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Abstract 
 

As social networks have developed and the spreading of information has greatly amplified, the dynamics of 

information dissemination within a network have attracted considerable attention in the past years. Recently, 

however, several authors have begun considering the more challenging reverse problem, of detecting the 

source responsible for the spreading of rumors. The state-of-the-art approaches focus on detecting rumor 

sources in simple topologies such as trees or random geometric graphs, based on the ideal assumption that 

there is access to information at all the nodes in the network. 

This project addresses the problem of estimating the source of an infection on a general graph of known 

topology, using observations from a finite set of monitor nodes, at well-known times after the initial infection. 

This report describes the network topologies, the infection model and the Matlab environment required to 

simulate a spreading of rumors, and the mathematical formulas which model the probability of rumor 

dissemination. The theoretical derivations are compared against observations from the randomly selected 

sensor nodes, in order to allow the exploitation of an algorithm for the inference of the rumor source. 

Experiments were carried out on synthetic networks, and the results obtained show the convergence of the 

derived theoretic probabilities to the ones obtained through simulations, as well as an accurate identification 

of the rumor source, with higher probability of correct detection compared to state-of-the-art solutions. 
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Chapter 1  

 

Introduction 
 

This Project Report aims to give a description of the problem of localizing diffusion sources of rumors in social 

networks, and to present a mathematical formulation of a solution to this problem, as well as the evaluation 

methods used to assess the performance of this solution. 

The structure of this report is the following. Firstly, Chapter 1 presents a mathematical formulation of the 

problem. Chapter 2 provides a description of the state-of-the-art approaches related to this problem, and lays 

out the required mathematical and graph theory-related background.  

Furthermore, Chapter 3 describes the analysis and design involved in the derivation of a mathematical 

formulation for the theoretic probability of rumor spreading in a network of arbitrary topology. The design 

includes the initial derivation of the probability of dissemination, as well as a refined solution to the problem. 

Moreover, Chapter 4 presents a description of the Matlab environment, including the design of the synthetic 

networks used for simulations and the epidemic model used to simulate the spreading of rumors. In addition, 

a rumor source detection algorithm is presented, with a description of the motivation behind each algorithm 

enhancement.  

Chapter 5 presents the evaluation methods used to assess the performance of the estimation algorithm, which 

includes tests assessing the individual enhancements presented in Chapter 4, as well as tests for the complete 

algorithm. Finally, the results are discussed in Chapter 6, and conclusions are drawn in Chapter 7, which include 

any future works to be conducted.  

 

Motivation  
 

The aim of this project is to successfully infer the source responsible for spreading of data within a certain 

network, motivated by applications such as: localizing individuals who set trends in social networks and who 

successfully spread rumors or images, determining the causes of cascading failures in large systems such as 

financial markets or sensor networks, finding the contaminant in a water distribution network, and identifying 

the origin of infectious diseases.  

One of the most interesting of these applications is the dissemination of information in social networks and 

finding the influencer in this case could be of great interest, for example, in the case of identifying the leader 

of a spy or political network. Described as the Achilles’ heel property of social networks, this property ensures 

that such networks are robust to random failures, but fragile to attacks. Moreover, as social networks expand 

and become more popular, the information propagation becomes faster and less controllable, with some 

influential people having the power to disseminate pervasive rumors without confirmation or certainty to 
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facts. Consequently, finding the source of the rumor is very important, as it could help control and prevent the 

risk of allowing information to be disseminated within the network, as well increase the resistance of the 

network to attacks. 

The project could also motivated by other interesting applications such as: determining the causes of 

cascading failures in large systems such as financial markets or sensor networks, identifying the origin of 

infectious diseases or computer viruses, or identifying the leader of a spy or political network. Some other 

applications of interest could be biological systems such as metabolic networks, protein-protein interaction 

networks, or diseases links through shared genes.  

It is also of interest to analyse the problem of detecting multiple diffusion sources in the network. For example, 

recurring email spam and virus attacks are generally organized by criminal networks. Hence, if we consider 

the detection of multiple sources, we can assume that these sources are connected, consequently identifying 

any of them would provide necessary information to further identify all the rumor sources [1].  

 

Mathematical Formulation of the Problem  
 

Definition of a Rumor 

A rumor can be defined as a story, a statement or any other type of information such as images, which enters 

circulation within a network. Generally a piece of information can either true, false or unknown, based on the 

judgements made after the spreading phenomenon. Only the latter two will be defined as rumors, while the 

former is an information confirmed as true after some time after the spreading [2].  

Rumor Spreading Model 

The model assumes a uniform prior probability of the source node among all nodes in the network. This 

assumption ensures tractability and is common in literature [1]. 

The problem of detecting who is spreading rumors in a social network can be translated to the problem of 

estimating the source node which starts disseminating information within a network of fixed topology. We 

will assume a susceptible-infected (SI) epidemic model, where there are two types of nodes: 

 Susceptible nodes: which are not infected with the rumor yet; 

 Infected nodes: which have the rumor and can spread it to any other node, including already infected 

nodes. 

The main approach is to relate this problem to the one of estimating the sources of continuous diffusion fields. 

In this case, the recent results developed in the Communications and Signal Processing group address the 

problem by taking discrete spatiotemporal measurements of the field obtained with a network of arbitrarily 

distributed sensors, and by providing reconstruction schemes to recover the field by estimating the sources 

that induced it [3].  

In a similar manner, the problem of finding the source of rumors in social networks will be addressed by 

collecting data from a network of randomly chosen sensors and using the available data to localize the source 

of rumors in the network. Nevertheless, in the case of a fixed topology network, the problem becomes more 

challenging as the estimation depends on the fixed topology of the network. This makes it difficult to assign a 

well-defined location to the nodes in the network, compared to the case of the physical phenomena of 

diffusion where we can give a precise location in space to the points where the field spreads. In addition, the 
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topology affects the dynamics of the spreading of rumors due to additional connectivity constraints, compared 

to a continuous field where there is no notion of connectivity between any points in the diffusion medium. [4]  

 

Assumptions 
 

The following assumptions are made and justified below: 

a. Network Topology: We will study the dynamics of spreading of rumors and test the source estimation 

algorithms on the following network types: tree structure, random geometric graph, small world graph 

and scale-free networks. The motivation for choosing these network types is the following: the tree 

represents a simple graph which allows more insight into the dynamics of rumors, the random geometric 

graph is a mathematically simple spatial network with real-world applications in the modelling of ad-hoc 

networks, while the small-world and scale-free properties describe more complex graphs and are 

generally used to model the social networks. 

b. Network Topology: The number of nodes in the network, and in addition, the network topology (the 

connections between any two nodes) are known in advance. This agrees to a real-world application, where 

the connections between the members of a social network are known. 

c. Network Evolution: We will assume that the network is constant at least for the duration of the 

observation. Hence, the connections between the nodes in the network are fixed. In addition, there is no 

network growth over the time window when observations are taken.  

d. Number of Sources: The research will focus on estimating a single instantaneous source of spreading of 

rumors. Moreover, as a future development, the solution could be adapted to the problem of detecting 

multiple rumor sources. 

e. Number of Rumors: The main motivation of this project is to successfully localize the information 

dissemination source in a network. This assumes that the source of rumor will start a large number of 

attacks (as is the case of a source of rumors in a social networks or a hacker launching a series of (viral) 

attacks on an institution’s infrastructure etc.). Therefore, the model assumes that data resulted from 

multiple rumors will be available (e.g. 20 rumors).  

f. Rumor Persistence: The source is assumed to be instantaneous, with time-invariant intensity, based on 

the fact that typically, the information does not change while being transmitted from one person to 

another. In addition, once a node is infected with the rumor information, it will not be possible for it to 

eliminate the information. 

g. Probability of Rumor Spreading: We will assume that the rumor spreads with constant probability, defined 

as the probability to pass the rumor between any two connected nodes. Even though in a social network, 

some people have a higher tendency to spread the rumors than others, we can assume that on average, 

the rumor will spread with a constant probability. 

h. Monitoring Nodes: The sensor nodes are selected randomly from the set of all nodes in the network. Since 

we have access to a limited number of sensor nodes, we can gain additional information through 

measurements over time.  

i. Time Measurements: We will assume that we have access to measurements at various nodes in the 

network, at well-defined time instants after the rumor spreading has started. This is the only assumption 

which may not agree entirely with a real-world application, as in a real-life case we would not be able to 

precisely know at what point in time we are taking measurements in the network, after the source 

emission has started. However, this assumption is necessary in the initial phase in order to provide a 

starting point for tackling the problem.  



4 | P r o j e c t  A i m s  a n d  O b j e c t i v e s    
 

Project Aims and Objectives 
 

The main project deliverables are the following: research and clear formulation of the problem, derivations of 

expressions to recover a single source responsible for spreading of multiple rumors, development of Matlab 

environment and Matlab simulations to evaluate the proposed solutions and the algorithms developed, on 

synthetic data. 

The following objectives have been achieved. Firstly, the initial requirement of the project revolved around 

diffusion processes, Markov chains and random walks and how these theories could be applied to the problem 

of spreading of rumors in a social network. A set of research papers have been read and understood and more 

in-depth knowledge was gained using other materials such as books or reviewing previous modules. The initial 

research helped understand the dynamics of the rumor spreading in networks, as a similar phenomenon to a 

diffusion field and how this could be related to a Markov process.  

Secondly, a Matlab environment has been set-up in order to better visualize the dynamics of rumor spreading 

and to understand how the different network topologies and parameters affect this spreading. This 

environment consists of a network defined through a matrix, and artificially generated, rumor spreading 

processes. This gave an initial understanding of the dynamics of the rumors in various network topologies: 

tree, random geometric graph, small-world and scale-free graph. 

The subsequent research focused on identifying related research topics and on the state-of-the-art solutions 

to the problem of detection of the diffusion source in social networks. This helped further understand the 

problem, the challenges associated with it, and various evaluation methods typically used for the solutions 

proposed.  

Based on the research of the state-of-the-art solutions, as well as vast research concerning topics such as 

graph theory, statistics, probability distributions, or mathematical simplifications, an initial approach to the 

problem was developed. This approach has not been studied before, and involves the derivation of an 

analytical formulation for the theoretic probability of a node being infected, as a function of the time since 

the rumor initiation, as well as of the shortest distance to the source emitting the rumor. The research 

completed as part of this approach includes: shortest-path Dijkstra algorithm, mathematical tools such as 

Stirling’s formula, approximating the sum of binomial distribution into a Gaussian distribution, topics related 

to Markov processes such as path counting of constrained random walks.  

The mathematical formulation of the theoretic probability of rumor infection further lead to the development 

of an algorithm for detection of the source. Herein, robust schemes will be developed, which have a high 

probability of correct detection, on an arbitrary network whose topology is known and in particular on graphs 

which accurately model the properties of a real social networks, such as small-world or scale-free. 

The problem of recovering multiple sources responsible for the spreading of data within a network is a 

challenging problem and will remain as part of the requirements for future work. Moreover, some other topics 

which will be included in the future works are: relaxing the assumption that the rumor spreads with constant 

probability within the network, or assuming that the time at which we take sensor measurements is unknown. 
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Challenging Aspects 

  
The problem of identifying rumors and their sources in social networks is a hard problem to solve, which has 

largely remained unexplored until recently. 

Besides this, one other challenging aspect of the project is due to the limited related research literature on 

the topic of rumor detection in a social network. Most of the current research focuses on identifying how the 

dynamics of various networks affect the spreading of rumors, and not on the inverse problem of detecting the 

source. In addition, there exists some related research, which aims to find a detection algorithm, however the 

problem is often over-simplified by: in some cases only simple networks such as tree graphs are considered, 

others assume that we have snapshots of all the infected nodes in the network.  

Furthermore, deriving a precise analytical formula for the probability of spreading of rumor is mathematically 

challenging and the approximations used to simplify these derivations may decrease the accuracy of the 

results, hence leading to erroneous detection of the source. Moreover, modelling complex real-world 

networks could be challenging. In addition, a wide range of simulations and analysis of results are required in 

order to understand the dynamics of spreading of rumors in various networks, and to evaluate the source 

detection solution. 
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Chapter 2  

 

State-of-the-Art  
 

Survey of Related Literature 
 

This section gives an overview of the relevant literature research, summarizing some of the state-of-the-art 

approaches used to solve the problem of rumor source detection. 

In the paper “Rumors in a Network: Who’s the culprit?” [5] the authors propose a rumor spreading model 

based on the susceptible-infected (SI) model. In this model, there are two types of nodes: nodes susceptible 

to infection, and nodes which currently infected and can thus continue spreading the rumor. The paper then 

addresses the source estimation problem, simplified by considering the case of regular trees, where every 

nodes has the same degree, and where only one node can be a source of rumors. The estimation is done by 

modelling the time for a node 𝑖 to transmit the rumor to its neighbor 𝑗 as an exponential random variable. 

Since each node is equally likely to be the source, the best estimator of the actual rumor source will be the 

Maximum Likelihood (ML) estimator. The ML estimator is given by 𝑣 = argmax𝑣∈𝐺𝑁 𝑃(𝐺𝑁|𝑣
∗ = 𝑣), where 𝑣∗ 

is the actual rumor source. The paper then proves the fact that in a regular tree network, the ML estimation 

is equivalent to a combinatorial problem, if we have access to the rumor graph, i.e. if we know exactly all the 

nodes that have the rumor at a certain time, which form a subgraph 𝐺𝑁. This is equivalent to a metric called 

rumor centrality which represents the likelihood of a particular node to be a source node and hence, the source 

would be the node in the infected subgraph with the highest rumor centrality. The evaluation of the solution 

is given by calculating the rumor source estimator detection probability for line and geometric trees, versus 

the number of nodes in the graph and for various values of the parameter characterizing the tree, denoted 

by 𝛼. This parameter is used to give upper and lower bounds on the maximum number of nodes located at a 

distance 𝑑 from a node. In addition, the solution is also evaluated by looking at the estimator error, given by 

the number of hops between the estimated source and the actual one. It is shown that the detection 

probability of the rumor source estimator is approximately 𝑃 = 0.9, for a small geometric tree with less than 

100 nodes, decreasing to 𝑃 ≅ 0.2 for a size of 𝑁 = 400 nodes. In both cases, the parameter of the regular 

tree is 𝛼 = 0. When the parameter 𝛼 = 1,2,3, 𝑜𝑟 4, the probability of correct detection is 𝑃 ∈ [0.9,1]. In 

addition, the frequency of an estimator error equal to 𝑒 = 1 ℎ𝑜𝑝 is approximately 80%. The algorithm was 

also tested on small-world and scale-free networks, where the performance is reduced compared to the case 

of tree graphs. In this case, the source estimator error is 0 only in 15% of the time.  

In the paper “Rumor centrality: A universal source detector” [6] the authors extend the solution to random 

graphs. In this work, the authors propose an approach that takes advantage of knowing all infected nodes in 

the graph. As such, this approach might not be best suited for a real-world application, considering the 

challenges of having access to this information, as well as the complexity of the algorithm for large network 

sizes. 
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In the paper “Spotting Culprits in Epidemics: How many and which ones?” [7] the authors provide an 

algorithm to identify the likely sets of source nodes, given a snapshot of the network after the rumor has been 

spreading for some time. This is achieved through the Minimum Description Length method, which simulated 

the spreading of rumors starting from the estimated set of seed nodes and chooses the set which best 

described the given snapshot. The best set of nodes can be identified without knowing the number of 

spreaders a priori.  

In the paper “Rumor Source Detection under Probabilistic Sampling” [8] the authors analyse the problem 

where the nodes in the network randomly report their infection state, hence having access to an incomplete 

snapshot of the infection state. The evaluation is done on regular trees, using the susceptible-infected model. 

In the paper “Inferring the origin of an epidemic with a dynamic message-passing algorithm” [9] the authors 

study the problem of detecting the single source of an epidemic outbreak, by having access to a snapshot of 

the network at a certain time and using the susceptible-infected-recovered model. The algorithm proposed is 

based on dynamic message-passing equations, giving the probabilities that a certain node 𝑖 is in a given state 

at time 𝑡, where the possible states are susceptible, infected or recovered.  

Furthermore, in the paper “Identifying Rumors and their sources in social networks” [10] the authors are 

analysing the problem of finding the rumor source using observations at a finite set of monitors. The algorithm 

proposed finds a minimal set of candidate sources, based on the number of infected nodes that the candidate 

source reaches (which should be high for a more likely source), as well as the number of susceptible nodes 

that can be reached from the source (which should be low for a more likely source). The method is evaluated 

using different strategies of selecting the monitor nodes, such as random selection or selection based on the 

largest betweeness centrality which depends on the distance and number of edges between the monitor 

nodes. The solution is evaluated on a directed graph of 30146 nodes. The results show that as the number of 

monitors increases, the rank of the actual source decreases. For example, for 20 monitors (0.06%), the rank of 

the actual source is approximately 1000, dropping to below 10 when more than 650 monitors (2.15%) are 

used. In addition, the distance between the main suspect (rank 1) and the actual source is in all cases smaller 

than 3 hops.  

In the paper “Routing out the rumor culprit from suspects” [11] the authors are using a priori knowledge of 

the set of suspect nodes and a single observation of all the nodes in the network, in order to construct a 

maximum a posteriori estimator to identify the rumor source. This is based on the assumption that in a real-

life application, some individuals might be more likely to initiate the rumor spreading, or another example are 

the frequent travellers who will be more likely to cause an epidemic outbreak. The evaluation of the method 

is performed on a regular tree network of 1000 nodes, where the infection is started by a source randomly 

selected from a set of suspects. The results show that as the suspect size decreases, the probability of correct 

detection increases. For example, when the set of suspects has cardinality 𝑘 = 2, the detection probability is 

𝑃 ≅ 0.55 for a node degree of 𝛿 = 3, increasing for a larger node degree of 𝛿 = 20 to 𝑃 ≅ 0.95. For a larger 

suspect size, there is a small drop in the correct detection probability. In summary the authors consider the 

problem of identifying a single source out of a pre-defined set of suspected nodes, using the susceptible-

infected model, along with a single observation of the entire network. The results prove that the performance 

of the detection algorithm is improved when a set of suspects is known. Nevertheless, this assumption, as well 

the assumption of having access to the state of the entire network, might be unrealistic for most real-world 

applications.  

In the paper “Rooting our Rumor Sources in Online Social Networks: The Value of Diversity from Multiple 

Observations” [1], the authors address the problem of detecting the source of rumor spreading, using multiple 

observations, which increase the reliability of source detection in a network. The authors study the problem 

of a single rumor source and evaluate the solution in degree-regular trees. In addition, the case of multiple 
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connected sources is also studied for general trees, as well as general graphs. Moreover, the detection 

algorithm assumes that multiple snapshots of the entire network are available, i.e. all the nodes need to be 

observed. The source detection method consists of observing the entire network at some time and finding a 

subset of infected nodes. Then, a Maximum Likelihood detector is calculated for each potential source 𝑠, as 

the maximum of the probability of observing the subset of infected nodes, assuming the rumor was initiated 

at node 𝑠. The detection algorithm is evaluated by computing the asymptotic correct detection probability 

against the node degree in a regular tree. As the node degree increases, so does the detection probability 

asymptotically. For example, for the case of two independent observations, and a node degree 𝑑 = 3, the 

probability of detection is 𝑃 = 0.5, while for a node degree 𝑑 = 16, 𝑃 = 0.9. Under three independent 

observations, a node degree 𝑑 = 6 is sufficient to obtain a probability of detection of 𝑃 = 0.9. Hence, it can 

be seen that the authors also show that in addition to the diversity of observations, richer connectivity also 

enhances the detection. They also evaluate their method by looking at the frequency of the detection error, 

measured as the shortest path between the estimated source and the real rumor source. The results obtained 

showed that for the estimation of a single source using 𝑘 observations of the entire scale-free network, the 

frequency of 𝑛𝑜ℎ𝑜𝑝𝑠 = 0 is 𝑓 < 5% for 𝑘 = 1, increasing to 𝑓 = 90% for 𝑘 = 5 observations. The method 

performs less well for a small-world network, where the frequency of correct detection is 𝑓 < 20% for any 

number of observations 𝑘 ≤ 5. The method using multiple observations leads to a better performance in the 

case of multiple connected sources as well.  While the method proposed in this paper is highly performant, it 

requires knowledge of the state of all the nodes in the network, for multiple observations. This would be hard 

to achieve in a real-world application, where the number of nodes in the network can be several orders of 

magnitude. 

In the paper “A fast Monte Carlo algorithm for source localization on graphs” [12] the authors describe a 

method of estimating the source of rumors from a small set of sensor nodes, by considering measurements 

within a fixed time interval at some unknown time after the initial rumor spreading. Within the considered 

time window, it is assumed that the nodes observed could be classified in the following three categories: 

infected nodes (which already have the rumor at the time window), susceptible nodes (nodes which do not 

have the rumor throughout the duration of the time window, but could receive it) and transition nodes (which 

will get the rumor for the first time at a certain time within the considered window). Hence, the set of 

observers can be partitioned as follows:  

𝑂 = 𝑂𝑇 + 𝑂𝐼 + 𝑂𝑆, where {

𝑂𝑇 = 𝑛𝑜𝑑𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝑡𝑜 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑
𝑂𝑆 = 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝑛𝑜𝑑𝑒𝑠
𝑂𝐼 = 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠

 

Moreover, the authors define the index of the first observation at which a node transitions to an infected state 

as:  

𝑚𝑖 = {1,2,…𝑇 − 1},𝑤ℎ𝑒𝑟𝑒 𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤. 

In addition, it is assumed that the infection time of node indexed 1 is 𝜏1, and hence the relative infection times 

will be 𝜏𝑖 − 𝜏1, for each node 𝑖. Hence, for each potential source 𝑠, a log-pseudolikelihood function can be 

calculated as follows, assuming that the relative infection delays are independent: 

𝑙(𝑠) =  ∑ 𝑙𝑜𝑔𝑃{𝑖∈𝑂𝑇\{1} 𝜏𝑖 − 𝜏1 = 𝑚𝑖 −𝑚1|𝑠}+∑ 𝑙𝑜𝑔𝑃{𝑖∈𝑂𝑆 𝜏𝑖 − 𝜏1 ≥ 𝑇 −𝑚1|𝑠}+∑ 𝑙𝑜𝑔𝑃{𝑖∈𝑂𝐼 𝜏𝑖 − 𝜏1 ≤

−𝑚1|𝑠} 

In the above equation, 𝑚𝑖 −𝑚1 are known from observations. Moreover, we can approximate the infection 

times as independent Gaussian random variables. Hence, in order to estimate the marginal for the relative 

times, it remains to find an estimation for mean and variance of the infection times, corresponding to each 

source 𝑠. The authors achieve this by sampling the set (𝜏1, 𝜏2, … , 𝜏𝑛) for several iterations for each source 𝑠, 
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and finding the mean and variance of those samples. The sampling method consists of assigning the value of 

the shortest distance between the source node 𝑠 and the monitor node 𝑖, 𝜏𝑖 = 𝑑(𝑠, 𝑖). The log-

pseudolikelihood function will be evaluated for each node, and the potential sources will be ranked according 

to the value of the function. The source estimation algorithm is evaluated by considering the cumulative 

distribution function for the rank of the source, i.e.  

𝑃{𝑡𝑟𝑢𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑟𝑎𝑛𝑘 ≤ 𝑟𝑎𝑛𝑘 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝐼 |𝑎 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑓% 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑠}.  

The tests have been performed on a random geometric graph of size  𝑁 = 100 nodes. For example, for 𝑓 =

100% (i.e. all the nodes in the network are observed), the probability that the real source is within the top 10 

ranked sources is 𝑃{𝑟𝑎𝑛𝑘 ≤ 10} ≅ 0.9. When 𝑓 = 10%, the same probability drops to 𝑃{𝑟𝑎𝑛𝑘 ≤ 10} ≅ 0.7, 

while for 𝑓 = 5%, 𝑃{𝑟𝑎𝑛𝑘 ≤ 10} ≅ 0.5. The method has been evaluated using the susceptible-infectious 

model, assuming a single rumor source, and for small regular networks, such as random geometric graphs and 

trees.  

In the paper “Spread of a Rumor” [13], the epidemic framework used is the susceptible-infected one, where 

each infected node is able to infect only one of its susceptible neighbours at any given time.  The authors 

model the number of individuals to be told the rumor at a given discrete time, as a random variable with 

hypergeometric distribution. This is used to derive a difference equation characterizing the expected number 

of persons who know the rumor at a given time step.  

 

Summary of State-of-the-art 
 

In summary, most of the relevant research papers provide solutions to the problem of spreading of rumors in 

a social network, following the susceptible-infected model, where the nodes can either be infected or 

susceptible and once a node has received the rumor, it cannot recover from it.  

In terms of topology, a significant focus of current methods is represented by tree-like topologies or random 

geometric graphs.  

Moreover, most methods are based on the assumption of a complete snapshot of the network, which is 

generally difficult to achieve in practice. 

Although most methods presently focus on detection of a single source and there are a few methods that can 

be used to identify multiple sources; however there are typically more computationally expensive and 

challenging to implement.  

With regards to the rumor spreading probability, current methods assume that the infection probabilities are 

equal across the entire network. More recent methods have been extended to variable probabilities of 

infection across different edges, which gives a more realistic model.  

In terms of complexity, most current methods are computationally-expensive, with complexity ranging from 

𝑂(𝑁𝑙𝑜𝑔𝑁) to 𝑂(𝑁𝑘), where 𝑁 is the network size.  
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Network Topology 
 

The social network will be described through a graph where the nodes represent individuals and the edges 

correspond to the interactions between them. It has been shown that most real-world networks exhibit the 

small-world and scale-free properties. Our network will be initially modelled as a small-world graph, and 

following the initial results obtained on this type of graph, the algorithms will also be applied to a scale-free 

network. 

Some of the typical characteristics of complex networks are the clustering coefficient and the average distance 

between any two nodes. The clustering coefficient of a node is defined as the ratio between the numbers of 

existing edges between his neighbouring nodes, divided by the number of total possible edges that could exist 

between his neighbours, while the clustering coefficient of the network is the average over all the nodes. The 

average distance represents the number of edges corresponding to the shortest path between the two nodes 

[14]. 

In has been demonstrated that the small-world and scale-free effects are properties displayed by most real-

life networks. These are neither completely regular nor completely random, and hence, their properties are a 

mixture between those of regular networks (great clustering coefficient, long average distance), and those of 

random networks (small clustering coefficient, short average distance) [14]. 

The fact that the node degree in real social networks follows a power-law degree distribution has been 

explained by models such as the Preferential Attachment Model, as proposed by Barabási, who suggests that 

the main difference between a random and a scale-free network is the fact that the scale-free network has a 

large number of small degree nodes, most of which are absent in a random network. Moreover, the probability 

of a high-degree node or hub is several orders of magnitude higher in a scale-free than in a random network. 

Furthermore, the more nodes a scale-free network has, the larger are its hubs, since the size of the hubs grows 

polynomially with network size [15]. 

Taking into account these two properties, the small-world and scale-free networks can be described as follows. 

The small world network is defined by a graph where most nodes are not neighbours of each other, but most 

nodes can be reached from any other node by a small number of steps. Small-world networks have small 

average distance and great clustering coefficient.  The scale-free have even smaller average distance and great 

clustering coefficient and in addition, they exhibit the property that the degree distribution follows a power-

law distribution. In other words, the probability of a node having 𝑘 connections to other nodes is given by 

𝑃(𝑘)~𝑘−𝛾, where 𝛾 is a parameter in the range (2,3). The degree distribution is the main difference between 

a scale-free and a small-world network, the latter having a Poisson distribution of the node degree. The 

existence of hubs, or high-degree nodes in scale-free networks will prove to be an important factor for the 

derivation of the probability of rumor spreading in such a network, as seen in the next chapter [14]. 

We should also note that in a small-world network the average distance scales as 𝐿~𝑙𝑛𝑁, while in the scale-

free network this scales as 𝐿~𝑙𝑛𝑁/ln(𝑙𝑛𝑁), where 𝑁 is the number of nodes in the network [16]. 

We show in Figure 1 below, realisations of some common network models.  

https://en.wikipedia.org/wiki/BA_model
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Figure 1: From top left to bottom right: Tree Graph, Random Geometric Graph, Small-world Network, Random and Deterministic 
Scale-free Network  

 

Random Walks Theory 
 

The background to the theory of random walks consists of the following: understanding of Markov Chains 

theory, understanding the random walk as a Markov Chain process, defining the spreading of information 

within the network as a random walk process, constrained on the dynamics of rumors in the fixed topology 

network [17] [18]. 

Since the spreading of rumor is a Markov process, some results of the random walk in 1𝐷 could be applied to 

our epidemic model (e.g. number of paths a random walk could follow to reach a certain point).  General 

properties of Markov Chains and Random Walks are summarized below. 

a. Markov Chains [17] 

A Markov chain is a mathematical model of a random phenomenon evolving with time in a way that the past 

affects the future only through the present. In Mathematics, a phenomenon which evolves with time in a way 

that only the present affects the future is called a dynamical system. 
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A sequence has the Markov Property if for any random variable in the sequence, the future process (index m 

>n) is independent of the past process (index m<n) conditionally on 𝑋𝑛. In other words, the future is 

independent of past given the present.  The random variables take values in some countable set S, called the 

State Space. The elements of S are frequently called States. Since S is countable, we call 𝑋𝑛 a Markov Chain. 

A simple example of a Markov Chain would be the case of a 2-state Space, where a mouse moves from Cage 

1 (State X=1) to Cage 2 (State X=2) with probability p, and vice-versa with probability 1-p. This can be 

represented either through a state diagram, or through a Transition Probability Matrix, where each row 

contains the probability related to moving from a certain point to a different point, hence, the probabilities 

adding to 1 on each row. 

b. Transition Matrix 

 

A transition or stochastic matrix is a matrix used to describe the transitions of a Markov chain. Each entry 𝑃𝑖𝑗 in 

the matrix denotes the probability of transitioning from 𝑖 to 𝑗 in one step. 

The properties of the stochastic matrix are the following: 

1. 𝑃𝑖𝑗 ≥ 0, ∀𝑖, 𝑗. 

2. The sum of the transition probability from a state 𝑖 to all other states must be 1, i.e. ∑ 𝑃𝑖𝑗 = 1𝑗 . ∀𝑖.  

3. The probability to transition from 𝑖 to 𝑗 in 𝑘 steps is given by 𝑃𝑘. 

 

c. General Properties of Random Walks [17] 

A random walk is a special kind of Markov Chain, which possesses the additional properties of time and spatial 

homogeneity. Time-homogeneity means that the transition probability 𝑝𝑥𝑦 does not depend on time, while 

space-homogeneity means that the transition probability should depend on x and y only through their relative 

positions in space. This translate to 𝑝𝑥,𝑦 = 𝑝𝑥+𝑧,𝑦+𝑧, for any translation z.  In other words, given a function 

𝑝(𝑥), a random walk is a Markov Chain with time- and space- homogeneous transition probabilities given by 

𝑝𝑥,𝑦 = 𝑝(𝑦 − 𝑥).  

 

d. Random Walks in 1D [17] 

Let us denote by 𝑆𝑛 the state of the random walk at time n. Hence, this can be represented as 𝑆𝑛 = 𝜀1 + 𝜀2 +

⋯+ 𝜀𝑛, where 𝜀𝑖  are the increments of the random walk starting from 0, i.i.d. random variables with common 

distribution 𝑃(𝜀𝑛) = 𝑝(𝑥). 

In our derivation, we will be interested in calculating the n-step transition probability, i.e. the probability of 

reaching a state y located n steps away from the starting point x. This has the following expression: 𝑝𝑥𝑦
(𝑛)
=

𝑃𝑥(𝑆𝑛 = 𝑦) = 𝑃(x+𝜀1 + 𝜀2 +⋯+ 𝜀𝑛=y).  

For the random walk in 1D, the random vector represented by the n increments (𝜀1, 𝜀2, … 𝜀𝑛) can take values 

in {−1,+1}𝑛, since the walk can either move one step to the right or to the left. We are interested to find the 

probability of event A, where the A={random walk starts from (0,0) and ends up at (n,y)}.  

The total possible paths in the 1D space, which are followed in n steps is given 2𝑛 since at each step, there are 

only 2 possibilities for the increment, either to the right or to the left. Hence, the probability of each path is 

𝑃(𝜀1 = 𝛼1, 𝜀2 = 𝛼2, …+ 𝜀𝑛 = 𝛼𝑛) = 2
−𝑛.  

Hence, 𝑃𝐴 =
#𝐴

2𝑛
, which shows that if we can count the number of elements of A we can compute its probability.  
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If there are no additional constraints on the random walk, besides the specific starting and ending points, then 

the number of paths in A is given by #𝐴 = (
𝑛
𝑛+𝑦

2
), which means that 𝑃𝐴 = (

𝑛
𝑛+𝑦

2
) × 2−𝑛 [17]. 

 

e. Random Walks on General Networks: Rayleigh’s Shortcut Method [19] 

 

Let us assume we have a general network, with any two nodes 𝑖 and 𝑗 connected by edges to which we assign 

a resistance value 𝑅𝑖𝑗. The conductance of this edge will therefore be 𝐶𝑖𝑗 = 1/𝑅𝑖𝑗.  

We can define the transition matrix of a random walk on this network to be given by: 

𝑃𝑖𝑗 =
𝐶𝑖𝑗

𝐶𝑖
, where 𝐶𝑖 = ∑ 𝐶𝑖𝑗𝑗  

If we assume that the resistance values are constant within the network, then the probabilities of a node to 

spread the rumor to any of its neighbours will be equal.  

If a node is more likely to spread the rumor to only some of its neighbours, then the spreading probabilities 

will be inversely proportional to the resistance between the nodes, and hence, a higher spreading probability 

means a lower value of resistance.  
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Mathematical Methods for Expression Simplification  
 

Stirling’s Formula 

In mathematics, Stirling’s formula represents a powerful approximation for factorials, which leads to accurate 

results. The formula has the following form: 

𝑛!~√2𝜋𝑛 (
𝑛

𝑒
)
𝑛

 

The following table illustrates the accuracy of the approximation: 

𝒏 Actual 
𝒏! 

Approximation 

√𝟐𝝅𝒏(
𝒏

𝒆
)
𝒏

 

1 1 0.922 

2 2 1.919 

3 6 5.836 

4 24 23.506 

10 3,628,800 3,598,695.619 
Table 1: Stirling’s Approximation Accuracy 

De Moivre-Laplace Formula 

The de Moivre-Laplace theorem is an approximation to the binomial distribution, given by the normal 

distribution.  If the probability of success is 𝑝 and the number of independent Bernoulli trials is 𝑛, then the 

normal distribution to which the probability mass function of the random number of successes observed has 

the following parameters: mean 𝑛𝑝, and standard deviation √𝑛𝑝(1 − 𝑝).The below formula is valid for large 

values of 𝑛. 

(𝑛
𝑘
)𝑝𝑘𝑞𝑛−𝑘 ≅

1

√2𝜋𝑛𝑝𝑞
𝑒
−
(𝑘−𝑛𝑝)2

2𝑛𝑝𝑞 , 𝑤ℎ𝑒𝑟𝑒 𝑝 + 𝑞 = 1, 𝑝, 𝑞 > 0, and 𝑘 is in a neighbourhood of 𝑛𝑝. 

𝒏 k p Actual 

(
𝒏

𝒌
)𝒑𝒌𝒒𝒏−𝒌 

Approximation 

𝟏

√𝟐𝝅𝒏𝒑𝒒
𝒆
−
(𝒌−𝒏𝒑)𝟐

𝟐𝒏𝒑𝒒  

5 2 0.5 0.3125 0.904 
20 2 0.5 0.000181 0.000296 
20 15 0.5 0.0147 0.0026 
50 2 0.5 1.08𝑥10−12 7.29𝑥10−11 
50 30 0.5 0.0418 0.0415 

Table 2: De Moivre-Laplace Approximation Accuracy 
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Chapter 3  

 

Analysis and Design 
 

This chapter provides a description of multiple approaches considered for the problem of identifying rumor 

sources in social networks. For each approach, a high-level overview is given, as well as the motivation for the 

approach, any assumptions made, a more detailed mathematical description, and advantages and 

disadvantages. 

 

Novel Aspects 
 

The solution to the problem of estimating the sources of spreading of rumors in a social network will focus on 

relating this problem to that of estimating the localized sources of diffusion fields. The recent research into 

this field conducted within the Signals and Communications Group at Imperial College London presents an 

efficient method for the estimation of sources of diffusion fields in [3].  

In this respect, one of the novel aspects of this design is represented by the calculation of the theoretic 

probability of rumor infection, as a function of the time delay since the rumor initiation and the distance from 

the source. The derivation of the theoretic probability is motivated by the similarity between the rumor 

dissemination within a network and the diffusion process of a physical phenomenon. In the case of a diffusion 

process, the source could be estimated using spatiotemporal samples of the field obtained through a sensor 

network [3]. Similarly, if we could find the intensity of the rumor as a function of space and time, then we 

could use measurements at some monitoring nodes in order to retrieve the rumor source. Nevertheless, the 

latter problem is more challenging due to the additional constraints imposed by the network, such as the fact 

that there is no exact notion of location of the nodes. 

 

Theoretic Probability of Rumor Dissemination: Initial Solution 
 

This approach formulates the spreading of rumors as a random walk process in 1𝐷. The nodes in the network 

will be arranged based on the length of the shortest path to the source who starts the spreading of rumors. 

Analytical formulas for the probability that a node located at a certain distance 𝑑 will get the rumor in 𝑘 steps 

will be derived, as a function of the minimum distance 𝑑. For a selection of nodes, these theoretical 

probabilities will be compared against probabilities obtained through simulations, in order to find an estimate 

for the distance and hence to be able to determine based on this, which node is the source of rumors. 
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a. Notations 

A list of commonly used notations is presented below: 

1. 𝑁 is the number of nodes in the network; 

2. 𝑘 is the number of discrete time steps between initial infection at the source node, to the time when 

we take the measurement at another node; 

3. 𝐾 is the total number of time steps; 

4. 𝐿 is the total number of experiments; 

5. 𝑑 is he minimum distance between the source and a certain node; 

6. 𝑈𝑖  is a matrix where element 𝑈𝑖(𝑘, 𝑗)  is the measured probability that a node 𝑗 gets the rumor after 

𝑘 time steps, at each experiment 𝑖 ; 

7. 𝑉 is a matrix where element 𝑉(𝑘, 𝑗)  is the measured average probability that a node 𝑗 gets the rumor 

after 𝑘 time steps, over the number of experiments 𝐿 ; 

8. 𝑃 is a matrix where element 𝑃(𝑘, 𝑗) is the predicted probability that a node 𝑗 gets the rumor after 𝑘 

time steps; 

9. 𝑞𝑑,𝑘 is the estimated probability of a node located at distance 𝑑 to get the rumor for the first time 

after 𝑘 steps; Compared to the elements of 𝑃, this carries additional information regarding the 

distance between the sensor and the source node; 

10. 𝑄𝑑(𝑘) is the estimated probability of a node located at distance 𝑑 to have the rumor at time step k;  

11. 𝜇 is the probability of spreading of rumors within the network, i.e. the probability to transmit the 

rumor between any two connected nodes at each step; 

12. 𝛼 is the probability for the rumor to be passed from a node at distance 𝑑 to a node at distance 𝑑 +

1, 𝛽 is the probability for the rumor to be passed from a node at distance 𝑑 to a node at distance 𝑑, 

and 𝛾 is the probability for the rumor to be passed from a node at distance 𝑑 to a node at distance 𝑑 −

1; 

 

 

b. Overview 

As an overview, this approach aims to find an analytical model for the probability 𝑃(𝑘, 𝑗) as a function of the 

distance 𝑑, i.e. the shortest path between node 𝑗 and the source. Using this formula and the measurements 

obtained from the sensor nodes at different points in time, an estimate of the distances 𝑑𝑗 will be obtained, 

for some sensor node 𝑗, which will thus be used to accurately detect the source. 

The approach begins with an initial re-structuring of the network of nodes. In this sense, the nodes will be 

rearranged according to their minimum distance from the source.  

The approach then models the spreading of rumors as a random walk in 1𝐷 and tries to find a formula for the 

probability that a node located at a minimum distance 𝑑 from the source will get the rumor in 𝑘 steps. This 

formula should resemble that of a diffusion field. In addition, the histogram of this probability over different 

time steps 𝑘, and for different values of distance 𝑑 should have a similar behaviour to the plot of measured 

probability when simulating a spreading of rumors in the network. In other words, the plot of 𝑃(𝑘, 𝑗) over 𝑘 

should be the same as the plot of 𝑉(𝑘, 𝑗) over 𝑘. If this is the case, we can then use measurements of the 

probability at a random node in the network, which will enable us to find the minimum distance between this 

and the source. By applying this at several points in the network, we could localize the source using the 

trilateration process. 

The values in the matrix 𝑉 are derived as follows. At each step, the rumor is allowed to spread within the 

network. The values in the matrix 𝑈 are updated by determining which nodes in the network currently have 
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the rumor information. After a set number of 𝐾 time steps, the experiment stops and matrix 𝑈 is in its final 

form. The experiment is repeated for a number of times equal to 𝐿 experiments, and the matrices 𝑈𝑖  are 

obtained, with 𝑖 = 1,2…𝐿. These experiments can be seen as simulating the spreading of new rumors within 

the network starting from the same source. The average of the elements of these matrices is taken over the 

number of experiments 𝐿, in order to obtain 𝑉.  

One of the most challenging and interesting aspects of this approach is represented by the modelling of the 

spreading of rumor as a random walk. In this sense, the nodes will firstly be re-arranged according to their 

distance to the source.  Hence, if a node is located at distance 𝑑 from the source, it will be positioned on level 

𝑑, if the distance is 𝑑+1, then the node will be on level 𝑑+1 etc. At each time step, if a node on level 𝑑 has the 

rumor, it can either pass it to a node on level 𝑑, to a node on level 𝑑 + 1, or to a node on level 𝑑 − 1, and this 

is repeated for a number of steps until the rumor reaches our sensor node. As we are interested in calculating 

the probability that the rumor reaches from the source to the sensor node for the first time after 𝑘 steps, we 

would like to calculate the total number of paths between the source and the sensor node, and the probability 

of the rumor taking each of these paths.  This will lead to a formula for the estimated probability 𝑞𝑑,𝑘 of a 

node located at distance 𝑑 to get the rumor for the first time after 𝑘 steps. In order to calculate the probability 

of a node to have the rumor after 𝑘 steps, we need to sum all the probabilities of the node getting the rumor 

in 1,2,… , 𝑘 steps. Hence, the probability of a node to have the rumor after 𝑘 steps is 𝑄𝑑,𝑘 = ∑ 𝑞𝑑,𝑗 
𝑗=𝑘
𝑗=1 . 

We will assume that the probability of spreading is constant, denoted by 𝜇. This probability could be used to 

derive the probabilities of the rumor to spread from a node on level 𝑑 to a node on level 𝑑 (𝛼),  to a node on 

level 𝑑 + 1 (𝛽) , and respectively to a node on level 𝑑 − 1 (𝛾). In the case of a non-self-avoiding walk, the 

following assumption will be made, as explained below: 𝛽 ≫ 𝛼 and 𝛾 ≅ 0, whilst the mathematical derivations 

related to this approach are presented in the Mathematical Formulation section below. 

c. Assumptions 

To begin with, we assume that the network topology is known and that the network does not evolve in time, 

which ensures that all the connections between the nodes remain fixed and that no nodes are removed or 

added to the network throughout the duration of the observation. In addition, we assume the susceptible-

infected spreading model, where any infected node can spread the rumor to any of its neighbours (including 

the ones which already have the rumor), and once a node holds the rumor information it cannot recover from 

it. The rumor spreading will therefore be modelled by a non-self-avoiding random walk. This assumption is 

justified by a real-world application of the problem, that of spreading of rumors in a social network, where it 

is possible that a person hears the same information from more than one other person. 

Secondly, the approach assumes that the spreading of rumors happens with a constant probability throughout 

the entire network, which means that each node can spread the rumors to any of its neighbours with a fixed 

probability of spreading. 

Furthermore, another assumption made is the fact that a node located at a certain distance from the source 

will get the rumor for the first time after a time interval approximately equal to the shortest path between the 

sensor and the source.  

We will further justify these assumptions through numerical experiments and mathematical derivations, as 

described in the sub-section called Mathematical Formulation below. 
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d. Related Literature Research 

The relevant literature research for the derivations used in this approach includes: theory of Markov Chains 

and Random Walks [17], Stirling formula, Taylor approximation, dynamics of trees, random geometric graphs, 

scale-free and small-world networks. 

 

e. Motivation for Approach 

The decision to re-structure the network based on the minimum distance between the source and all the other 

network nodes is useful in order to give a notion of location to the nodes, which is one of the most challenging 

aspects of the problem. This could help us apply the concept of random walk in 1𝐷 to the derivation of the 

probability that a node located at a minimum distance 𝑑 from the source will get the rumor in 𝑘 steps. 

Moreover, this also provides an advantage concerning the better visualization of the gradient of the diffusion 

field, when plotting the values of 𝑉(𝑘, 𝑑), i.e. the intensity of the rumor information at all the nodes in the 

network. 

 

f. Advantages and Disadvantages 

The main advantage of this approach is the fact that it can be applied to any of the considered network 

topologies, as long as the probability of spreading of rumors is known. Moreover, the derivations do not 

require any knowledge regarding the vertex degree, which means they can be applied to real-world networks, 

which are inhomogeneous in degree.  

The drawbacks would be the following. Firstly, the performance of the Dijkstra algorithm, which is required in 

the source estimation algorithm using the below derived theoretical probabilities of rumor infection. This 

algorithm calculates the minimum distance between any two nodes in the network. The time complexity of 

the Dijkstra algorithm is Ο(𝑛2) is very large, leading to increased computational complexity in calculating the 

minimum distances in a large network.  

In addition, another disadvantage of this derivation is represented by the constant connectivity index used in 

the theoretic probability formula (see Mathematical Formulation section below). While it would be preferable 

to have a more exact formula for the theoretic probability (avoiding constant terms), this parameter gives a 

degree of freedom, allowing the algorithm to find the optimal probability formula for the particular network 

topology and network parameters given. Moreover, as seen in the results in the Evaluation section, by 

choosing an optimal connectivity index, the theoretic probability becomes a very good approximation of the 

average simulated probability.  

 

g. Mathematical Formulation 

The aim of this derivation is to find a mathematical expression for the probability 𝑄𝑑(𝑘), that a node at 

distance 𝑑, will have the rumor after 𝑘 time steps. Let 𝑞𝑑,𝑘 be the estimated probability of a node located at 

distance 𝑑 to get the rumor for the first time after 𝑘 steps. 

Furthermore, if a node has the rumor at time step 𝑘, then it could have gotten this rumor for the first time, at 

time step 𝑘, 𝑘 − 1, 𝑘 − 2…𝑑, since the rumor cannot reach a node at minimum distance 𝑑 in less than 𝑑 steps, 

Hence, we could write 𝑄𝑑(𝑘) as: 𝑄𝑑(𝑘) = ∑ 𝑞𝑑,𝑡
𝑘
𝑡=𝑑  
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Next, we would like to find an analytical form for 𝑞𝑑,𝑘, by looking at the diffusion of the rumor as a random 

walk process. The figure below illustrates the concept of a random walk, where the nodes in the network are 

represented by green dots and arranged according to their minimum distance to the source, located at the 

origin. Two possible random walks are shown in blue and orange, as paths of 𝑘 = 7  steps between the source 

and a node located at distance 𝑑 = 5 from the source.  

 

Figure 2: Illustration of possible Paths of Random Walk of Rumor in the Network 

As illustrated above, the rumor can reach the destination by following a wide range of paths, each of total 

length 𝑘. Hence, there are many ways in which the rumor can reach the destination for the first time, exactly 

after 𝑘 time steps.  

Let there be 𝑁𝑃𝐴𝑇𝐻𝑆 possible ways in which the rumor can get to the destination from the source, in exactly 𝑘 

steps, and let the set {𝑆1, 𝑆2, 𝑆3… } be the set of all possible paths.  

Hence, since we can assume that any two paths are independent and since all the paths can happen with equal 

probability, the probability that the destination node located at distance  𝑑 gets the rumor for the first time 

after 𝑘 steps is: 

𝑞𝑑,𝑘 = 𝑝(𝑆1 ∪ 𝑆2 ∪ 𝑆3… ) = 𝑝(𝑆1) + 𝑝(𝑆2) + 𝑝(𝑆3)… = ∑ 𝑝(𝑆𝑖)

𝑁𝑃𝐴𝑇𝐻𝑆

𝑖=1

= 𝑁𝑃𝐴𝑇𝐻𝑆 × 𝑝(𝑆) 

 

Number of Paths 

As it can be seen above, the probability that the destination node gets the rumor for the first time is the sum 

of the probability of each of the 𝑁𝑃𝐴𝑇𝐻 paths being the one followed by the rumor.  

In order to calculate the number of possible paths 𝑁𝑃𝐴𝑇𝐻𝑆, we need to find the number of all possible random 

walks in 1𝐷, each containing 𝑘 segments. When the walk starts from the source, we can write: 

𝑆 = 𝜀1 + 𝜀2 +⋯+ 𝜀𝑘, where 𝜀𝑖  are independent and identically distributed random variables corresponding 

to a segment the rumor follows at each time step. This can take two values according to the type of segment 

the rumor follows. If the rumor advances in the network to a node further away from the source and closer to 

the destination node (any of the blue segments in figure below), then the corresponding 𝜀𝑖 = 1. Else, if the 

rumor will not advance in the network, and will move to a node at the same distance from the source (yellow 

segments in figure below), then the corresponding 𝜀𝑖 = 0. Else, if the rumor will follow any other segment 

(one of the orange segments in figure below), then the corresponding 𝜀𝑖 = −1.  
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Figure 3: Possible Paths the Rumor can follow starting from one Node in the Network 

Let us denote by #𝐴 the total number of blue segments in the path, by #𝐵 the number of yellow segments in 

the path and by #𝐶 the total number of orange segments in the path. Then, assuming the random walk is non-

self-avoiding, the following equations hold: 

(1) #𝐴 − #𝐶 = 𝑑, where 𝑑 is the distance from the source to the destination. 

(2) #𝐴 + #𝐵 + #𝐶 = 𝑘, where 𝑘 is the total number of time steps. 

In addition, a large number of experiments have shown that generally, the probability of a node at distance 𝑑 

has the rumor increases significantly after a very small number of time steps, typically, for 𝑘 ≥ 𝑑 + 2. From 

the above results, one approximation that could be made is that #𝐶 ≅ 0, which means that #𝐴 ≅ 𝑑 and #𝐴 +

#𝐵 = 𝑘. This approximation could also be motivated by the method presented in the paper “A fast Monte 

Carlo algorithm for source localization on graphs” and described in the State-of-the-Art section above. In this 

paper, the authors consider the following two random processes: the infection process 𝑋 and the alternate 

representation of the process 𝑋, denoted by 𝑌. [12] 

The process 𝑌 = (𝑦(0), 𝑦(1), …) is defined as follows:  

𝑦𝑖(𝑡) = {
0, 𝑖𝑓 𝑡 < 𝑑(𝑠, 𝑖)
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where node 𝑠 is the random source node initiating the rumor, 𝑑(𝑠, 𝑖) is the shortest path between the source 

and node 𝑖. 

Hence, the process 𝑌 contains information about the times at which vertex 𝑖 first becomes infected, and hence 

contains all the information of the process 𝑋. The authors prove the fact that 𝑃{𝑦𝑖(𝑡 + 1) = 1|𝑦(𝑡)} =

𝑃{𝑥𝑖(𝑡 + 1) = 1|𝑥(𝑡)} and hence 𝑌 = 𝑋. This allows the sampling of the first time indices at which each vertex 

receives the rumor, (𝜏1, 𝜏2, … 𝜏𝑁), by the shortest path between the source node and the corresponding 

monitor node.  

This further justifies the assumption that the number of backward paths #𝐶 ≅ 0 and hence #𝐴 ≅ 𝑑 and  #𝐴 +

#𝐵 = 𝑘, with #𝐵 very small. 

Hence, the total number of paths will be  𝑁𝑃𝐴𝑇𝐻𝑆 = (
𝑃𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ−1

#𝐴−1
) = (𝑘−1

𝑑−1
). This is because the first segment 

followed by the rumor right after it is initiated by the source will always be a forward segment (blue). 

This represents the total number of possible ways in which we can choose which of the 𝑘 segments in the path 

are of blue type. A different way to see it is to call 𝑇 = 𝑡{𝑖|𝑖 = 1,…𝑘} the set of time indices, and to find all 

the possible ways in which we can form a subset of T, of size 𝑑, which contains the indices at which the rumor 

will follow a forward (blue) segment. 
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In order to find the probability as a function of distance, an approximation of the above formula should be 

used. This is derived by applying the Stirling approximation, followed by Taylor’s approximation. A general 

case of the derivation is given by (
𝑛

𝑛−𝑚

2

) ≅
2𝑛+1

√2𝜋𝑛
× 𝑒(−

m2

2n
), and a mathematical proof is given below: 

Result  

(
𝑛

𝑛 −𝑚
2
) ≅

2𝑛+1

√2𝜋𝑛
× 𝑒(−

m2

2n
) 

Useful formulas 

Stirling’s Formula: ln(𝑛!) ≅ 𝑛 × 𝑙𝑛(𝑛) − 𝑛 +
1

2
× ln (2𝜋𝑛) 

Taylor’s Approximation: ln(1 + 𝑥) ≅ 𝑥 −
1

2
𝑥2, which holds for |𝑥| ≪ 1 

The following steps show the derivation for an approximation of (
𝑛

𝑛−𝑚

2

) =
𝑛!

(𝑛−𝑚)

2
!×
(𝑛+𝑚)

2
!
 

Step 1. Logarithm on both sides 

𝑙𝑛 (
𝑛

𝑛 −𝑚
2
) = ln(𝑛!) − ln (

𝑛 −𝑚

2
!) − ln (

𝑛 +𝑚

2
!) 

Step 2. Stirling Approximation 

𝑙𝑛 (
𝑛

𝑛 −𝑚
2
) = {𝑛 × 𝑙𝑛(𝑛) − 𝑛 +

1

2
× ln(2𝜋𝑛)} − {

(𝑛 − 𝑚)

2
× 𝑙𝑛 (

(𝑛 −𝑚)

2
) −

(𝑛 −𝑚)

2
+
1

2

× ln(2𝜋
(𝑛 −𝑚)

2
)} − {

(𝑛 +𝑚)

2
× 𝑙𝑛 (

(𝑛 +𝑚)

2
) −

(𝑛 +𝑚)

2
+
1

2
× ln(2𝜋

(𝑛 +𝑚)

2
)} 

Since 𝑙𝑛 (
(𝑛−𝑚)

2
) = − ln(2) + ln (𝑛 − 𝑚), then the formula becomes 

𝑙𝑛 (
𝑛

𝑛 −𝑚
2
) = 𝑛 × 𝑙𝑛(𝑛) +

1

2
× ln(2𝜋𝑛) +

(𝑛 −𝑚)

2
× 𝑙𝑛(2) −

(𝑛 −𝑚)

2
× ln(𝑛 −𝑚) −

1

2

× ln(𝜋(𝑛 −𝑚)) +
(𝑛 +𝑚)

2
× 𝑙𝑛(2) −

(𝑛 +𝑚)

2
ln(𝑛 + 𝑚) −

1

2
× ln(𝜋(𝑛 + 𝑚)) 

𝑙𝑛 (
𝑛

𝑛 −𝑚
2
) = 𝑛 × 𝑙𝑛(𝑛) +

1

2
× ln(2𝜋𝑛) + 𝑛 × 𝑙𝑛(2) −

(𝑛 −𝑚)

2
× ln(𝑛 −𝑚) −

1

2

× ln(𝜋(𝑛 −𝑚)) −
(𝑛 +𝑚)

2
ln(𝑛 + 𝑚) −

1

2
× ln(𝜋(𝑛 +𝑚)) 

𝑙𝑛 (
𝑛

𝑛 −𝑚
2
) = 𝑛 × 𝑙𝑛(𝑛) +

1

2
× ln(2𝜋𝑛) + 𝑛 × 𝑙𝑛(2) −

𝑛

2
× (1 −

𝑚

𝑛
) × ln (𝑛(1 −

𝑚

𝑛
)) −

1

2

× ln(𝜋 (𝑛 × (1 −
𝑚

𝑛
))) −

𝑛

2
× (1 +

m

n
) × ln (𝑛 × (1 +

𝑚

𝑛
)) −

1

2
× ln(𝜋𝑛 × (1 +

𝑚

𝑛
)) 

Step 3. Taylor’s Approximation 
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𝑙𝑛 (
𝑛

𝑛 −𝑚
2
) = 𝑛 × 𝑙𝑛(𝑛) +

1

2
× ln(2𝜋𝑛) + 𝑛 × 𝑙𝑛(2) −

𝑛

2
× (1 −

𝑚

𝑛
) × [ln(n) −

m

n
−
m2

2n2
] −
1

2

× (ln(𝜋𝑛) −
𝑚

𝑛
)−
𝑛

2
× (1 +

m

n
)× [ln(n) +

m

n
−
m2

2n2
] −
1

2
× (ln(𝜋𝑛) −

𝑚

𝑛
) 

𝑙𝑛 (
𝑛

𝑛 −𝑚
2
) = 𝑛 × 𝑙𝑛(𝑛) +

1

2
× ln(2𝜋𝑛) + 𝑛 × 𝑙𝑛(2) − 𝑛 × (ln(𝑛) −

m2

2n2
) −

m2

n
− ln (𝜋𝑛) 

𝑙𝑛 (
𝑛

𝑛 −𝑚
2
) =

1

2
× ln(2𝜋𝑛) + 𝑛 × 𝑙𝑛(2) +

m2

2n
−
m2

n
− ln (𝜋𝑛) 

𝑙𝑛 (
𝑛

𝑛 −𝑚
2
) =

1

2
× ln(2𝜋𝑛) + 𝑛 × 𝑙𝑛(2) −

m2

2n
− ln(𝜋𝑛) = ln (

√2𝜋𝑛

𝜋𝑛
× 2𝑛) −

m2

2n
 

𝑙𝑛 (
𝑛

𝑛 −𝑚
2
) = ln (

2𝑛+1

√2𝜋𝑛
) −
m2

2n
 

(
𝑛

𝑛 −𝑚
2
) =

2𝑛+1

√2𝜋𝑛
× 𝑒(−

m2

2n
) 

It is important to note that due to Taylor’s Approximation, this expression holds for |
m

n
|<<1 

Hence, when calculating the number of paths for our problem, we need the following replacement of 

variables: 

1. 𝑛 by 𝑘 − 1 

2. 
𝑛−𝑚

2
 by 𝑑 − 1, from where 𝑚 = 𝑘 − 1 − 2(𝑑 − 1) = 𝑘 − 2𝑑 + 1 

3. The approximation conditions are |
m

n
|<<1, equivalent to |

𝑘−2𝑑+1

𝑘−1
|<<1, i.e. 𝑘 − 2𝑑 + 2 ≪ 𝑘. Since 𝑘 ≥

𝑑, the expression holds for 𝑘 ≅ 𝑑. This condition will be proved in the following section. 

Therefore, the number of paths becomes: 

𝑁𝑃𝐴𝑇𝐻𝑆 = (
𝑘−1
𝑑−1
) =

2𝑘

√2𝜋(𝑘−1)
× 𝑒

(−
(k−2d+1)2

2(k−1)
)
, which holds for 𝑘 ≅ 𝑑. 

Next, we need to find the probability of each path. We will denote by 𝑝𝐴 =  𝑃(𝜀𝑖 = 1), i.e. the probability that 

at least one of the blue segments is followed at step 𝑖, and by 𝑝𝐵 =  𝑃(𝜀𝑖 = 0), i.e. the probability that an 

yellow segment is followed by the rumor at step 𝑖. We assume that once the rumor will either follow a blue or 

yellow segments and hence the following must hold: 𝑝𝐴 + 𝑝𝐵 = 1.  

Hence, the probability that a rumor will reach a node located at distance 𝑑 in 𝑘 steps becomes: 

𝑞𝑑,𝑘 =  𝑝(𝑆) × 𝑁𝑃𝐴𝑇𝐻𝑆 = 𝑝𝐴
𝑑 × (1 − 𝑝𝐴)

𝑘−𝑑 ×
2𝑘

√2𝜋(𝑘 − 1)
× 𝑒

(−
(k−2d+1)2

2(k−1)
)
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Probability of Advancing through Network 

In order to find an analytical form for 𝑝𝐴, we need to determine the probability that the rumor will take any 

of the blue steps, such that it advances in the network, getting closer to the destination node. The probability 

𝑝𝐴 should depend on the probability of spreading of rumors (denoted by 𝜇), as well as on the network 

characteristics which will be modelled through the constant factor 𝜅, which we will denote by connectivity 

index. As already mentioned in the mathematical derivation above, and using results obtained through 

simulations on networks of various topologies and size, it can be shown that the probability of infection of a 

node at distance 𝑑 from the source becomes significantly large after the time step 𝑘 = 𝑑 + 1. In other words, 

we could make the assumption that 𝜅 ≅ 𝑑, and therefore the number of backward paths #𝐶 ≅ 0 , which 

means #𝐴 ≅ 𝑑 and  #𝐴 + #𝐵 = 𝑘, with #𝐵 very small. In order to model the fact that the number of paths 

#𝐵 is very small, we can assume that 𝑝𝐴 is larger than 𝑝𝐵.Therefore, as an initial approximation, 𝑝𝐴 can be 

assumed to be linearly proportional to 𝜇 and the connectivity index 𝜅>=1, which means 𝑝𝐴~ 𝜇 ×  𝜅.   

Hence the probability of a node located at distance 𝑑 to receive the rumor for the first time at step 𝑘 is: 

𝑞𝑑,𝑘 ≈ (𝜇 ×  𝜅)
𝑑 × (1 − 𝜇 ×  𝜅)𝑘−𝑑 ×

2𝑘

√2𝜋(𝑘 − 1)
× 𝑒

(−
(k−2d+1)2

2(k−1)
)
 

Consequently, the probability that a node will have the rumor at time step 𝑘 is equal to:   

𝑄𝑑(𝑘) =∑𝑞𝑑,𝑡 ≈∑(𝜇 ×  𝜅)𝑑 × (1 − 𝜇 ×  𝜅)𝑡−𝑑 ×
2𝑡

√2𝜋(𝑡 − 1)
× 𝑒

(−
(t−2d+1)2

2(t−1)
)

𝑘

𝑡=𝑑

𝑘

𝑡=𝑑

 

The above formula assumes that at each step each node passes the rumor to at least one other node, i.e. that 

at each time step there is a segment of either the type 𝐴 (forward) or 𝐵 (same level). Moreover, the probability 

expression does not take into account any multiplication of rumors, i.e. the fact that one node can spread the 

rumor to more of its neighbours at the same time. Although the rumor spreading model used for this project 

assumes that multiple rumors could be spread from a node at the same time step, we show through empirical 

results that the multiplication of paths does not have a significant impact on the probability of rumor infection 

and moreover, it could be accounted for using the connectivity index. 

The subplots below show the probability of rumor spreading, obtained from a simulated of 𝑅 = 50 rumors in 

a small-world network of 𝑁 = 200 nodes, rewiring probability 𝛽 = 0.2, and average vertex degree 𝑉 = 6.The 

large value of average vertex degree aims to ensure a fair comparison of the below probabilities obtained 

through different spreading models. Under this conditions, the average number of neighbours a node would 

spread to, if it is allowed to spread to any number of neighbours with probability 𝑃𝑠 = 0.5, will be larger than 

1 (which represents the case when each node spreads the rumor to exactly one neighbour with a probability 

𝑃𝑠 = 1). 

For the right subplot, the spreading model used is the one where each node spreads the rumor to any of its 

neighbours with a probability 𝑃𝑠 = 0.5.  

For the left subplot, the spreading model used is the one where each node spreads the rumor to exactly one 

neighbour with a probability 𝑃𝑠 = 1. In addition, at each time step, the neighbour 𝑗 to which each already 

infected node 𝑖 spreads the rumor is chosen such that node 𝑗 is further away from the source or at the same 

distance as node 𝑖. Moreover, the model assumes that each node can spread to a neighbour which is not 

already infected. Only if there are no neighbours which do not have the rumor yet, can the spreading occur to 

an already infected node.  
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Therefore, the assumptions of this spreading model agree to the assumptions made in the derivation of the 

theoretic probability formula above, and the equivalence between the two sets of assumptions is the 

following. A spreading probability of 𝑃𝑠 = 1 means that at each time step the rumor is guaranteed to take a 

segment of either the type 𝐴 (forward) or 𝐵 (same level), as assumed in the above derivation. The fact that 

the neighbour 𝑗 to which each already infected node 𝑖 spreads the rumor is further away or at the same 

distance from the source as node 𝑖 considers the assumption that 𝑘 ≅ 𝑑, and therefore the number of 

backward paths #𝐶 ≅ 0 , which means #𝐴 ≅ 𝑑 and  #𝐴 + #𝐵 = 𝑘, with #𝐵 very small. Finally, the assumption 

that each node can spread to a neighbour which is not already infected is made in order to account for the 

fact that 𝑝𝐴 > 𝑝𝐵 as assumed in the derivation above, i.e. that the rumor is more likely to progress to new 

further away nodes, then to be stagnant.  

For the middle subplot, the spreading model is similar to the one above. The only difference in this case is that 

each node 𝑖 can spread the rumor to exactly two neighbours, if these exist and are both further away from 

the source compared to node 𝑖. Moreover, it can spread the rumor to exactly one neighbour, if this is located 

at the same distance from the source as node 𝑖. As before, if none of its neighbour are further away or at most 

at the same distance from the source, node 𝑖 can spread the rumor to exactly one of its neighbours. This model 

will better reflect the assumptions used in the derivation of the probability formula, where a constant 

connectivity index 𝑘 > 1 is used to ensure 𝑝𝐴 = 𝑘 × 𝜇 has a larger value, which means that the rumor is more 

likely to advance through the network to reach its destination in a number of steps 𝑘 ≅ 𝑑. 

In the left subplot we can observe that for the initial time steps the probability has a slow rise, followed by a 

steep rise after a certain time delay. This is a result of the fact that at a short time after the rumor initiation, 

very few nodes have the rumor to be able to spread it further. By comparing this graph with the plot of the 

actual rumor spreading to any neighbours with probability 𝑃𝑆 = 0.5 (right), we can notice that the probability 

values are lower in the former case, particularly at small time steps. 

The middle subplot is a better approximation of the actual rumor spreading, reflecting a faster rise in the 

infection probability shortly after the rumor initiation. By comparison with the graph of the actual rumor 

spreading (right), we can see that this model represent a better approximation of the real rumor spreading, 

compared to the model described above.  

In summary, the above experiments illustrate that the mathematical formulation for the theoretic probability 

is a good approximation of the rumor infection model, by showing how the connectivity index 𝑘 used in 𝑝𝐴 =

𝑘 × 𝜇 could account for rumor multiplication (where each node can spread to multiple neighbours). The 

connectivity index depends on the topology and characteristics of the network, and could be determined by 

simulating a spreading of rumors in the matrix and choosing 𝜅𝑂𝑃𝑇 which minimizes the error defined as 𝜖 =

∑ ∑ ‖𝑄𝑑(𝑘) − 𝑉𝑑(𝑘)‖𝑑𝑘 , where 𝑄𝑑(𝑘) is the estimated probability, and 𝑉𝑑(𝑘) is the probability obtained 

through simulation. This is further detailed in the Implementation section. 
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Last but not least, we notice that the probability of advancing through the network 𝑝𝐴 = 𝑘 × 𝜇  is also proportional to the rumor spreading probability 𝜇. This 

is in order to model the fact that a rumor which has a lower spreading probability will take more time to advance through the network until it reaches its 

destination node.  

 

Figure 4: Simulated Rumor Probability for Two Different Rumor Spreading Models: Exactly 1 Neighbour (further or at the same distance from source) with Probability Ps=1 (left), Exactly 2 
Neighbours (further from the source) and 1 Neighbour (at the same distance from source) with probability Ps=1 (middle), Any Neighbours with Probability Ps = 0.5 (right) 
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Theoretic Probability of Rumor Dissemination: A Robust Solution 
 

As before, this approach models the spreading of rumors as a random walk process in 1𝐷, aiming to derive an 

analytical formulation for the probability of infection of a node located at a certain distance 𝑑, after 𝑘 time 

steps. 

 

a. Assumptions 

The rumor spreading model used is the susceptible-infected model. The nodes can be in one of the two states, 

susceptible or infected, and once a node is infected it cannot recover. In addition, a node which already has 

the rumor, is able to receive it again from the same or different sources. Moreover, we assume that the 

probability of rumor spreading is constant throughout the network.  

On the other hand, as opposed to the Initial Solution, no assumption will be made regarding the time of 

infection of a node, i.e. the time of infection 𝑘 is not necessarily approximately equal to the shortest path 

between the sensor and the source, 𝑑. This should provide a more robust mathematical formulation for the 

theoretical probability of infection.   

 

b. Related Literature Research 

The relevant literature research for the derivations used in this approach includes: theory of Markov Chains 

and Random Walks [17], de Moivre-Laplace formula, properties of trees, random geometric graphs, scale-free 

and small-world networks. 

 

c. Motivation for Approach 

 

A refinement of the initial solution has as objective the derivation of a more accurate theoretical formula for 

the probability of rumor spreading. 

 

 

d. Advantages and Disadvantages 

 

The refined solution aims to give a more accurate approximation of the theoretic probability of infection. In 

this sense, the main advantage this solution provides consists in a more precise calculation of the number of 

paths the rumor could follow, with no restrictions on whether the rumor goes backwards or not (as opposed 

to the initial solution, which assumes that the number of backward paths #𝐶 is approximately zero). 

Consequently, this formula could be used to model a wider range of rumor spreading models. 

 

The main disadvantage of this formulation is the dependence on the probabilities of advancing through the 

network: probability of forward path 𝑝𝐴, probability of stationary path 𝑝𝐵, and probability of downward path 

𝑝𝐶. These probabilities are dependent on the network topology and network characteristics, for example the 

average number of neighbours a node connects to in all the three directions considered (A, B, and C). 

Moreover, the calculation of these probabilities might be involved in a scale-free network (which best models 

the social network), as the node degree follows a power-law distribution, and using the average vertex degree 
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to compute 𝑝𝐴, 𝑝𝐵, 𝑎𝑛𝑑 𝑝𝐶  might not lead to accurate results in this case (as there are nodes with very large 

degree such as hubs, and nodes with very small degree).  

 

Furthermore, another disadvantage is represented by the challenging simplification of the probabilities 

formula. While the initial solution provides a closed-form expression for the probability, the solution 

presented in this section is more complex and a closed-form solution will remain part of the requirements for 

future work. 

 

 

e. Mathematical Formulation 

The nodes will be arranged according to the distance from the source and a theoretical model will be derived 

for the probability of a node located at a distance 𝑑 to get the rumor in 𝑘 steps.  

We assume that the rumor can take any of the following three paths, from any node in the network: 

 𝐴 − 𝑡𝑦𝑝𝑒 : the rumor is transmitted from a node at distance 𝑥 to a node at distance 𝑥 + 1, where 𝑥 < 𝑑. 

 𝐵 − 𝑡𝑦𝑝𝑒 : the rumor is transmitted from a node at distance 𝑥 to a node at distance 𝑥, where 𝑥 ≤ 𝑑. 

 𝐶 − 𝑡𝑦𝑝𝑒 : the rumor is transmitted from a node at distance 𝑥 + 1 to a node at distance 𝑥, where 𝑥 < 𝑑. 

 

We will denote by {𝜏1, 𝜏2, 𝜏3, … 𝜏𝑘 , } the time steps from the start of the rumor, up to time 𝑘. At each time 

step, one of the above three possible paths will happen, and hence, we would be interested to count the 

number of possible sequences of paths that the rumor will follow in 𝑘 time steps. 

Ignoring the fact that a node can spread the rumor to multiple neighbors at the same time, and assuming that 

there are no restrictions on the succession of paths 𝐴, 𝐵, 𝑜𝑟 𝐶, the following two methods describe the 

calculation of the number of paths and the probability of the rumor reaching the node at distance 𝑑 in 𝑘 time 

steps. 

 

Method I 

 

The following two equations hold: 

 (1) 𝐴 + 𝐵 + 𝐶 = 𝑘 (𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠) 

 (2) 𝐴 − 𝐶 = 𝑑 (𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

The number of paths is therefore: 

𝑁𝑃𝐴𝑇𝐻𝑆 = ∑ (
𝑘

𝐴
)(
𝑘 − 𝐴

𝐵
)

𝐴+𝐵≤𝑘
𝐴−𝐶=𝑑

𝑢𝑠𝑖𝑛𝑔 (1)+(2)
⇒          𝑁𝑃𝐴𝑇𝐻𝑆 = ∑ (

𝑘

𝐴
) (

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴
)

𝑑≤𝐴≤𝑘

 

We will assume that the probability of each of the three possible segments are the following: 𝑝𝐴, 𝑝𝐵 and 𝑝𝐶  

for 𝐴 − 𝑡𝑦𝑝𝑒, 𝐵 − 𝑡𝑦𝑝𝑒 and respectively 𝐶 − 𝑡𝑦𝑝𝑒. 

Therefore, the probability of each path will be: 

𝑞𝑑,𝑘 = ∑ (
𝑘

𝐴
)(

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴
)

𝑑≤𝐴≤𝑘

𝑝𝐴
𝐴𝑝𝐵

𝑘+𝑑−2𝐴𝑝𝐶
𝐴−𝑑   
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Method II 

 

The number of paths could also be calculated using the following approach. We consider the independent and 

identically distributed random variables {𝜀1, 𝜀2, 𝜀3, … 𝜀𝑘}, which represent the displacement of the rumor at 

each time step, and which can have the following values: 

𝜀𝑖 = {

1, 𝑖𝑓 𝐴 − 𝑡𝑦𝑝𝑒 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
0, 𝑖𝑓 𝐵 − 𝑡𝑦𝑝𝑒 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 
−1, 𝑖𝑓 𝐶 − 𝑡𝑦𝑝𝑒 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

 

 

Then the following equation holds, signifying that the distance taken by the rumor in 𝑘 time steps is equal to 

𝑑: ∑ 𝜀𝑖 = 𝑑
𝑘
𝑖=1 . 

 

Moreover, the distribution of each of the random variables is given by: 

𝑓𝜉𝑖(𝜀𝑖) = {

𝑝𝐴, 𝑖𝑓 𝜀𝑖 = 1
𝑝𝐵, 𝑖𝑓 𝜀𝑖 = 0
𝑝𝐶 , 𝑖𝑓 𝜀𝑖 = −1

 

 

Taking into account the fact that the probability mass function of the sum of independent random variables is 

the convolution of their individual probability mass functions, the following holds: 

 

𝑃(∑𝜀𝑖

𝑘

𝑖=1

= 𝑑) = 𝑓𝜉1(𝜀1) ∗ 𝑓𝜉2(𝜀2)… 𝑓𝜉𝑘(𝜀𝑘) 

Evaluating the formula above, we are able to find the probability that a node located at distance 𝑑 gets the 

rumor for the first time after 𝑘 steps, i.e. 𝑞𝑑,𝑘. 

 

As a result, the probability of a node located at distance 𝑑 to have the rumor at time 𝑘 is: 

𝑄𝑑(𝑘) =∑𝑞𝑑,𝑡 =∑ ∑ (
𝑘

𝐴
) (

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴
)

𝑑≤𝐴≤𝑘 

𝑝
𝐴
𝐴𝑝
𝐵
𝑘+𝑑−2𝐴𝑝

𝐶
𝐴−𝑑

𝑘

𝑡=𝑑

𝑘

𝑡=𝑑

 

Alternatively, this could be written as: 

𝑄𝑑(𝑘) =∑𝑞𝑑,𝑡 =∑𝑃(∑ 𝜀𝑖

𝑘

𝑖=1

= 𝑑)

𝑘

𝑡=𝑑

𝑘

𝑡=𝑑

 

 

f. Refinement of the Number of Paths  

 

Method I  

 

The counting of the number of paths above assumes that the sequence of 𝐴, 𝐵, 𝑜𝑟 𝐶 − 𝑡𝑦𝑝𝑒 segments in the 

rumor path is unconstrained and therefore, does not account for any illegal sequence. For example, if the 

rumor would be spread in the following sequence {𝐴, 𝐶, 𝐶, 𝐶}, its 𝑥- coordinate would become −2, which is 

not possible, as all nodes are located at a positive distance from the source. Therefore, a refinement of the 

counting of the number of paths is required to account for such scenarios. 

` 
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The method used is based on the reflection principles of a random walk in 1𝐷 [17]. 

The graph below illustrates a path the rumor could take and its reflection around the vertical line. The 

reflection starts at the point where the path touches the vertical line. Moreover, we should note that the first 

segment in the path (purple) is always an 𝐴 − 𝑡𝑦𝑝𝑒 segment. We also note that reflection can only occur 

through the node which is the source of rumors, as this is the only node located on level 𝑑 = 0. 

 

 

Figure 5: Reflection Principle of Random Walk in 1D 

Let us assume that the destination node is located at distance 𝑑 = 𝑥. As we see in the figure above, if the 

actual rumor path will reach the coordinate 𝑥, then the reflected path reaches the coordinate – 𝑥. 

Therefore, in order to count the number of paths which cross the zero vertical axis and which have as a 

destination a node at distance 𝑑 = 𝑥, after 𝑘 time steps, we could instead count the number of reflected paths 

that reach the destination 𝑑 = −𝑥, after 𝑘 time steps. We should note that the reflected paths we are 

interested in start at the origin in the positive direction and after a certain time delay, become negative and 

end up at a negative coordinate. In other words, this counts strictly the paths which will cross the zero-axis, 

and not the paths which start at the origin and remain in the negative left-hand plane throughout the entire 

duration of 𝑘 time steps. 

A further illustration and explanation of the reflection principle is given in [17]. 

As a result, the following holds: 

#{(0,0) → (𝑘, 𝑑); 𝑠𝑡𝑎𝑟𝑡 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑎𝑛𝑑 𝑡𝑜𝑢𝑐ℎ 𝑧𝑒𝑟𝑜} = 

= #{(0,0) → (𝑘,−𝑑); 𝑠𝑡𝑎𝑟𝑡 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛} 

Consequently:  

#{(0,0) → (𝑘, 𝑑); 𝑟𝑒𝑚𝑎𝑖𝑛 > 0}

= #{(0,0) → (𝑘, 𝑑)} − #{(0,0) → (𝑘, 𝑑); 𝑠𝑡𝑎𝑟𝑡 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑎𝑛𝑑 𝑡𝑜𝑢𝑐ℎ 𝑧𝑒𝑟𝑜 } 

= #{(0,0) → (𝑘, 𝑑)} − #{(0,0) → (𝑘,−𝑑); 𝑠𝑡𝑎𝑟𝑡 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛} 

As proven in the section above, the number of paths reaching distance 𝑑 in 𝑘 time steps is derived from 𝐴 +

𝐵 + 𝐶 = 𝑘 and 𝐴 − 𝐶 = 𝑑, and is equal to: 

#{(0,0) → (𝑘, 𝑑)} = ∑ (
𝑘

𝐴
) (

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴
)

𝑑≤𝐴≤𝑘
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For the calculation of the number of paths reaching distance −𝑑 in 𝑘 time steps we need to count the number 

of paths which start in the positive direction (𝐴 − 𝑡𝑦𝑝𝑒 segment) and which after a certain time step return 

back at the origin, continuing in the negative direction until distance −𝑑. The following two equations hold: 

 (1) 𝐴 + 𝐵 + 𝐶 = 𝑘  

 (2) 𝐴 − 𝐶 = −𝑑 

In addition, we assume that the time interval for which the path remains in the right half plane is equal to 𝑦 

steps, therefore for the remaining 𝑘 − 𝑦 time steps the random walk will be negative. This is illustrated in the 

figure below. 

 

Figure 6: Illustration of Illegal Path and its Reflection, of k = 9 Time Steps, and Distance d = 2 

Moreover, we denote the number of  𝐴 − 𝑡𝑦𝑝𝑒 segments the path takes in the right half plane by 𝐴𝑃 and the 

number of  𝐴 − 𝑡𝑦𝑝𝑒 segments the path takes in the left half plane by 𝐴𝑁. Since the random walk returns to 

the origin after 𝑦 steps, the number of 𝐶 − 𝑡𝑦𝑝𝑒 segments the path takes in the right half plane must also be 

equal to 𝐴𝑃. 

The number of possible paths the random walk takes in the right half plane before the return to the origin is 

denoted by 𝑁𝑃 and is equal to: 

𝑁𝑃 = ∑ (
𝑦

𝐴𝑃
) (
𝑦 − 𝐴𝑃
𝐴𝑃

)

𝑓𝑙𝑜𝑜𝑟(
𝑦
2
)

𝐴𝑃=1

 

The formula above represents a counting of the possible ways of choosing a number of 𝐴 − 𝑡𝑦𝑝𝑒 segments 

equal to 𝐴𝑃 from a total of 𝑦 segments available, and a number of 𝐶 − 𝑡𝑦𝑝𝑒 segments equal to 𝐴𝑃, from the 

remaining 𝑦 − 𝐴𝑃 segments available. The 𝐵 − 𝑡𝑦𝑝𝑒 segments are fixed once we choose the former two 

segment types.  

We note that the upper limit of the number of 𝐴 − 𝑡𝑦𝑝𝑒 segments should be 
𝑦

2
 since the same number of 𝐶 −

𝑡𝑦𝑝𝑒 segments must happen in order for the random walk to return to origin. 

The number of possible paths the random walk takes in the left half plane is denoted by 𝑁𝑁 and is equal to: 

𝑁𝑁 = ∑ (
𝑘 − 𝑦

𝐴𝑁
) (
𝑘 − 𝑦 − 𝐴𝑁
𝐴𝑁 + 𝑑

)

𝑓𝑙𝑜𝑜𝑟(
𝑘−𝑦−𝑑
2

)

𝐴𝑁=1
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The formula above represents a counting of the possible ways of choosing a number of 𝐴 − 𝑡𝑦𝑝𝑒 segments 

equal to 𝐴𝑁 from a total of 𝑘 − 𝑦 segments available in the left half plane, and a number of 𝐶 − 𝑡𝑦𝑝𝑒 

segments, from the remaining 𝑘 − 𝑦 − 𝐴𝑁  segments available. The 𝐵 − 𝑡𝑦𝑝𝑒 segments are fixed once we 

choose the former two segment types. The number of 𝐶 − 𝑡𝑦𝑝𝑒 segments has been derived as follows: 

 The total number of 𝐴, 𝐵, 𝐶 − 𝑡𝑦𝑝𝑒 segments are denoted by 𝐴, 𝐵, and 𝐶 respectively. As described 

above, we know that 𝐴 + 𝐵 + 𝐶 = 𝑘 and 𝐴 − 𝐶 = −𝑑.  

 Moreover, we know that 𝐴𝑃 − 𝐶𝑃 = 0 since the random walk must return to the origin before going 

to the left half plane. Therefore, 𝐴𝑁 − 𝐶𝑁 = 𝐴 − 𝐶 − (𝐴𝑃 − 𝐶𝑃) = −𝑑. Hence, 𝐶𝑁 = 𝐴𝑁 + 𝑑. 

In addition, we note that the upper limit of the number of 𝐴 − 𝑡𝑦𝑝𝑒 segments, i.e. 𝐴𝑁 is 
𝑘−𝑦−𝑑

2
. This is 

because 𝐴𝑁 + 𝐵𝑁 + 𝐶𝑁 = 𝑘 − 𝑦 , from which we get that 𝐴𝑁 = 𝑘 − 𝑦 − 𝐶𝑁 −𝐵𝑁 and hence, 𝐴𝑁 ≤ 𝑘 − 𝑦 −

𝐶𝑁. Since 𝐶𝑁 = 𝐴𝑁 + 𝑑, it follows that 𝐴𝑁 ≤ 𝑘 − 𝑦 − 𝐴𝑁 − 𝑑, from which we get 𝐴𝑁 ≤
𝑘−𝑦−𝑑

2
. 

Consequently, the total number of paths that start from the origin in the positive direction and which reach 

distance −𝑑 is equal to:  

#{(0,0) → (𝑘,−𝑑)} = ∑[ ∑ (
𝑦

𝐴𝑃
) (
𝑦 − 𝐴𝑃
𝐴𝑃

)

𝑓𝑙𝑜𝑜𝑟(
𝑦
2
)

𝐴𝑃=1

𝑘−𝑑

𝑦=2

∑ (
𝑘 − 𝑦

𝐴𝑁
) (
𝑘 − 𝑦 − 𝐴𝑁
𝐴𝑁 + 𝑑

)

𝑓𝑙𝑜𝑜𝑟(
𝑘−𝑦−𝑑
2

)

𝐴𝑁=0

] 

In the formula above, we note that the upper limit of 𝑦 is 𝑘 − 𝑑. This is because there must be at least 𝑑 

segments taken in the left half plane in order to ensure we reach a node at distance −𝑑. Moreover, we also 

note that for the same reason, the upper limit of the 𝐴 − 𝑡𝑦𝑝𝑒 segments in the left half plane, 𝐴𝑁 must be 

smaller than 𝑘 − 𝑦 − 𝑑. In addition, the lower bound of 𝑦 is 2, since for any 𝐴 − 𝑡𝑦𝑝𝑒 segment, there will be 

a corresponding 𝐶 − 𝑡𝑦𝑝𝑒 in order to ensure the return to origin in 𝑦 steps, and since the first segment in the 

path is a forward 𝐴 − 𝑡𝑦𝑝𝑒, then there must at least one other 𝐶 − 𝑡𝑦𝑝𝑒 segment, which leads to 𝑦 ≥ 2. 

Furthermore, by comparing the actual and the reflected paths, we notice that the following equations hold: 

 𝐶𝑅𝐸𝐹𝐿𝐸𝐶𝑇𝐸𝐷 = 𝐴𝐴𝐶𝑇𝑈𝐴𝐿 = 𝐴. Hence 𝐶𝑃 + 𝐶𝑁 = 𝐴, which means 𝐴𝑃 + 𝐴𝑁 + 𝑑 = 𝐴. 

 𝐴𝑅𝐸𝐹𝐿𝐸𝐶𝑇𝐸𝐷 = 𝐶𝐴𝐶𝑇𝑈𝐴𝐿 = 𝐴 − 𝑑. Hence 𝐴𝑃 + 𝐴𝑁 = 𝐴 − 𝑑, which is equivalent to the condition 

above. 

This observation imposes a restriction on the number of 𝐴 − 𝑡𝑦𝑝𝑒 paths that take place in the left half plane. 

In this sense, 𝐴𝑁 = 𝐴 − 𝑑 − 𝐴𝑃. Therefore, the value of 𝐴𝑁 will not range over the interval [0,
𝑘−𝑦−𝑑

2
], but will 

be instead fixed. As a result, the total number of paths that start from the origin in the positive direction and 

which reach distance −𝑑 is equal to: 

#{(0,0) → (𝑘,−𝑑)} = ∑[ ∑ (
𝑦

𝐴𝑃
) (
𝑦 − 𝐴𝑃
𝐴𝑃

)

𝑓𝑙𝑜𝑜𝑟(
𝑦
2
)

𝐴𝑃=1

𝑘−𝑑

𝑦=2

(
𝑘 − 𝑦

𝐴 − 𝑑 − 𝐴𝑃
) (
𝑘 − 𝑦 − (𝐴 − 𝑑 − 𝐴𝑃)

𝐴 − 𝐴𝑃
)] 

Last but not least, we should note that the random walk must always have an 𝐴 − 𝑡𝑦𝑝𝑒 segment as a starting 

point. Therefore,  

#{(0,0) → (𝑘, 𝑑)}  = ∑ (
𝑘 − 1

𝐴 − 1
) (

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴 + 1
)

𝑑−1≤𝐴≤𝑘−1

  

#{(0,0) → (𝑘,−𝑑); 𝑠𝑡𝑎𝑟𝑡 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛}

=  ∑[ ∑ (
𝑦 − 1

𝐴𝑃 − 1
) (
𝑦 − 𝐴𝑃
𝐴𝑃 − 1

)

𝑓𝑙𝑜𝑜𝑟(
𝑦
2
)

𝐴𝑃=1

𝑘−𝑑

𝑦=2

(
𝑘 − 𝑦

𝐴 − 𝑑 − 𝐴𝑃
) (
𝑘 − 𝑦 − (𝐴 − 𝑑 − 𝐴𝑃)

𝐴 − 𝐴𝑃
)] 
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As a result, the total number of paths of a random walk that starts at the origin and reach distance 𝑑 in 𝑘 time 

steps is: 

𝑁𝑃𝐴𝑇𝐻𝑆 = #{(0,0) → (𝑘, 𝑑); 𝑟𝑒𝑚𝑎𝑖𝑛 > 0}

= #{(0,0) → (𝑘, 𝑑)} − #{(0,0) → (𝑘, −𝑑); 𝑠𝑡𝑎𝑟𝑡 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛}

= ∑ (
𝑘 − 1

𝐴 − 1
) (

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴 + 1
)

𝑑≤𝐴≤𝑘

−∑[ ∑ (
𝑦 − 1

𝐴𝑃 − 1
)(
𝑦 − 𝐴𝑃
𝐴𝑃 − 1

)

𝑓𝑙𝑜𝑜𝑟(
𝑦
2
)

𝐴𝑃=1

𝑘−𝑑

𝑦=2

(
𝑘 − 𝑦

𝐴 − 𝑑 − 𝐴𝑃
) (
𝑘 − 𝑦 − (𝐴 − 𝑑 − 𝐴𝑃)

𝐴 − 𝐴𝑃
)] 

Consequently, the probability of a node at distance 𝑑 to get the rumor after 𝑘 steps is: 

𝑞𝑑,𝑘

= ∑ ((
𝑘 − 1

𝐴 − 1
) (

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴 + 1
)

𝑑≤𝐴≤𝑘

𝑝𝐴
𝐴𝑝𝐵

𝑘+𝑑−2𝐴𝑝𝐶
𝐴−𝑑

−∑[ ∑ (
𝑦 − 1

𝐴𝑃 − 1
)(
𝑦 − 𝐴𝑃
𝐴𝑃 − 1

)

𝑓𝑙𝑜𝑜𝑟(
𝑦
2
)

𝐴𝑃=1

𝑘−𝑑

𝑦=2

(
𝑘 − 𝑦

𝐴 − 𝑑 − 𝐴𝑃
) (
𝑘 − 𝑦 − (𝐴 − 𝑑 − 𝐴𝑃)

𝐴 − 𝐴𝑃
)]𝑝𝐴

𝐴−𝑑𝑝𝐵
𝑘−𝑑−2(𝐴−𝑑)𝑝𝐶

𝐴 ]) 

In the above formula, the exponents of the probabilities of advancing through the network, 𝑝𝐴, 𝑝𝐵, 𝑎𝑛𝑑 𝑝𝐶  

are derived as follows: 

 The total number of 𝐴 − 𝑡𝑦𝑝𝑒 segments is equal to 𝐴𝑃 + 𝐴𝑁. In Addition we know that 𝐴𝑃 + 𝐴𝑁 =

𝐴 − 𝑑. This is the exponent of 𝑝𝐴. 

 Therefore, 𝑘 − 𝑑 − 2(𝐴𝑃 + 𝐴𝑁) = 𝑘 − 𝑑 − 2(𝐴 − 𝑑). This is the exponent of 𝑝𝐵. 

 The number of 𝐶 − 𝑡𝑦𝑝𝑒 segments is equal to 𝐶𝑃 + 𝐶𝑁 = 𝐴. This is the exponent of 𝑝𝐶. 

Finally, the probability of a node at distance 𝑑 to have the rumor after 𝑘 time steps is: 

𝑄𝑑(𝑘)

=∑𝑞𝑑,𝑡

𝑘

𝑡=𝑑

=∑{ ∑ ((
𝑘 − 1

𝐴 − 1
) (

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴 + 1
)

𝑑≤𝐴≤𝑘

𝑝
𝐴
𝐴𝑝
𝐵
𝑘+𝑑−2𝐴𝑝

𝐶
𝐴−𝑑

𝑘

𝑡=𝑑

−∑[ ∑ (
𝑦 − 1

𝐴𝑃 − 1
) (
𝑦 − 𝐴𝑃

𝐴𝑃 − 1
)

𝑓𝑙𝑜𝑜𝑟(
𝑦
2
)

𝐴𝑃=1

𝑘−𝑑

𝑦=2

(
𝑘 − 𝑦

𝐴 − 𝑑 − 𝐴𝑃
) (
𝑘 − 𝑦 − (𝐴 − 𝑑 − 𝐴𝑃)

𝐴 − 𝐴𝑃
)]𝑝

𝐴
𝐴−𝑑𝑝

𝐵
𝑘−𝑑−2(𝐴−𝑑)𝑝

𝐶
𝐴 ])}  

If we assume that the probabilities of advancing through the network are equal, then the above formula 

becomes:  
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𝑄𝑑(𝑘) =∑

{
 

 
∑ (

𝑘 − 1

𝐴 − 1
) (

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴 + 1
)

𝑑≤𝐴≤𝑘

𝑘

𝑡=𝑑

−∑[ ∑ (
𝑦 − 1

𝐴𝑃 − 1
) (
𝑦 − 𝐴𝑃

𝐴𝑃 − 1
)

𝑓𝑙𝑜𝑜𝑟(
𝑦
2
)

𝐴𝑃=1

𝑘−𝑑

𝑦=2

(
𝑘 − 𝑦

𝐴 − 𝑑 − 𝐴𝑃
) (
𝑘 − 𝑦 − (𝐴 − 𝑑 − 𝐴𝑃)

𝐴 − 𝐴𝑃
)

}
 

 
× 𝑃𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑃

=
1

3
  

Method II 

Alternatively, a simplified way of calculating the reflected paths could be: 

#{(0,0) → (𝑘, 𝑑)} − #{(0,0) → (𝑘,−𝑑); 𝑠𝑡𝑎𝑟𝑡 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛} = ∑ (
𝑘 − 1

𝐴 − 1
) (

𝑘 − 𝐴

𝑘 − 𝑑 − 2𝐴 + 1
)

𝑑≤𝐴≤𝑘

 

This formulation does not consider the constraints imposed in the previous derivation and simply assumes 

that 𝐴 + 𝐵 + 𝐶 = 𝑘 and 𝐴 − 𝐶 = −𝑑, where 𝐴, 𝐵, 𝑎𝑛𝑑 𝐶 are the number of segments of 𝐴 − 𝑡𝑦𝑝𝑒, 𝐵 −

𝑡𝑦𝑝𝑒, 𝑎𝑛𝑑 𝐶 − 𝑡𝑦𝑝𝑒 respectively, in the reflected path. 

Therefore, the probability of a node at distance 𝑑 to have the rumor after 𝑘 time steps is: 

𝑄𝑑(𝑘) =∑𝑞𝑑,𝑡

𝑘

𝑡=𝑑

=∑ ∑ {(
𝑘 − 1

𝐴 − 1
) (

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴 + 1
)

𝑑≤𝐴≤𝑘 

𝑘

𝑡=𝑑

− ∑ (
𝑘 − 1

𝐴 − 1
) (

𝑘 − 𝐴

𝑘 − 𝑑 − 2𝐴 + 1
)

𝑑≤𝐴≤𝑘

}𝑝
𝐴
𝐴𝑝
𝐵
𝑘+𝑑−2𝐴𝑝

𝐶
𝐴−𝑑 

As before, if we assume that the probabilities of advancing through the network are equal, then the above 

formula becomes:  

𝑄𝑑(𝑘) =∑ ∑ {(
𝑘 − 1

𝐴 − 1
) (

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴 + 1
) − (

𝑘 − 1

𝐴 − 1
) (

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴 + 1
)

𝑑≤𝐴≤𝑘 

}  × 𝑃𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑃 =
1

3
 

𝑘

𝑡=𝑑

 

 

In summary, the following two formulations have been derived, in order to model the probability of a node at 

distance 𝑑 to have the rumor after 𝑘 time steps: 

1. 𝑄𝑑(𝑘) = ∑ {∑ ((𝑘−1
𝐴−1
)( 𝑘−𝐴

𝑘+𝑑−2𝐴+1
)𝑑≤𝐴≤𝑘 𝑝

𝐴
𝐴𝑝
𝐵
𝑘+𝑑−2𝐴𝑝

𝐶
𝐴−𝑑 −𝑘

𝑡=𝑑

∑ [∑ ( 𝑦−1
𝐴𝑃−1

) (𝑦−𝐴𝑃
𝐴𝑃−1

)
𝑓𝑙𝑜𝑜𝑟(

𝑦

2
)

𝐴𝑃=1
𝑘−𝑑
𝑦=2 ( 𝑘−𝑦

𝐴−𝑑−𝐴𝑃
) (𝑘−𝑦−(𝐴−𝑑−𝐴𝑃)

𝐴−𝐴𝑃
)]𝑝

𝐴
𝐴−𝑑𝑝

𝐵
𝑘−𝑑−2(𝐴−𝑑)𝑝

𝐶
𝐴 ])}  

2. 𝑄𝑑(𝑘) = ∑ 𝑞𝑑,𝑡 = ∑ ∑ {(𝑘−1
𝐴−1
)( 𝑘−𝐴

𝑘+𝑑−2𝐴+1
) −𝑑≤𝐴≤𝑘 

𝑘
𝑡=𝑑

𝑘
𝑡=𝑑

∑ (𝑘−1
𝐴−1
)( 𝑘−𝐴

𝑘−𝑑−2𝐴+1
)𝑑≤𝐴≤𝑘 }𝑝

𝐴
𝐴𝑝
𝐵
𝑘+𝑑−2𝐴𝑝

𝐶
𝐴−𝑑 

Both results above could be simplified using Stirling’s approximation or de Moivre-Laplace formula.  
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Chapter 4  

 

Implementation 
 

Matlab Environment: Network Model 
 

Construction of Tree Graph 

The tree is constructed according to the network size (number of nodes) and its depth (the maximum distance 

from the root node to children nodes). Indexing the nodes as shown in the figure below, we are able to find 

the indices of the children node for any given parent node, therefore being able to define the edges of the 

tree graph. 

We assume that each node has 𝐶 children and that the tree depth is 𝐷. Hence, the indices of the nodes located 

at depth 𝑑 range between 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 =
𝐶𝐷−1−1

𝐶−1
+ 1 and 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 =

𝐶𝐷−1

𝐶−1
. Therefore, for each of the 

nodes indexed between these values, the indices of its children will be 𝑖𝑛𝑑𝑒𝑥𝑐ℎ𝑖𝑙𝑑 𝑗 = 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 + 𝐶
𝑑−1 +

(𝑖𝑛𝑑𝑒𝑥𝑝𝑎𝑟𝑒𝑛𝑡 − 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑) × 𝐶 + 𝑗 − 1, where 𝑗 = 1,2…𝐶. 

The figure on the left shows an example of a tree of depth 𝐷=3, with 𝐶 = 3 

children. At iteration 1, the depth is 1, and the only node is the root of the 

graph, node 1. At iteration 2, the depth is 2, and the indices of the added 

nodes range from 
𝐶𝐷−1−1

𝐶−1
+ 1 = 2 to 

𝐶𝐷−1

𝐶−1
= 4. At iteration 3, the depth is 

3, and the indices of the added nodes range from 
𝐶𝐷−1−1

𝐶−1
+ 1 = 5 to 

𝐶𝐷−1

𝐶−1
=

13. 

 

Construction of Random Geometric Graph 

Firstly, 𝑁 random 2𝐷 locations are generated in a square plane of a given 

dimension (e.g. 1𝑥1). Secondly, any two nodes will be connected through 

an edge if the distance between them is smaller than a given radius (e.g. 𝑟 =

0.2 𝑓𝑜𝑟 1𝑥1 𝑔𝑟𝑖𝑑). 
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Construction of Small-World Graph 

The network is created using the Watts-Strogatz algorithm, which can be 

summarized as follows. Firstly, each node is connected to its 𝐾 next and 

previous neighbors (in terms of the nodes’ indices). Hence, each node will 

have 2𝐾 neighbors. Then, the nodes are rewired with a given probability 𝛽. 

In this sense, for every node 𝑛𝑖 and every edge (𝑛𝑖, 𝑛𝑗), the edge is replaced 

by (𝑛𝑖, 𝑛𝑘) with probability 𝛽, where 𝑘 is a uniform random variables from 

all the nodes that do not have a connection with node 𝑛𝑖 yet, and which 

avoid self-loops (𝑘 ≠ 𝑖). The Matlab codes can be found in Appendix E. 
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Construction of Scale-Free Network 

Method I 

A scale-free network is a network which has a power law degree distribution. In other words, the probability 

of a node having 𝑘 connections to other nodes is given by 𝑃(𝑘)~𝑘−𝛾, where 𝛾 is a parameter in the range 

(2,3).  

The network is created using the Barabási–Albert (BA) model. The algorithm begins with an initial network of 

𝑁0 connected nodes. A new node is added, by connecting it to 𝑛 ≤ 𝑁0 existing nodes. The probability that the 

new node is connected to node 𝑖 is given by: 

𝑃𝑖 =
𝑘𝑖
∑ 𝑘𝑗𝑗

 

where 𝑘𝑖 is the degree of node 𝑖 and the range of the sum is the set of all pre-existing nodes. 

It can be seen that high degree nodes , or hubs, will have a higher probability of connecting to a new node, 

hence accumulating even more links.  

Method II 

This method implements the algorithm described by the authors of the paper “Deterministic scale-free 

networks”. The model is described below, generating a deterministic scale-free network, with power law 

degree distribution [20]. 

Step 1. We designate a single node as the root of the graph 

Step 2. Two additional nodes are added, and each of them is connected only to the root defined above. Up to 

 this point the adjacency matrix is 𝑀2 

Step 3. Two additional unit of two nodes each with the same structure as matrix 𝑀2 are added, and only the 

 bottom nodes of each of these units will be connected to the root. No additional connections are 

 made. 

Step n. The rule can be generalized as follows. At step 𝑛, two units identical to the matrix obtained at the 

 previous step, 𝑀𝑛−1 will be added to the network. The bottom 2𝑛 nodes of these units will be 

 connected to the root of the network, with no other additional connections being made. 

The distribution of the node degree of the network generated using the method above is (𝑘)  ∼  𝑘−
 𝑙𝑛 3

𝑙𝑛 2  . 

The difference between the two methods is illustrated in the figures below: 

 

Figure 7: Implementation of a Scale-free Network using Method I (left) and Method II (right), for N=81 Nodes 
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Matlab Environment: Epidemic Model 
 

The model we consider is the SI model, where each node can be in one of the two states, susceptible or 

infected. According to its state, a value is associated to each node, which is 𝑣 = 0 is the node is susceptible 

and 𝑣 = 1 if the node is infected. We will assume that initially, at time 𝑡 = 0, a node is chosen uniformly at 

random to be the infectious source node, from which the spreading of rumors starts. After 𝑡 = 1, the source 

node is able to transmit the rumor to any of its neighbours, with constant probability 𝜇. At the next step, any 

of the infected nodes can transmit the infection signal to any of their already infected or susceptible neighbors 

(irrespective of whether the neighbors already has the rumor information), with the same probability 𝜇. The 

process of rumor spreading is a Markov process, since the state vector 𝑥(𝑡 + 1) depends on the previous 

states only through 𝑥(𝑡).  The rumor is allowed to spread for a fixed number of time steps, and the experiment 

is repeated for a set number of times, with the rumor initiated from the same source. Then, the mean over all 

experiments is taken, to find the average probability that a node will have the rumor at a certain time step. 

The code can be found in Appendix E. 

The plots below show the evolution of several rumors in a random geometric graph of 𝑁 = 1000 nodes, over 

6 time steps. The coloring of each node reflects the average probability that it is infected with the rumor at 

each time step, specifically it shows the proportion of rumors heard at each node. As illustrated below, the 

spreading of the rumor within the network follows a diffusion-like process.  

 

Figure 8: Average Spreading of Rumors in Random Geometric Graph of N=1000 nodes, at Different Time Steps 

The plots below show the evolution of the rumor in a tree graph, of 𝑁𝑜𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = 4 and 𝐷𝑒𝑝𝑡ℎ = 6. 

 

Figure 9: Average Spreading of Rumors in Tree Graph of N=1365 nodes, at Different Time Steps 
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While the figures above do not contain any information regarding the degree of the nodes, the plots below 

illustrate various rumor spreading experiments, showing how the spreading is influenced by the degree of the 

nodes infected. The rumor simulations have been made on the following network types: tree graph (with 3 

children and depth 5), random geometric graph (with 200 nodes and connectivity radius 0.12), small-world 

network (with 200 nodes and rewiring probability 0.1), and scale-free network (with 81 nodes).  

 

Figure 10: Simulation of Rumor Spreading in a Tree Graph for a Spreading Probability of Ps = 0.7 

 

Figure 11: Simulation of Rumor Spreading in a Random Geometric Graph for a Spreading Probability of Ps = 0.7 

 

Figure 12: Simulation of Rumor Spreading in a Small World Network for a Spreading Probability of Ps = 0.7 

The plot below shows a spreading of rumor initiated at time 𝑘 = 1, up to time 𝑘 = 3, illustrating how the 

intensity of rumor spreading increases around high-degree nodes, in a scale-free network. 
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Figure 13: Simulation of Rumor Spreading in a Deterministic Scale-free Network for a Spreading Probability of Ps = 0.7 

 

Figure 14: Simulation of Rumor Spreading in a Random Scale-free Network around a High-Degree Node, for a Spreading Probability of 
Ps = 0.5
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The diffusion process of the rumor is further illustrated in the figure below, which rearranges the nodes 

according to the shortest distance from each node to the source. This also shows the motivation for the initial 

approach to solve the source detection problem, which is based on the minimum distances between the nodes 

in the graph. 

 

Figure 15: Average Spreading of Rumors in Random Geometric Graph of N=300 nodes, at Different Time Steps 
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Source Detection Algorithm 
 

The source detection algorithm is described below, including the main steps of the algorithm and the 

motivation for the design choices presented. This consists of several enhancements which will be evaluated 

individually in the Evaluation Chapter of this report.  

 

Algorithm 1: Estimation of a single rumor source using simplified probability formula 

Initialisation:  

1. Network topology: 

 Tree Graph; 

 Random Geometric Graph; 

 Small World Network; 

 Scale-free Network. 

2. Network parameters: 

 Tree Graph: depth and number of children; 

 Random Geometric Graph: connectivity radius and grid dimension; 

 Small World Network: rewiring probability and average node degree; 

 Scale-free Network: deterministic or random generation model. 

3. Number of nodes in the network 𝑁. 

4. Susceptible-Infected Spreading model: 

 Spreading with a certain probability; 

 Spreading to exactly 1 neighbour in 1 time step; 

 Spreading to maximum 𝑥 neighbours in 1 time step. 

5. Probability of spreading 𝑃𝑆. 

6. Number of rumors 𝑅 available for the actual rumor spreading.  

7. Number of rumors 𝑅𝑎𝑣𝑔 required to compute the average simulation probability used to derive the 

optimal parameters of the theoretic probability. Typically 𝑅𝑎𝑣𝑔 should have a large value. 

8. Number of time steps 𝐾 at which measurements are available after the rumor initiation. 

Note: This should be larger than the network radius. 

9. Number of sensors 𝑁𝑠. 

10. Maximum estimated distance between the sensor node and the candidate source  𝑑𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑀𝐴𝑋 . 

This represents one of the criterion of ranking the sensor nodes, and the monitors for which the 

estimated distance is larger than the maximum set above will be discarded. 

11. Time interval for considered measurements 𝜏, the only sensor measurements considered are those 

occurring in the interval [0, 𝜏]. 

12. Minimum cardinality of the set of estimated sources. 

13. Cardinality of set of estimated sources which are selected using the rumor centrality method. 

 

Estimation Algorithm: 

 

Step 1. Generate a network of 𝑁 nodes and specified characteristics. 

Step 2. Calculate the shortest paths between any two nodes in the network using the Dijkstra 

 algorithm. 

Step 3. Designate the source node as the rumor starting point. 
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Step 4. Simulate a spreading of rumors and repeat the experiment for 𝑅 times, starting from the same 

 source node. Obtain the probability of the monitor nodes having the rumor at different time 

 steps in the interval [1,𝐾]. This is denoted by 𝑉𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙. 

Step 5. Calculate an average measured probability of spreading 𝑉𝑎𝑣𝑒𝑟𝑎𝑔𝑒, as follows. Generate a 

 spreading of rumors from the same source and repeat the experiment for a large number of 

 iterations. For each experiment, calculate the average probability of a node located at a 

 certain distance from the source. Average the results over all the experiments. 

Step 6. Derive the optimal sensor maximum error 𝜀𝑆. 

Step 7. Derive the optimal connectivity index 𝑘 as follows. The value of the connectivity index will be 

 chosen in the interval 𝑘 ∈ [1,2] in order to minimise the mean-square error between the 

 theoretic probability and the average simulated probability, calculated as a sum of the errors 

 at each time step, and for each distance considered. For example, if for the average simulated 

 probability we choose node 𝑖 as the initiator of the rumor, and the furthest away node 

 from the source node 𝑖 is 𝑑, then the mean-square error is calculated as follows: 

 𝜖 = ∑ ∑ (𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐 − 𝑉𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙)
2

𝑘𝑑 .  

For the calculation of the mean-square error, we could consider all the time measurements 

available, or on the other hand, we could consider only the measurements at a time 𝑡 in a 

neighbourhood of the distance 𝑑, since these measurements could be sufficient to ensure 

accurate results, while reducing the algorithm complexity.  

Step 8. Using the optimal connectivity index, calculate the theoretical probability of spreading 

 denoted by 𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐. 

Step 9. Randomly select the monitor nodes 𝑁𝑠. 

Step 10. For each monitor, estimate the shortest distance between the sensor and the source node, 

 by minimising the mean-square error between the theoretic and the measured probability of 

 rumor spreading, 𝜖 = ∑ (𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐 − 𝑉𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙)
2

𝑘 , where the time window for which we 

 consider measurements is 𝑘𝜖[𝜏1, 𝜏2]. The start time 𝜏1 of the window is the time at which the 

 sensor measurement becomes positive for the first time. This is chosen in order to ensure that 

 non-negative values in the theoretic probability before the time 𝜏1 do not impact the error 

 calculation. We could consider the example below, where the actual sensor distance is 𝑑 = 4. 

 If the measurement at time 𝑘 = 4 would not be considered, then the minimum error would 

 be achieved using the theoretic probability values for distance 𝑑 = 4 (error 𝜀1 = 0.24).  On 

 the other hand, using the measurement at time 𝑘 = 4, the total error becomes 𝜀1
′ = 0.34, 

 compared to 𝜀2 = 0.25. 

Time Step 1 2 3 4 5 6 

Individual Sensor Measurement, 
𝒅 = 𝟒 

0 0 0 0 0.2 0.4 

Theoretic Probability Approximate 
Values, 𝒅 = 𝟓 

0 0 0 0 0.05 0.35 

Theoretic Probability Approximate 
Values, 𝒅 = 𝟒 

0 0 0 0.10 0.3 0.52 

Table 3: Illustration of the Simulated and Theoretic Spreading Probabilities for K=6 Steps 

 The end time of the window 𝜏2 is the moment at which the measurements stop. Alternatively, 

 it can be set as 𝜏2 = min (𝜏1 + 𝑐,𝐾), where 𝑐 is a constant and 𝐾 is the number of time 

 measurements available after the rumor initiation. 

 After the shortest distance has been estimated using the minimum-mean square error 

 method, the following check will be performed in order to account for possible noise in the 

 sensor measurements.  
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 If the estimated distance is 𝑑𝑒𝑠𝑡  and the sensor measurement at a time step smaller than 𝑑𝑒𝑠𝑡  

 is positive, it means that the estimated distance should be replaced by the time step at which 

 the measurement becomes positive for the first time. Generally, the shortest path error will 

 be 1 ℎ𝑜𝑝 and hence, it is expected that the estimated distance can be smaller than the 

 estimated one by at most 1. 

Step 11. Assign a confidence level to each sensor node based on the criteria below: 

a. Criterion 1: The estimated distance should be at most 𝑑𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑀𝐴𝑋 . The motivation for this 

approach is the fact that sensors for which the estimated shortest distance is small have more 

accurate measurements and a higher probability of correct estimation of this distance. 

Nevertheless, if the maximum allowed distance is too small, then we might not have enough 

sensors available and therefore, a correct detection of the source might be challenging to 

achieve. 

b. Criterion 2: The number of occurrences of A should be large, where A is defined as the event 

when the sensor measurement at time 𝑘 corresponding to a monitor at estimated distance 𝑑 

should be larger than the theoretic probability at time 𝑘 and distance 𝑑 + 1 and lower than 

the theoretic probability at time 𝑘 and distance 𝑑 − 1. The motivation is that the conditions 

𝑉𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑘, 𝑑) < 𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐(𝑘, 𝑑 − 1) and 𝑉𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑘, 𝑑) > 𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐(𝑘, 𝑑 + 1) hold if the 

simulated probability is averaged over a large number of rumors. Therefore, if these 

conditions are satisfied by the simulated probability, they could be a measure of the 

convergence of the individual measured probability to the average one, and hence to the 

theoretical one. 

c. Criterion 3: The error between the theoretical and sensor measured probabilities should be 

lower than the error between the theoretical and the average sensor measured probabilities, 

i.e. 𝜖1 = 𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐 − 𝑉𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, 𝜖2 = 𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐 − 𝑉𝑎𝑣𝑒𝑟𝑎𝑔𝑒 and 𝜖1 ≤ 𝜖2. 

The motivation for this approach is the following. While the theoretic probability (𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐) 

converges to the average simulated probability (𝑉𝑎𝑣𝑒𝑟𝑎𝑔𝑒), when this is computed using a large 

number of rumors (e.g. 200), the individual measurements (𝑉𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) might deviate from 

the average value since they are derived using a small number of rumors (e.g. 10). In order to 

ensure a correct estimation of the distance, we need to discard the measurements which 

significantly deviate from the average probability.  

d. Criterion 4: The minimum mean-square error of monitor node 𝑖 should be lower than the 

maximum error 𝜀𝑆. This is done in order to account for the case of noise in the sensor 

measurements, where the deviation from the expected probability value is too large. 

Different criteria will carry different weightings, from highest to lowest weighting as follows: 

criterion 1, criterion 2 criterion 3 criterion 4. For example, not satisfying criterion 1, even 

though criterion 2 is satisfied will be penalized more than not satisfying criterion 2, even when 

criterion 1 is satisfied. This is because the accuracy of measurements mostly depends on the 

estimated shortest path (criterion 1), and less on the conditions of criterion 2.  In order to 

model this, the confidence level is calculated as follows, where 1 means the criterion is 

satisfied and 0 means it is not satisfied. 
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Criteria 1  Criterion 2 Criterion 3 Criterion 4 Confidence Level 

1 1 1 1 𝐶𝐿 = 𝑑𝑒𝑠𝑡  
1 1 1 0 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤4, with 𝑤4 = 100 

1 1 0 1 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤3, with 𝑤3 = 200 

1 1 0 0 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤3 +𝑤4 
1 0 1 1 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤2, with 𝑤2 = 300 

1 0 1 0 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤2 +𝑤4 

1 0 0 1 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤2 +𝑤3 
0 0 0 0 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤2 +𝑤3 +𝑤4 
0 1 1 1 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤1, with 𝑤1 = 400 

0 1 1 0 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤1 +𝑤4 
0 1 0 1 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤1 +𝑤3 

0 1 0 0 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤1 + 𝑤3 +𝑤4 
0 0 1 1 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤1 +𝑤2 
0 0 1 0 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤1 + 𝑤2 +𝑤4 
0 0 0 1 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤1 + 𝑤2 +𝑤3 

0 0 0 0 𝐶𝐿 = 𝑑𝑒𝑠𝑡 +𝑤1 +𝑤2 +𝑤3 +𝑤4 
   Table 4: Confidence Level Calculation  

The sensor nodes will be ordered according to their confidence levels, from lowest to highest 

value. 

Step 12. For each node in the ordered set of monitor nodes, eliminate all source nodes whose distance 

 to the monitor node is not equal to the estimate distance calculated at Step 9.  

There are three main strategies used to eliminate the sources, based on the measurements 

from the ranked sensors. Nevertheless, strategy 3 will be used in the final algorithm. 

a. Strategy 1: For each sensor node 𝑖 from the ordered set of sensors based on their confidence 

levels, we create a set of nodes that would have to be eliminated from the set of candidate 

sources, using the measurements from monitor 𝑖(i.e. based on the estimate shortest distance 

between node 𝑖 and the sources). From this set, we randomly select one node to eliminate, 

up to the point where the cardinality of the set of candidate sources is equal to the minimum 

value set by the user. For example, suppose the cardinality of the set of sources is 

currently 𝐶 = 11, while the minimum value  is 𝐶 = 10, and that using measurements from 

monitor 𝑖, we would have to eliminate nodes 𝑗 and 𝑘 from the set of potential sources. Since 

eliminating both these nodes would lead to 𝐶 = 9 < 10, we will randomly choose one of the 

two nodes to eliminate, either 𝑗 or 𝑘. 

b. Strategy 2: For each sensor node 𝑖, we compute how many nodes will be eliminated from the 

set of candidate sources, based on measurements from this sensor. As a result, we are able 

to determine the number of remaining potential sources, if we were to consider the 

measurements provided by monitor 𝑖. If this number is greater than the minimum cardinality 

set by the user, then consider the estimation based on measurements from node 𝑖. Otherwise, 

we discard these measurements and the set of potential sources remains as before.  

For example, suppose the minimum cardinality of the set of potential sources is 𝐶 = 10. There 

are currently 𝑁𝑆 = 15 sources in this set. However, if we consider the measurements from 

node 𝑖, there would be another 𝑁𝑆 = 9 sources eliminated, which would bring the set of 

candidate sources to 𝑁𝑆 = 6. This is lower than 𝐶 = 10 and hence, the measurements from 

node 𝑖 will be disregarded and the number of potential sources remains at 𝑁𝑆 = 15 sources. 

This is repeated for all the monitor nodes, by considering more confident nodes first. 
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This means that even if measurements from a very confident node cannot be considered as 

they would decrease the cardinality of the set of potential sources beyond the minimum limit, 

measurements from a less confident node could be considered.  

c. Strategy 3:  In order to account for the errors that could occur as a result of using less 

confident sensors (as in Strategy 1 above), the following method can be used to create the set 

of candidate sources. 

As before, for each sensor node 𝑖, we compute how many nodes will be eliminated from the 

set of candidate sources, based on measurements from this sensor. As a result, we are able 

to determine the number of remaining potential sources, if we were to consider the 

measurements provided by monitor 𝑖. If this number is greater than the minimum cardinality 

set by the user, then consider the estimation based on measurements from node 𝑖. Otherwise, 

we discard these measurements and the set of potential sources remains as before.  

Once we discard a sensor from the set of ranked monitors, we will not consider any other 

sensors which are less confident than the sensor we have discarded.  

This method will ensure more accurate detection. Nevertheless, it might lead to a large 

cardinality of the set of candidate sources. 

Step 13. Steps 9-12 are repeated using the same number of monitor nodes 𝑁𝑠, but with different values 

 of 𝑑𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑀𝐴𝑋 . For each case, a set of potential sources is obtained, of cardinality equal to the 

 minimum cardinality value set by the user. The final set of candidate sources will be the union 

 of the individual sets. This is done in order to ensure increased accuracy of the detection, by 

 taking advantage of the following fact. Nodes with a small estimated distance have more 

 accurate measurements. Nevertheless, if 𝑑𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑀𝐴𝑋  is too small, there might be insufficient

 monitors to ensure a small set of potential sources. Therefore, by taking the union of the 

  candidate sources sets we increase the correct detection probability, while reducing the set 

 of candidate sources. 

Step 14. For each node in the set of potential sources, assign a rumor centrality level, based on the 

 following criteria: 

a. Criterion 1: This involves the calculation of the sum of the distances from each potential 

source to all the monitor nodes, by considering sensor nodes for which the measured 

probability at time step 𝑡 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ + 1 is higher than a certain threshold 

value. This approach is motivated by the fact that a potential source is more likely to have 

started the rumor is the distance to the monitor nodes which become infected after a short 

period of time is small on average. Therefore, the rumor centrality is calculated as follows: 

𝑅𝐶 = ∑ 𝑑𝑖𝑖,𝑉𝑖(𝑑𝑖+1)>𝑥 , where 𝑑𝑖  is the estimated shortest path between the sensor and the 

source and 𝑉𝑖 is the measured probability of node 𝑖 having the rumor.  

The weighting of this criterion should be positive. 

b. Criterion 2: The formula below shows the calculation of the rumor centrality level, based on 

measurements from the sensor nodes and on the actual (not estimated) shortest paths 

between the candidate source and the sensors. 

𝑅𝐶 = ∑ 𝑑𝑖
𝑖𝜖𝑆𝑒𝑡1

+ ∑ 𝐼𝑛𝑓(∞)

𝑖𝜖𝑆𝑒𝑡2

+ ∑ 1000 +

𝑖𝜖𝑆𝑒𝑡3

∑ 2000 +

𝑖𝜖𝑆𝑒𝑡4

∑ 3000

𝑖𝜖𝑆𝑒𝑡5

 

In the above summation, the individual sets of each individual sum are: 

𝑆𝑒𝑡 1 = {𝑛𝑜𝑑𝑒 𝑖 |𝑉𝑖(𝑑𝑖 + 1) > 0, 𝑉𝑖(𝑑𝑖) = 0} 

𝑆𝑒𝑡 2 = {𝑛𝑜𝑑𝑒 𝑖 |𝑉𝑖(𝑑𝑖) ≠ 0} 

𝑆𝑒𝑡 3 = {𝑛𝑜𝑑𝑒 𝑖 |𝑉𝑖(𝑑𝑖 + 1) = 0, 𝑉𝑖(𝑑𝑖 + 2) ≠ 0} 

𝑆𝑒𝑡 4 = {𝑛𝑜𝑑𝑒 𝑖 |𝑉𝑖(𝑑𝑖 + 1) = 0, 𝑉𝑖(𝑑𝑖 + 2) = 0, 𝑉𝑖(𝑑𝑖 + 3) ≠ 0} 

𝑆𝑒𝑡 5 = {𝑛𝑜𝑑𝑒 𝑖 |𝑉𝑖(𝑑𝑖 + 1) = 0, 𝑉𝑖(𝑑𝑖 + 2) = 0, 𝑉𝑖(𝑑𝑖 + 3) = 0} 
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The motivation behind the above penalties for each of the sets is the following.  

Firstly, if the real distance between the candidate source and the monitor is 𝑑𝑖  and there is a 

positive probability of this node having the rumor at time 𝑘 = 𝑑𝑖, it would mean that the 

candidate source could not have started the rumor since the rumor could only reach the 

monitor node for the first time at time 𝑘 = 𝑑𝑖 + 1. Therefore, this candidate source will be 

penalized by 𝐼𝑛𝑓, as it cannot be the real rumor source. 

Secondly, if the real distance between the candidate source and the monitor is 𝑑𝑖, and this 

monitor has not received the rumor yet at time 𝑘 = 𝑑𝑖 + 1, i.e.  𝑉𝑖(𝑑𝑖 + 1) = 0, this could be 

an indication of an erroneous measurement. Therefore, this would be penalized more 

compared to the case when 𝑉𝑖(𝑑𝑖 + 1) > 0. 

The penalization should increase with the delay until the monitor first received the rumor, as 

seen in the summation above. 

We should note that the constant included in the summation above could be replaced by any 

other values, as long as there are large. 

c. Criterion 3: The sum of the distances from each potential source to all the monitor nodes for 

which the measured probability is equal to 0. The weighting of this criterion should be 

negative. 

d. Criterion 4: The number of infected nodes, which are reachable from the potential source. 

The weighting of this criterion should be positive. 

e. Criterion 5: The number of not infected nodes, which are not reachable from the potential 

source. The weighting of this criterion should be negative. 

The nodes in the set of candidate sources will be ordered according their rumor centrality, in 

ascending order of the rumor centrality level.  

The top ranked node is an estimate of the source of rumor spreading in the network. 

Other possible enhancements could include the following: 

1. Sensor Choice Strategy 

2. Implementation of Rayleigh’s shortcut method for the calculation of the expected infection probability 

3. Development of a source pseudo-likelihood function 

 

The above algorithm will be tested in the Evaluation chapter, as follows: 

Enhancement 1.1: Algorithm which employs Criteria 1,3,and 4 for the calculation of sensor confidence levels 

and Strategy 1 to estimate the set of candidate sources. 

Enhancement 1.2: Algorithm which employs Criteria 1 and 2 for the calculation of sensor confidence levels 

and Strategy 1 to estimate the set of candidate sources. 

Enhancement 2.1: Algorithm which employs Criteria 1 and 2 for the calculation of sensor confidence levels, 

Strategy 1 to estimate the set of candidate sources, and Criterion 1 for calculation of source rumor centrality.  

Enhancement 2.2: Algorithm which employs Criteria 1 and 2 for the calculation of sensor confidence levels, 

Strategy 2 to estimate the set of candidate sources, and Criterion 1 for calculation of source rumor centrality. 

Enhancement 2.3: Algorithm which employs Criteria 1 and 2 for the calculation of sensor confidence levels, 

Strategy 2 to estimate the set of candidate sources, and Criterion 2 for calculation of source rumor centrality. 

Enhancement 2.4: Algorithm which employs Criteria 1 and 2 for the calculation of sensor confidence levels, 

Strategy 3 to estimate the set of candidate sources, and Criterion 2 for calculation of source rumor centrality.  
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Chapter 5  

 

Evaluation 
 

In this chapter we describe the evaluation methods used to assess the performance of the source detection 

method. 

The structure of this chapter is the following. First of all, the evaluation criteria are described. Then the 

following section assesses the correctness of the theoretical formula for the probability of rumor spreading, 

by comparing it with the measured probability for various network topologies, as well as network parameters. 

Furthermore, the performance of the estimation of the shortest paths between the monitor and the source 

nodes is assessed. The first evaluation method is to compute the frequency of correct distance estimation, for 

various values of the distance. The second evaluation method consists of computing the error in number of 

hops, between the estimated and the actual source. Both methods will be tested for several network sizes 

radii, and topological characteristics.  

Moreover the source estimation algorithm is evaluated as follows. Different enhancement stages of the 

detection algorithm will be evaluated to assess the improvement due to each enhancement. In addition, the 

probability of correct detection will be computed, as well as the number of candidate sources, for various sizes 

of the set of monitoring nodes. 

 

Evaluation Criteria 
 

The following criteria will be used to assess the solution: 

1. Epidemic Model: The simulation of the spreading of rumors is performed in a correct manner. The 

assessment is done through Matlab simulations and visualizing the evolution of the rumor in the network 

over time.  

2. Probability Error: The plots of the predicted probabilities from analytical formulas should approach the 

plots of the actual measured probabilities when simulating a spreading of rumors within the network, for 

any network topology. The absolute error difference between the predicted probability of a node being 

infected, and the actual measured probability should give an indication of the correctness of the 

mathematical formulas derived. 

3. Distance Error: The distance error is the difference between the estimated shortest path length and the 

actual distance between the sensor node and the source. The frequency of a certain distance error value 

will be given by the number of times this distance error occurs out of a fixed number of experiments of 

rumor spreading. The plot of the frequency of error against various values of error (e.g. error of one hop, 

error of two hops etc.), should give an indication of how accurately this distance is estimated. The plot 

should be repeated for networks of different topology and size, as well as for various number of sensor 

nodes. 
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4. Number of Sensor Nodes: The required number of sensor nodes for which the source can be accurately 

estimated should be plotted as a function of the network size. In addition, the fraction of observers (ratio 

of number of monitor nodes over total number of nodes), should also be plotted against different network 

parameters. 

5. Number of Time Observations: In order to reduce the complexity of the algorithm, as few number of 

observations as possible should be used. In this sense, we would be interested in finding the minimum 

number of time observations that would allow accurate source detection. 

6. Source Detection Accuracy (single source): Due to some distances being wrongly estimated, the algorithm 

might not always be able to detect a single source node, or there may be cases when the source node 

cannot be detected at all. The detection accuracy could be determined by plotting the number of 

estimated sources for different numbers of sensor nodes, and for different topologies and graph sizes. In 

addition, it would be interesting to verify how the accuracy degrades/improves when considering only 

some of the available node measurements. For example, by utilizing only those measurements from nodes 

closer to the source, the detection performance could be improved since the distance estimation is more 

accurate in these cases. 

7. Source Location Error: In some cases, the source might not be correctly estimated. For these cases, we 

should evaluate how far the estimated source is from the actual infectious source. This could be achieved 

by calculating the distance between the estimated and the correct source nodes. By repeating the 

experiment for a set number of times, we could find the frequency at which a certain error distance occurs, 

which could give an indication of how good the estimation of the source is. For example, the estimation is 

better if an error of 1 hop occurs more frequent than an error of 2 hops. 

8. Noise Robustness: The algorithm should be robust to noise in the system. One example of noise could be 

the wrong estimation of the shortest distances between the sensor and source nodes, or mis-information 

from various sensor nodes. The algorithm should be tested under various noise scenarios and the 

detection accuracy should be measured. The main test for the robustness to noise will be performed by 

using a small number of rumors for the simulation of the information dissemination. In this case, the 

individual sensor measurements might significantly deviate from the expected value, leading to errors in 

the estimation of the shortest paths between the sensors and the source. 

9. Algorithm Complexity: The complexity of the Detection Algorithm should be reduced. This is done by 

calculating the time complexity of the different blocks of the algorithm and how this depends on the 

network size, and the number of observations (number of sensor nodes and number of time steps at which 

we monitor the nodes). 
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Evaluation of Theoretical Probability Formula: Initial Solution 
 

The theoretical probability formula is evaluated using the following methods. 

Firstly, the accuracy of the assumptions made in the derivation of the formula, as well as the mathematical 

simplifications used, will be evaluated by comparing the theoretical probability against the probability 

obtained through simulations. Tests will be performed for various network topologies, as well as different 

spreading probabilities. 

Secondly, the estimation algorithm is based on the comparison between the theoretical and simulated 

spreading probabilities. This comparison determines the estimated shortest path between the monitor node 

observed and the potential source of rumors. Therefore, in order to assess the accuracy of the theoretical 

probability, we could measure the error probability of the estimated distance between the sensor and source 

nodes. The shortest path error probability will be plotted against various number of monitors, as well as 

different values of rumors. 

The graphs below illustrate the results obtained through simulating a spreading of rumors through a small-

world network of 𝑁 = 200, compared with the theoretic probabilities computed using the formula above, for 

various values of distances between the monitor node and the source. The different subplots correspond to 

different values of spreading probability, 𝑃𝑠 ∈ {0.5, 0.6, 0.7}. Moreover, the connectivity index used for the 

theoretic probability formula is 𝜅 = 1.2.  

 

Figure 16: Simulated Probabilities of Nodes being infected, for Different Values of Spreading Probability 
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Figure 17: Estimated Probabilities of Nodes being infected, for Different Values of Spreading Probability 

The plots below show a comparison between the simulated and the theoretic probabilities of rumor spreading, 

in a small-world network of size 𝑁 = 200 nodes, for various values of monitor distances. The different 

subplots correspond to different spreading probabilities, 𝑃𝑠 ∈ {0.2,… , 0.9}. The connectivity index is 𝜅 = 1.2. 

 

Figure 18 Simulated and Theoretic Probabilities in a Small-world Network, for Spreading Probability Ps=0.2 (left) and Ps = 0.3 (right) 

 

Figure 19: Simulated and Theoretic Probabilities in a Small-world Network, for Spreading Probability Ps=0.4 (left) and Ps = 0.5 (right) 
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Figure 20: Simulated and Theoretic Probabilities in a Small-world Network, for Spreading Probability Ps=0.6 (left) and Ps = 0.7 (right) 

 

Figure 21: Simulated and Theoretic Probabilities in a Small-world Network, for Spreading Probability Ps=0.8 (left) and Ps = 0.9 (right) 

The plots below show the theoretic probabilities, and the ones obtained from measurements, in a scale-free 

network, of size 𝑁 = 243, in a random geometric graph of size 𝑁 = 200, and in a tree graph of depth 𝑑 = 8 

and 𝑛𝑜𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = 2. 

In all cases, the probability of spreading is 𝑃𝑆 = 0.5, and the connectivity Index used in the probability theoretic 

formula differs for all the cases, as different networks have different characteristics. 
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Figure 22: Simulated and Theoretic Probabilities, in a Scale-Free Network (left) and Random Geometric Graph (right), using the Initial 
Solution 

 

Figure 23: Simulated and Theoretic Probabilities in a Tree Graph, using the Initial Solution 

While the plots above use measurements from a simulated spreading of rumors of 𝑅 = 20  rumors, the graphs 

below show the comparison between the simulated and theoretic probabilities, for a very large number of 

rumors, 𝑅 = 200. The simulations are performed in a small-world network, of size 𝑁 = 200 nodes. We can 

see that in most cases the theoretical probability values coincide or are very close to the values obtained from 

simulation. Nevertheless, the theoretical probabilities do not converge to a value of 𝑃 = 1 in some cases, and 

this may be a result of the approximations used in the derivations of this formula. However, the converging 

values are very close to 𝑃 = 1 and the probability could be truncated to this maximum value. 
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Figure 24: Simulated and Theoretic Rumor Probabilities for Pspreading = 0.5 

 

Figure 25: Simulated and Theoretic Rumor Probabilities for Pspreading = 0.5 

 

Figure 26: Simulated and Theoretic Rumor Probabilities for Pspreading = 0.3 
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Evaluation of Mathematical Approximations: Initial Solution 
 

As derived in Chapter 2 of this report, the probability that a node will have the rumor at time step 𝑘 is equal 

to:   

𝑄𝑑(𝑘) =∑(𝜇 ×  𝜅)𝑑 × (1 − 𝜇 ×  𝜅)𝑡−𝑑 ×
2𝑡

√2𝜋(𝑡 − 1)
× 𝑒

(−
(t−2d+1)2

2(t−1)
)

𝑘

𝑡=𝑑

 

The formulation above has been obtained using Stirling’s and Taylor approximations for the simplification of 

the expression for the number of paths. Nevertheless, without any mathematical simplifications, the 

probability that a node will have the rumor at time step 𝑘 is equal to:   

𝑄𝑑(𝑘) =∑(𝜇 ×  𝜅)𝑑 × (1 − 𝜇 ×  𝜅)𝑡−𝑑 × (
𝑡 − 1

𝑑 − 1
)

𝑘

𝑡=𝑑

 

The plots below show a comparison between the theoretic probability with and without mathematical 

approximations. Firstly, we notice that the approximated formulation does not saturate at a value of 𝑃 = 1 in 

all cases, while the theoretical probability formula with no simplifications converges to a maximum of 𝑃 = 1, 

which is the expected limit of a cumulative distribution function. Hence, while the non-approximated 

theoretical probability gives more accurate results, the approximated probability is highly accurate, 

converging to the former one. 

 

Figure 27: Theoretical Probabilities of Rumor Infection, with and without Mathematical Approximations 

The plots below show a comparison between the non-approximated theoretical probability and the simulated 

one (left), and between the approximated theoretical probability and the simulated one (right). The simulated 

probability has been obtained by averaging a number of 𝑅 = 100 rumor experiments. We can see that in both 

cases, the theoretic probability converges to the experimental one. Nevertheless, the non-approximated 

formula gives more accurate results for smaller sensor distances, and ensures a saturation at 𝑃 = 1. 
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Figure 28: Simulated and Theoretical Probability with no Mathematical Approximations (left), and with Approximations (right) 

In summary, the closed-form expression for the theoretical probability, obtained through mathematical 

simplifications, converges to the non-approximated formulation and will therefore be used throughout this 

report, as part of the source detection algorithm. 

 

Evaluation of Theoretical Probability Formula: A Robust Solution 
 

The plots below show a comparison the simulated and theoretic probabilities, obtained using the robust 

formula for the calculation of the probability of rumor infection.  

The simulated probability was obtained using the results from a spreading of rumors in a small-world network 

of 𝑁 = 200 nodes, average degree 𝑉 = 4, and rewiring probability 𝑃 = 0.2. The spreading model assumes 

spreading to exactly 1 neighbour with probability 𝑃𝑠 = 1. This assumption is made as a result of the fact that 

the theoretic probability formula does not consider any multiplication of rumors and in addition, it assumes 

that the rumor is guaranteed to follow one of the 𝐴, 𝐵, 𝑜𝑟 𝐶 − 𝑡𝑦𝑝𝑒 segments at any time step. Moreover, it 

is assumed that  𝑝𝐴 = 𝑝𝐵 = 𝑝𝐶 = 0.33, values which are used for the calculation of the theoretic 

probabilities. 

The plots below show the simulated and theoretic probabilities. The latter is obtained using the following 

formula, which does not take into account the reflected paths: 

𝑄𝑑(𝑘) =∑ ∑ {(
𝑘 − 1

𝐴 − 1
) (

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴 + 1
)

𝑑≤𝐴≤𝑘 

}𝑝
𝐴
𝐴𝑝
𝐵
𝑘+𝑑−2𝐴𝑝

𝐶
𝐴−𝑑

𝑘

𝑡=𝑑
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Figure 29: Simulated and Theoretic Probabilities assuming no Reflected Paths, for 50 Time Steps (left) and 20 Time Steps (right) 

 

In the figure below, the left subplot shows the theoretic probability calculated using the following formulation: 

𝑄𝑑(𝑘)

=∑{ ∑ ((
𝑘 − 1

𝐴 − 1
) (

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴 + 1
)

𝑑≤𝐴≤𝑘

𝑝
𝐴
𝐴𝑝
𝐵
𝑘+𝑑−2𝐴𝑝

𝐶
𝐴−𝑑

𝑘

𝑡=𝑑

−∑[ ∑ (
𝑦 − 1

𝐴𝑃 − 1
) (
𝑦 − 𝐴𝑃

𝐴𝑃 − 1
)

𝑓𝑙𝑜𝑜𝑟(
𝑦

2
)

𝐴𝑃=1

𝑘−𝑑

𝑦=2

(
𝑘 − 𝑦

𝐴 − 𝑑 − 𝐴𝑃
) (
𝑘 − 𝑦 − (𝐴 − 𝑑 − 𝐴𝑃)

𝐴 − 𝐴𝑃
)]𝑝

𝐴
𝐴−𝑑𝑝

𝐵
𝑘−𝑑−2(𝐴−𝑑)𝑝

𝐶
𝐴 ])}  

The right subplot shows the theoretic probability calculated as follows: 

𝑄𝑑(𝑘) =∑ ∑ {(
𝑘 − 1

𝐴 − 1
) (

𝑘 − 𝐴

𝑘 + 𝑑 − 2𝐴 + 1
) − ∑ (

𝑘 − 1

𝐴 − 1
) (

𝑘 − 𝐴

𝑘 − 𝑑 − 2𝐴 + 1
)

𝑑≤𝐴≤𝑘𝑑≤𝐴≤𝑘 

}𝑝
𝐴
𝐴𝑝
𝐵
𝑘+𝑑−2𝐴𝑝

𝐶
𝐴−𝑑

𝑘

𝑡=𝑑
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Figure 30: Simulated and Theoretic Probabilities with Calculation of Reflected Paths using Two Different Methods 

As we can see from the subplots above, the theoretic probability does not converge to the probability obtained 

through simulations. This might be a result of the approximation that the probabilities of advancing through 

the network are assumed constant and equal, i.e. 𝑝𝐴 = 𝑝𝐵 = 𝑝𝐶 = 0.33. This could also be a result of the 

calculation of the reflected paths used for the derivation of the theoretic probability, and from the result above 

we can deduce that the number of reflected paths might be overestimated. 

Furthermore, the first method of calculating the reflected paths (left) gives more accurate results at small time 

steps. However, the accuracy degrades significantly for large time steps compared to the second formulation 

(right).  

Finally, in the figure below we plot the simulated and theoretic probabilities, calculated by assuming that the 

first segment in the path of the rumor is not necessarily an 𝐴 − 𝑡𝑦𝑝𝑒 segment. This could be justified by the 

fact that the path of the rumor may be a 𝐵 − 𝑡𝑦𝑝𝑒 segment, in the case the source does not spread the rumor 

to any of its neighbours for the first time step. 

In this sense, the left subplot shows the theoretic probability calculated using the following formulation: 

𝑄𝑑(𝑘)
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The right subplot shows the theoretic probability calculated as follows: 

𝑄𝑑(𝑘) =∑ ∑ {(
𝑘

𝐴
) (

𝑘 − 𝐴
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The results show an improvement in the theoretic probability formulation, particularly for the second 

calculation method. 
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Figure 31: Simulated and Theoretic Probabilities with Calculation of Reflected Paths using Two Different Methods, with no Constraints 
on the First Path Segment 

 

Overall, the formulation of the probability of infection which does not account for the illegal paths gives an 

upper bound on the real spreading probability. On the other hand, the formulation which includes the 

elimination of the illegal paths using the reflection method leads to a lower bound on the real probability of 

infection. Nevertheless, further improvement of the theoretic formulation will remain as a part of future 

development. 
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Evaluation of the Algorithm for Estimation of Shortest Paths (Accuracy) 
 

The plots below show the frequency of the error of estimation of the shortest paths between the sensor nodes 

and the source, as well as the number of error hops against the number of monitors observed. The error hops 

represent the difference between the estimated distance and the actual distance between the sensor and the 

source. The tests are performed in a small-world network of size 𝑁 = 200 nodes, using 100 repeated 

experiments in order to compute an average error of estimation. 

In the plots below, the number of rumors used for the simulation of a spreading of rumors, which in turn is 

used to determine the optimal parameters in the theoretical probability formula, is 𝑅 = 40.  

We can see that the accuracy of estimation increases as the number of rumors used for the actual rumor 

simulation increases, as the probability of error decreases, while the number of error hops decreases as well.  

Furthermore, as the monitor distance increases, the error hops become larger. 

We can also observe that the error probability is very small for monitor distance lower than 𝑑 = 3. 

Nevertheless, there is a small error even for 𝑑 ≤ 3 and an explanation for this result might be the fact that 

even if the theoretical probability represents a good approximation of the average simulated probability 

(obtained using a very large number of rumors), the actual probabilities obtained from the rumor spreading 

(using a lower number of rumors) might not deviate from the average simulated probability and hence, the 

theoretical one. In order to account for this, the estimation algorithm should include the elimination of those 

monitor nodes for which the individual simulated probability significantly deviates from the average simulated 

probability. 

Moreover, we can notice that for the cases when the distance is wrongly estimated, the number of error hops, 

calculated as the absolute value of the difference between the estimated distance and the actual distance 

between the monitor and the node, is typically 𝑑𝑒 = 1 ℎ𝑜𝑝.  

 

Figure 32: Distance Estimation Error for Different Numbers of Rumors, in a Small-world Network of 200 Nodes, with Increased 
Accuracy of Theoretical Probability Parameters 
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The plots below show the probability of estimated distance error and the average number of error hops 

between the monitor and the source, as the number of monitors varies from 𝑀 = 10 to 𝑀 = 50 monitors, 

for a number of rumors 𝑅 = 10. We can notice that the number of monitors contributes to the accuracy of 

detection, as generally as a larger number of monitor nodes leads to an increased error probability, particularly 

at large monitor distances. 

 

Figure 33: Distance Estimation Error for Different Numbers of Monitors, in a Small-world Network of 200 Nodes, with Increased 
Accuracy of Sensor Measurements  

In the plots below, the number of rumors used for the simulation of a spreading of rumors, which in turn is 

used to determine the optimal parameters in the theoretical probability formula, is 𝑅 = 5.  

We can see that the estimation of shortest paths is less accurate when the theoretical probability is 

determined from a simulation of a lower number of rumors, particularly at lower monitor distances. As we 

can observe, the error probability is higher, and the average number of error hops is larger as well. For 

example, for a monitor distance 𝑑 = 3 and using 10 monitor nodes, the probability of error is 𝑃 ≅ 0.025 for 

a larger number of rumors (𝑅 = 10 𝑎𝑏𝑜𝑣𝑒) used to derive the parameters of the theoretic probability, while 

it increases to  𝑃 ≅ 0.1 when using less rumors (𝑅 = 5 𝑏𝑒𝑙𝑜𝑤). 
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Figure 34: Distance Estimation Error for Different Numbers of Monitors, in a Small-world Network of 200 Nodes, with Low Accuracy of 
Sensor Measurements 

In the plots below, the number of rumors used for the simulation of a spreading of rumors, which in turn is 

used to determine the optimal parameters in the theoretical probability formula, is 𝑅 = 100. We can notice 

a significant improvement in the estimation of the shortest distances, particularly when the monitor distance 

is low. For example, in the plots below we can see that the probability of error for distances 𝑑 ≤ 3 is 𝑃 = 0, 

while for 𝑑 = 4 the probability is very small. 

 

Figure 35: Distance Estimation Error for Different Numbers of Monitors, in a Small-world Network of 200 Nodes, with Highest 
Accuracy of Sensor Measurements 

One of the main reasons for the existence of a distance estimation error, even though the theoretic probability 

converges to the averaged simulated probability could be the deviations in the individual sensor 

measurements from the expected value. This is more likely to happen when a small number of rumors is 

available for the actual rumor spreading process observed. 
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For example, the results below show that noise in the sensor measurements. Specifically, we show the 

deviation of probability of rumor from the average value. This leads to an incorrect shortest path between the 

monitor and the source being computed. In this case, the estimate distance is 𝑑 = 7, while the actual ground 

truth distance is 𝑑 = 6. As it can be seen from the data below, the actual sensor measurements approach the 

values of the theoretic probability for 𝑑 = 7. In addition, it is typically expected that the probability of a node 

located at distance 𝑑 = 6, measured at time step 𝑘 = 7 should be positive, while the sensor measurement is 

in this case 0.  

Time Step 1 2 3 4 5 6 7 8 9 10 11 12 13 

Individual 
Sensor 
Measurement 

0 0 0 0 0 0 0 0.1 0.1 0.3 0.4 0.7 0.8 

Theoretic 
Probability 
Approximate 
Values, 𝒅 = 𝟕 

0 0 0 0 0 0 0.03 0.10 0.22 0.36 0.52 0.65 0.76 

Theoretic 
Probability 
Approximate 
Values, 𝒅 = 𝟔 

0 0 0 0 0 0.04 0.14 0.29 0.46 0.6 0.74 0.83 0.89 

Table 5: Illustration of Noise in Sensor Measurements 

In summary, using these observations, we can improve the performance of the detection algorithm, as follows: 

by considering a larger number of rumors for the simulation used to derive the optimal theoretical probability 

parameters, by assuming a large number of rumors for the actual spreading probability, and by considering 

measurements obtained from monitors for which the estimated distance is small. The assumption of a large 

number of rumors is justified by the motivation of this project, to estimate the source of information 

dissemination in a network where we assume numerous attacks from the same source. 

 

Evaluation of the Algorithm for Estimation of Shortest Paths (Robustness) 
 

In order to evaluate the robustness of the estimation of the shortest distances between the monitor nodes 

and the source, based on the derived theoretical probability for rumor infection, the following tests were 

performed. Firstly, the average probability of rumor infection was derived by simulating a spreading of 

multiple rumors in a small-world network. The optimal connectivity index in the theoretical probability of 

rumor dissemination was found through the minimum mean-square error method, based on the average 

simulated probability. The shortest paths between the monitors and the source were then estimated using 

various values of the connectivity index and the results were compared with the optimal case.   

The plots below show the distance estimation errors, using 30 monitors and 100 rumors, for different values 

of the connectivity index. A large number of rumors was chosen in order to ensure that the sensor 

measurements approach their expected value, such that they do not impact the distance estimation. 

The optimal value of this parameters was found to be 𝑘 = 1.215. We can see that around the optimal value, 

the probability of errors achieves a minimum compared to the other cases when the monitor distance is 

smaller than 𝑑 = 5. In addition, the average number of error hops is also small in this case, with 𝑑𝑒 = 1 ℎ𝑜𝑝.  

Moreover, we can see an increase in the distance estimation error when the value of the connectivity index  

is much larger/smaller compared to the optimal one. Nevertheless, the increase in the estimation error is not 
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significant, particularly for small monitor distances, and provided the deviation of the connectivity index from 

its optimal value is not too big. 

 

Figure 36: Distance Estimation Error in a Small-world Network, using Different Values of the Connectivity Index with Maximum 
Deviation from the Optimal Value ∆𝑘 = 0.2 

 

Figure 37: Distance Estimation Error in a Small-world Network, using Different Values of the Connectivity Index with Maximum 
Deviation from the Optimal Value ∆𝑘 = 0.1 

 

In summary, the distance estimation algorithm is robust to small variations in the parameter of the theoretical 

probability formula around its optimal value, i.e. the connectivity index. As a result, the estimation of the 

optimal connectivity index in a network of given topology could be a good approximation for the connectivity 

index of networks of similar topologic characteristics, even if the networks are not identical.  
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Evaluation of the Source Detection Algorithm  
 

This section describes the evaluation methods used to assess the performance of the source detection 

algorithm. In particular we evaluate the following enhancements of the algorithm: 

1. Sensor Confidence Level and Adaptive Connectivity Index 

2. Source Rumor Centrality 

For each of these, the performance of the estimation algorithm is measured through the number of sources 

estimated for different cardinalities of the monitor set, as well as through the probability of correct detection. 

Tests are performed on all four network topologies considered: tree graph, random geometric graph, small-

world network, and scale-free network. Moreover, other parameters are varied when performing the tests, 

such as the maximum cardinality of the set of potential sources (the maximum number of sources we can 

estimate). In addition, the evaluation considers different number of rumors used in the spreading simulation, 

for the derivation of the simulated probabilities of infection. 

 

Enhancement 1. Sensor Confidence Levels and Adaptive Connectivity Index 
 

The following section describes the evaluation of the source detection algorithm, based on the assignment of 

a confidence level to each of the monitor nodes available, and ranking them according to this. Measurements 

from one sensor at a time are considered, provided the number of estimated sources is within the desired 

limits (the minimum cardinality of the set of estimated sources is set by the user). The enhancement is also 

using the optimal connectivity index, derived in order to increase the accuracy of the theoretic probability, for 

the specific network topology and parameters given. 

In the following we present the results obtained using various metrics to calculate the confidence levels of the 

sensors. 

 

Enhancement 1.1: Initial Method for the Calculation of Sensor Confidence Levels 

 

The sensor confidence levels are initially evaluated based on the following criteria: 

a. Criterion 1: The estimated distance should be lower than 𝑑𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑀𝐴𝑋 . 

b. Criterion 2: The minimum mean-square error of monitor node 𝑖 should be lower than the maximum error 

𝜀𝑆.  

c. Criterion3: The error between the theoretical and sensor measured probabilities should be lower than the 

error between the theoretical and the average sensor measured probabilities, i.e. 𝜖1 = 𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐 −

𝑉𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, 𝜖2 = 𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐 − 𝑉𝑎𝑣𝑒𝑟𝑎𝑔𝑒 and 𝜖1 ≤ 𝜖2. 

The results obtained are described below. 
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Small-world Network 

The graph below shows the cardinality of the set of estimated sources, against the number of monitor nodes 

available, for a small-world network of size 𝑁 = 200 nodes and a spreading of 20 rumors. Each subplot 

illustrates the detection results, when using only monitor nodes at a certain maximum distance. In the figure 

below, this maximum distance ranges from 𝑑 = 1 to 𝑑 = 5, while the maximum distance of a monitor is 𝑑 =

11.  The colouring represents the detection probability, ranging from 0 (red) to 1 (green). 

 

Figure 38: Average Number of Estimated Sources against Number of Available Monitor Nodes, Small-world Network with N=200 

Taking into account the fact that the sensors for which the estimated distance is small provide more accurate 

results, while on the other hand, their number is limited and this might cause erroneous estimation of the 

source, the following approach is used to improve the performance of the algorithm, as already described in 

the Implementation chapter above. In this sense, for each values of 𝑑𝑠𝑒𝑛𝑠𝑜𝑟
𝑀𝐴𝑋  (maximum sensor estimated 

distance, used in Criterion 1 when assigning the sensor confidence levels), a set of estimated sources is 

computed. The union of all the sets corresponding to each maximum sensor distance is then found, 

representing the final set of potential sources. 

As we can see from the results below, the detection accuracy significantly improves when using the union of 

all the sets of estimated sources. For example, when the maximum sensor distance is 𝑑𝑠𝑒𝑛𝑠𝑜𝑟
𝑀𝐴𝑋 =3, the 

probability of correct estimation is 𝑃 = 0.71 using 10 monitors (5% of the network size), while the probability 

increases to 𝑃 = 0.83 when using the union of all the sets of candidate sources, for the same number of 

monitors. 

We should also note that as expected, the cardinality of the set of potential sources is higher when the union 

of all the sets is taken. This represents a trade-off with the higher probability of correct detection.
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Figure 39: Best Detection Probability (from left to right), for Sensor Maximum Distance d=3, d=5, d=9, and using the Union of the Set of Estimated Sources 
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Enhancement 1.2: Refined Method for the Calculation of Sensor Confidence Levels 

 

The sensor confidence levels are calculated based on the following criteria, and a detailed calculation of the 

confidence level is given in the Implementation chapter of this report. 

a. Criterion 1: The estimated distance should be at most 𝑑𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑀𝐴𝑋 . 

b. Criterion 2: The number of occurrences of A should be large, where A is defined as the event when the sensor 

measurement at time 𝑘 corresponding to a monitor at estimated distance 𝑑 should be larger than the 

theoretic probability at time 𝑘 and distance 𝑑 + 1 and lower than the theoretic probability at time 𝑘 and 

distance 𝑑 − 1. In other words, 𝑉𝑠𝑒𝑛𝑠𝑜𝑟(𝑘, 𝑑) < 𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐(𝑘, 𝑑 − 1) and 𝑉𝑠𝑒𝑛𝑠𝑜𝑟(𝑘, 𝑑) > 𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐(𝑘, 𝑑 +

1). 

The experiment below was performed using 20 rumors to simulate an information dissemination in a small-world 

network of 𝑁 = 200 nodes. As already discussed, the union method increases the detection accuracy, from 𝑃 =

0.77 when 𝑑𝑠𝑒𝑛𝑠𝑜𝑟
𝑀𝐴𝑋 = 3  to 𝑃 = 0.91, in the case where only 10 monitor nodes are available (5% of the network 

size). In the case of 30 monitors available (15% of network), the probability of correct detection increases from 

𝑃 = 0.95 to 𝑃 = 0.99. Nevertheless, the union of the sets of candidate sources has a bigger cardinality as 

expected, and this represents a trade-off with the higher correct detection probability. In the graphs below we 

can also notice the reduced detection accuracy when having a very large 𝑑𝑠𝑒𝑛𝑠𝑜𝑟
𝑀𝐴𝑋 = 9. These results agree to the 

ones obtained from the evaluation of the algorithm for estimation of the shortest paths in the section above. 

There we have seen that the probability of error increases as the monitor’s distance from the source becomes 

larger. 
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Figure 40: Best Detection Probability (from top left to bottom right), for Sensor Maximum Distance d=3, d=5, d=9, and using the Union of the Set of Estimated Sources 
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Enhancement 2. Source Rumor Centrality 
 

The following section describes the evaluation of the source detection algorithm, based on assigning a rumor 

centrality level to each the sources in the final set of candidate sources, and ranking them accordingly. The detection 

probability will be computed for different numbers of monitor nodes available, by reducing the cardinality of the set 

of candidate sources to a fixed value, and selecting the sources according to their rumor centrality level.   

The improved algorithm also includes Enhancement 1, assigning confidence levels to sensor nodes and ranking them 

accordingly, as well as computing an optimal connectivity index to ensure high accuracy of the theoretic probability. 

The different enhancements described below differ through the method of calculating the rumor centrality assigned 

to each potential source. 
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Enhancement 2.1: Initial Method for Rumor Centrality Calculation 

 

This algorithm calculates the rumor centrality of a candidate source based on the infection of each of the monitor 

nodes available.  In this sense, the rumor centrality will be the sum of the estimated distances between the monitor 

nodes and the source, provided that the average infection at time step 𝑘 = 𝑑 + 1 is positive, where 𝑑 is the 

estimated shortest path between the sensor and the source. This approach is motivated by the fact that a potential 

source is more likely to have started the rumor if the distance to the monitor nodes which become infected after a 

short period of time is small on average. Therefore, the rumor centrality is calculated as follows:  

𝑅𝐶 =  ∑ 𝑑𝑖𝑖,𝑉𝑖(𝑑𝑖+1)>0.5 , where 𝑑𝑖  is the estimated shortest path between the sensor and the source and 𝑉𝑖 is the 

measured probability of node 𝑖 having the rumor.  

 

Small-world Network 

The plots below show the detection probability and detected number of sources, for a spreading of 20 rumors, in a 

small-world network, of size N = 200 nodes.  

In the first set of subplots, we can notice the reduced performance of the detection algorithm, as a result of the 

reduced set of candidate sources. Nevertheless, we observe that for a number of candidate sources fixed to NS = 1, 

the probability of correct detection has a value P > 0.9, as the number of monitors increases above M = 30 nodes 

(which represents 15% of the network size).  

 

Figure 41: Best Detection Probability and Number of Estimated Sources for Set Cardinality of Minimum 1 Source and Constant Source Set 
Cardinality equal to 1 

In the subplots below, we can see that as the minimum cardinality of the set of potential sources increases (before 

rumor centrality algorithm is applied), the detection probability decreases. This is a result of the rumor centrality 

calculation, which may not rank the candidate sources correctly, if the number of nodes to be ranked is larger than 

2.  
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Figure 42: Best Detection Probability and Number of Estimated Sources for Set Cardinality of Minimum 2 Sources and Constant Source Set 
Cardinality equal to 1, and2  

Therefore, we can conclude the following results. The rumor centrality method could accurately rank the nodes in 

the set of candidate sources, in order to obtain a small number of potential sources, which are very likely to have 

started the rumor. The detection accuracy of the algorithm including the source rumor centrality enhancement is 

higher if a set of minimum NS = 1 source is found using the algorithm with Enhancement 1 (before rumor centrality 

ranking is applied), followed by a reduction of this set to exactly  NS = 1 using Enhancement 2. 

We should also note that the calculation of the rumor centrality could be modified as follows: 

𝑅𝐶 =  ∑ 𝑑𝑖𝑖,𝑉𝑖(𝑑+1)>𝑥 , where the parameter 𝑥 could be adjusted to ensure a higher probability of correct detection.  
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Enhancement 2.2 Modification of Estimation of the Set of Candidate Sources 

 

This algorithm involves a change to the method of creating the set of candidate sources, based on measurements from 

the sensors ranked according to their confidence levels. The strategy of creating the set of potential sources is described 

in the Implementation chapter as Strategy 2, and summarized below. 

For each sensor node 𝑖, we compute how many nodes will be eliminated from the set of candidate sources, based on 

measurements from this sensor. As a result, we are able to determine the number of remaining potential sources, if 

we were to consider the measurements provided by monitor 𝑖. If this number is greater than the minimum cardinality 

set by the user, then we perform the estimation based on measurements from node 𝑖. Otherwise, we discard these 

measurements and the set of potential sources remains as before. For example, suppose the minimum cardinality of 

the set of potential sources is 𝐶 = 10. There are currently 𝑁𝑆 = 15 sources in this set. However, if we consider the 

measurements from node 𝑖, there would be another 𝑁𝑆 = 9 sources eliminated, which would bring the set of candidate 

sources to 𝑁𝑆 = 6. This is lower than 𝐶 = 10 and hence, the measurements from node 𝑖 will be disregarded and the 

number of potential sources remains at 𝑁𝑆 = 15 sources.This is repeated for all the monitor nodes, by considering 

more confident nodes first. 

As we can see from the results below, there is no significant improvement in the detection probability, compared to 

the previous algorithm. For example, as seen in the subplots below, with a minimum cardinality of the set of sources 

equal to 𝑁𝑠 = 1 (cardinality before the enhancement is applied), and with exactly 𝑁𝑠 = 1 source estimated using the 

rumor centrality method, the previous algorithm would give a detection probability of 𝑃 = 0.74 using 10 monitors, 

compared to 𝑃 = 0.69 given by the current algorithm for the same number of monitors. Using 30 monitors, the 

previous detection probability is  𝑃 = 0.94, compared to of 𝑃 = 0.945 from the current algorithm. 

 

Figure 43: Best Detection Probability and Number of Estimated Sources for Set Cardinality of Minimum 1 source and Constant Source Set 
Cardinality equal to 1 
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From the subplots below we can see that the detection accuracy decreases as the minimum cardinality of the set 

of sources increases, as a result of the rumor centrality calculation. 

 

Figure 44: Best Detection Probability and Number of Estimated Sources for Set Cardinality of Minimum 2 sources and Constant Source Set 
Cardinality equal to 1 and 2 
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Enhancement 2.3: Refined Method for Rumor Centrality Calculation 

 

As before, the algorithm calculates the rumor centrality of a candidate source based on the infection of each 

of the monitor nodes available, using the same strategy of creating the source of potential source (see Strategy 

2 in Implementation chapter).  In this case however, the calculation for the rumor centrality will be different. 

This is described in the Implementation sections and summarized below: 

𝑅𝐶 = ∑ 𝑑𝑖
𝑖𝜖𝑆𝑒𝑡1

+ ∑ 𝐼𝑛𝑓(∞)

𝑖𝜖𝑆𝑒𝑡2

+ ∑ 1000 +

𝑖𝜖𝑆𝑒𝑡3

∑ 2000 +

𝑖𝜖𝑆𝑒𝑡4

∑ 3000

𝑖𝜖𝑆𝑒𝑡5

 

In the above summation, the individual sets of each individual sum are: 

𝑆𝑒𝑡 1 = {𝑛𝑜𝑑𝑒 𝑖 |𝑉𝑖(𝑑𝑖 + 1) > 0, 𝑉𝑖(𝑑𝑖) = 0} 

𝑆𝑒𝑡 2 = {𝑛𝑜𝑑𝑒 𝑖 |𝑉𝑖(𝑑𝑖) ≠ 0} 

𝑆𝑒𝑡 3 = {𝑛𝑜𝑑𝑒 𝑖 |𝑉𝑖(𝑑𝑖 + 1) = 0, 𝑉𝑖(𝑑𝑖 + 2) ≠ 0} 

𝑆𝑒𝑡 4 = {𝑛𝑜𝑑𝑒 𝑖 |𝑉𝑖(𝑑𝑖 + 1) = 0, 𝑉𝑖(𝑑𝑖 + 2) = 0, 𝑉𝑖(𝑑𝑖 + 3) ≠ 0} 

𝑆𝑒𝑡 5 = {𝑛𝑜𝑑𝑒 𝑖 |𝑉𝑖(𝑑𝑖 + 1) = 0, 𝑉𝑖(𝑑𝑖 + 2) = 0, 𝑉𝑖(𝑑𝑖 + 3) = 0} 

The results below were obtained by simulating a spreading of rumors in a small-world network of 𝑁 = 200 

nodes, with average vertex degree 𝑉 = 6 and rewiring probability 𝛽 = 0.2. 

In the first set of subplots, the minimum cardinality of the set of sources (before Enhancement 2.3 is applied) 

is 𝐶 = 1, in the second set 𝐶 = 2, while in the third set 𝐶 = 5. We can notice a clear improvement in the 

detection accuracy compared to the previous enhancement. For example, using the previous algorithm, the 

probability of correct detection was 𝑃 ≅ 0.7 ,when using a number of monitors equal to 10 and when the final 

set of candidate sources is 𝐶 = 1. Nevertheless, the current enhancement ensures a high probability of 

detection in this case, of 𝑃 ≅ 0.92. Furthermore, as seen in the second set of subplots below, when using 10 

monitor nodes (5% of network size), the probability of correct detection is 𝑃 = 0.975 when the final set of 

candidate sources contains 𝑁𝑆 = 2 nodes, increasing to 𝑃 = 1 using 30 monitors (15% of network size). 

Finally, we should note that the index of the source node is randomly chosen and that several experiments 

were performed for various choices of the source node. Therefore, the location of the source does not have 

an impact on the performance of the detection algorithm. 

 

Figure 45: Best Detection Probability using Enhancement 2.3, for a Cardinality of the Candidate Sources of Minimum 1 (left) and 
Exactly 1 (right) 
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Figure 46: Best Detection Probability using Enhancement 2.3, for a Cardinality of the Candidate Sources of Minimum 2 (left) and 
Exactly 1 (middle), and 2 (right) 

 

Figure 47: Best Detection Probability using Enhancement 2.3, for a Cardinality of the Candidate Sources of Minimum 5 (left) and 
Exactly 1 (middle), and 2 (right) 
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Enhancement 2.4: Further Modification of the Estimation of the Set of Candidate Sources 

 

As already explained in the Implementation chapter, In order to account for the errors that could occur as a 

result of using less confident sensors (as in Strategy 1 implemented in Enhancement 2.3 above), the 

following method can be used to create the set of candidate sources. 

For each sensor node 𝑖, we compute how many nodes will be eliminated from the set of candidate sources, 

based on measurements from this sensor. As a result, we are able to determine the number of remaining 

potential sources, if we were to consider the measurements provided by monitor 𝑖. If this number is greater 

than the minimum cardinality set by the user, then we consider the estimation based on measurements from 

node 𝑖. Otherwise, we discard these measurements and the set of potential sources remains as before.  

Once we discard a sensor from the set of ranked monitors, we will not consider any other sensors which are 

less confident than the sensor we have discarded.  

This method will ensure more accurate detection. Nevertheless, it leads to a large cardinality of the set of 

candidate sources, before the rumor centrality method is applied, which could lead to big computational 

complexity of the rumor centrality algorithm. 

 

The results below were obtained by simulating a rumor spreading in a small-world network, of size 𝑁 = 200 

nodes, where the minimum cardinality of the set of candidate sources is 𝐶 = 1 (first set of subplots), and 𝐶 =

2 (second set of subplots). 

Firstly, we can notice that the cardinality of the set of sources using Strategy 2 is much larger compared to the 

case when using Strategy 1. As seen in the second set of subplots below, when the minimum cardinality is set 

to 𝐶 = 2, the number of estimated sources becomes very large and increases with larger number of monitors. 

This is because, as the number of monitors increases, it is more likely that we observe the actual rumor source 

and that would imply eliminating all the other nodes besides itself, leading to a set of candidate sources which 

has a single source and hence, which has a cardinality lower than the minimum set as 𝐶 = 2.  

Furthermore, the detection accuracy does not improve for a larger cardinality of the set of potential sources 

and therefore, it is not the preferred strategy for the detection algorithm, due to its increased complexity. 

 

Finally, we should note that the index of the source node is randomly chosen and that several experiments 

were performed for various choices of the source node. Therefore, the location of the source does not have 

an impact on the performance of the detection algorithm. 
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Figure 48: Best Detection Probability in a Small-world Network, using Enhancement 2.4, for a Cardinality of the Candidate Sources of 
Minimum 1 (left) and Exactly 1 (right)  

 

Figure 49: Best Detection Probability using Enhancement 2.4, for a Cardinality of the Candidate Sources of Minimum 2 (left) and 
Exactly 1 (middle), and 2 (right) 
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Enhancement 2.4: Illustration of the Set of Detected Sources 

 

The plots below show the vertices and edges in a small-world network of 𝑁 = 200 nodes. In all subplots, the 

source of rumors is highlighted through a bigger circle.  

The left subplot shows the probability of detecting any of the network nodes, using Enhancement 2.4 of the 

estimation algorithm. As we can see, the actual source is the most likely node to be detected, using 10 

monitors, with a probability of detection 𝑃 > 0.8. 

The middle subplot shows the probability of detecting each of the network nodes, in the case when the real 

source node is not correctly detected, and the right subplot is a more detailed representation of the middle 

subplot. As we can see, the most likely nodes to be detected in the case of wrong estimation are located 1 ℎ𝑜𝑝 

away from the real rumor source. The next likely nodes are in a neighbourhood of the real source, and the 

probability of detection of a node decreases as its distance from the source increases. 

 
Figure 50: Illustration of Probability of Detection of all the Nodes in a Small-world Network of size N=200, using 10 Monitors 

The same results have been plotted, by observing only 5 monitor nodes. Although the probability of correct 

detection is lower compared to the example above, if the correct source is not correctly estimated, the most likely 

nodes to be considered potential sources are located 1 ℎ𝑜𝑝 away from the real source.  

 

 
Figure 51: Illustration of Probability of Detection of all the Nodes in a Small-world Network of size N=200, using 5 Monitors  

  



79 | E v a l u a t i o n  o f  t h e  S o u r c e  D e t e c t i o n  A l g o r i t h m    
 

Enhancement 2.4: Different Network Characteristics 

 

The plots below show the detection probability of the rumor source in a small-world network of size 𝑁 = 200 

nodes, for an average vertex degree 𝑉 = 4, and a number of rumors 𝑅 = 50 rumors. We can see that 

compared to the case when only 𝑅 = 20 rumors are available (Figure 48), the detection accuracy improves, 

particularly for the case when the set of candidate sources is reduced to 𝑁𝑆 = 1 source (right subplot). The 

reason for this could be the improvement in the sensor measurements when the average infection probability 

is derived from a larger number of rumors. As we can see in the left subplot, the set of candidate sources is 

lower compared to the case when 20 rumors are available (Figure 48, left subplot). As a result, the source 

rumor centrality method will provide a more accurate ranking of the potential sources. 

 

 

Figure 52: Best Detection Probability in a Small-world Network with Average Vertex Degree V=4, using Enhancement 2.4, for a 
Cardinality of the Candidate Sources of Minimum 1 (left) and Exactly 1 (right) 
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The plot below shows the probability of correct detection of the rumor source, in a small-world network of 

𝑁 = 200 nodes and average vertex degree 𝑉 = 10. We can see that the vertex degree does not significantly 

impact the estimation algorithm. Only for the case when only 10 monitor nodes are available (5% of the 

network), there is a larger decrease in the detection probability. This result could be due to the fact that in a 

small-sized network with a high vertex degree, most nodes will be located very close to the source and 

therefore, the rumor infection happens with a bigger intensity, compared to the model predicted by the 

theoretical probability. Nevertheless, while in social networks there may be nodes with very large degree 

(hubs), there are also many nodes with few connections and therefore, the results obtained for a large average 

vertex degree and small network radius might not be representative for a real-life application. 

 

 

Figure 53: Best Detection Probability in a Small-world Network with Average Vertex Degree V=10, using Enhancement 2.4, for a 
Cardinality of the Candidate Sources of Minimum 1 (left) and Exactly 1 (right) 
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Evaluation of Final Algorithm on All Network Topologies 
 

Tree Graph 
 

The results below reflect the source detection performance in a tree graph of 𝑁 = 156 nodes, with 𝐶 = 5 

number of children for each node, and 𝐷 = 4 depth. The index of the source is chosen as  𝑖 = 156, in order 

to best evaluate the rumor centrality algorithm.  

From the results below we can see that the probability of correct detection (before applying the rumor 

centrality algorithm) is 𝑃 = 1, for a number of monitors above 𝑀 = 30 (15%). Nevertheless, in this case the 

set of candidate sources has a cardinality in the interval [1,2]. The probability of correctly detecting 𝑁𝑆 = 1 

source using the rumor centrality method is lower compared to the one obtained on other network topologies. 

This is a result of the fact that the main criterion used in the calculation of rumor centrality is mainly accounting 

for errors in the calculation of the shortest distances, while in the case of a tree topology, the accuracy of 

detection of the shortest paths is higher compared to other topologies, and the erroneous results might be 

due to other types of noise in the sensor measurements.  

The best detection probability is obtained using Enhancement 2.2, as this would ensure the lowest cardinality 

of the set of potential sources, before the rumor centrality method is applied. 

 

Figure 54: Probability of Correct Detection in a Tree Graph with N=, C=, D=, using Enhancement 2.3 and Cardinality of the Set of 
Potential Sources with Minimum 1 (left) and Exactly 1 Source (right) 
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The probability of distance error is shown in the subplots below, for different number of monitoring nodes. 

 

 
Figure 55: Distance Estimation Error in a Tree Graph of N=156 Nodes 

 

Random Geometric Graph 
 

The results below reflect the source detection performance in a random geometric graph of 𝑁 = 200 nodes, 

with connectivity radius 𝑅 = 0.1, and a grid dimension equal to 𝐷 = 1. The index of the source is chosen as 

 𝑖 = 200, in order to best evaluate the rumor centrality algorithm.  

The best detection probability is obtained using Enhancement 2.4 and we can see that the accuracy is mostly 

limited by the shortest path estimation and sensor confidence assignment methods. On the other hand, the 

rumor centrality algorithm is able to reduce the number of candidate sources to 𝑁𝑆 = 1, without degrading 

the detection performance. 

 

 

Figure 56: Probability of Correct Detection in a Random Geometric Graph with N=200 and R = 0.2, using Enhancement 2.4, and 
Cardinality of the Set of Potential Sources with Minimum 1 (left) and Exactly 1 Source (right) 
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Small-world Network 
 

The results below reflect the source detection performance in a small-world network of 𝑁 = 200 nodes, 

rewiring probability 𝛽 = 0.2, and average vertex degree is 𝑉 = 4. The index of the source is chosen as 𝑖 =

200, in order to best evaluate the rumor centrality algorithm.  

As in the case of a random geometric graph, the best detection probability is obtained using Enhancement 2.4 

and the accuracy is mostly limited by the shortest path estimation and sensor confidence level assignment 

methods. On the other hand, the rumor centrality algorithm is able to reduce the number of candidate sources 

to 𝑁𝑆 = 1, without degrading the detection performance. 

 

Figure 57: Probability of Correct Detection in a Small-world Network with N=200 and beta = 0.2, using Enhancement 2.4, and 
Cardinality of the Set of Potential Sources with Minimum 1 (left) and Exactly 1 Source (right) 
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Random Network 
 

A random graph has been obtained using the Watts-Strogatz algorithm, for 𝑁 = 200 nodes, and with rewiring 

probability 𝛽 = 1. The results below reflect the source detection performance using Enhancement 2.4, in a 

random graph where the index of the source is chosen as 𝑖 = 200, in order to best evaluate the rumor 

centrality algorithm.  

 
Figure 58: Probability of Correct Detection in a Random Network with N=200, using Enhancement 2.4, and Cardinality of the Set of 

Potential Sources with Minimum 1 (left) and Exactly 1 Source (right) 
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Scale-free Network 
 

A scale-free network has been obtained using Method I presented in the Implementation chapter of this 

report. The results below reflect the source detection performance using Enhancement 2.4, in a scale-free 

network of 𝑁 = 200 nodes, where the index of the source is chosen as 𝑖 = 200, in order to best evaluate the 

rumor centrality algorithm.  

In this case, the detection accuracy is lower compared to the previous network topologies. The reason for this 

may be the fact that scale-free networks have a highly heterogeneous degree distribution and thus contain 

many high-degree nodes, as well as nodes with very few link connections. Therefore, the measurements at 

monitoring nodes might significantly vary between nodes with very high and nodes with very low degree. 

Large deviations of these measurements from their expected value may lead to more erroneous results and a 

wrong estimation of the source. 

 

Figure 59: Probability of Correct Detection in a Scale-free Network with N=200, using Enhancement 2.4, and Cardinality of the Set of 
Potential Sources with Minimum 1 (left) and Exactly 1 Source (right) 
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Algorithm Complexity 
 

The complexity of the algorithm is dominated by the Dijkstra algorithm, which has the following running time. 

In a graph with 𝐸 edges and 𝑉 vertices, the simplest implemention of Dijkstra’s algorithm gives the running 

time 𝑂(E + V2) = 𝑂(V2) . However, for sparse graphs, more efficient algorithms could give a time complexity 

of 𝑂(E + VlogV). 

Other computationally expensive parts of the algorithm might be the following.  

Firstly, the estimation of the connectivity index used in the theoretical formulation for the probability of 

infection requires the simulation of a spreading of rumors on the network. Nevertheless, even a small number 

of rumors used in this simulation leads to accurate results. Furthermore, the calculation of the optimal index 

requires the employment of the minimum mean square error estimation method, based on samples of the 

theoretic and simulated probability at different time steps and for different distances. This could hence lead 

to high complexity for a large number of time steps or a wide range of distances. Nevertheless, as the range 

of distances considered is typically narrow (as the radius of a social network is typically small) and the number 

of time steps is small (as the probability of infection quickly saturates to its maximum after a short delay from 

the rumor initiation), the time complexity of this part of the algorithm is reduced. In addition, for a network 

which does not evolve in time, the parameters of the theoretical formula need to be estimated only once as 

they will remain constant over time. 

Secondly, the estimation of the shortest distances from each monitor to the source requires the 

implementation of the minimum mean-square error method. Nevertheless, as the range of possible distances 

is reduced (due to small radius of a social network), and since we are observing only a small fraction of the 

network nodes, this method should not significantly reduce the speed of the algorithm. 
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Chapter 6  

 

Summary of Results 
 

This chapter will firstly summarize the state-of-the-art solutions to the problem of estimating a single rumor 

source. The results obtained using the algorithm presented in this report will then be discussed and 

compared to the state-of-the-art.  

 

State-of-the-Art 
 

Some of the state-of-the-art main results obtained for random geometric graphs and trees are the following.  

In [5] the authors propose a rumor centrality method used to rank the potential rumor sources. The evaluation 

is performed on a tree graph and the results show that the detection probability of the rumor source estimator 

is approximately 𝑃 = 0.9, for a network size of 𝑁 < 100 nodes, decreasing to 𝑃 ≅ 0.2 for a size of 𝑁 = 400 

nodes. In both cases, the parameter of the regular tree is 𝛼 = 0. When the parameter 𝛼 = 1,2,3, 𝑜𝑟 4, the 

probability of correct detection is 𝑃 ∈ [0.9,1). In addition, the frequency of an estimator error equal to 𝑒 =

1 ℎ𝑜𝑝 is approximately 80%. 

In [11] the authors propose a maximum a posteriori estimator to identify the rumor source using a single 

observation of all the nodes in the network. The evaluation of the method is performed on a regular tree graph 

of 1000 nodes, assuming there is access to a set of suspects. The results show that when the set of suspects 

has cardinality 𝑘 = 2, the detection probability is 𝑃 ≅ 0.55 for a node degree of 𝛿 = 3, increasing to 𝑃 ≅

0.95, for a larger node degree of 𝛿 = 20. 

In [12] a pseudo-likelihood function for the source is used to estimate the source of rumors, and the evaluation 

of the method shows that if we observe 5% of the network size, the probability that the source is within the 

first top 10 ranked (ranking based on the pseudo-likelihood function) is 𝑃 ≅ 0.5, increasing to 𝑃 ≅ 0.82 if we 

observe 30% of the network, and a similar value if we observe the entire network.  The tests are performed 

on networks of size 𝑁 = 100 nodes, assuming a constant spreading probability within the network. 

Some of the main results obtained for random, small-world and scale-free networks are the following. 

In [1] the authors describe an ML detector used to detect the source of rumors, assuming a susceptible-

infected spreading model and using multiple observations of the entire network. The results obtained show 

that for a scale-free network, the probability of correct detection is 𝑃 < 0.1 when using a single observation, 

increasing to 𝑃 ≅ 0.9 when having access to five observations. For a small-world network, the probability of 

correct detection is 𝑃 < 0.2 when having access to five observations of the entire network. The tests are 

performed on networks of size 𝑁 = 10000 nodes. 
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In [10] the authors describe a rumor centrality and node selection method as a solution to the rumor source 

detection problem. Evaluation of the method on a random directed graph of 30146 nodes shows that the real 

source is within the top 10 ranked nodes using the rumor centrality method, when using more than 650 

monitors (2.15% of the network size). In addition, the rank of the actual source is around 5 when using 5120 

monitoring nodes (16.98% of the network size). 

 

New Approach 
 

We summarize below the main results obtained when evaluating the source detection algorithm used to 

estimate the source of rumors in a network. 

In terms of accuracy of the theoretical formulation for the probability of infection, this converges to the 

probability obtained by simulating a spreading of a large number of rumors. The theoretical probability will be 

compared against the simulated probability from a dissemination of multiple rumors (the number of rumors 

in a real-world scenario is assumed to be 𝑅 ≥ 20). The accuracy of the theoretical probability leads to a good 

estimation of the shortest path between the monitors and the potential source. With most of the errors 

occurring as a result of the deviation of the individual sensor measurements from the expected value, the 

distance error probability is very low, particularly for smaller monitor distances. In addition, the average 

distance error is |𝑑𝑒| ≅ 1 ℎ𝑜𝑝.  

This observation becomes important when designing the source detection algorithm, in order to account for 

the cases when the noisy sensor measurements lead to a distance error of 1 ℎ𝑜𝑝. This is achieved by assigning 

a confidence level to each sensor, based on its estimated distance to the source, as well as the measurements 

obtained from the monitors at different time steps. The main criterion of calculating the confidence levels is 

based on the measurements of the sensor at time equal to 𝑑, when the estimated shortest distance to the 

source is 𝑑. If the real distance would be 𝑑, then the measurements at time 𝑑 must be zero. Hence, if these 

measurements are not zero, it means the estimated distance should be smaller. Considering that the distance 

error hop is typically |𝑑𝑒| ≅ 1 ℎ𝑜𝑝, it is very likely that in this case the distance is 𝑑 − 1 instead of 𝑑 as initially 

estimated. Nevertheless, the criterion includes checks at time steps equal to 𝑑 − 1, as well as 𝑑 − 2, to 

account for potential distance errors of 2 ℎ𝑜𝑝𝑠 and 3 ℎ𝑜𝑝𝑠 respectively. 

Based on the sensor measurements ranked according to their confidence levels, a set of candidate sources is 

obtained. This set is further reduced to a single candidate source, by assigning a rumor centrality level to each 

potential source and ranking all the sources accordingly. The main criterion used in the calculation of the 

rumor centrality is based on the sensor measurements at a time equal to 𝑑, where 𝑑 is the shortest distance 

between the candidate source and the monitor. If these measurements are positive, it means this source could 

not have started the rumor, as the rumor could only get to the monitor at time 𝑑 + 1.  

While the sensor confidence level accounts for the case when the distance error is 𝑑𝑒 = −1 ℎ𝑜𝑝, the rumor 

centrality method accounts for the case when the distance error is 𝑑𝑒 = 1 ℎ𝑜𝑝 . 

In summary, using the source detection algorithm based on estimation of shortest distance using the 

theoretical probability formula, sensor confidence level assignment and source rumor centrality ranking, the 

following results are obtained. For a scale-free network, the probability of correct detection is 𝑃 > 0.8 when 

observing more than 5% of the network nodes, increasing to 𝑃 = 0.92 when observing 25% of the network 

nodes, with a set of minimum 1 and maximum 3 candidate sources. For all other network topologies 

considered, the probability of correct detection is 𝑃 > 0.8 when observing 5% of the network nodes, 

increasing to 𝑃 > 0.99 when observing 15% of the network, and 𝑃 = 1 when observing 25% of the network 

nodes, with a set of exactly 1 candidate source.  
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The table below summarizes the results obtained in the Evaluation section, when simulating a rumor spreading 

in a small-world network of size 𝑁 = 200 nodes. We should note that the values below are only an 

approximation of the typical results that could be obtained in a small-world network of different 

characteristics, different source nodes etc. Moreover, the results are obtained using 200 repeated 

experiments to obtain an average performance of the detection algorithm. 
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Table 6: Summary of Detection Probability for Different Algorithm Enhancements 

Small-World Network, of size      
𝑵 = 𝟐𝟎𝟎 nodes 

Cardinality of the Set of Detected Sources 

𝐶 = 5 𝐶 = 2 𝐶 = 1 𝐶 > 5 Notes 

Enhancement 
1.1 

Number of 
Monitors 

𝑀 = 10 

5% 
𝑃 = 0.83 𝑛/𝑎 𝑛/𝑎 𝑃 = 0.885 The cardinality of the set of candidate sources when  

𝐶 > 5 is in the interval [8,10], for the particular network size.  
 𝑀 = 30 

15% 
𝑃 = 0.95 𝑛/𝑎 𝑛/𝑎 𝑃 = 0.995 

𝑀 = 50 
25% 

𝑃 = 0.98 𝑛/𝑎 𝑛/𝑎 𝑃 = 99 

Enhancement 
1.2 

Number of 
Monitors 

𝑀 = 10 

5% 
𝑃 = 0.77 𝑛/𝑎 𝑛/𝑎 𝑃 = 0.91 The cardinality of the set of candidate sources when  

𝐶 > 5 is in the interval [10,15], for the particular network size.  
There is an improvement in the detection probability, when 𝐶 > 5, for a slight 
increase in the cardinality of potential sources. 
 

𝑀 = 30 

15% 
𝑃 = 0.95 𝑛/𝑎 𝑛/𝑎 𝑃 = 0.99 

𝑀 = 50 
25% 

𝑃 = 0.985 𝑛/𝑎 𝑛/𝑎 𝑃 = 1 

Enhancement 
2.1 

Number of 
Monitors 

𝑀 = 10 

5% 
𝑛/𝑎 𝑛/𝑎 𝑃 = 0.74 𝑛/𝑎 The cardinality of the set of candidate sources before the enhancement is 

applied is in the interval [1,2], for the particular network size. This is further 
reduced to exactly 1 candidate source using Enhancement 2.1. 
There is a great improvement in the detection probability, in particular when 
𝐶 = 1. 

𝑀 = 30 

15% 
𝑛/𝑎 𝑛/𝑎 𝑃 = 0.94 𝑛/𝑎 

𝑀 = 50 
25% 

𝑛/𝑎 𝑛/𝑎 𝑃 = 0.99 𝑛/𝑎 

Enhancement 
2.2 

Number of 
Monitors 

𝑀 = 10 

5% 
𝑛/𝑎 𝑛/𝑎 𝑃 = 0.69 𝑛/𝑎 The cardinality of the set of candidate sources before the enhancement is 

applied is in the interval [1,2]. 
 This is further reduced to exactly 1 candidate source using Enhancement 2.2. 
There is no significant improvement in the detection accuracy compared to 
the algorithm above. 

𝑀 = 30 

15% 
𝑛/𝑎 𝑛/𝑎 𝑃 = 0.945 𝑛/𝑎 

𝑀 = 50 
25% 

𝑛/𝑎 𝑛/𝑎 𝑃 = 0.99 𝑛/𝑎 

Enhancement 
2.3 

Number of 
Monitors 

𝑀 = 10 

5% 
𝑛/𝑎 𝑃 = 0.975 𝑃 = 0.905 𝑛/𝑎 There is an improvement in the detection probability, particularly for the case 

when the final set of candidate sources contains only one node. At the same 
time, there is an increase in the cardinality of the set of sources before the 
rumor centrality is applied, i.e. 𝐶 ∈ [3,4], however this should not 
significantly impact the complexity of the algorithm. 

𝑀 = 30 

15% 
𝑛/𝑎 𝑃 = 1 𝑃 = 1 𝑛/𝑎 

𝑀 = 50 
25% 

𝑛/𝑎 𝑃 = 1 𝑃 = 1 𝑛/𝑎 

Enhancement 
2.4 

Number of 
Monitors 

𝑀 = 10 

5% 
𝑛/𝑎 𝑛/𝑎 𝑃 = 0.935 𝑛/𝑎 The cardinality of the set of candidate sources before the enhancement is 

applied is in the interval [1,3]. The detection accuracy improves compared to 
the previous algorithm, particularly when observing a lower number of 
monitor nodes.  

𝑀 = 30 

15% 
𝑛/𝑎 𝑛/𝑎 𝑃 = 1 𝑛/𝑎 

𝑀 = 50 𝑛/𝑎 𝑛/𝑎 𝑃 = 1 𝑛/𝑎 
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Chapter 7  

 

Conclusions  
 

Future Directions 
 

One future direction would be to further improve the theoretical probability of rumor dissemination, in order 

to ensure a more precise formula and which could better model various network topologies and parameters. 

In addition, it would be interesting to research the problem of spreading of multiple sources, how a multiple 

source rumor could be modelled and how it impacts the theoretical probability of rumor spreading. 

Moreover, some state-of-the-art approaches examine the problem of rumor spreading by assuming varying 

infection probabilities at each node in the network. This would be a more realistic assumption than the one 

where the probability of spreading is constant throughout the network. Nevertheless, this model has increased 

complexity and the derivation of an exact probability formula for the rumor dissemination process may be 

challenging.  

Furthermore, the current development assumes a susceptible-infected model. Nevertheless, in a more 

realistic scenario, some nodes could recover from the rumor information in time (for example, some persons 

might forget the information or might realise the rumor is false and not spread it further). Therefore, analysing 

the susceptible-infected-recovered model could be useful for real-world applications. 

In what the sensor measurements are concerned, future development should also consider the problem of 

rumor source detection, through observations in a fixed time window, at some unknown time after the initial 

spreading. This would be more suitable for some real-life applications, where the start time of the spreading 

might be unknown.  

In terms of evaluation of the algorithm, simulations and tests have only been carried out on synthetic data. 

Hence, future work should include testing on real networks, to best assess the performance of the detection 

algorithm. Moreover, various noise scenarios should be developed to ensure the algorithm is robust to false 

information obtained from some of the sensor nodes, loss of information etc. 
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Concluding Remarks 
 

The goal of this project was to successfully infer the source responsible for spreading of data within a social 

network, based on multiple observations at some of the nodes in the network. The state-of-the-art solutions 

to this problem are based on the ideal assumption that there is access to time snapshots of the entire network. 

Moreover, the evaluation of these solutions is mostly performed on simple topologies such as trees or random 

geometric graphs, and the results show that the probability of correct detection is generally smaller than one. 

This project addresses the problem of localizing a single diffusion source in a social network, based on several 

time measurements at some randomly selected nodes, and assuming multiple rumor attacks from the same 

source. The result of this project provides a source detection algorithm based on a novel approach of 

estimating the theoretical probabilities of rumor infection of a node, as a function of its distance to the rumor 

source. The theoretical rumor dissemination probabilities are compared against measurements at some 

randomly selected monitoring nodes in the network, which are obtained by simulating a spreading of multiple 

rumors. The results are used to obtain an estimation of the shortest paths between the monitors and the 

rumor source, based on the minimum mean-square error method. The source detection algorithm relies on 

the estimation of the shortest distances between the monitors and the source, as well as sensor confidence 

level assignment and source rumor centrality ranking.  

The evaluation of this algorithm is performed on simple topologies such as tree graph, and random geometric 

graph, as well as topologies that accurately model the characteristics of a social network such as small-world 

and scale-free network. The results obtained are the following. For a scale-free network, using a simulation of 

20 rumors the probability of correct detection is 𝑃 > 0.8 when observing more than 5% of the network nodes, 

increasing to 𝑃 = 0.92 when observing 25% of the network nodes, with a set of minimum 1 and maximum 3 

candidate sources. For all other network topologies considered, the probability of correct detection is 𝑃 > 0.8 

when observing 5% of the network nodes, increasing to 𝑃 > 0.99 when observing 15% of the network, and 

𝑃 = 1 when observing 25% of the network nodes, with a set of exactly 1 candidate source. Moreover, the 

probability of correct detection increases as the number of rumors becomes larger. Furthermore, in the case 

of wrong estimation the detected source is typically located 1 ℎ𝑜𝑝 away from the real rumor source, using any 

number of monitoring nodes. 

Future research directions would further increase the performance of the algorithm and enable it to be more 

robust to noisy sensor measurements. As a result, the accuracy of the source detection algorithm could 

increase, particularly when this is employed in a scale-free network. Last but not least, the current probability 

formulation and source detection algorithm could be further developed in order to provide a solution for the 

estimation of multiple diffusion sources in a network.  
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Appendices 
 

Appendix A. Matlab Environment 
 

Generation of a small-world network 
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Watts-Strogatz Algorithm
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Generation of a tree graph
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Generation of a scale-free network using Barabasi algorithm 
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Generation of a general scale-free network 
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Calculation of the theoretic probability of infection 
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Calculation of the simulated rumor probability 

 

  



102 |M a t l a b  E n v i r o n m e n t    
 

Simulation of  a Spreading of Rumors 
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Plot of the network nodes and edges 

 

  



104 |M a t l a b  E n v i r o n m e n t    
 

 

Generation of a random vector 

 

 

Initialization of the rumor source 

 


