in the following three categories:
infected nodes (which already have the rumor at the time window), susceptible nodes (nodes which do not
have the rumor throughout the duration of the time window, but could receive it) and transition nodes (which
will get the rumor for the first time at a certain time within the considered window). Hence, the set of
observers can be partitioned as follows:

Or = nodes which transition from susceptible to infected
0 = Or + O; + Og, where Os = susceptible nodes
0; = infected nodes

Moreover, the authors define the index of the first observation at which a node transitions to an infected state
as:

m; ={1,2,..T — 1},where T is the lenght of the time window.

In addition, it is assumed that the infection time of node indexed 1 is 71, and hence the relative infection times
will be t; — 74, for each node i. Hence, for each potential source s, a log-pseudolikelihood function can be
calculated as follows, assuming that the relative infection delays are independent:

1(s) = Yieop gy l0gP{Ti — 71 = my —my|sHYieos logP{T; — 71 2 T — my|sHdieo, logP{ti — 14 <
—m,|s}

In the above equation, m; — m; are known from observations. Moreover, we can approximate the infection
times as independent Gaussian random variables. Hence, in order to estimate the marginal for the relative
times, it remains to find an estimation for mean and variance of the infection times, corresponding to each
source s. The authors achieve this by sampling the set (74, 75, ..., T,) for several iterations for each source s,
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and finding the mean and variance of those samples. The sampling method consists of assigning the value of
the shortest distance between the source node s and the monitor node i, t; = d(s,i). The log-
pseudolikelihood function will be evaluated for each node, and the potential sources will be ranked according
to the value of the function. The source estimation algorithm is evaluated by considering the cumulative
distribution function for the rank of the source, i.e.

P{true source rank < rank intervall |a fraction f% of observes}.

The tests have been performed on a random geometric graph of size N = 100 nodes. For example, for f =
100% (i.e. all the nodes in the network are observed), the probability that the real source is within the top 10
ranked sources is P{rank < 10} = 0.9. When f = 10%, the same probability drops to P{rank < 10} = 0.7,
while for f = 5%, P{rank < 10} = 0.5. The method has been evaluated using the susceptible-infectious
model, assuming a single rumor source, and for small regular networks, such as random geometric graphs and
trees.

In the paper “Spread of a Rumor” [13], the epidemic framework used is the susceptible-infected one, where
each infected node is able to infect only one of its susceptible neighbours at any given time. The authors
model the number of individuals to be told the rumor at a given discrete time, as a random variable with
hypergeometric distribution. This is used to derive a difference equation characterizing the expected number
of persons who know the rumor at a given time step.

Summary of State-of-the-art

In summary, most of the relevant research papers provide solutions to the problem of spreading of rumors in
a social network, following the susceptible-infected model, where the nodes can either be infected or
susceptible and once a node has received the rumor, it cannot recover from it.

In terms of topology, a significant focus of current methods is represented by tree-like topologies or random
geometric graphs.

Moreover, most methods are based on the assumption of a complete snapshot of the network, which is
generally difficult to achieve in practice.

Although most methods presently focus on detection of a single source and there are a few methods that can
be used to identify multiple sources; however there are typically more computationally expensive and
challenging to implement.

With regards to the rumor spreading probability, current methods assume that the infection probabilities are
equal across the entire network. More recent methods have been extended to variable probabilities of
infection across different edges, which gives a more realistic model.

In terms of complexity, most current methods are computationally-expensive, with complexity ranging from
O(NlogN) to O(Nk), where N is the network size.
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Network Topology

The social network will be described through a graph where the nodes represent individuals and the edges
correspond to the interactions between them. It has been shown that most real-world networks exhibit the
small-world and scale-free properties. Our network will be initially modelled as a small-world graph, and
following the initial results obtained on this type of graph, the algorithms will also be applied to a scale-free
network.

Some of the typical characteristics of complex networks are the clustering coefficient and the average distance
between any two nodes. The clustering coefficient of a node is defined as the ratio between the numbers of
existing edges between his neighbouring nodes, divided by the number of total possible edges that could exist
between his neighbours, while the clustering coefficient of the network is the average over all the nodes. The
average distance represents the number of edges corresponding to the shortest path between the two nodes
[14].

In has been demonstrated that the small-world and scale-free effects are properties displayed by most real-
life networks. These are neither completely regular nor completely random, and hence, their properties are a
mixture between those of regular networks (great clustering coefficient, long average distance), and those of
random networks (small clustering coefficient, short average distance) [14].

The fact that the node degree in real social networks follows a power-law degree distribution has been
explained by models such as the Preferential Attachment Model, as proposed by Barabdsi, who suggests that
the main difference between a random and a scale-free network is the fact that the scale-free network has a
large number of small degree nodes, most of which are absent in a random network. Moreover, the probability
of a high-degree node or hub is several orders of magnitude higher in a scale-free than in a random network.
Furthermore, the more nodes a scale-free network has, the larger are its hubs, since the size of the hubs grows
polynomially with network size [15].

Taking into account these two properties, the small-world and scale-free networks can be described as follows.
The small world network is defined by a graph where most nodes are not neighbours of each other, but most
nodes can be reached from any other node by a small number of steps. Small-world networks have small
average distance and great clustering coefficient. The scale-free have even smaller average distance and great
clustering coefficient and in addition, they exhibit the property that the degree distribution follows a power-
law distribution. In other words, the probability of a node having k connections to other nodes is given by
P(k)~k™Y, where y is a parameter in the range (2,3). The degree distribution is the main difference between
a scale-free and a small-world network, the latter having a Poisson distribution of the node degree. The
existence of hubs, or high-degree nodes in scale-free networks will prove to be an important factor for the
derivation of the probability of rumor spreading in such a network, as seen in the next chapter [14].

We should also note that in a small-world network the average distance scales as L~InN, while in the scale-
free network this scales as L~InN /In(InN), where N is the number of nodes in the network [16].

We show in Figure 1 below, realisations of some common network models.


https://en.wikipedia.org/wiki/BA_model
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Figure 1: From top left to bottom right: Tree Graph, Random Geometric Graph, Small-world Network, Random and Deterministic
Scale-free Network

Random Walks Theory

The background to the theory of random walks consists of the following: understanding of Markov Chains
theory, understanding the random walk as a Markov Chain process, defining the spreading of information
within the network as a random walk process, constrained on the dynamics of rumors in the fixed topology
network [17] [18].

Since the spreading of rumor is a Markov process, some results of the random walk in 1D could be applied to
our epidemic model (e.g. number of paths a random walk could follow to reach a certain point). General
properties of Markov Chains and Random Walks are summarized below.

a. Markov Chains [17]

A Markov chain is a mathematical model of a random phenomenon evolving with time in a way that the past
affects the future only through the present. In Mathematics, a phenomenon which evolves with time in a way
that only the present affects the future is called a dynamical system.
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A sequence has the Markov Property if for any random variable in the sequence, the future process (index m
>n) is independent of the past process (index m<n) conditionally on X,,. In other words, the future is
independent of past given the present. The random variables take values in some countable set S, called the
State Space. The elements of S are frequently called States. Since S is countable, we call X;, a Markov Chain.

A simple example of a Markov Chain would be the case of a 2-state Space, where a mouse moves from Cage
1 (State X=1) to Cage 2 (State X=2) with probability p, and vice-versa with probability 1-p. This can be
represented either through a state diagram, or through a Transition Probability Matrix, where each row
contains the probability related to moving from a certain point to a different point, hence, the probabilities
adding to 1 on each row.

b. Transition Matrix

A transition or stochastic matrix is a matrix used to describe the transitions of a Markov chain. Each entry P;; in
the matrix denotes the probability of transitioning from i to j in one step.

The properties of the stochastic matrix are the following:

1. Pj=0,Vij.

2. The sum of the transition probability from a state i to all other states mustbe 1, i.e. 3. P;; = 1. Vi.

3. The probability to transition from i to j in k steps is given by P¥.

c. General Properties of Random Walks [17]

Arandom walk is a special kind of Markov Chain, which possesses the additional properties of time and spatial
homogeneity. Time-homogeneity means that the transition probability p, does not depend on time, while
space-homogeneity means that the transition probability should depend on x and y only through their relative
positions in space. This translate to py, = Px4zy+z fOr any translation z. In other words, given a function
p(x), a random walk is a Markov Chain with time- and space- homogeneous transition probabilities given by

Dxy = p(y - x)-

d. Random Walks in 1D [17]

Let us denote by S,, the state of the random walk at time n. Hence, this can be represented as S,, = &; + &, +
-+ &,, where g; are the increments of the random walk starting from 0, i.i.d. random variables with common
distribution P(g,,) = p(x).

In our derivation, we will be interested in calculating the n-step transition probability, i.e. the probability of

m _

reaching a state y located n steps away from the starting point x. This has the following expression: p,,’ =

P.(S, =y) = P(xte; + & + - + g,=y).

For the random walk in 1D, the random vector represented by the n increments (&3, &, ... €,) can take values
in {—1,+1}", since the walk can either move one step to the right or to the left. We are interested to find the
probability of event A, where the A={random walk starts from (0,0) and ends up at (n,y)}.

The total possible paths in the 1D space, which are followed in n steps is given 2" since at each step, there are
only 2 possibilities for the increment, either to the right or to the left. Hence, the probability of each path is
Pley =ai,6 =0y, ...+ &, =a,) =27

#A . . . -
Hence, P4 = S which shows that if we can count the number of elements of A we can compute its probability.
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If there are no additional constraints on the random walk, besides the specific starting and ending points, then
n n

the number of paths in A is given by #4 = (ﬂ), which means that P4, = (n_+3’> X 27 [17].
2 2

e. Random Walks on General Networks: Rayleigh’s Shortcut Method [19]

Let us assume we have a general network, with any two nodes i and j connected by edges to which we assign
a resistance value R;;. The conductance of this edge will therefore be C;; = 1/R;;.

We can define the transition matrix of a random walk on this network to be given by:

Py =, where C; = 3; C;

If we assume that the resistance values are constant within the network, then the probabilities of a node to
spread the rumor to any of its neighbours will be equal.

If a node is more likely to spread the rumor to only some of its neighbours, then the spreading probabilities

will be inversely proportional to the resistance between the nodes, and hence, a higher spreading probability
means a lower value of resistance.
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Mathematical Methods for Expression Simplification

Stirling’s Formula

In mathematics, Stirling’s formula represents a powerful approximation for factorials, which leads to accurate
results. The formula has the following form:

nt~vzmn ()

The following table illustrates the accuracy of the approximation:

Actual Approximation
n! n\"
2nn (Z)
1 1 0.922
2 2 1.919
3 6 5.836
4 24 23.506
10 3,628,800 3,598,695.619

Table 1: Stirling’s Approximation Accuracy

De Moivre-Laplace Formula

The de Moivre-Laplace theorem is an approximation to the binomial distribution, given by the normal
distribution. If the probability of success is p and the number of independent Bernoulli trials is n, then the
normal distribution to which the probability mass function of the random number of successes observed has
the following parameters: mean np, and standard deviation \/np(1 — p).The below formula is valid for large
values of n.

_(k-np)?

(Z)qu"_k = \/anque npq  ,wherep +q = 1,p,q > 0, and k is in a neighbourhood of np.
Actual Approximation
n e
k n-k _(k—np)
(k)p qn ;e 2npq
J2nnpq
5 2 0.5 0.3125 0.904
20 2 0.5 0.000181 0.000296
20 15 0.5 0.0147 0.0026
50 2 0.5 1.08x10712 7.29x10"11
50 30 0.5 0.0418 0.0415

Table 2: De Moivre-Laplace Approximation Accuracy
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Chapter 3

Analysis and Design

This chapter provides a description of multiple approaches considered for the problem of identifying rumor
sources in social networks. For each approach, a high-level overview is given, as well as the motivation for the
approach, any assumptions made, a more detailed mathematical description, and advantages and
disadvantages.

Novel Aspects

The solution to the problem of estimating the sources of spreading of rumors in a social network will focus on
relating this problem to that of estimating the localized sources of diffusion fields. The recent research into
this field conducted within the Signals and Communications Group at Imperial College London presents an
efficient method for the estimation of sources of diffusion fields in [3].

In this respect, one of the novel aspects of this design is represented by the calculation of the theoretic
probability of rumor infection, as a function of the time delay since the rumor initiation and the distance from
the source. The derivation of the theoretic probability is motivated by the similarity between the rumor
dissemination within a network and the diffusion process of a physical phenomenon. In the case of a diffusion
process, the source could be estimated using spatiotemporal samples of the field obtained through a sensor
network [3]. Similarly, if we could find the intensity of the rumor as a function of space and time, then we
could use measurements at some monitoring nodes in order to retrieve the rumor source. Nevertheless, the
latter problem is more challenging due to the additional constraints imposed by the network, such as the fact
that there is no exact notion of location of the nodes.

Theoretic Probability of Rumor Dissemination: Initial Solution

This approach formulates the spreading of rumors as a random walk process in 1D. The nodes in the network
will be arranged based on the length of the shortest path to the source who starts the spreading of rumors.
Analytical formulas for the probability that a node located at a certain distance d will get the rumor in k steps
will be derived, as a function of the minimum distance d. For a selection of nodes, these theoretical
probabilities will be compared against probabilities obtained through simulations, in order to find an estimate
for the distance and hence to be able to determine based on this, which node is the source of rumors.
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a. Notations
A list of commonly used notations is presented below:

1. N isthe number of nodes in the network;

2. ks the number of discrete time steps between initial infection at the source node, to the time when
we take the measurement at another node;

3. K is the total number of time steps;

4. L is the total number of experiments;

5. d is he minimum distance between the source and a certain node;

6. U;is a matrix where element U;(k, j) is the measured probability that a node j gets the rumor after

k time steps, at each experiment i ;

7. Visamatrix where element VV(k, j) is the measured average probability that a node j gets the rumor
after k time steps, over the number of experiments L ;

8. P is a matrix where element P(k, j) is the predicted probability that a node j gets the rumor after k
time steps;

9. qgqk is the estimated probability of a node located at distance d to get the rumor for the first time
after k steps; Compared to the elements of P, this carries additional information regarding the
distance between the sensor and the source node;

10. Q4 (k) is the estimated probability of a node located at distance d to have the rumor at time step k;

11. u is the probability of spreading of rumors within the network, i.e. the probability to transmit the
rumor between any two connected nodes at each step;

12. a is the probability for the rumor to be passed from a node at distance d to a node at distance d +
1, B is the probability for the rumor to be passed from a node at distance d to a node at distance d,
and y is the probability for the rumor to be passed from a node at distance d to a node at distance d —
1;

b. Overview

As an overview, this approach aims to find an analytical model for the probability P(k, j) as a function of the
distance d, i.e. the shortest path between node j and the source. Using this formula and the measurements
obtained from the sensor nodes at different points in time, an estimate of the distances dj will be obtained,
for some sensor node j, which will thus be used to accurately detect the source.

The approach begins with an initial re-structuring of the network of nodes. In this sense, the nodes will be
rearranged according to their minimum distance from the source.

The approach then models the spreading of rumors as a random walk in 1D and tries to find a formula for the
probability that a node located at a minimum distance d from the source will get the rumor in k steps. This
formula should resemble that of a diffusion field. In addition, the histogram of this probability over different
time steps k, and for different values of distance d should have a similar behaviour to the plot of measured
probability when simulating a spreading of rumors in the network. In other words, the plot of P(k, ) over k
should be the same as the plot of V(k, ) over k. If this is the case, we can then use measurements of the
probability at a random node in the network, which will enable us to find the minimum distance between this
and the source. By applying this at several points in the network, we could localize the source using the
trilateration process.

The values in the matrix IV are derived as follows. At each step, the rumor is allowed to spread within the
network. The values in the matrix U are updated by determining which nodes in the network currently have
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the rumor information. After a set number of K time steps, the experiment stops and matrix U is in its final
form. The experiment is repeated for a number of times equal to L experiments, and the matrices U; are
obtained, with i = 1,2 ... L. These experiments can be seen as simulating the spreading of new rumors within
the network starting from the same source. The average of the elements of these matrices is taken over the
number of experiments L, in order to obtain V.

One of the most challenging and interesting aspects of this approach is represented by the modelling of the
spreading of rumor as a random walk. In this sense, the nodes will firstly be re-arranged according to their
distance to the source. Hence, if a node is located at distance d from the source, it will be positioned on level
d, if the distance is d+1, then the node will be on level d+1 etc. At each time step, if a node on level d has the
rumor, it can either pass it to a node on level d, to a node on level d + 1, or to a node on level d — 1, and this
is repeated for a number of steps until the rumor reaches our sensor node. As we are interested in calculating
the probability that the rumor reaches from the source to the sensor node for the first time after k steps, we
would like to calculate the total number of paths between the source and the sensor node, and the probability
of the rumor taking each of these paths. This will lead to a formula for the estimated probability q, , of a
node located at distance d to get the rumor for the first time after k steps. In order to calculate the probability
of a node to have the rumor after k steps, we need to sum all the probabilities of the node getting the rumor

in 1,2, ..., k steps. Hence, the probability of a node to have the rumor after k steps is Qg = Z;:II da,j -

We will assume that the probability of spreading is constant, denoted by u. This probability could be used to
derive the probabilities of the rumor to spread from a node on level d to a node on level d (a), to a node on
level d +1 (B) , and respectively to a node on level d — 1 (¥). In the case of a non-self-avoiding walk, the
following assumption will be made, as explained below: § > a andy = 0, whilst the mathematical derivations
related to this approach are presented in the Mathematical Formulation section below.

c. Assumptions

To begin with, we assume that the network topology is known and that the network does not evolve in time,
which ensures that all the connections between the nodes remain fixed and that no nodes are removed or
added to the network throughout the duration of the observation. In addition, we assume the susceptible-
infected spreading model, where any infected node can spread the rumor to any of its neighbours (including
the ones which already have the rumor), and once a node holds the rumor information it cannot recover from
it. The rumor spreading will therefore be modelled by a non-self-avoiding random walk. This assumption is
justified by a real-world application of the problem, that of spreading of rumors in a social network, where it
is possible that a person hears the same information from more than one other person.

Secondly, the approach assumes that the spreading of rumors happens with a constant probability throughout
the entire network, which means that each node can spread the rumors to any of its neighbours with a fixed
probability of spreading.

Furthermore, another assumption made is the fact that a node located at a certain distance from the source
will get the rumor for the first time after a time interval approximately equal to the shortest path between the
sensor and the source.

We will further justify these assumptions through numerical experiments and mathematical derivations, as
described in the sub-section called Mathematical Formulation below.
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d. Related Literature Research

The relevant literature research for the derivations used in this approach includes: theory of Markov Chains
and Random Walks [17], Stirling formula, Taylor approximation, dynamics of trees, random geometric graphs,
scale-free and small-world networks.

e. Motivation for Approach

The decision to re-structure the network based on the minimum distance between the source and all the other
network nodes is useful in order to give a notion of location to the nodes, which is one of the most challenging
aspects of the problem. This could help us apply the concept of random walk in 1D to the derivation of the
probability that a node located at a minimum distance d from the source will get the rumor in k steps.
Moreover, this also provides an advantage concerning the better visualization of the gradient of the diffusion
field, when plotting the values of V(k, d), i.e. the intensity of the rumor information at all the nodes in the
network.

f. Advantages and Disadvantages

The main advantage of this approach is the fact that it can be applied to any of the considered network
topologies, as long as the probability of spreading of rumors is known. Moreover, the derivations do not
require any knowledge regarding the vertex degree, which means they can be applied to real-world networks,
which are inhomogeneous in degree.

The drawbacks would be the following. Firstly, the performance of the Dijkstra algorithm, which is required in
the source estimation algorithm using the below derived theoretical probabilities of rumor infection. This
algorithm calculates the minimum distance between any two nodes in the network. The time complexity of
the Dijkstra algorithm is O(n?) is very large, leading to increased computational complexity in calculating the
minimum distances in a large network.

In addition, another disadvantage of this derivation is represented by the constant connectivity index used in
the theoretic probability formula (see Mathematical Formulation section below). While it would be preferable
to have a more exact formula for the theoretic probability (avoiding constant terms), this parameter gives a
degree of freedom, allowing the algorithm to find the optimal probability formula for the particular network
topology and network parameters given. Moreover, as seen in the results in the Evaluation section, by
choosing an optimal connectivity index, the theoretic probability becomes a very good approximation of the
average simulated probability.

g. Mathematical Formulation

The aim of this derivation is to find a mathematical expression for the probability Q;(k), that a node at
distance d, will have the rumor after k time steps. Let g4, be the estimated probability of a node located at
distance d to get the rumor for the first time after k steps.

Furthermore, if a node has the rumor at time step k, then it could have gotten this rumor for the first time, at
timestepk,k — 1,k — 2 ...d, since the rumor cannot reach a node at minimum distance d in less than d steps,

Hence, we could write Qq (k) as: Q4 (k) = Yk_ 4 qa;
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Next, we would like to find an analytical form for q, x, by looking at the diffusion of the rumor as a random
walk process. The figure below illustrates the concept of a random walk, where the nodes in the network are
represented by green dots and arranged according to their minimum distance to the source, located at the
origin. Two possible random walks are shown in blue and orange, as paths of k = 7 steps between the source
and a node located at distance d = 5 from the source.

® ® L Y s Destination
H ! ! Randomly arranged
nodes

Source

—

Minimum Distance D
Figure 2: lllustration of possible Paths of Random Walk of Rumor in the Network

As illustrated above, the rumor can reach the destination by following a wide range of paths, each of total
length k. Hence, there are many ways in which the rumor can reach the destination for the first time, exactly
after k time steps.

Let there be Np 7rys possible ways in which the rumor can get to the destination from the source, in exactly k
steps, and let the set {S1,52,53 ...} be the set of all possible paths.

Hence, since we can assume that any two paths are independent and since all the paths can happen with equal
probability, the probability that the destination node located at distance d gets the rumor for the first time
after k steps is:

NpaTHS

Qae = PSTUS2US3..) = p(SD +p(S2) +p(53) .= D p(S) = Npsrus X p(S)

i=1

Number of Paths

As it can be seen above, the probability that the destination node gets the rumor for the first time is the sum
of the probability of each of the Np 41y paths being the one followed by the rumor.

In order to calculate the number of possible paths Nps7rys, we need to find the number of all possible random
walks in 1D, each containing k segments. When the walk starts from the source, we can write:

S =g + & + -+ &, where g; are independent and identically distributed random variables corresponding
to a segment the rumor follows at each time step. This can take two values according to the type of segment
the rumor follows. If the rumor advances in the network to a node further away from the source and closer to
the destination node (any of the blue segments in figure below), then the corresponding &; = 1. Else, if the
rumor will not advance in the network, and will move to a node at the same distance from the source (yellow
segments in figure below), then the corresponding &; = 0. Else, if the rumor will follow any other segment
(one of the orange segments in figure below), then the corresponding &; = —1.
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Source
—4

{ Minimum Distance D

Figure 3: Possible Paths the Rumor can follow starting from one Node in the Network

Let us denote by #A4 the total number of blue segments in the path, by #B the number of yellow segments in
the path and by #C the total number of orange segments in the path. Then, assuming the random walk is non-
self-avoiding, the following equations hold:

(1) #A — #C = d, where d is the distance from the source to the destination.
(2) #A + #B + #C = k, where k is the total number of time steps.

In addition, a large number of experiments have shown that generally, the probability of a node at distance d
has the rumor increases significantly after a very small number of time steps, typically, for k > d + 2. From
the above results, one approximation that could be made is that #C = 0, which means that #4 = d and #4 +
#B = k. This approximation could also be motivated by the method presented in the paper “A fast Monte
Carlo algorithm for source localization on graphs” and described in the State-of-the-Art section above. In this
paper, the authors consider the following two random processes: the infection process X and the alternate
representation of the process X, denoted by Y. [12]

The process Y = (y(0), y(1), ...) is defined as follows:

0,if t <d(s,i)
1, otherwise

yi(t) = {

where node s is the random source node initiating the rumor, d(s, i) is the shortest path between the source
and node i.

Hence, the process Y contains information about the times at which vertex i first becomes infected, and hence
contains all the information of the process X. The authors prove the fact that P{y;(t + 1) = 1|y(t)} =
P{x;(t + 1) = 1|x(t)}and hence Y = X. This allows the sampling of the first time indices at which each vertex
receives the rumor, (74,75, ...Ty), by the shortest path between the source node and the corresponding
monitor node.

This further justifies the assumption that the number of backward paths #C = 0 and hence #4 = d and #A4 +
#B = k, with #B very small.

Hence, the total number of paths will be Nppys = (P2 [en9th=1

#A-1
followed by the rumor right after it is initiated by the source will always be a forward segment (blue).

) = (Z:D This is because the first segment

This represents the total number of possible ways in which we can choose which of the k segments in the path
are of blue type. A different way to see itis to call T = t{i|i = 1, ... k} the set of time indices, and to find all
the possible ways in which we can form a subset of T, of size d, which contains the indices at which the rumor
will follow a forward (blue) segment.
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In order to find the probability as a function of distance, an approximation of the above formula should be
used. This is derived by applying the Stirling approximation, followed by Taylor’s approximation. A general

S 2+t _m? . .
case of the derivation is given by (ﬁ) = —X e2n), and a mathematical proof is given below:
2
Result
n 2n+1 m2
n—mj)=s X e(_ﬁ
2 21N

Useful formulas
Stirling’s Formula: In(n!) 2 n X In(n) — n+ % X In(2mn)

Taylor’s Approximation: In(1 + x) = x — %le which holds for [x]| « 1

n n!
The following steps show the derivation for an approximation of (n—m) = n—m)._(n+m)
[ !

2 2 2
Step 1. Logarithm on both sides
n n—m n+m
Infn—-m :ln(n!)—ln( !)—ln( !)
> 2 2
Step 2. Stirling Approximation

ln(nllm>={nXln(n)—n+%xln(2nn)}_{(n—m)Xln<(n—m)>_(n_m)+l

) 2 2 2 2
x ln<2n(n;m)>}— {("J;m) x ln((nzm)> - (n;m) +%>< 1n<2n(n;m)>}
Since In (@) = —In(2) + In(n — m), then the formula becomes
ln(nfm> =n X In(n) +l><ln(27m) + (n—m) X In(2) — (n—m) X In(n —m) —l
— 2 2 2 2
X ln(n(n — m)) + (n+m) X In(2) — (n+m) In(n +m) — % X ln(n(n + m))
n 1 (n—m) 1
ln(n—m>=n><ln(n)+z><ln(2nn)+nxln(2)— 5 xln(n—m)—E
2

X ln(n(n — m)) — (n+m)

1
In(n +m) — > X ln(n(n + m))

n _ 1 n m m 1
ln(n—2m>—n><ln(n)+z><ln(2nn)+nxln(2)—Ex(1—z)x1n(n(1—z))—§

xln(n(nx(1—%)))—§x(1+§)xln(nx(1 +§))—%xm(nnx(1+%)>

Step 3. Taylor’s Approximation




22| Theoretic Probability of Rumor Dissemination: Initial Solution

n 1 n m m
ln<n—m>:nxln(n)+—><ln(27m)+n><ln(2)——><(1——)X[ln(n)—_—_
—— 2 2 n n

2
2

m m 1 m
In(n) + o —2] 5 X (In(mtn) — z)

m n m
X (ln(nn) — z) _EX (1 + ;)X on

1 m?\ m?
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2
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It is important to note that due to Taylor’s Approximation, this expression holds for | % [<<1

Hence, when calculating the number of paths for our problem, we need the following replacement of
variables:

1. nbyk—-1
2. %byd—mromwherem=k—1—2(d—1) =k—2d+1
3. The approximation conditions are |%|<<1, equivalent to | k_kz_d1+1 [<<1,i.e.k —2d + 2 < k.Since k =

d, the expression holds for k = d. This condition will be proved in the following section.

Therefore, the number of paths becomes:

_ 2
Zk (_(k 2d+1)

_ ) . -
Nparus = (571) = T X e’ 7%V, which holds for k = d.

Next, we need to find the probability of each path. We will denote by p; = P(&; = 1), i.e. the probability that
at least one of the blue segments is followed at step i, and by pg = P(g; = 0), i.e. the probability that an
yellow segment is followed by the rumor at step i. We assume that once the rumor will either follow a blue or
yellow segments and hence the following must hold: p, + pg = 1.

Hence, the probability that a rumor will reach a node located at distance d in k steps becomes:

2k _(k—2d+1)?

_ =m=)
qax = P(S) X Nparus = pa% x (1 —py)k 2 x m xe 2&k-1
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Probability of Advancing through Network

In order to find an analytical form for p4, we need to determine the probability that the rumor will take any
of the blue steps, such that it advances in the network, getting closer to the destination node. The probability
p4 should depend on the probability of spreading of rumors (denoted by u), as well as on the network
characteristics which will be modelled through the constant factor k, which we will denote by connectivity
index. As already mentioned in the mathematical derivation above, and using results obtained through
simulations on networks of various topologies and size, it can be shown that the probability of infection of a
node at distance d from the source becomes significantly large after the time step k = d + 1. In other words,
we could make the assumption that k = d, and therefore the number of backward paths #C = 0, which
means #4 = d and #A + #B = k, with #B very small. In order to model the fact that the number of paths
#B is very small, we can assume that p, is larger than pg.Therefore, as an initial approximation, p4 can be
assumed to be linearly proportional to p and the connectivity index k¥>=1, which means p,~ u X k.

Hence the probability of a node located at distance d to receive the rumor for the first time at step k is:
2k (_(k—2d+1)2)
Qo ~ (1 X )X (L—p X )4 x ———=—=xe 2K
J2m(k—1)
Consequently, the probability that a node will have the rumor at time step k is equal to:

ot (t—2d+1)?

VI G T (o R
\J2r(t—1)

The above formula assumes that at each step each node passes the rumor to at least one other node, i.e. that
at each time step there is a segment of either the type A (forward) or B (same level). Moreover, the probability
expression does not take into account any multiplication of rumors, i.e. the fact that one node can spread the
rumor to more of its neighbours at the same time. Although the rumor spreading model used for this project
assumes that multiple rumors could be spread from a node at the same time step, we show through empirical
results that the multiplication of paths does not have a significant impact on the probability of rumor infection
and moreover, it could be accounted for using the connectivity index.

k k
Qa(k) = Z Qac = Z(# x 1) x (1—p x )74 x
t=d t=d

The subplots below show the probability of rumor spreading, obtained from a simulated of R = 50 rumors in
a small-world network of N = 200 nodes, rewiring probability § = 0.2, and average vertex degree V = 6.The
large value of average vertex degree aims to ensure a fair comparison of the below probabilities obtained
through different spreading models. Under this conditions, the average number of neighbours a node would
spread to, if it is allowed to spread to any number of neighbours with probability P, = 0.5, will be larger than
1 (which represents the case when each node spreads the rumor to exactly one neighbour with a probability
P, =1).

For the right subplot, the spreading model used is the one where each node spreads the rumor to any of its
neighbours with a probability P, = 0.5.

For the left subplot, the spreading model used is the one where each node spreads the rumor to exactly one
neighbour with a probability P, = 1. In addition, at each time step, the neighbour j to which each already
infected node i spreads the rumor is chosen such that node j is further away from the source or at the same
distance as node i. Moreover, the model assumes that each node can spread to a neighbour which is not
already infected. Only if there are no neighbours which do not have the rumor yet, can the spreading occur to
an already infected node.
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Therefore, the assumptions of this spreading model agree to the assumptions made in the derivation of the
theoretic probability formula above, and the equivalence between the two sets of assumptions is the
following. A spreading probability of P, = 1 means that at each time step the rumor is guaranteed to take a
segment of either the type A (forward) or B (same level), as assumed in the above derivation. The fact that
the neighbour j to which each already infected node i spreads the rumor is further away or at the same
distance from the source as node i considers the assumption that k = d, and therefore the number of
backward paths #C = 0, which means #4 = d and #A + #B = k, with #B very small. Finally, the assumption
that each node can spread to a neighbour which is not already infected is made in order to account for the
fact that p, > pp as assumed in the derivation above, i.e. that the rumor is more likely to progress to new
further away nodes, then to be stagnant.

For the middle subplot, the spreading model is similar to the one above. The only difference in this case is that
each node i can spread the rumor to exactly two neighbours, if these exist and are both further away from
the source compared to node i. Moreover, it can spread the rumor to exactly one neighbour, if this is located
at the same distance from the source as node i. As before, if none of its neighbour are further away or at most
at the same distance from the source, node i can spread the rumor to exactly one of its neighbours. This model
will better reflect the assumptions used in the derivation of the probability formula, where a constant
connectivity index k > 1is used to ensure p4 = k X u has a larger value, which means that the rumor is more
likely to advance through the network to reach its destination in a number of steps k = d.

In the left subplot we can observe that for the initial time steps the probability has a slow rise, followed by a
steep rise after a certain time delay. This is a result of the fact that at a short time after the rumor initiation,
very few nodes have the rumor to be able to spread it further. By comparing this graph with the plot of the
actual rumor spreading to any neighbours with probability Ps = 0.5 (right), we can notice that the probability
values are lower in the former case, particularly at small time steps.

The middle subplot is a better approximation of the actual rumor spreading, reflecting a faster rise in the
infection probability shortly after the rumor initiation. By comparison with the graph of the actual rumor
spreading (right), we can see that this model represent a better approximation of the real rumor spreading,
compared to the model described above.

In summary, the above experiments illustrate that the mathematical formulation for the theoretic probability
is a good approximation of the rumor infection model, by showing how the connectivity index k used inp, =
k X u could account for rumor multiplication (where each node can spread to multiple neighbours). The
connectivity index depends on the topology and characteristics of the network, and could be determined by
simulating a spreading of rumors in the matrix and choosing kopr Which minimizes the error defined as € =
Y 2allQa(k) —Vy(k)|l, where Q4(k) is the estimated probability, and V;(k) is the probability obtained
through simulation. This is further detailed in the Implementation section.
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Last but not least, we notice that the probability of advancing through the network p4 = k X u is also proportional to the rumor spreading probability u. This

is in order to model the fact that a rumor which has a lower spreading probability will take more time to advance through the network until it reaches its
destination node.
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Figure 4: Simulated Rumor Probability for Two Different Rumor Spreading Models: Exactly 1 Neighbour (further or at the same distance from source) with Probability Ps=1 (left), Exactly 2
Neighbours (further from the source) and 1 Neighbour (at the same distance from source) with probability Ps=1 (middle), Any Neighbours with Probability Ps = 0.5 (right)
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Theoretic Probability of Rumor Dissemination: A Robust Solution

As before, this approach models the spreading of rumors as a random walk process in 1D, aiming to derive an
analytical formulation for the probability of infection of a node located at a certain distance d, after k time
steps.

a. Assumptions

The rumor spreading model used is the susceptible-infected model. The nodes can be in one of the two states,
susceptible or infected, and once a node is infected it cannot recover. In addition, a node which already has
the rumor, is able to receive it again from the same or different sources. Moreover, we assume that the
probability of rumor spreading is constant throughout the network.

On the other hand, as opposed to the Inijtial Solution, no assumption will be made regarding the time of
infection of a node, i.e. the time of infection k is not necessarily approximately equal to the shortest path
between the sensor and the source, d. This should provide a more robust mathematical formulation for the
theoretical probability of infection.

b. Related Literature Research

The relevant literature research for the derivations used in this approach includes: theory of Markov Chains
and Random Walks [17], de Moivre-Laplace formula, properties of trees, random geometric graphs, scale-free
and small-world networks.

c. Motivation for Approach

A refinement of the initial solution has as objective the derivation of a more accurate theoretical formula for
the probability of rumor spreading.

d. Advantages and Disadvantages

The refined solution aims to give a more accurate approximation of the theoretic probability of infection. In
this sense, the main advantage this solution provides consists in a more precise calculation of the number of
paths the rumor could follow, with no restrictions on whether the rumor goes backwards or not (as opposed
to the initial solution, which assumes that the number of backward paths #C is approximately zero).
Consequently, this formula could be used to model a wider range of rumor spreading models.

The main disadvantage of this formulation is the dependence on the probabilities of advancing through the
network: probability of forward path pA, probability of stationary path pB, and probability of downward path
pC. These probabilities are dependent on the network topology and network characteristics, for example the
average number of neighbours a node connects to in all the three directions considered (A, B, and C).
Moreover, the calculation of these probabilities might be involved in a scale-free network (which best models
the social network), as the node degree follows a power-law distribution, and using the average vertex degree
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to compute py, pg, and p. might not lead to accurate results in this case (as there are nodes with very large
degree such as hubs, and nodes with very small degree).

Furthermore, another disadvantage is represented by the challenging simplification of the probabilities
formula. While the initial solution provides a closed-form expression for the probability, the solution
presented in this section is more complex and a closed-form solution will remain part of the requirements for
future work.

e. Mathematical Formulation

The nodes will be arranged according to the distance from the source and a theoretical model will be derived
for the probability of a node located at a distance d to get the rumor in k steps.

We assume that the rumor can take any of the following three paths, from any node in the network:

e A —type :the rumor is transmitted from a node at distance x to a node at distance x + 1, where x < d.
e B —type :the rumor is transmitted from a node at distance x to a node at distance x, where x < d.
o ( —type :the rumor is transmitted from a node at distance x + 1 to a node at distance x, where x < d.

We will denote by {74, 73, 73, ... T, } the time steps from the start of the rumor, up to time k. At each time
step, one of the above three possible paths will happen, and hence, we would be interested to count the
number of possible sequences of paths that the rumor will follow in k time steps.

Ignoring the fact that a node can spread the rumor to multiple neighbors at the same time, and assuming that
there are no restrictions on the succession of paths A, B, or C, the following two methods describe the
calculation of the number of paths and the probability of the rumor reaching the node at distance d in k time
steps.

Method |

The following two equations hold:
e (1)A+ B+ C = k (time steps)
e (2)A—C = d (shortest distance)

The number of paths is therefore:

k\ rk—A using (1)+(2) k k—A
Nearns = Z (A)( B ) Nearis = Z (A) (k +d- 2A>

A+B<k d<As<k
A-C=d

We will assume that the probability of each of the three possible segments are the following: p,4, pg and p.
for A — type, B — type and respectively C — type.

Therefore, the probability of each path will be:

e, k—A
_ Ay k+d—-24, A-d
Aak Z (A) (k +d-— 2A> Pa"Ps Pe
d<Ask
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Method Il

The number of paths could also be calculated using the following approach. We consider the independent and
identically distributed random variables {&;, &5, €3, ... &}, which represent the displacement of the rumor at
each time step, and which can have the following values:
1,if A — type displacement
g =1 0,if B — type displacement
—1,if C — type displacement

Then the following equation holds, signifying that the distance taken by the rumor in k time steps is equal to

Moreover, the distribution of each of the random variables is given by:

paif & =1
fe, (&) =4 ppif & =0
Pc, if & = -1

Taking into account the fact that the probability mass function of the sum of independent random variables is
the convolution of their individual probability mass functions, the following holds:

k

P D ei=d|=fi,(e0) * fir () o fr (o)
i=1
Evaluating the formula above, we are able to find the probability that a node located at distance d gets the
rumor for the first time after k steps, i.e. qq k.

As a result, the probability of a node located at distance d to have the rumor at time k is:

k k
ke k-4 o
Qalle) = Z; ar = Z Z (A) (k +d— ZA) JE TR T

t=d d<A<k

Alternatively, this could be written as:

k k k
Qa(k) = qu,t = ZP(Z £ = d)
t=d

I
_

f. Refinement of the Number of Paths

Method |

The counting of the number of paths above assumes that the sequence of 4, B, or C — type segments in the
rumor path is unconstrained and therefore, does not account for any illegal sequence. For example, if the
rumor would be spread in the following sequence {4, C, C, C}, its x- coordinate would become —2, which is
not possible, as all nodes are located at a positive distance from the source. Therefore, a refinement of the
counting of the number of paths is required to account for such scenarios.



29 | Theoretic Probability of Rumor Dissemination: A Robust Solution

The method used is based on the reflection principles of a random walk in 1D [17].

The graph below illustrates a path the rumor could take and its reflection around the vertical line. The
reflection starts at the point where the path touches the vertical line. Moreover, we should note that the first
segment in the path (purple) is always an A — type segment. We also note that reflection can only occur
through the node which is the source of rumors, as this is the only node located on level d = 0.

D=-1 D=-2 4 D=0 D=1 D=2
~
Randomly
arranged
: nodes
\
\
b S
Destination

>

Minimum Distance D

Figure 5: Reflection Principle of Random Walk in 1D

Let us assume that the destination node is located at distance d = x. As we see in the figure above, if the
actual rumor path will reach the coordinate x, then the reflected path reaches the coordinate - x.

Therefore, in order to count the number of paths which cross the zero vertical axis and which have as a
destination a node at distance d = x, after k time steps, we could instead count the number of reflected paths
that reach the destination d = —x, after k time steps. We should note that the reflected paths we are
interested in start at the origin in the positive direction and after a certain time delay, become negative and
end up at a negative coordinate. In other words, this counts strictly the paths which will cross the zero-axis,
and not the paths which start at the origin and remain in the negative left-hand plane throughout the entire
duration of k time steps.

A further illustration and explanation of the reflection principle is given in [17].
As a result, the following holds:
#{(0,0) » (k, d); start in positive direction, and touch zero} =
= #{(0,0) —» (k,—d); start in positive direction}
Consequently:

#{(0,0) - (k,d); remain > 0}
= #{(0,0) - (k,d)} — #{(0,0) - (k,d); start in positive direction, and touch zero }

= #{(0,0) — (k,d)} — #{(0,0) - (k, —d); start in positive direction}

As proven in the section above, the number of paths reaching distance d in k time steps is derived from A +
B+C=kandA—C =d, andis equal to:

w0 - way= > (), 70

d<A<k
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For the calculation of the number of paths reaching distance —d in k time steps we need to count the number
of paths which start in the positive direction (A — type segment) and which after a certain time step return
back at the origin, continuing in the negative direction until distance —d. The following two equations hold:

o (1)A+B+C=k

e (2QJA—-C=—-d
In addition, we assume that the time interval for which the path remains in the right half plane is equal to y
steps, therefore for the remaining k — y time steps the random walk will be negative. This is illustrated in the

figure below.

i D=1 iD=2 4$D=0 D=1 i D=2
4 ®e o

: \ :

: I “ :
© )

. P I W
lllegal, negative path <*r ;’ \\ i Reflection of illegal path

4 ‘e Ve

: v\

L3
»
. i
F--i-—»7 i Destination
TCALECN .
Minimum Distance D
.............. .b
\ A ) First segment of both the actual
Y Y and the reflected path is always
k — y time steps y time steps an A — type segment

Figure 6: lllustration of lllegal Path and its Reflection, of k = 9 Time Steps, and Distance d = 2

Moreover, we denote the number of A — type segments the path takes in the right half plane by Ap and the
number of A — type segments the path takes in the left half plane by Ay. Since the random walk returns to
the origin after y steps, the number of C — type segments the path takes in the right half plane must also be
equal to Ap.
The number of possible paths the random walk takes in the right half plane before the return to the origin is
denoted by Np and is equal to:
fzoor(32—’)
SN H ow
2 P P
The formula above represents a counting of the possible ways of choosing a number of A — type segments
equal to Ap from a total of y segments available, and a number of C — type segments equal to Ap, from the
remaining y — Ap segments available. The B — type segments are fixed once we choose the former two
segment types.
We note that the upper limit of the number of A — type segments should be 35/ since the same number of C —

type segments must happen in order for the random walk to return to origin.
The number of possible paths the random walk takes in the left half plane is denoted by Ny, and is equal to:
k—-y—-d
floor(T)
k—y\/k—y—Ay
w2 (o)) Casd)
Ay Ay +d

An=1
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The formula above represents a counting of the possible ways of choosing a number of A — type segments
equal to Ay from a total of k —y segments available in the left half plane, and a number of C — type
segments, from the remaining k —y — Ay segments available. The B — type segments are fixed once we
choose the former two segment types. The number of C — type segments has been derived as follows:
e The total number of 4, B, C — type segments are denoted by A, B, and C respectively. As described
above, we knowthat A+ B+ C =kand A—C = —d.
e Moreover, we know that Ap — Cp = 0 since the random walk must return to the origin before going

to the left half plane. Therefore, Ay — Cy = A—C — (Ap — Cp) = —d. Hence, Cy = Ay + d.
In addition, we note that the upper limit of the number of A — type segments, i.e. Ay is k_z_d. This is
because Ay + By + Cy = k —y, from which we get that Ay =k —y — Cy — By and hence, Ay <k —y —

Cy.Since Cy = Ay + d, it follows that Ay < k — y — Ay — d, from which we get 4y < <2=¢.

Consequently, the total number of paths that start from the origin in the positive direction and which reach
distance —d is equal to:

i—g fl100r) | floor(#) . y 4
LAY -y —y—-
won-w-a=>1Y (DS
=t P P A=y N N

In the formula above, we note that the upper limit of y is k — d. This is because there must be at least d
segments taken in the left half plane in order to ensure we reach a node at distance —d. Moreover, we also
note that for the same reason, the upper limit of the A — type segments in the left half plane, Ay must be
smaller than k — y — d. In addition, the lower bound of y is 2, since for any A — type segment, there will be
a corresponding C — type in order to ensure the return to origin in y steps, and since the first segment in the
path is a forward A — type, then there must at least one other C — type segment, which leads to y > 2.

Furthermore, by comparing the actual and the reflected paths, we notice that the following equations hold:

®  Crerrectep = Aactuar = A. Hence Cp + Cy = A, whichmeans Ap + Ay +d = A.
o  Apprrectep = Cacryar = A —d. Hence Ap + Ay = A —d, which is equivalent to the condition
above.
This observation imposes a restriction on the number of A — type paths that take place in the left half plane.

In this sense, Ay = A — d — Ap. Therefore, the value of Ay will not range over the interval [O,Ic_jz/—_d], but will

be instead fixed. As a result, the total number of paths that start from the origin in the positive direction and
which reach distance —d is equal to:

k—d fl"‘”(%)

#o0 - G-0=3 1y (V)02

y=2 Ap=1

Last but not least, we should note that the random walk must always have an A — type segment as a starting
point. Therefore,

#{(0,0) -» (k,d)} = [H;k_l (j : 1) (k + dk—_zil + 1)

#{(0,0) - (k,—d); start in positive direction}
k—d floor(%)

- 20 2 ()G DG 2 )L

y=2 Ap=1
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As a result, the total number of paths of a random walk that starts at the origin and reach distance d in k time
steps is:

Nparus = #{(0,0) - (k,d); remain > 0}
= #{(0,0) - (k,d)} — #{(0,0) » (k, —d); start in positive direction}

N A—1/\k+d—-24+1
d<A<k

k_dfloor(%)
202 G )G GO
L L Ap—1)\4p —1/\Ad—d — 4p A—Ap

Consequently, the probability of a node at distance d to get the rumor after k steps is:

k—1 k—A
— Ay k+d—24, A-d
d;k((A—1)<k+d—2A+1)pA Pr Pc

k—q Floor(3)

_ Z[ Z (ZP—_ll) (ZP—_AD (A _kd—_yAP) (k -y —A(zj ;Pd - AP)>]pAA—dek—d—2(A—d)pCA N
y=2 Ap=1

In the above formula, the exponents of the probabilities of advancing through the network, p,, pg, and p¢
are derived as follows:

e The total number of A — type segments is equal to Ap + Ap. In Addition we know that Ap + Ay =
A — d. This is the exponent of p,.

o Therefore,k —d — 2(Ap + Ay) = k —d — 2(A — d). This is the exponent of pg.

e The number of C — type segments is equal to Cp + Cyy = A. This is the exponent of p..

Finally, the probability of a node at distance d to have the rumor after k time steps is:

k-1 k-4
_ A k+d—24, A—d
z{z((A—1>(k+d—2A+1)pA Py Pe

) (2;—_11) (ZP—_AD (A _kd—_yAP) (k -y —A(zj ;Pd - AP))]pAA—dek—d—Z(A—d)pCA "

If we assume that the probabilities of advancing through the network are equal, then the above formula
becomes:
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(k—l)( k—A )
A—1/\k+d—24+1

)
S T ) s

Method Il

Alternatively, a simplified way of calculating the reflected paths could be:

- - . - . — k - 1 k - A
#{(0,0) = (k,d)} — #{(0,0) = (k,—d); start in positive direction} = Zk (A _ 1) (k Cd—24+ 1)

This formulation does not consider the constraints imposed in the previous derivation and simply assumes
that A+ B + C = kand A — C = —d, where A, B, and C are the number of segments of A — type, B —
type, and C — type respectively, in the reflected path.

Therefore, the probability of a node at distance d to have the rumor after k time steps is:

Qu(k) = zk: qac
t=d
k
=Z Z {(z—1>(k+dk—2il4+1>

t=d d<A<k
_ z (k_l)( k—A )}p Ap ktd=24,, A—d

A—1)\k—d—-24+1)"4 "B ¢
d<A<k

As before, if we assume that the probabilities of advancing through the network are equal, then the above
formula becomes:

k

0 =3 > () eraon ) 770 v o oy xPromberer =3

t=d d<A<k

In summary, the following two formulations have been derived, in order to model the probability of a node at
distance d to have the rumor after k time steps:

1. Qd(k) - Zt d{Zd<A<k(( )(k+d 2A+1) Py ka+d—2ApCA—d -

_ floor(% _ — —y—(A—d— — —d—2(4—
T () () (42 (5 iy
2. Qu(k) =Tty dae = kea Dacasi (50 )(k+d ) —

Zd<A<k( )(k d— 2A+1)}pAAka+d Hp i

Both results above could be simplified using Stirling’s approximation or de Moivre-Laplace formula.
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Chapter 4

Implementation

Matlab Environment: Network Model

Construction of Tree Graph

The tree is constructed according to the network size (number of nodes) and its depth (the maximum distance
from the root node to children nodes). Indexing the nodes as shown in the figure below, we are able to find
the indices of the children node for any given parent node, therefore being able to define the edges of the
tree graph.

We assume that each node has C children and that the tree depth is D. Hence, the indices of the nodes located
CD—1_

D_
Tll + 1 and upperyouna = % Therefore, for each of the

nodes indexed between these values, the indices of its children will be index pj1q j = loweT,oyng + c+ 1t +

at depth d range between lower,,yng =

°s  *7 (indexparent — loweryoyng) X C +j — 1, where j = 1,2 ... C.

oz 0 The figure on the left shows an example of a tree of depth D=3, with C = 3
®10 children. At iteration 1, the depth is 1, and the only node is the root of the
, ; graph, node 1. At iteration 2, the depth is 2, and the indices of the added

*8 » ¢ D-1_ D_
nodes range from ¢ T lt1=2to0 % = 4. At iteration 3, the depth is

8g - -

- cP-11 cP-1
®4 4,5 3,andtheindices of the added nodes range from T 1=5to o =
13.
e11 ®12
Construction of Random Geometric Graph
. L N Firstly, N random 2D locations are generated in a square plane of a given
" . aa\ ¥ dimension (e.g. 1x1). Secondly, any two nodes will be connected through
2

yZ! | y an edge if the distance between them is smaller than a given radius (e.g.r =

0.2 for 1x1 grid).
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Construction of Small-World Graph

. The network is created using the Watts-Strogatz algorithm, which can be
o 'y . summarized as follows. Firstly, each node is connected to its K next and
Y previous neighbors (in terms of the nodes’ indices). Hence, each node will
. have 2K neighbors. Then, the nodes are rewired with a given probability 5.
. In this sense, for every node n; and every edge (n;, n;), the edge is replaced
. by (n;, n;) with probability 8, where k is a uniform random variables from
all the nodes that do not have a connection with node n; yet, and which

. avoid self-loops (k # i). The Matlab codes can be found in Appendix E.
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Construction of Scale-Free Network

Method |

A scale-free network is a network which has a power law degree distribution. In other words, the probability
of a node having k connections to other nodes is given by P(k)~k~Y, where y is a parameter in the range
(2,3).

The network is created using the Barabasi—Albert (BA) model. The algorithm begins with an initial network of
Ny connected nodes. A new node is added, by connecting it to n < N, existing nodes. The probability that the
new node is connected to node i is given by:

2jk;

where k; is the degree of node i and the range of the sum is the set of all pre-existing nodes.

P;

It can be seen that high degree nodes , or hubs, will have a higher probability of connecting to a new node,
hence accumulating even more links.

Method Il

This method implements the algorithm described by the authors of the paper “Deterministic scale-free
networks”. The model is described below, generating a deterministic scale-free network, with power law
degree distribution [20].

Step 1. We designate a single node as the root of the graph

Step 2. Two additional nodes are added, and each of them is connected only to the root defined above. Up to
this point the adjacency matrix is M,

Step 3. Two additional unit of two nodes each with the same structure as matrix M, are added, and only the
bottom nodes of each of these units will be connected to the root. No additional connections are
made.

Step n. The rule can be generalized as follows. At step n, two units identical to the matrix obtained at the
previous step, M,,_; will be added to the network. The bottom 2™ nodes of these units will be

connected to the root of the network, with no other additional connections being made.
In3
The distribution of the node degree of the network generated using the method above is (k) ~ k inz .

The difference between the two methods is illustrated in the figures below:
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Figure 7: Implementation of a Scale-free Network using Method | (left) and Method Il (right), for N=81 Nodes
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Matlab Environment: Epidemic Model

The model we consider is the SI model, where each node can be in one of the two states, susceptible or
infected. According to its state, a value is associated to each node, which is v = 0 is the node is susceptible
and v = 1 if the node is infected. We will assume that initially, at time t = 0, a node is chosen uniformly at
random to be the infectious source node, from which the spreading of rumors starts. After t = 1, the source
node is able to transmit the rumor to any of its neighbours, with constant probability u. At the next step, any
of the infected nodes can transmit the infection signal to any of their already infected or susceptible neighbors
(irrespective of whether the neighbors already has the rumor information), with the same probability u. The
process of rumor spreading is a Markov process, since the state vector x(t + 1) depends on the previous
states only through x(t). The rumor is allowed to spread for a fixed number of time steps, and the experiment
is repeated for a set number of times, with the rumor initiated from the same source. Then, the mean over all
experiments is taken, to find the average probability that a node will have the rumor at a certain time step.
The code can be found in Appendix E.

The plots below show the evolution of several rumors in a random geometric graph of N = 1000 nodes, over
6 time steps. The coloring of each node reflects the average probability that it is infected with the rumor at
each time step, specifically it shows the proportion of rumors heard at each node. As illustrated below, the
spreading of the rumor within the network follows a diffusion-like process.
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Figure 8: Average Spreading of Rumors in Random Geometric Graph of N=1000 nodes, at Different Time Steps

The plots below show the evolution of the rumor in a tree graph, of No_ pi1gren = 4 and Depth = 6.
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Figure 9: Average Spreading of Rumors in Tree Graph of N=1365 nodes, at Different Time Steps
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While the figures above do not contain any information regarding the degree of the nodes, the plots below
illustrate various rumor spreading experiments, showing how the spreading is influenced by the degree of the
nodes infected. The rumor simulations have been made on the following network types: tree graph (with 3
children and depth 5), random geometric graph (with 200 nodes and connectivity radius 0.12), small-world
network (with 200 nodes and rewiring probability 0.1), and scale-free network (with 81 nodes).
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Figure 10: Simulation of Rumor Spreading in a Tree Graph for a Spreading Probability of Ps = 0.7
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Figure 11: Simulation of Rumor Spreading in a Random Geometric Graph for a Spreading Probability of Ps = 0.7
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Figure 12: Simulation of Rumor Spreading in a Small World Network for a Spreading Probability of Ps = 0.7

The plot below shows a spreading of rumor initiated at time k = 1, up to time k = 3, illustrating how the
intensity of rumor spreading increases around high-degree nodes, in a scale-free network.
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The diffusion process of the rumor is further illustrated in the figure below, which rearranges the nodes
according to the shortest distance from each node to the source. This also shows the motivation for the initial
approach to solve the source detection problem, which is based on the minimum distances between the nodes
in the graph.
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Figure 15: Average Spreading of Rumors in Random Geometric Graph of N=300 nodes, at Different Time Steps
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Source Detection Algorithm

The source detection algorithm is described below, including the main steps of the algorithm and the
motivation for the design choices presented. This consists of several enhancements which will be evaluated
individually in the Evaluation Chapter of this report.

Algorithm 1: Estimation of a single rumor source using simplified probability formula

Initialisation:

1.

10.

11.

12.
13.

Network topology:
e Tree Graph;
e Random Geometric Graph;
Small World Network;
e Scale-free Network.
Network parameters:
Tree Graph: depth and number of children;
Random Geometric Graph: connectivity radius and grid dimension;
Small World Network: rewiring probability and average node degree;
Scale-free Network: deterministic or random generation model.
Number of nodes in the network N.
Susceptible-Infected Spreading model:
e Spreading with a certain probability;
e Spreading to exactly 1 neighbour in 1 time step;
e Spreading to maximum x neighbours in 1 time step.
Probability of spreading Ps.
Number of rumors R available for the actual rumor spreading.
Number of rumors R, required to compute the average simulation probability used to derive the

optimal parameters of the theoretic probability. Typically R,,,4 should have a large value.

Number of time steps K at which measurements are available after the rumor initiation.

Note: This should be larger than the network radius.

Number of sensors N;.

Maximum estimated distance between the sensor node and the candidate source dX2X ...

This represents one of the criterion of ranking the sensor nodes, and the monitors for which the
estimated distance is larger than the maximum set above will be discarded.

Time interval for considered measurements 7, the only sensor measurements considered are those
occurring in the interval [0, 7].

Minimum cardinality of the set of estimated sources.

Cardinality of set of estimated sources which are selected using the rumor centrality method.

Estimation Algorithm:

Step 1. Generate a network of N nodes and specified characteristics.
Step 2. Calculate the shortest paths between any two nodes in the network using the Dijkstra
algorithm.

Step 3. Designate the source node as the rumor starting point.
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Step 4.

Step 5.

Step 6.
Step 7.

Step 8.

Step 9.

Step 10.

Simulate a spreading of rumors and repeat the experiment for R times, starting from the same
source node. Obtain the probability of the monitor nodes having the rumor at different time
steps in the interval [1, K]. This is denoted by Vipqividuai-

Calculate an average measured probability of spreading Vyyerqge, as follows. Generate a
spreading of rumors from the same source and repeat the experiment for a large number of
iterations. For each experiment, calculate the average probability of a node located at a
certain distance from the source. Average the results over all the experiments.

Derive the optimal sensor maximum error &s.

Derive the optimal connectivity index k as follows. The value of the connectivity index will be
chosen in the interval k € [1,2] in order to minimise the mean-square error between the
theoretic probability and the average simulated probability, calculated as a sum of the errors
at each time step, and for each distance considered. For example, if for the average simulated
probability we choose node i as the initiator of the rumor, and the furthest away node
from the source node i is d, then the mean-square error is calculated as follows:

€= Zd Zk(Ptheoretic - individual)z-

For the calculation of the mean-square error, we could consider all the time measurements
available, or on the other hand, we could consider only the measurements at a time t in a
neighbourhood of the distance d, since these measurements could be sufficient to ensure
accurate results, while reducing the algorithm complexity.

Using the optimal connectivity index, calculate the theoretical probability of spreading
denoted by Ppeoretic-

Randomly select the monitor nodes Nj.

For each monitor, estimate the shortest distance between the sensor and the source node,
by minimising the mean-square error between the theoretic and the measured probability of
rumor spreading, € = Yk (Prheoretic — Vindiviauar)>, Where the time window for which we
consider measurements is ke[t4, T5]. The start time 7, of the window is the time at which the
sensor measurement becomes positive for the first time. This is chosen in order to ensure that
non-negative values in the theoretic probability before the time 7; do not impact the error
calculation. We could consider the example below, where the actual sensor distance is d = 4.
If the measurement at time k = 4 would not be considered, then the minimum error would
be achieved using the theoretic probability values for distance d = 4 (error &, = 0.24). On
the other hand, using the measurement at time k = 4, the total error becomes &; = 0.34,
compared to &, = 0.25.

Time Step
Indmdual Sensor Measurement, 0

Values,d = 5
Values, d = 4

Table 3: Illustration of the Simulated and Theoretic Spreading Probabilities for K=6 Steps

The end time of the window 7, is the moment at which the measurements stop. Alternatively,
it can be set as 7, = min(t; + ¢,K), where c is a constant and K is the number of time
measurements available after the rumor initiation.

After the shortest distance has been estimated using the minimum-mean square error
method, the following check will be performed in order to account for possible noise in the
sensor measurements.
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Step 11.

If the estimated distance is d,g; and the sensor measurement at a time step smaller than d g
is positive, it means that the estimated distance should be replaced by the time step at which
the measurement becomes positive for the first time. Generally, the shortest path error will
be 1 hop and hence, it is expected that the estimated distance can be smaller than the
estimated one by at most 1.

Assign a confidence level to each sensor node based on the criteria below:

Criterion 1: The estimated distance should be at most d2X ...4. The motivation for this
approach is the fact that sensors for which the estimated shortest distance is small have more
accurate measurements and a higher probability of correct estimation of this distance.
Nevertheless, if the maximum allowed distance is too small, then we might not have enough
sensors available and therefore, a correct detection of the source might be challenging to
achieve.

Criterion 2: The number of occurrences of A should be large, where A is defined as the event
when the sensor measurement at time k corresponding to a monitor at estimated distance d
should be larger than the theoretic probability at time k and distance d + 1 and lower than
the theoretic probability at time k and distance d — 1. The motivation is that the conditions
Vaverage(k: d) < Ptheoretic(k: d— 1) and Vaverage(k' d) > Ptheoretic(k' d+ 1) hold if the
simulated probability is averaged over a large number of rumors. Therefore, if these
conditions are satisfied by the simulated probability, they could be a measure of the
convergence of the individual measured probability to the average one, and hence to the
theoretical one.

Criterion 3: The error between the theoretical and sensor measured probabilities should be
lower than the error between the theoretical and the average sensor measured probabilities,
i.e. €1 = Pneoretic = Vindividual» €2 = Ptneoretic = Vaverage and €; < €.

The motivation for this approach is the following. While the theoretic probability (Pipeoretic)
converges to the average simulated probability (Vzyerqge), When thisis computed using a large
number of rumors (e.g. 200), the individual measurements (Vi qividauar) Might deviate from
the average value since they are derived using a small number of rumors (e.g. 10). In order to
ensure a correct estimation of the distance, we need to discard the measurements which
significantly deviate from the average probability.

Criterion 4: The minimum mean-square error of monitor node i should be lower than the
maximum error &. This is done in order to account for the case of noise in the sensor
measurements, where the deviation from the expected probability value is too large.
Different criteria will carry different weightings, from highest to lowest weighting as follows:
criterion 1, criterion 2 criterion 3 criterion 4. For example, not satisfying criterion 1, even
though criterion 2 is satisfied will be penalized more than not satisfying criterion 2, even when
criterion 1 is satisfied. This is because the accuracy of measurements mostly depends on the
estimated shortest path (criterion 1), and less on the conditions of criterion 2. In order to
model this, the confidence level is calculated as follows, where 1 means the criterion is
satisfied and 0 means it is not satisfied.
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Step 12.

Criterial Criterion2 Criterion3 Criterion 4 Confidence Level

OO 00000 OOR R ERRERRLBR

CL=d.g
CL = d 5 + wy, withw, = 100
CL = d,5 + w3, with w3 = 200
CL=d,st + ws +w,
CL = d,5t + Wy, withw, = 300
CL=d,5 + W, +w,

CL =d,st + Wy +ws
CL=dgs + Wy, + w3 +w,
CL = d 5 + wy, with w; = 400
CL=d,s +w; +wy
CL=d,s +w; +ws
CL=d,s +wi; +ws+w,
CL=d,s +w; +w,
CL=d,s +wi +w, +w,
CL=d,s+w; +w, +ws
0 CL=d,st +ws +wy, + w3 +w,

Table 4: Confidence Level Calculation

OO0 O0OO0ORRRREROOOORERRLHER
OO R ROORRFROORROORR
R ORrRORORFROROROROER

The sensor nodes will be ordered according to their confidence levels, from lowest to highest
value.

For each node in the ordered set of monitor nodes, eliminate all source nodes whose distance
to the monitor node is not equal to the estimate distance calculated at Step 9.

There are three main strategies used to eliminate the sources, based on the measurements
from the ranked sensors. Nevertheless, strategy 3 will be used in the final algorithm.
Strategy 1: For each sensor node i from the ordered set of sensors based on their confidence
levels, we create a set of nodes that would have to be eliminated from the set of candidate
sources, using the measurements from monitor i(i.e. based on the estimate shortest distance
between node i and the sources). From this set, we randomly select one node to eliminate,
up to the point where the cardinality of the set of candidate sources is equal to the minimum
value set by the user. For example, suppose the cardinality of the set of sources is
currently C = 11, while the minimum value is C = 10, and that using measurements from
monitor i, we would have to eliminate nodes j and k from the set of potential sources. Since
eliminating both these nodes would lead to € = 9 < 10, we will randomly choose one of the
two nodes to eliminate, either j or k.

Strategy 2: For each sensor node i, we compute how many nodes will be eliminated from the
set of candidate sources, based on measurements from this sensor. As a result, we are able
to determine the number of remaining potential sources, if we were to consider the
measurements provided by monitor i. If this number is greater than the minimum cardinality
set by the user, then consider the estimation based on measurements from node i. Otherwise,
we discard these measurements and the set of potential sources remains as before.

For example, suppose the minimum cardinality of the set of potential sourcesis C = 10. There
are currently Ng = 15 sources in this set. However, if we consider the measurements from
node i, there would be another Ng = 9 sources eliminated, which would bring the set of
candidate sources to Ny = 6. This is lower than € = 10 and hence, the measurements from
node i will be disregarded and the number of potential sources remains at Ng = 15 sources.
This is repeated for all the monitor nodes, by considering more confident nodes first.
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Step 13.

Step 14.

This means that even if measurements from a very confident node cannot be considered as
they would decrease the cardinality of the set of potential sources beyond the minimum limit,
measurements from a less confident node could be considered.

Strategy 3: In order to account for the errors that could occur as a result of using less
confident sensors (as in Strategy 1 above), the following method can be used to create the set
of candidate sources.

As before, for each sensor node i, we compute how many nodes will be eliminated from the
set of candidate sources, based on measurements from this sensor. As a result, we are able
to determine the number of remaining potential sources, if we were to consider the
measurements provided by monitor i. If this number is greater than the minimum cardinality
set by the user, then consider the estimation based on measurements from node i. Otherwise,
we discard these measurements and the set of potential sources remains as before.

Once we discard a sensor from the set of ranked monitors, we will not consider any other
sensors which are less confident than the sensor we have discarded.

This method will ensure more accurate detection. Nevertheless, it might lead to a large
cardinality of the set of candidate sources.

Steps 9-12 are repeated using the same number of monitor nodes N, but with different values
of aM4X .4 For each case, a set of potential sources is obtained, of cardinality equal to the
minimum cardinality value set by the user. The final set of candidate sources will be the union
of the individual sets. This is done in order to ensure increased accuracy of the detection, by
taking advantage of the following fact. Nodes with a small estimated distance have more
accurate measurements. Nevertheless, if dX4% . . is too small, there might be insufficient
monitors to ensure a small set of potential sources. Therefore, by taking the union of the
candidate sources sets we increase the correct detection probability, while reducing the set
of candidate sources.

For each node in the set of potential sources, assign a rumor centrality level, based on the
following criteria:

Criterion 1: This involves the calculation of the sum of the distances from each potential
source to all the monitor nodes, by considering sensor nodes for which the measured
probability at time step t = estimated shortest path + 1 is higher than a certain threshold
value. This approach is motivated by the fact that a potential source is more likely to have
started the rumor is the distance to the monitor nodes which become infected after a short
period of time is small on average. Therefore, the rumor centrality is calculated as follows:
RC = Yiv,(a;+1)>x di, Wwhere d; is the estimated shortest path between the sensor and the

source and V; is the measured probability of node i having the rumor.
The weighting of this criterion should be positive.

Criterion 2: The formula below shows the calculation of the rumor centrality level, based on
measurements from the sensor nodes and on the actual (not estimated) shortest paths
between the candidate source and the sensors.

RC = Z d; + Z Inf () + Z 1000 + Z 2000 + Z 3000

ieSetl ieSet2 ieSet3 ieSet4 ieSet5
In the above summation, the individual sets of each individual sum are:

Set 1= {nodei |Vl(dl + 1) >0, Vl(dl) = 0}
Set 2 = {node i |V;(d;) # 0}
Set3 = {nodei |Vl(dl + 1) =0, Vi(di + 2) * 0}
Set4 = {node [ |Vl(dl + 1) = O,Vi(di + 2) =0, Vi(di + 3) * 0}
Set5 = {node [ |Vl(dl + 1) = O,Vi(di + 2) =0, Vi(di + 3) = 0}
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The motivation behind the above penalties for each of the sets is the following.

Firstly, if the real distance between the candidate source and the monitor is d; and there is a
positive probability of this node having the rumor at time k = d;, it would mean that the
candidate source could not have started the rumor since the rumor could only reach the
monitor node for the first time at time k = d; + 1. Therefore, this candidate source will be
penalized by Inf, as it cannot be the real rumor source.

Secondly, if the real distance between the candidate source and the monitor is d;, and this
monitor has not received the rumor yet attime k = d; + 1, i.e. V;(d; + 1) = 0, this could be
an indication of an erroneous measurement. Therefore, this would be penalized more
compared to the case when V;(d; + 1) > 0.

The penalization should increase with the delay until the monitor first received the rumor, as
seen in the summation above.

We should note that the constant included in the summation above could be replaced by any
other values, as long as there are large.

c. Criterion 3: The sum of the distances from each potential source to all the monitor nodes for
which the measured probability is equal to 0. The weighting of this criterion should be
negative.

d. Criterion 4: The number of infected nodes, which are reachable from the potential source.
The weighting of this criterion should be positive.

e. Criterion 5: The number of not infected nodes, which are not reachable from the potential
source. The weighting of this criterion should be negative.

The nodes in the set of candidate sources will be ordered according their rumor centrality, in
ascending order of the rumor centrality level.
The top ranked node is an estimate of the source of rumor spreading in the network.

Other possible enhancements could include the following:

1. Sensor Choice Strategy
2. Implementation of Rayleigh’s shortcut method for the calculation of the expected infection probability
3. Development of a source pseudo-likelihood function

The above algorithm will be tested in the Evaluation chapter, as follows:

Enhancement 1.1: Algorithm which employs Criteria 1,3,and 4 for the calculation of sensor confidence levels
and Strategy 1 to estimate the set of candidate sources.

Enhancement 1.2: Algorithm which employs Criteria 1 and 2 for the calculation of sensor confidence levels
and Strategy 1 to estimate the set of candidate sources.

Enhancement 2.1: Algorithm which employs Criteria 1 and 2 for the calculation of sensor confidence levels,
Strategy 1 to estimate the set of candidate sources, and Criterion 1 for calculation of source rumor centrality.

Enhancement 2.2: Algorithm which employs Criteria 1 and 2 for the calculation of sensor confidence levels,
Strategy 2 to estimate the set of candidate sources, and Criterion 1 for calculation of source rumor centrality.

Enhancement 2.3: Algorithm which employs Criteria 1 and 2 for the calculation of sensor confidence levels,
Strategy 2 to estimate the set of candidate sources, and Criterion 2 for calculation of source rumor centrality.

Enhancement 2.4: Algorithm which employs Criteria 1 and 2 for the calculation of sensor confidence levels,
Strategy 3 to estimate the set of candidate sources, and Criterion 2 for calculation of source rumor centrality.
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Chapter 5

Evaluation

In this chapter we describe the evaluation methods used to assess the performance of the source detection
method.

The structure of this chapter is the following. First of all, the evaluation criteria are described. Then the
following section assesses the correctness of the theoretical formula for the probability of rumor spreading,
by comparing it with the measured probability for various network topologies, as well as network parameters.
Furthermore, the performance of the estimation of the shortest paths between the monitor and the source
nodes is assessed. The first evaluation method is to compute the frequency of correct distance estimation, for
various values of the distance. The second evaluation method consists of computing the error in number of
hops, between the estimated and the actual source. Both methods will be tested for several network sizes
radii, and topological characteristics.

Moreover the source estimation algorithm is evaluated as follows. Different enhancement stages of the
detection algorithm will be evaluated to assess the improvement due to each enhancement. In addition, the
probability of correct detection will be computed, as well as the number of candidate sources, for various sizes
of the set of monitoring nodes.

Evaluation Criteria

The following criteria will be used to assess the solution:

1. Epidemic Model: The simulation of the spreading of rumors is performed in a correct manner. The
assessment is done through Matlab simulations and visualizing the evolution of the rumor in the network
over time.

2. Probability Error: The plots of the predicted probabilities from analytical formulas should approach the
plots of the actual measured probabilities when simulating a spreading of rumors within the network, for
any network topology. The absolute error difference between the predicted probability of a node being
infected, and the actual measured probability should give an indication of the correctness of the
mathematical formulas derived.

3. Distance Error: The distance error is the difference between the estimated shortest path length and the
actual distance between the sensor node and the source. The frequency of a certain distance error value
will be given by the number of times this distance error occurs out of a fixed number of experiments of
rumor spreading. The plot of the frequency of error against various values of error (e.g. error of one hop,
error of two hops etc.), should give an indication of how accurately this distance is estimated. The plot
should be repeated for networks of different topology and size, as well as for various number of sensor
nodes.
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4. Number of Sensor Nodes: The required number of sensor nodes for which the source can be accurately
estimated should be plotted as a function of the network size. In addition, the fraction of observers (ratio
of number of monitor nodes over total number of nodes), should also be plotted against different network
parameters.

5. Number of Time Observations: In order to reduce the complexity of the algorithm, as few number of
observations as possible should be used. In this sense, we would be interested in finding the minimum
number of time observations that would allow accurate source detection.

6. Source Detection Accuracy (single source): Due to some distances being wrongly estimated, the algorithm
might not always be able to detect a single source node, or there may be cases when the source node
cannot be detected at all. The detection accuracy could be determined by plotting the number of
estimated sources for different numbers of sensor nodes, and for different topologies and graph sizes. In
addition, it would be interesting to verify how the accuracy degrades/improves when considering only
some of the available node measurements. For example, by utilizing only those measurements from nodes
closer to the source, the detection performance could be improved since the distance estimation is more
accurate in these cases.

7. Source Location Error: In some cases, the source might not be correctly estimated. For these cases, we
should evaluate how far the estimated source is from the actual infectious source. This could be achieved
by calculating the distance between the estimated and the correct source nodes. By repeating the
experiment for a set number of times, we could find the frequency at which a certain error distance occurs,
which could give an indication of how good the estimation of the source is. For example, the estimation is
better if an error of 1 hop occurs more frequent than an error of 2 hops.

8. Noise Robustness: The algorithm should be robust to noise in the system. One example of noise could be
the wrong estimation of the shortest distances between the sensor and source nodes, or mis-information
from various sensor nodes. The algorithm should be tested under various noise scenarios and the
detection accuracy should be measured. The main test for the robustness to noise will be performed by
using a small number of rumors for the simulation of the information dissemination. In this case, the
individual sensor measurements might significantly deviate from the expected value, leading to errors in
the estimation of the shortest paths between the sensors and the source.

9. Algorithm Complexity: The complexity of the Detection Algorithm should be reduced. This is done by
calculating the time complexity of the different blocks of the algorithm and how this depends on the
network size, and the number of observations (number of sensor nodes and number of time steps at which
we monitor the nodes).
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Evaluation of Theoretical Probability Formula: Initial Solution

The theoretical probability formula is evaluated using the following methods.

Firstly, the accuracy of the assumptions made in the derivation of the formula, as well as the mathematical
simplifications used, will be evaluated by comparing the theoretical probability against the probability
obtained through simulations. Tests will be performed for various network topologies, as well as different
spreading probabilities.

Secondly, the estimation algorithm is based on the comparison between the theoretical and simulated
spreading probabilities. This comparison determines the estimated shortest path between the monitor node
observed and the potential source of rumors. Therefore, in order to assess the accuracy of the theoretical
probability, we could measure the error probability of the estimated distance between the sensor and source
nodes. The shortest path error probability will be plotted against various number of monitors, as well as
different values of rumors.

The graphs below illustrate the results obtained through simulating a spreading of rumors through a small-
world network of N = 200, compared with the theoretic probabilities computed using the formula above, for
various values of distances between the monitor node and the source. The different subplots correspond to
different values of spreading probability, P; € {0.5,0.6,0.7}. Moreover, the connectivity index used for the
theoretic probability formulais k = 1.2.

Simulated Probability for Pspreading= 0.5 Simulated Probability for Pspreading= 0.6 Simulated Probability for Pspreading= 0.7
; . . . 4T —— e i T o - - ——
0.9 0.9 0.9
0.8 0.8 0.8
=
= 07 gu.? r gu.? r
Qo 0 Qo
£ 3 £
g 06 g 06 g 067
o o o
- 05 = 05 - 05
L 2z L
< 04 204 L oal
E £ E
v 03 W 03r ©v 03l
0.2 0.2r 0.2y
0.1 01 017
0 0 | | | 0 | | |
0 5 10 15 20 0 5 10 15 20
StepK Step K Step K
Figure 16: Simulated Probabilities of Nodes being infected, for Different Values of Spreading Probability
Theoretic Probability for Pspreading= 0.5 Theoretic Probability for Pspreading= 0.6 Theoretic Probability for Pspreading= 0.7
1 : 1 1r
—8— Dist=1 —®— Dist=1
0.9 —— Dist=2 0.9 0.9 8 Dist=2|_ &
Dist=3 Dist=3
0.8 —#— Dist=4 0.8 0.8 —#— Dist=4
g 0.7 £o7 o7
o r=) E=)
2 0s 8 os Bost
[ o s
o o o
© 05 o 05 © 05]
2 o B
o 04 o 0.4 o 0.4
@ [+F] 5}
L =y =
F o3 F o3 Foat
0.2 0.2 0.2r
0.1 0.1 0.1
0 1] 0 -
10 15 20 1] 5 10 15 20

Step k Step k Step k



50| Evaluation of Theoretical Probability Formula:

Initial Solution

Figure 17: Estimated Probabilities of Nodes being infected, for Different Values of Spreading Probability

The plots below show a comparison between the simulated and the theoretic probabilities of rumor spreading,
in a small-world network of size N = 200 nodes, for various values of monitor distances. The different
subplots correspond to different spreading probabilities, P, € {0.2, ..., 0.9}. The connectivity index is k = 1.2.
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Figure 21: Simulated and Theoretic Probabilities in a Small-world Network, for Spreading Probability Ps=0.8 (left) and Ps = 0.9 (right)

The plots below show the theoretic probabilities, and the ones obtained from measurements, in a scale-free
network, of size N = 243, in a random geometric graph of size N = 200, and in a tree graph of depth d = 8
and Nocpirgren = 2.

In all cases, the probability of spreading is Ps = 0.5, and the connectivity Index used in the probability theoretic
formula differs for all the cases, as different networks have different characteristics.
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Solution
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While the plots above use measurements from a simulated spreading of rumors of R = 20 rumors, the graphs
below show the comparison between the simulated and theoretic probabilities, for a very large number of
rumors, R = 200. The simulations are performed in a small-world network, of size N = 200 nodes. We can
see that in most cases the theoretical probability values coincide or are very close to the values obtained from
simulation. Nevertheless, the theoretical probabilities do not converge to a value of P = 1 in some cases, and
this may be a result of the approximations used in the derivations of this formula. However, the converging
values are very close to P = 1 and the probability could be truncated to this maximum value.
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Evaluation of Mathematical Approximations: Initial Solution

As derived in Chapter 2 of this report, the probability that a node will have the rumor at time step k is equal
to:

‘ d i 2t (_(t—2d+1)2)
Qd(k):Z(M XK' x(1—p X )X ——xxe 20D
t=d N 21'[(t — 1)

The formulation above has been obtained using Stirling’s and Taylor approximations for the simplification of
the expression for the number of paths. Nevertheless, without any mathematical simplifications, the
probability that a node will have the rumor at time step k is equal to:

k
0utk) =Y x ' x a—px 0 x (57 7)
t=d Bl
The plots below show a comparison between the theoretic probability with and without mathematical
approximations. Firstly, we notice that the approximated formulation does not saturate at avalueof P = 1in
all cases, while the theoretical probability formula with no simplifications converges to a maximum of P = 1,
which is the expected limit of a cumulative distribution function. Hence, while the non-approximated
theoretical probability gives more accurate results, the approximated probability is highly accurate,
converging to the former one.
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Figure 27: Theoretical Probabilities of Rumor Infection, with and without Mathematical Approximations

The plots below show a comparison between the non-approximated theoretical probability and the simulated
one (left), and between the approximated theoretical probability and the simulated one (right). The simulated
probability has been obtained by averaging a number of R = 100 rumor experiments. We can see that in both
cases, the theoretic probability converges to the experimental one. Nevertheless, the non-approximated
formula gives more accurate results for smaller sensor distances, and ensures a saturation at P = 1.
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Figure 28: Simulated and Theoretical Probability with no Mathematical Approximations (left), and with Approximations (right)

In summary, the closed-form expression for the theoretical probability, obtained through mathematical
simplifications, converges to the non-approximated formulation and will therefore be used throughout this
report, as part of the source detection algorithm.

Evaluation of Theoretical Probability Formula: A Robust Solution

The plots below show a comparison the simulated and theoretic probabilities, obtained using the robust
formula for the calculation of the probability of rumor infection.

The simulated probability was obtained using the results from a spreading of rumors in a small-world network
of N = 200 nodes, average degree IV = 4, and rewiring probability P = 0.2. The spreading model assumes
spreading to exactly 1 neighbour with probability P, = 1. This assumption is made as a result of the fact that
the theoretic probability formula does not consider any multiplication of rumors and in addition, it assumes
that the rumor is guaranteed to follow one of the A, B, or C — type segments at any time step. Moreover, it
is assumed that pA = pB = pC = 0.33, values which are used for the calculation of the theoretic

probabilities.

The plots below show the simulated and theoretic probabilities. The latter is obtained using the following
formula, which does not take into account the reflected paths:

Qal) = Zk: Z {(Z _ 1) (k + dk—_ 24 + 1)}pAAka+d_2APcA_d

t=d d<A<k
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In the figure below, the left subplot shows the theoretic probability calculated using the following formulation:

Qa(k)
K

=Z{ Z ((k_l)( k-4 )p Ay krd=24y, A=d
A-1/\k+d—-24+1/"4"F ¢

DD I e [V [V | R R

y=2 Ap=1

The right subplot shows the theoretic probability calculated as follows:

k
Qd(k) i Z Z {(Z - 1) (k * dk_ 21: * 1) ) d;k (‘I; - 1) (k - dk— :4 + 1>}pAAka+d_2ApCA_d

t=d d<A<k
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Figure 30: Simulated and Theoretic Probabilities with Calculation of Reflected Paths using Two Different Methods

As we can see from the subplots above, the theoretic probability does not converge to the probability obtained
through simulations. This might be a result of the approximation that the probabilities of advancing through
the network are assumed constant and equal, i.e. pA = pB = pC = 0.33. This could also be a result of the
calculation of the reflected paths used for the derivation of the theoretic probability, and from the result above
we can deduce that the number of reflected paths might be overestimated.

Furthermore, the first method of calculating the reflected paths (left) gives more accurate results at small time
steps. However, the accuracy degrades significantly for large time steps compared to the second formulation
(right).

Finally, in the figure below we plot the simulated and theoretic probabilities, calculated by assuming that the
first segment in the path of the rumor is not necessarily an A — type segment. This could be justified by the
fact that the path of the rumor may be a B — type segment, in the case the source does not spread the rumor
to any of its neighbours for the first time step.

In this sense, the left subplot shows the theoretic probability calculated using the following formulation:

Qd(li()
= Z{ Z ((Z) (k -fd_—A2A> pAAka+d—2ApCA—d

t=d d<A<k

k_dﬂoor(%) V(YA k=y k—y—(A—d—Ap) A-d,, k—d—2(A—d), A
_YZZ[A; (AP)( Ap )(A—d—AP)( A—4, )]pA‘pB“ “Dp A1}

The right subplot shows the theoretic probability calculated as follows:

k
Qa(k) = ; d;k {(D (k f d —A ZA) B d;k (D (k —k d —A ZA)}pAApBHd_ZApCA_d

The results show an improvement in the theoretic probability formulation, particularly for the second
calculation method.
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Figure 31: Simulated and Theoretic Probabilities with Calculation of Reflected Paths using Two Different Methods, with no Constraints
on the First Path Segment

Overall, the formulation of the probability of infection which does not account for the illegal paths gives an
upper bound on the real spreading probability. On the other hand, the formulation which includes the
elimination of the illegal paths using the reflection method leads to a lower bound on the real probability of
infection. Nevertheless, further improvement of the theoretic formulation will remain as a part of future
development.
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Evaluation of the Algorithm for Estimation of Shortest Paths (Accuracy)

The plots below show the frequency of the error of estimation of the shortest paths between the sensor nodes
and the source, as well as the number of error hops against the number of monitors observed. The error hops
represent the difference between the estimated distance and the actual distance between the sensor and the
source. The tests are performed in a small-world network of size N = 200 nodes, using 100 repeated
experiments in order to compute an average error of estimation.

In the plots below, the number of rumors used for the simulation of a spreading of rumors, which in turn is
used to determine the optimal parameters in the theoretical probability formula, is R = 40.

We can see that the accuracy of estimation increases as the number of rumors used for the actual rumor
simulation increases, as the probability of error decreases, while the number of error hops decreases as well.
Furthermore, as the monitor distance increases, the error hops become larger.

We can also observe that the error probability is very small for monitor distance lower than d = 3.
Nevertheless, there is a small error even for d < 3 and an explanation for this result might be the fact that
even if the theoretical probability represents a good approximation of the average simulated probability
(obtained using a very large number of rumors), the actual probabilities obtained from the rumor spreading
(using a lower number of rumors) might not deviate from the average simulated probability and hence, the
theoretical one. In order to account for this, the estimation algorithm should include the elimination of those
monitor nodes for which the individual simulated probability significantly deviates from the average simulated
probability.

Moreover, we can notice that for the cases when the distance is wrongly estimated, the number of error hops,
calculated as the absolute value of the difference between the estimated distance and the actual distance
between the monitor and the node, is typically d, = 1 hop.

Distance Estimation Error Distance Estimation Error

0.8 1.2
0.7 r M M
wn
0.6 - g
M I
= P
o5t 2
w -
i 2
204 S
<] E
P 3 I Correct Monitor Distance is 1
L03r P I Correct Monitor Distance is 2
e g [ Correct Monitor Distance is 3|
o [N Correct Monitor Distance is 4
0.2 < [ Correct Monitor Distance is 5
[ Correct Monitor Distance is 6 ||
01+ [ Correct Monitor Distance is 7
[ Correct Monitor Distance is 8
[ T correct Monitor Distance is 9
0 =
10 100 10 25 40
Number of Rumors Number of Rumors

Figure 32: Distance Estimation Error for Different Numbers of Rumors, in a Small-world Network of 200 Nodes, with Increased
Accuracy of Theoretical Probability Parameters
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The plots below show the probability of estimated distance error and the average number of error hops
between the monitor and the source, as the number of monitors varies from M = 10 to M = 50 monitors,
for a number of rumors R = 10. We can notice that the number of monitors contributes to the accuracy of
detection, as generally as a larger number of monitor nodes leads to an increased error probability, particularly
at large monitor distances.
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Figure 33: Distance Estimation Error for Different Numbers of Monitors, in a Small-world Network of 200 Nodes, with Increased
Accuracy of Sensor Measurements

In the plots below, the number of rumors used for the simulation of a spreading of rumors, which in turn is
used to determine the optimal parameters in the theoretical probability formula, is R = 5.

We can see that the estimation of shortest paths is less accurate when the theoretical probability is
determined from a simulation of a lower number of rumors, particularly at lower monitor distances. As we
can observe, the error probability is higher, and the average number of error hops is larger as well. For
example, for a monitor distance d = 3 and using 10 monitor nodes, the probability of erroris P = 0.025 for
a larger number of rumors (R = 10 above) used to derive the parameters of the theoretic probability, while
itincreasesto P = 0.1 when using less rumors (R = 5 below).
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Figure 34: Distance Estimation Error for Different Numbers of Monitors, in a Small-world Network of 200 Nodes, with Low Accuracy of
Sensor Measurements

In the plots below, the number of rumors used for the simulation of a spreading of rumors, which in turn is
used to determine the optimal parameters in the theoretical probability formula, is R = 100. We can notice
a significant improvement in the estimation of the shortest distances, particularly when the monitor distance
is low. For example, in the plots below we can see that the probability of error for distancesd < 3is P = 0,
while for d = 4 the probability is very small.
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Figure 35: Distance Estimation Error for Different Numbers of Monitors, in a Small-world Network of 200 Nodes, with Highest
Accuracy of Sensor Measurements

One of the main reasons for the existence of a distance estimation error, even though the theoretic probability
converges to the averaged simulated probability could be the deviations in the individual sensor
measurements from the expected value. This is more likely to happen when a small number of rumors is
available for the actual rumor spreading process observed.
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For example, the results below show that noise in the sensor measurements. Specifically, we show the
deviation of probability of rumor from the average value. This leads to an incorrect shortest path between the
monitor and the source being computed. In this case, the estimate distance is d = 7, while the actual ground
truth distance is d = 6. As it can be seen from the data below, the actual sensor measurements approach the
values of the theoretic probability for d = 7. In addition, it is typically expected that the probability of a node
located at distance d = 6, measured at time step k = 7 should be positive, while the sensor measurement is
in this case 0.

Time Step 2 3 4 5 6 7 8 9 10 11 12 13
Individual 0 0 0 0 0 0 01 01 03 04 07 038
Sensor

Measurement

Theoretic 0 0 0 0 0 0.03 0.10 0.22 0.36 0.52 0.65 0.76
Probability

Approximate

Values,d = 7

Theoretic 0 0 0 0 0.04 0.14 0.29 046 06 0.74 0.83 0.89
Probability

Approximate

Values,d = 6

Table 5: Illustration of Noise in Sensor Measurements

In summary, using these observations, we can improve the performance of the detection algorithm, as follows:
by considering a larger number of rumors for the simulation used to derive the optimal theoretical probability
parameters, by assuming a large number of rumors for the actual spreading probability, and by considering
measurements obtained from monitors for which the estimated distance is small. The assumption of a large
number of rumors is justified by the motivation of this project, to estimate the source of information
dissemination in a network where we assume numerous attacks from the same source.

Evaluation of the Algorithm for Estimation of Shortest Paths (Robustness)

In order to evaluate the robustness of the estimation of the shortest distances between the monitor nodes
and the source, based on the derived theoretical probability for rumor infection, the following tests were
performed. Firstly, the average probability of rumor infection was derived by simulating a spreading of
multiple rumors in a small-world network. The optimal connectivity index in the theoretical probability of
rumor dissemination was found through the minimum mean-square error method, based on the average
simulated probability. The shortest paths between the monitors and the source were then estimated using
various values of the connectivity index and the results were compared with the optimal case.

The plots below show the distance estimation errors, using 30 monitors and 100 rumors, for different values
of the connectivity index. A large number of rumors was chosen in order to ensure that the sensor
measurements approach their expected value, such that they do not impact the distance estimation.

The optimal value of this parameters was found to be k = 1.215. We can see that around the optimal value,
the probability of errors achieves a minimum compared to the other cases when the monitor distance is
smaller than d = 5. In addition, the average number of error hops is also small in this case, with d, = 1 hop.

Moreover, we can see an increase in the distance estimation error when the value of the connectivity index
is much larger/smaller compared to the optimal one. Nevertheless, the increase in the estimation error is not
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significant, particularly for small monitor distances, and provided the deviation of the connectivity index from
its optimal value is not too big.
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Figure 36: Distance Estimation Error in a Small-world Network, using Different Values of the Connectivity Index with Maximum
Deviation from the Optimal Value Ak = 0.2
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Figure 37: Distance Estimation Error in a Small-world Network, using Different Values of the Connectivity Index with Maximum
Deviation from the Optimal Value Ak = 0.1

In summary, the distance estimation algorithm is robust to small variations in the parameter of the theoretical
probability formula around its optimal value, i.e. the connectivity index. As a result, the estimation of the
optimal connectivity index in a network of given topology could be a good approximation for the connectivity
index of networks of similar topologic characteristics, even if the networks are not identical.
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Evaluation of the Source Detection Algorithm

This section describes the evaluation methods used to assess the performance of the source detection
algorithm. In particular we evaluate the following enhancements of the algorithm:

1. Sensor Confidence Level and Adaptive Connectivity Index
2. Source Rumor Centrality

For each of these, the performance of the estimation algorithm is measured through the number of sources
estimated for different cardinalities of the monitor set, as well as through the probability of correct detection.
Tests are performed on all four network topologies considered: tree graph, random geometric graph, small-
world network, and scale-free network. Moreover, other parameters are varied when performing the tests,
such as the maximum cardinality of the set of potential sources (the maximum number of sources we can
estimate). In addition, the evaluation considers different number of rumors used in the spreading simulation,
for the derivation of the simulated probabilities of infection.

Enhancement 1. Sensor Confidence Levels and Adaptive Connectivity Index

The following section describes the evaluation of the source detection algorithm, based on the assignment of
a confidence level to each of the monitor nodes available, and ranking them according to this. Measurements
from one sensor at a time are considered, provided the number of estimated sources is within the desired
limits (the minimum cardinality of the set of estimated sources is set by the user). The enhancement is also
using the optimal connectivity index, derived in order to increase the accuracy of the theoretic probability, for
the specific network topology and parameters given.

In the following we present the results obtained using various metrics to calculate the confidence levels of the
sensors.

Enhancement 1.1: Initial Method for the Calculation of Sensor Confidence Levels

The sensor confidence levels are initially evaluated based on the following criteria:

a. Criterion 1: The estimated distance should be lower than dX4% ..

b. Criterion 2: The minimum mean-square error of monitor node i should be lower than the maximum error
&s.

c. Criterion3: The error between the theoretical and sensor measured probabilities should be lower than the
error between the theoretical and the average sensor measured probabilities, i.e. €; = Pipeoretic —

Vindividual' €2 = Ptheoretic - Vaverage and €1 < €2.

The results obtained are described below.
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Small-world Network

The graph below shows the cardinality of the set of estimated sources, against the number of monitor nodes
available, for a small-world network of size N = 200 nodes and a spreading of 20 rumors. Each subplot
illustrates the detection results, when using only monitor nodes at a certain maximum distance. In the figure
below, this maximum distance ranges from d = 1 to d = 5, while the maximum distance of a monitoris d =
11. The colouring represents the detection probability, ranging from 0 (red) to 1 (green).
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Figure 38: Average Number of Estimated Sources against Number of Available Monitor Nodes, Small-world Network with N=200

Taking into account the fact that the sensors for which the estimated distance is small provide more accurate
results, while on the other hand, their number is limited and this might cause erroneous estimation of the
source, the following approach is used to improve the performance of the algorithm, as already described in
the Implementation chapter above. In this sense, for each values of d¥4X = (maximum sensor estimated
distance, used in Criterion 1 when assigning the sensor confidence levels), a set of estimated sources is
computed. The union of all the sets corresponding to each maximum sensor distance is then found,
representing the final set of potential sources.

As we can see from the results below, the detection accuracy significantly improves when using the union of
all the sets of estimated sources. For example, when the maximum sensor distance is dM4X = =3, the
probability of correct estimation is P = 0.71 using 10 monitors (5% of the network size), while the probability
increases to P = 0.83 when using the union of all the sets of candidate sources, for the same number of

monitors.

We should also note that as expected, the cardinality of the set of potential sources is higher when the union
of all the sets is taken. This represents a trade-off with the higher probability of correct detection.
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Enhancement 1.2: Refined Method for the Calculation of Sensor Confidence Levels

The sensor confidence levels are calculated based on the following criteria, and a detailed calculation of the
confidence level is given in the Implementation chapter of this report.

a. Criterion 1: The estimated distance should be at most dX4% . ..

b. Criterion 2: The number of occurrences of A should be large, where A is defined as the event when the sensor
measurement at time k corresponding to a monitor at estimated distance d should be larger than the
theoretic probability at time k and distance d + 1 and lower than the theoretic probability at time k and
distance d — 1. In other words, Viensor(k, d) < Peneoretic(kK, d — 1) and Veensor (k, d) > Pipeoretic(k, d +

1).

The experiment below was performed using 20 rumors to simulate an information dissemination in a small-world
network of N = 200 nodes. As already discussed, the union method increases the detection accuracy, from P =
0.77 when d¥4X =3 to P = 0.91, in the case where only 10 monitor nodes are available (5% of the network
size). In the case of 30 monitors available (15% of network), the probability of correct detection increases from
P =0.95to P = 0.99. Nevertheless, the union of the sets of candidate sources has a bigger cardinality as
expected, and this represents a trade-off with the higher correct detection probability. In the graphs below we
can also notice the reduced detection accuracy when having a very large d¥4% .. = 9. These results agree to the
ones obtained from the evaluation of the algorithm for estimation of the shortest paths in the section above.
There we have seen that the probability of error increases as the monitor’s distance from the source becomes

larger.
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Enhancement 2. Source Rumor Centrality

The following section describes the evaluation of the source detection algorithm, based on assigning a rumor
centrality level to each the sources in the final set of candidate sources, and ranking them accordingly. The detection
probability will be computed for different numbers of monitor nodes available, by reducing the cardinality of the set
of candidate sources to a fixed value, and selecting the sources according to their rumor centrality level.

The improved algorithm also includes Enhancement 1, assigning confidence levels to sensor nodes and ranking them
accordingly, as well as computing an optimal connectivity index to ensure high accuracy of the theoretic probability.

The different enhancements described below differ through the method of calculating the rumor centrality assigned
to each potential source.
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Enhancement 2.1: Initial Method for Rumor Centrality Calculation

This algorithm calculates the rumor centrality of a candidate source based on the infection of each of the monitor
nodes available. In this sense, the rumor centrality will be the sum of the estimated distances between the monitor
nodes and the source, provided that the average infection at time step k = d + 1 is positive, where d is the
estimated shortest path between the sensor and the source. This approach is motivated by the fact that a potential
source is more likely to have started the rumor if the distance to the monitor nodes which become infected after a
short period of time is small on average. Therefore, the rumor centrality is calculated as follows:

RC = Xiv,(a;+1)>0.5 di, where d; is the estimated shortest path between the sensor and the source and V; is the
measured probability of node i having the rumor.

Small-world Network

The plots below show the detection probability and detected number of sources, for a spreading of 20 rumors, in a
small-world network, of size N = 200 nodes.

In the first set of subplots, we can notice the reduced performance of the detection algorithm, as a result of the
reduced set of candidate sources. Nevertheless, we observe that for a number of candidate sources fixed to Ng = 1,
the probability of correct detection has a value P > 0.9, as the number of monitors increases above M = 30 nodes
(which represents 15% of the network size).
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Figure 41: Best Detection Probability and Number of Estimated Sources for Set Cardinality of Minimum 1 Source and Constant Source Set
Cardinality equal to 1

In the subplots below, we can see that as the minimum cardinality of the set of potential sources increases (before
rumor centrality algorithm is applied), the detection probability decreases. This is a result of the rumor centrality
calculation, which may not rank the candidate sources correctly, if the number of nodes to be ranked is larger than
2.
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Figure 42: Best Detection Probability and Number of Estimated Sources for Set Cardinality of Minimum 2 Sources and Constant Source Set
Cardinality equal to 1, and2

Therefore, we can conclude the following results. The rumor centrality method could accurately rank the nodes in
the set of candidate sources, in order to obtain a small number of potential sources, which are very likely to have
started the rumor. The detection accuracy of the algorithm including the source rumor centrality enhancement is
higher if a set of minimum Ng = 1 source is found using the algorithm with Enhancement 1 (before rumor centrality
ranking is applied), followed by a reduction of this set to exactly Ng = 1 using Enhancement 2.

We should also note that the calculation of the rumor centrality could be modified as follows:

RC = Y v,(a+1)>x di, Wwhere the parameter x could be adjusted to ensure a higher probability of correct detection.
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Enhancement 2.2 Modification of Estimation of the Set of Candidate Sources

This algorithm involves a change to the method of creating the set of candidate sources, based on measurements from
the sensors ranked according to their confidence levels. The strategy of creating the set of potential sources is described
in the Implementation chapter as Strategy 2, and summarized below.

For each sensor node i, we compute how many nodes will be eliminated from the set of candidate sources, based on
measurements from this sensor. As a result, we are able to determine the number of remaining potential sources, if
we were to consider the measurements provided by monitor i. If this number is greater than the minimum cardinality
set by the user, then we perform the estimation based on measurements from node i. Otherwise, we discard these
measurements and the set of potential sources remains as before. For example, suppose the minimum cardinality of
the set of potential sources is C = 10. There are currently Ny = 15 sources in this set. However, if we consider the
measurements from node i, there would be another Ny = 9 sources eliminated, which would bring the set of candidate
sources to Ng = 6. This is lower than C = 10 and hence, the measurements from node i will be disregarded and the
number of potential sources remains at Ng = 15 sources.This is repeated for all the monitor nodes, by considering
more confident nodes first.

As we can see from the results below, there is no significant improvement in the detection probability, compared to
the previous algorithm. For example, as seen in the subplots below, with a minimum cardinality of the set of sources
equal to Ng = 1 (cardinality before the enhancement is applied), and with exactly N = 1 source estimated using the
rumor centrality method, the previous algorithm would give a detection probability of P = 0.74 using 10 monitors,
compared to P = 0.69 given by the current algorithm for the same number of monitors. Using 30 monitors, the
previous detection probability is P = 0.94, compared to of P = 0.945 from the current algorithm.
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From the subplots below we can see that the detection accuracy decreases as the minimum cardinality of the set
of sources increases, as a result of the rumor centrality calculation.
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Enhancement 2.3: Refined Method for Rumor Centrality Calculation

As before, the algorithm calculates the rumor centrality of a candidate source based on the infection of each
of the monitor nodes available, using the same strategy of creating the source of potential source (see Strategy
2 in Implementation chapter). In this case however, the calculation for the rumor centrality will be different.
This is described in the Implementation sections and summarized below:

RC = Z d; + Z Inf () + Z 1000 + Z 2000 + Z 3000

ieSet1 ieSet2 ieSet3 ieSet4 ieSet5
In the above summation, the individual sets of each individual sum are:

Setl = {nodei |Vl(dl + 1) >0, Vl(dl) = 0}

Set 2 = {nodei |V;(d;) # 0}

Set 3 = {nodei |Vl(dl + 1) =0, Vi(di + 2) * 0}

Set 4 = {nodei |Vl(dl + 1) =0, Vi(di + 2) =0, Vi(di + 3) * 0}
Set5 = {nodei |Vl(dl + 1) =0, Vi(di + 2) =0, Vi(di + 3) = 0}

The results below were obtained by simulating a spreading of rumors in a small-world network of N = 200
nodes, with average vertex degree V = 6 and rewiring probability 5 = 0.2.

In the first set of subplots, the minimum cardinality of the set of sources (before Enhancement 2.3 is applied)
is C = 1, in the second set C = 2, while in the third set C = 5. We can notice a clear improvement in the
detection accuracy compared to the previous enhancement. For example, using the previous algorithm, the
probability of correct detection was P = 0.7 ,when using a number of monitors equal to 10 and when the final
set of candidate sources is C = 1. Nevertheless, the current enhancement ensures a high probability of
detection in this case, of P = 0.92. Furthermore, as seen in the second set of subplots below, when using 10
monitor nodes (5% of network size), the probability of correct detection is P = 0.975 when the final set of
candidate sources contains Ng = 2 nodes, increasing to P = 1 using 30 monitors (15% of network size).

Finally, we should note that the index of the source node is randomly chosen and that several experiments
were performed for various choices of the source node. Therefore, the location of the source does not have
an impact on the performance of the detection algorithm.

Estimation of the Rumor Source Estimation of the Rumor Source
] -Number of Experiments is 200- ] -Number of Experiments is 200-
e -Number of Rumors is 20- e -Number of Rumors is 20~
2 200 2 2
7] n
B 150 D15
® k!
£ 100 E 1
u ui
5 50 X: 10 X: 50 5 0.5
o Y: 1.51 Y: 1.21 o
@ @
E 0 ] | | 'g 0
=] 0 10 20 30 40 50 5 0 10 20 30 40 50
z Number of Monitors z Number of Monitors
Average Source Detection Probabilitv Average Source Detection Probabilitvy
2z 1 JSesavaven] | mevammnnsemmen] ] z 1 [ e F ]
% 0o Y x: 30 X: 50 E X 10 X: 30 X: 50
. L - Y: 1 : 2 Y:1
g s & x: 10 Y: 0.9¢ g Y- 0.2 Y: 0.99
Toggl & Y0835 T w
c . c
p=) 2 [ ]
5071 5
@ 7] [
006 0O o
0 10 20 30 40 50 0 10 20 30 40 50
Number of Monitors Number of Monitors

Figure 45: Best Detection Probability using Enhancement 2.3, for a Cardinality of the Candidate Sources of Minimum 1 (left) and
Exactly 1 (right)



75|Evaluation of the Source Detection Algorithm

Estimation of the Rumor Source Estimation of the Rumor Source Estimation of the Rumor Source
Number of Experiments is 200- Number of Experiments is 200- Number of Experiments is 200-

200 Number of Rumors is 20- -Number of Rumors is 20- Number of Rumors is 20-

150 25

100

X: 10 X: 50

Y:3.915 Y: 3.89

0 | | | |

0 10 20 30 40 50
Number of Monitors

50

0 10 20 30 40 50
Number of Monitors

0 10 20 30 40 50
Number of Monitors

Number of Estimated Sources

Number of Estimated Sources
—- ]

Number of Estimated Sources
n

Average Source Detection Probability Average Source Detection Probability Average Source Detection Probability
1 (r=— 1] 1 H ssessssamemesen ll 1 \afunsptocsangags i meemesemsemanes

2 ™ e 2 L
3 * v 10 X:30 X: 50 = ." X: 30 X: 50 3 & x10 X:30 X:50
209 e O Y:1o Y 3 Ehil) Y1 Yid 3 Y. 0.975 Yi1ooYid
g # [Y:0975 e & V.os0s g o
% o8 2os Qosr e
=} L] 8 =}
= = . =
07| 2 3
g E Y g 3

0.6 0 0w

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Number of Monitors Number of Monitors Number of Monitors

Figure 46: Best Detection Probability using Enhancement 2.3, for a Cardinality of the Candidate Sources of Minimum 2 (left) and
Exactly 1 (middle), and 2 (right)
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Enhancement 2.4: Further Modification of the Estimation of the Set of Candidate Sources

As already explained in the Implementation chapter, In order to account for the errors that could occur as a
result of using less confident sensors (as in Strategy 1 implemented in Enhancement 2.3 above), the
following method can be used to create the set of candidate sources.

For each sensor node i, we compute how many nodes will be eliminated from the set of candidate sources,
based on measurements from this sensor. As a result, we are able to determine the number of remaining
potential sources, if we were to consider the measurements provided by monitor i. If this number is greater
than the minimum cardinality set by the user, then we consider the estimation based on measurements from
node i. Otherwise, we discard these measurements and the set of potential sources remains as before.

Once we discard a sensor from the set of ranked monitors, we will not consider any other sensors which are
less confident than the sensor we have discarded.

This method will ensure more accurate detection. Nevertheless, it leads to a large cardinality of the set of
candidate sources, before the rumor centrality method is applied, which could lead to big computational
complexity of the rumor centrality algorithm.

The results below were obtained by simulating a rumor spreading in a small-world network, of size N = 200
nodes, where the minimum cardinality of the set of candidate sources is C = 1 (first set of subplots), and C =
2 (second set of subplots).

Firstly, we can notice that the cardinality of the set of sources using Strategy 2 is much larger compared to the
case when using Strategy 1. As seen in the second set of subplots below, when the minimum cardinality is set
to C = 2, the number of estimated sources becomes very large and increases with larger number of monitors.
This is because, as the number of monitors increases, it is more likely that we observe the actual rumor source
and that would imply eliminating all the other nodes besides itself, leading to a set of candidate sources which
has a single source and hence, which has a cardinality lower than the minimum set as C = 2.

Furthermore, the detection accuracy does not improve for a larger cardinality of the set of potential sources
and therefore, it is not the preferred strategy for the detection algorithm, due to its increased complexity.

Finally, we should note that the index of the source node is randomly chosen and that several experiments
were performed for various choices of the source node. Therefore, the location of the source does not have
an impact on the performance of the detection algorithm.
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Figure 48: Best Detection Probability in a Small-world Network, using Enhancement 2.4, for a Cardinality of the Candidate Sources of
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Figure 49: Best Detection Probability using Enhancement 2.4, for a Cardinality of the Candidate Sources of Minimum 2 (left) and
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Enhancement 2.4: Illustration of the Set of Detected Sources

The plots below show the vertices and edges in a small-world network of N = 200 nodes. In all subplots, the
source of rumors is highlighted through a bigger circle.

The left subplot shows the probability of detecting any of the network nodes, using Enhancement 2.4 of the
estimation algorithm. As we can see, the actual source is the most likely node to be detected, using 10
monitors, with a probability of detection P > 0.8.

The middle subplot shows the probability of detecting each of the network nodes, in the case when the real
source node is not correctly detected, and the right subplot is a more detailed representation of the middle
subplot. As we can see, the most likely nodes to be detected in the case of wrong estimation are located 1 hop
away from the real rumor source. The next likely nodes are in a neighbourhood of the real source, and the
probability of detection of a node decreases as its distance from the source increases.
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Figure 50: lllustration of Probability of Detection of all the Nodes in a Small-world Network of size N=200, using 10 Monitors

The same results have been plotted, by observing only 5 monitor nodes. Although the probability of correct
detection is lower compared to the example above, if the correct source is not correctly estimated, the most likely
nodes to be considered potential sources are located 1 hop away from the real source.
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Enhancement 2.4: Different Network Characteristics

The plots below show the detection probability of the rumor source in a small-world network of size N = 200
nodes, for an average vertex degree IV = 4, and a number of rumors R = 50 rumors. We can see that
compared to the case when only R = 20 rumors are available (Figure 48), the detection accuracy improves,
particularly for the case when the set of candidate sources is reduced to Ng¢ = 1 source (right subplot). The
reason for this could be the improvement in the sensor measurements when the average infection probability
is derived from a larger number of rumors. As we can see in the left subplot, the set of candidate sources is
lower compared to the case when 20 rumors are available (Figure 48, left subplot). As a result, the source
rumor centrality method will provide a more accurate ranking of the potential sources.
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The plot below shows the probability of correct detection of the rumor source, in a small-world network of
N = 200 nodes and average vertex degree V = 10. We can see that the vertex degree does not significantly
impact the estimation algorithm. Only for the case when only 10 monitor nodes are available (5% of the
network), there is a larger decrease in the detection probability. This result could be due to the fact that in a
small-sized network with a high vertex degree, most nodes will be located very close to the source and
therefore, the rumor infection happens with a bigger intensity, compared to the model predicted by the
theoretical probability. Nevertheless, while in social networks there may be nodes with very large degree
(hubs), there are also many nodes with few connections and therefore, the results obtained for a large average
vertex degree and small network radius might not be representative for a real-life application.
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Evaluation of Final Algorithm on All Network Topologies

Tree Graph

The results below reflect the source detection performance in a tree graph of N = 156 nodes, with C =5
number of children for each node, and D = 4 depth. The index of the source is chosen as i = 156, in order
to best evaluate the rumor centrality algorithm.

From the results below we can see that the probability of correct detection (before applying the rumor
centrality algorithm) is P = 1, for a number of monitors above M = 30 (15%). Nevertheless, in this case the
set of candidate sources has a cardinality in the interval [1,2]. The probability of correctly detecting Ng = 1
source using the rumor centrality method is lower compared to the one obtained on other network topologies.
This is a result of the fact that the main criterion used in the calculation of rumor centrality is mainly accounting
for errors in the calculation of the shortest distances, while in the case of a tree topology, the accuracy of
detection of the shortest paths is higher compared to other topologies, and the erroneous results might be
due to other types of noise in the sensor measurements.

The best detection probability is obtained using Enhancement 2.2, as this would ensure the lowest cardinality
of the set of potential sources, before the rumor centrality method is applied.
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The probability of distance error is shown in the subplots below, for different number of monitoring nodes.
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50

Random Geometric Graph

The results below reflect the source detection performance in a random geometric graph of N = 200 nodes,
with connectivity radius R = 0.1, and a grid dimension equal to D = 1. The index of the source is chosen as
i = 200, in order to best evaluate the rumor centrality algorithm.

The best detection probability is obtained using Enhancement 2.4 and we can see that the accuracy is mostly
limited by the shortest path estimation and sensor confidence assignment methods. On the other hand, the
rumor centrality algorithm is able to reduce the number of candidate sources to Ng = 1, without degrading
the detection performance.
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Small-world Network

The results below reflect the source detection performance in a small-world network of N = 200 nodes,
rewiring probability § = 0.2, and average vertex degree is IV = 4. The index of the source is chosen as i =
200, in order to best evaluate the rumor centrality algorithm.

As in the case of a random geometric graph, the best detection probability is obtained using Enhancement 2.4
and the accuracy is mostly limited by the shortest path estimation and sensor confidence level assignment
methods. On the other hand, the rumor centrality algorithm is able to reduce the number of candidate sources
to Ng = 1, without degrading the detection performance.
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Random Network

A random graph has been obtained using the Watts-Strogatz algorithm, for N = 200 nodes, and with rewiring
probability § = 1. The results below reflect the source detection performance using Enhancement 2.4, in a
random graph where the index of the source is chosen as i = 200, in order to best evaluate the rumor
centrality algorithm.
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Scale-free Network

Network Topologies

A scale-free network has been obtained using Method | presented in the Implementation chapter of this
report. The results below reflect the source detection performance using Enhancement 2.4, in a scale-free
network of N = 200 nodes, where the index of the source is chosen as i = 200, in order to best evaluate the
rumor centrality algorithm.

In this case, the detection accuracy is lower compared to the previous network topologies. The reason for this
may be the fact that scale-free networks have a highly heterogeneous degree distribution and thus contain
many high-degree nodes, as well as nodes with very few link connections. Therefore, the measurements at
monitoring nodes might significantly vary between nodes with very high and nodes with very low degree.
Large deviations of these measurements from their expected value may lead to more erroneous results and a
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Algorithm Complexity

The complexity of the algorithm is dominated by the Dijkstra algorithm, which has the following running time.
In a graph with E edges and V vertices, the simplest implemention of Dijkstra’s algorithm gives the running
time O(E + V2) = 0(V?) . However, for sparse graphs, more efficient algorithms could give a time complexity
of O(E + VlogV).

Other computationally expensive parts of the algorithm might be the following.

Firstly, the estimation of the connectivity index used in the theoretical formulation for the probability of
infection requires the simulation of a spreading of rumors on the network. Nevertheless, even a small number
of rumors used in this simulation leads to accurate results. Furthermore, the calculation of the optimal index
requires the employment of the minimum mean square error estimation method, based on samples of the
theoretic and simulated probability at different time steps and for different distances. This could hence lead
to high complexity for a large number of time steps or a wide range of distances. Nevertheless, as the range
of distances considered is typically narrow (as the radius of a social network is typically small) and the number
of time steps is small (as the probability of infection quickly saturates to its maximum after a short delay from
the rumor initiation), the time complexity of this part of the algorithm is reduced. In addition, for a network
which does not evolve in time, the parameters of the theoretical formula need to be estimated only once as
they will remain constant over time.

Secondly, the estimation of the shortest distances from each monitor to the source requires the
implementation of the minimum mean-square error method. Nevertheless, as the range of possible distances
is reduced (due to small radius of a social network), and since we are observing only a small fraction of the
network nodes, this method should not significantly reduce the speed of the algorithm.
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Chapter 6

Summary of Results

This chapter will firstly summarize the state-of-the-art solutions to the problem of estimating a single rumor
source. The results obtained using the algorithm presented in this report will then be discussed and
compared to the state-of-the-art.

State-of-the-Art

Some of the state-of-the-art main results obtained for random geometric graphs and trees are the following.

In [5] the authors propose a rumor centrality method used to rank the potential rumor sources. The evaluation
is performed on a tree graph and the results show that the detection probability of the rumor source estimator
is approximately P = 0.9, for a network size of N < 100 nodes, decreasing to P = 0.2 for a size of N = 400
nodes. In both cases, the parameter of the regular tree is @ = 0. When the parameter a = 1,2,3, or 4, the
probability of correct detection is P € [0.9,1). In addition, the frequency of an estimator error equal to e =
1 hop is approximately 80%.

In [11] the authors propose a maximum a posteriori estimator to identify the rumor source using a single
observation of all the nodes in the network. The evaluation of the method is performed on a regular tree graph
of 1000 nodes, assuming there is access to a set of suspects. The results show that when the set of suspects
has cardinality k = 2, the detection probability is P = 0.55 for a node degree of § = 3, increasing to P =
0.95, for a larger node degree of § = 20.

In [12] a pseudo-likelihood function for the source is used to estimate the source of rumors, and the evaluation
of the method shows that if we observe 5% of the network size, the probability that the source is within the
first top 10 ranked (ranking based on the pseudo-likelihood function) is P = 0.5, increasing to P = 0.82 if we
observe 30% of the network, and a similar value if we observe the entire network. The tests are performed
on networks of size N = 100 nodes, assuming a constant spreading probability within the network.

Some of the main results obtained for random, small-world and scale-free networks are the following.

In [1] the authors describe an ML detector used to detect the source of rumors, assuming a susceptible-
infected spreading model and using multiple observations of the entire network. The results obtained show
that for a scale-free network, the probability of correct detection is P < 0.1 when using a single observation,
increasing to P = 0.9 when having access to five observations. For a small-world network, the probability of
correct detection is P < 0.2 when having access to five observations of the entire network. The tests are
performed on networks of size N = 10000 nodes.
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In [10] the authors describe a rumor centrality and node selection method as a solution to the rumor source
detection problem. Evaluation of the method on a random directed graph of 30146 nodes shows that the real
source is within the top 10 ranked nodes using the rumor centrality method, when using more than 650
monitors (2.15% of the network size). In addition, the rank of the actual source is around 5 when using 5120
monitoring nodes (16.98% of the network size).

New Approach

We summarize below the main results obtained when evaluating the source detection algorithm used to
estimate the source of rumors in a network.

In terms of accuracy of the theoretical formulation for the probability of infection, this converges to the
probability obtained by simulating a spreading of a large number of rumors. The theoretical probability will be
compared against the simulated probability from a dissemination of multiple rumors (the number of rumors
in a real-world scenario is assumed to be R = 20). The accuracy of the theoretical probability leads to a good
estimation of the shortest path between the monitors and the potential source. With most of the errors
occurring as a result of the deviation of the individual sensor measurements from the expected value, the
distance error probability is very low, particularly for smaller monitor distances. In addition, the average
distance erroris |d,| = 1 hop.

This observation becomes important when designing the source detection algorithm, in order to account for
the cases when the noisy sensor measurements lead to a distance error of 1 hop. This is achieved by assigning
a confidence level to each sensor, based on its estimated distance to the source, as well as the measurements
obtained from the monitors at different time steps. The main criterion of calculating the confidence levels is
based on the measurements of the sensor at time equal to d, when the estimated shortest distance to the
source is d. If the real distance would be d, then the measurements at time d must be zero. Hence, if these
measurements are not zero, it means the estimated distance should be smaller. Considering that the distance
error hop is typically |d.| = 1 hop, itis very likely that in this case the distance is d — 1 instead of d as initially
estimated. Nevertheless, the criterion includes checks at time steps equal to d — 1, as well as d — 2, to
account for potential distance errors of 2 hops and 3 hops respectively.

Based on the sensor measurements ranked according to their confidence levels, a set of candidate sources is
obtained. This set is further reduced to a single candidate source, by assigning a rumor centrality level to each
potential source and ranking all the sources accordingly. The main criterion used in the calculation of the
rumor centrality is based on the sensor measurements at a time equal to d, where d is the shortest distance
between the candidate source and the monitor. If these measurements are positive, it means this source could
not have started the rumor, as the rumor could only get to the monitor at time d + 1.

While the sensor confidence level accounts for the case when the distance erroris d, = —1 hop, the rumor
centrality method accounts for the case when the distance errorisd, = 1 hop .

In summary, using the source detection algorithm based on estimation of shortest distance using the
theoretical probability formula, sensor confidence level assighment and source rumor centrality ranking, the
following results are obtained. For a scale-free network, the probability of correct detection is P > 0.8 when
observing more than 5% of the network nodes, increasing to P = 0.92 when observing 25% of the network
nodes, with a set of minimum 1 and maximum 3 candidate sources. For all other network topologies
considered, the probability of correct detection is P > 0.8 when observing 5% of the network nodes,
increasing to P > 0.99 when observing 15% of the network, and P = 1 when observing 25% of the network
nodes, with a set of exactly 1 candidate source.
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The table below summarizes the results obtained in the Evaluation section, when simulating a rumor spreading
in a small-world network of size N =200 nodes. We should note that the values below are only an
approximation of the typical results that could be obtained in a small-world network of different
characteristics, different source nodes etc. Moreover, the results are obtained using 200 repeated
experiments to obtain an average performance of the detection algorithm.
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Small-World Network, of size
N = 200 nodes
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Enhancement
1.2
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M =50
25%
M =10
5%
M =30
15%
M =50
25%
M =10
5%
M =30
15%

M =50
25%
M =10
5%
M =30
15%
M =50

Cardinality of the Set of Detected Sources

C=5
P =0.83

P =0.95

P =0.98

P =0.77

P =0.95

P =0.985

C=2 c=1
nj/a nj/a
nj/a nj/a
nj/a nj/a
nj/a nj/a
nj/a n/a
nj/a nj/a
n/a P =0.74
n/a P =0.94
n/a P =0.99
n/a P = 0.69
nj/a P = 0.945
nj/a P =0.99

P=0975 P =0.905

P=1 P=1
P=1 P=1
n/a P =0.935
n/a P=1
n/a P=1

C>5
P =0.885

P =0.995

n/a

Notes
The cardinality of the set of candidate sources when
C > 5isin the interval [8,10], for the particular network size.

The cardinality of the set of candidate sources when
C > 5isin the interval [10,15], for the particular network size.

There is an improvement in the detection probability, when C > 5, for a slight
increase in the cardinality of potential sources.

The cardinality of the set of candidate sources before the enhancement is
applied is in the interval [1,2], for the particular network size. This is further
reduced to exactly 1 candidate source using Enhancement 2.1.

There is a great improvement in the detection probability, in particular when
Cc=1.

The cardinality of the set of candidate sources before the enhancement is
applied is in the interval [1,2].

This is further reduced to exactly 1 candidate source using Enhancement 2.2.
There is no significant improvement in the detection accuracy compared to
the algorithm above.

There is an improvement in the detection probability, particularly for the case
when the final set of candidate sources contains only one node. At the same
time, there is an increase in the cardinality of the set of sources before the
rumor centrality is applied, i.e. C € [3,4], however this should not
significantly impact the complexity of the algorithm.

The cardinality of the set of candidate sources before the enhancement is
applied is in the interval [1,3]. The detection accuracy improves compared to
the previous algorithm, particularly when observing a lower number of
monitor nodes.

Table 6: Summary of Detection Probability for Different Algorithm Enhancements
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Chapter 7

Conclusions

Future Directions

One future direction would be to further improve the theoretical probability of rumor dissemination, in order
to ensure a more precise formula and which could better model various network topologies and parameters.

In addition, it would be interesting to research the problem of spreading of multiple sources, how a multiple
source rumor could be modelled and how it impacts the theoretical probability of rumor spreading.

Moreover, some state-of-the-art approaches examine the problem of rumor spreading by assuming varying
infection probabilities at each node in the network. This would be a more realistic assumption than the one
where the probability of spreading is constant throughout the network. Nevertheless, this model has increased
complexity and the derivation of an exact probability formula for the rumor dissemination process may be
challenging.

Furthermore, the current development assumes a susceptible-infected model. Nevertheless, in a more
realistic scenario, some nodes could recover from the rumor information in time (for example, some persons
might forget the information or might realise the rumor is false and not spread it further). Therefore, analysing
the susceptible-infected-recovered model could be useful for real-world applications.

In what the sensor measurements are concerned, future development should also consider the problem of
rumor source detection, through observations in a fixed time window, at some unknown time after the initial
spreading. This would be more suitable for some real-life applications, where the start time of the spreading
might be unknown.

In terms of evaluation of the algorithm, simulations and tests have only been carried out on synthetic data.
Hence, future work should include testing on real networks, to best assess the performance of the detection
algorithm. Moreover, various noise scenarios should be developed to ensure the algorithm is robust to false
information obtained from some of the sensor nodes, loss of information etc.
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Concluding Remarks

The goal of this project was to successfully infer the source responsible for spreading of data within a social
network, based on multiple observations at some of the nodes in the network. The state-of-the-art solutions
to this problem are based on the ideal assumption that there is access to time snapshots of the entire network.
Moreover, the evaluation of these solutions is mostly performed on simple topologies such as trees or random
geometric graphs, and the results show that the probability of correct detection is generally smaller than one.

This project addresses the problem of localizing a single diffusion source in a social network, based on several
time measurements at some randomly selected nodes, and assuming multiple rumor attacks from the same
source. The result of this project provides a source detection algorithm based on a novel approach of
estimating the theoretical probabilities of rumor infection of a node, as a function of its distance to the rumor
source. The theoretical rumor dissemination probabilities are compared against measurements at some
randomly selected monitoring nodes in the network, which are obtained by simulating a spreading of multiple
rumors. The results are used to obtain an estimation of the shortest paths between the monitors and the
rumor source, based on the minimum mean-square error method. The source detection algorithm relies on
the estimation of the shortest distances between the monitors and the source, as well as sensor confidence
level assignment and source rumor centrality ranking.

The evaluation of this algorithm is performed on simple topologies such as tree graph, and random geometric
graph, as well as topologies that accurately model the characteristics of a social network such as small-world
and scale-free network. The results obtained are the following. For a scale-free network, using a simulation of
20 rumors the probability of correct detectionis P > 0.8 when observing more than 5% of the network nodes,
increasing to P = 0.92 when observing 25% of the network nodes, with a set of minimum 1 and maximum 3
candidate sources. For all other network topologies considered, the probability of correct detectionis P > 0.8
when observing 5% of the network nodes, increasing to P > 0.99 when observing 15% of the network, and
P =1 when observing 25% of the network nodes, with a set of exactly 1 candidate source. Moreover, the
probability of correct detection increases as the number of rumors becomes larger. Furthermore, in the case
of wrong estimation the detected source is typically located 1 hop away from the real rumor source, using any
number of monitoring nodes.

Future research directions would further increase the performance of the algorithm and enable it to be more
robust to noisy sensor measurements. As a result, the accuracy of the source detection algorithm could
increase, particularly when this is employed in a scale-free network. Last but not least, the current probability
formulation and source detection algorithm could be further developed in order to provide a solution for the
estimation of multiple diffusion sources in a network.
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Appendices

Appendix A. Matlab Environment

Generation of a small-world network

Alexandru (rialZ})

gmail.com

ial College London

weration of a Small-world metwork

nput parameters:
umber of Nodes : N

vertex degree (2EK) : K

v: beta

£1. Adjancency matrix M
%2. Matrix of shortest distances D

ccc;
%(The number of nodes is N
N=200;

ftNode degree is 2K
F=2;

%(5elect the index of the source node
=rc=1;

Create a matrix describing the graph structure

th=WattsStrogatz (H,E, beta):
HM=WattsStrogatz (N, ¥, beta) ;

D=zeros (H,H) :

%£Find all shortest paths between

parfor i
for

D(i,j)=dijkstra(M,i,3):
end
end
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Watts-Strogatz Algorithm

fAuthor: Roxana Irina Alexandru (rialZl)
£Email: rialexandrufl@gmail.com
Imperial College London

% H = WattsStrogatz (N,E,beta) returns a Watts-S5trogatz model graph with N
% nodes, N*E edges, mean node degree 2%E, and rewiring probability beta.
% beta = 0 means a ring lattice, and beta = 1 means a random graph.
function [ M ] = WattsStrogatz( H,E,beta )

fAdjacency Matrix
HW=zeros (H,H) ;

% Connect each node to its K next and previous neighbors. This constructs
% indices for a ring lattice.
fCreate matrix of K repeated rows
On each row
s = repelem( (1:M)",1,E):
t = 8 + repmat(1l:E,H,1);
t = modit-1,M)+1;

% Rewire the target node of each edge with probability beta
%The source iz the current node we are looking at
for source=1:N

switchEdge = rand(K, 1) < beta;

newlargetcs = rand(H, 1);
FAvoid self-loop=
newlargets (source) = 07
fLook at the previous E neighbors of source and set the connection to 0
%i.e. get the indicez for which t==ource
newlargets (s (t==3ource) | = 0:
fFind the connections to the next K neighbors and set some of them to
%0, according to probability Eeta
newlargets |t (source, ~=zwitchEdge)) = 0;
3The last ZE nodes in the ind vector are the next and previous neighbors
EWhich do not need to be re-wired
[~, ind] = =sort (newlargets, 'descend'):
%nnz returns the number of non-zero matrix elements
f£For those neighbors for which switchEdge=1l, i.e. which need to be
frewired, create a new edge to other 2 random nodes
t{zource, awitchEdge) = ind(l:nnz(switchEdge)):
end

for i = 1:H
for k = 1:K

j=tii,k):
Mi{i,j)=1:
Mi{j,1)=1;
end

end
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Generation of a tree graph

fanthor: Boxana Irina Alexandru (rial2)
$2Email: rialexandrull@gmail.com
EFUniversity Imperial College London
fDesgcription: Function which creates a tree network
FInputs:
%¥1. Number of children of each node: C
£2. Depth of tree: D
Outputs: Adjancency matrix adjMatrix
function [N, adjMatrix ] = treeNetwork( D, C )

H=1;
X=1;
tNumber of nodes
for i=1:(D-1)
H=X*C;
N=N+X;
end

M=zeros=(H,H):

%Select the index of the source node
src=1;

¥Connect the source node 1
for c=2:(C+1)

M{l,c)=1;

Mic,1)=1:
end

for k=2:(D-1)
lower=((C™(k-1)-1)/ (C-1))+1;
upper=(C” (k) -1)/(C-1);
const=C" (k-1) ;
for i=lower:upper
for j=1:C
e=lower+const+ (i-lower) *C+j-1;
Hii,e)=1;
Mie,i)=1:
end
end
end

adiMatrix=M;
end
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Generation of a scale-free network using Barabasi algorithm

fAuthor: Roxana Irina Alexandru {(rial2)
$Email rialexandru0l@gmail.com
n Imperial College London
EiDescription: Function which generates a scale-free network using the
%Barabasi algorithm, with fixed degree distribution
fInputz: MNumber of nodes (must be a power of 3)
F0utputs: Adjancency network M
function [ M ] = SFBarabasiModel| N )
M = zeros (N,N):

£Pick a random initial node, the root of the graph
root = 1;

FHumber of iterations
L = (log(N)/log(3)) :

FInitial it has no connections and a single node
A = zeros(l,1):

for 1 = 1:L
P = A:
gprev = 3" (1-1}+1;
snew = 3°1;

fUpdate the unit
A = zZeros |(=new,anew) ;
for i = 1l:sprev-1
for j = 1:1i;
Af{i,3) = Pii,3):
fensure symmetric
Rij,i) = &nii,3):
end
end

for i = sprev : 2*3"(1-1)

for j = asprev:i
A{i,j) = Pli-=zprev+l,j-=sprevil):;
A1) = A(i,3):
end
fLast 2" (k-1l) new nodes should be connected to the root
if i»= [(2%*#37({1-1)-2"(1-1)) && i<=(2*3"(1-1))
A({i,root) = 1;:
Airopt,i) = 1;
end

end

for i = 2*3°(1-1)+1l:anew
for j = 2%#3~{1-1)+1:1

Afi,J) = B(i-2%37(1-1),3-2%37(1-1)):
Rij,i) = (i, 3):
end
if i»= (snew-2"(1-1)) && i<==new
A{i,root) = 1;
Ajlroot,i) = 1;
end
end
end
H = &;

End
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Generation of a general scale-free network

Fhuthor: Roxana Irina Alexandru (rialz)
£Email: rialexandrufl@gmail.com
FUniversity: Imperial College London
fDescription: Function which generates a scale-free network
FInputs:
%1. Humber of nodes N
%£2. Average degree of seed networks: d
%3, Size of seed network: mo
f0utputs: Adjancency network M
function [ M ] = SFgraph( d, mo, H)
£The average degree of the initial network is d
%Create initial graph of m0 nodes
M = zeros (N,H):
for 1 = 1:mo
neighbours = randi(d):
for n = l:neighbours

j = randi(i):
if je=i
Mij. i) = 1:
Mii,3) = L;
else
Mij, 1) = 0;
Mii,3) = 0;
end

end
end
for i = mo+l:H
degsum = 0;
deg = zexros(l,i-1):
p = zeros(l,i-1);
%$Look at all pre-existing nodes
for 3 = 1: i-1
tCalculate degree of node j
deg({j) = calcHodeDegree (N, M,3j):
degsum = degsum + deg(j):
end)
for 3 = 1: i-1
(Calculate probability of connection to each node j

pli) = deg(j)/degsum;
tGenerate a connection with probabkility p(j) between node j and
tnode i

£Probability of conmnection
probkZ = p(i):

2Probability of not being infected by rumor
probl = 1-p(j):

tProbability vector

prob=[probl, proki]:;

tVector with N random values between 0 and 1
r=rand(1,1);

% C = cumsum{ [0, prob]):
% = = sum( r>=cumsum|[0,probl) ):
randVector=szum| rx»=cumszum|{[0,prob]) }-1:
M{i,j) = randVector:;
M(j,i) = randVector:
end
end

end




100 [Matlab Environment

Calculation of the theoretic probability of infection

f$Author: Roxana Irina Alexandru (rialZ2)

rialexandruOl@gmail .com

Imperial College London

This function calculates the theoretical probability of rumor

fDescriptio
¥infection
%(Inputs:
£1. The node distances for which the theoretic probability is calculated:
% from 1 to dmax

£2. The optimal connectivity index: connectIndex

%¥3. The number of nodes in the network N

%4. The number of time steps K

£5. The probability of rumor spreading FPs

F0utput: the theoretic probability of rumor infection Prheoretic

function [ Ptheoretic ] = calcTheoreticProb( N, K, Ps,dmax, connectIndex)

P = zeros (N, H):
Ptheoretic = zeros (K, dmax);
e THEQORETIC PROBABILITIES-—--————————————————————
%(For each distance
for d = 1 : dmax
$For each time step
for nsum = 1 : E-1
%Calculate the probability of getting first infected at time k
for k= d : nsum
£If the distance is not 1, subtract 1 from the time step
fand distance, as the first step in the path is always a
fatep further away from source (A-type)
if d~=1

end ;
pk=Ps*connectIndex;
Ptheoretic (nsum,d)= Ptheoretic(nsum,d)+F(k,d):

end
%¥Truncate the values above 1 to 1

% if Ptheoretic| m,d) >1
E Ptheoretic(nsum,d)=1;
® end
end
end

end

Plk,d) =pk”(k2+1)*((1-pk)”~ (n2-k2))* (2" (n2+1))/sqrt (2*pi* (n2) ) *exp (- ( (n2-2*%k2)“2/ (2*n2))):
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Calculation of the simulated rumor probability

Fhuthor: Roxana Irina Alexandru (rial2)

£Email: rialexandrull@gmail.com

f0niversity: Imperial College London

function [ Pzimulated ] = calc3imProb| N, E, dmax, Vtest, src, D, spreadingModel)
Pzimulated=zerosz (N, dmax) ;

% 1if =strcmp (spreadingModel, "SI')
%tFor each distance from the source
£2Thi=s calculated the average probability of a node located at that
Zdistance to get the rumor after a number of =teps
for d=1:dmax

no=0;
tFor each node in the network
for j=1:H
%5elect those nodes which are at distance d from the =ource
if Di=src,j)= d
no=no+l;
%(For each step
for n=1:¥
%(Calculate the average probability obtained through
fzimulation, for each distance d
Psimulated(n,d)=(Fsimulated(n,d)* (no-1)+Vtest(n,j))/no;
end
end
end

end

end
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Simulation of a Spreading of Rumors

f(huthor: Roxana Irina Alexandru {riall)
3$Email rialexandru0l@gmail.com
3 Imperial College London

£The number of repeated experiments of spreading of rumors is L

£The number of steps is K

£The average of all Us i=s the matrix V
V=zeros (E,N);

Error=zeros (K,HN):

¥Probabkility of spreading of rumors
Papreading=0.5;

Pspreading= 1-Pspreading:

%5elect the index of the source node
Esrc=1;

#¥Choose the number of sources and
#Choose random indices which will be the sources

findSrc = 0;

noSources 1:

% indices=randi (N, 1l,noSources);

for 1=1:L
tDefine a matrix which will hold all the wectors corresponding to all the
fnodes, at each step taken of one iteration
£Initially the matrix has 0 elements

U=zeros (E,H):
FInitialize multiple sources
uv=getMultipleSources (noSources, indices, ) ;

(Count number of non-zero elements in u
count=0;
for i=1:N
if wii)==1
count=count+1;
end
end

%Put thisz as the vector corresponding to first step in matrix U
U1, :)=u;

i5pread the rumors

for =1:E-1
u=stepSpreadinglNonSelfAvoiding (u, M, Pspreading):
U{k+l, :)=u;

end

%Update the average matrix V
for v1=1:NH
for v2=1:K
V(v2, v1)=(V(v2,v1)*(1l-1)+0(v2,v1))/1;
Error(vZ,v1)=Vi(va,v1l)-U(v2, v1):
end
end

end
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Plot of the network nodes and edges

Rozxana Irina Alexandru
riglexandrudl@gmail . com
Imperial College London

thuthor:
tEmail:
EtUniversity:

function [ ]

figure
for k= 1:=ize (V)
if K >=3
dim=floor (E/3):
if mod(E,3) ~=0
diml=dim(1l)+1:
elze diml = dim(l):
end
sgubplot (diml, 3, k)
graphBuild (M, Vik,:)"):
z title{'Average Spreading of
if k == 2
title{"Average Spreading
end
ylabel (['Spreading at step ',
grid on
else
graphBuild (M, Vik,:)"):
z title{'Average Spreading of

ylabel (['Spreading at step ',

end
end

end

(rialZz)

= plotStepGraphs| M, V, E )

Bumnrs SW')
of Rumors Small-World')

numZ2ztr (k) ])

Bumprs SW')
num2str (k) ])
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Generation of a random vector

$Author: Roxana Irina Alexandru (rialz)

£Email: rialexandrull@gmail.com

tUniversity: Imperial College London

tFunction which generates a random vector of 0 and 1, given its input size
function [ randVector ] = randVec| N, Pspreading)

£Probability of not being infected by rumor
probl = Pspreading;

£Probability of being infected by rumor
prob2 = l-probl;

itProbability wvector
prob=[probl, prob2]:

tVector with N random values between 0 and 1
r=rand(1,HN):

£Initially, the random vector generated has only 0 elements
randVector=zero=s(1,H);

for i=1:N
randVector (i)=sum(r(:,i)>=cumsum|[0,prob]))-1;
end

end

Initialization of the rumor source

fFAuthor: Roxana Irina Alexandru (rialZ)

$tEmail: rialexandrudl@gmail.com

f0niversity: Imperial College London

fFunction takes as input the index of the nodes which are sources
(Function sets the sources for spreading of rumours

%tand creates a new vector illustrating the initial =tate of nodes
funetion [ tinitial ] = zetMultipleSources| noSourcesz,indice=, N )

tinitial=zero= (1, N):
for i=l:noSources
index=indice=z(i):
tinitial (indpx)=1;
end

end




