
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2019.2961301, IEEE
Transactions on Signal Processing

1

Reconstructing Classes of Non-bandlimited Signals
from Time Encoded Information

Roxana Alexandru, Student Member, IEEE, and Pier Luigi Dragotti, Fellow, IEEE

Abstract—We investigate time encoding as an alternative
method to classical sampling, and address the problem of
reconstructing classes of non-bandlimited signals from time-
based samples. We consider a sampling mechanism based on
first filtering the input, before obtaining the timing information
using a time encoding machine. Within this framework, we show
that sampling by timing is equivalent to a non-uniform sampling
problem, where the reconstruction of the input depends on the
characteristics of the filter and on its non-uniform shifts. The
classes of filters we focus on are exponential and polynomial
splines, and we show that their fundamental properties are locally
preserved in the context of non-uniform sampling. Leveraging
these properties, we then derive sufficient conditions and propose
novel algorithms for perfect reconstruction of classes of non-
bandlimited signals such as: streams of Diracs, sequences of
pulses and piecewise constant signals. Next, we extend these
methods to operate with arbitrary filters, and also present
simulation results on synthetic noisy data.

Index Terms—Analog-to-digital conversion, non-uniform sam-
pling, sub-Nyquist sampling, finite rate of innovation, time
encoding, integrate-and-fire, crossing detector, cardinal splines.

I. INTRODUCTION

Sampling plays a fundamental role in signal processing and
communications, achieving the conversion of continuous time
phenomena into discrete sequences [1]. From the Whittaker-
Shannon theorem [2], to recent theories in compressed sensing
[3], [4], super-resolution [5] and finite rate of innovation [6]–
[10], sampling theory has provided precise answers on when
a faithful conversion of a continuous waveform into a discrete
sequence is possible. These methods are generally based on
recording the signal amplitude at specified times, which lead
to uniform sampling if the samples are evenly spaced, and
non-uniform sampling otherwise.

In this paper, we concentrate on an alternative method to
classical sampling, which encodes the input into a sequence of
non-uniformly spaced time events or spikes. In other words,
rather than recording the value of the signal at preset times,
one records the instants when the signal crosses a pre-defined
threshold or triggers a pre-defined event. Acquisition models
inspired by this mechanism include zero-crossing detectors
[13], delta-modulation schemes [14], as well as the time
encoding machine (TEM) introduced in [15]. This latter model
is of particular interest, as it mimics the integrate-and-fire
mechanism of neurons in the human brain. Biological neurons
use time encoding to represent sensory information as action
potentials [16]–[18], which allows them to process information
very efficiently. In the same manner, sampling inspired by
the brain could lead to very simple and highly efficient
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devices, ranging from analog to digital converters [15], to
neuromorphic computing or event-based vision sensors, which
record only changes in the input intensity, leading to low
power consumption and fewer storage requirements [19].

At the same time, time-encoding methods extend theories
of traditional sampling, and this makes this topic intriguing
also from a research perspective. Within the study of time
encoding, the key problem that arises is to find methods
to retrieve the input signal from its timing information, and
hence the key questions to pursue are the following. 1) Is
time encoding invertible, and which classes of signals can
be uniquely represented using timing information? 2) What
algorithms allow perfect retrieval of these signals from their
time-encoded samples?

To address these questions, several authors have provided
ways to sample and reconstruct bandlimited signals [20]–[25].
These initial results on time-encoding machines have also been
extended to functions that belong to shift-invariant spaces [26],
[27], typically by connecting time encoding with the problem
of non-uniform sampling [28]–[30]. Time encoding theory has
also been generalized to the case of non-bandlimited signals
in [31], however in the context of studying the dynamics of
populations of neurons, by leveraging stochastic assumptions
on the firing parameters.

In this paper, we show that it is possible to perfectly
reconstruct particular classes of continuous-time signals which
are neither bandlimited nor belong to shift-invariant subspaces,
from samples obtained using a time encoding mechanism. The
signals we focus on are infinite streams of Diracs, sequences
of pulses, as well as piecewise constant signals. Sampling and
reconstructing pulses is of significant relevance to many real-
world applications. For example, time-of-flight cameras probe
the 3D scene with pulses of light and reconstruct the scene by
measuring their round trip time. In applications which require
reduced computational power and speed, e.g. robots mapping
their surroundings, time-of-flight technology may benefit from
a time encoding framework which would significantly lower
the sampling rate. Signals consisting of a stream of pulses
appear in many other applications, including: ultrawideband
communications [32], ECG acquisition and compression [33],
radio-astronomy [34], image processing [35], ultrasound imag-
ing [8] and processing of neuronal signals [36].

At the same time, time encoding principles have already
been integrated in bio-inspired technologies such as dynamic
vision sensors (DVS) [19], which have many real-world appli-
cations, ranging from robotics to autonomous driving as well
as low-power surveillance. In a DVS camera, each pixel only
records changes in the input at the time instants they occur,
by taking a time derivative of the signal. Hence, at the local
pixel-level, this is equivalent to time encoding of piecewise
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constant signals, which is studied in this paper.
Motivated by these real-world applications, the time encod-

ing strategy we propose is based on filtering the input signal
before extracting the timing information using a crossing or an
integrate-and-fire TEM. The filter may be used to reduce noise,
or may model the distortion introduced by the acquisition
device, for example the optics in a time-of-flight scanner or
the photoreceptors in a DVS camera. In order to develop a
framework for exact reconstruction, we initially focus on two
classes of compact-support filters (sampling kernels): expo-
nential and polynomials splines. Please note that exponential
splines are very useful since they can be used to model any
convolution operator with rational transfer function as for
example, simple RC circuits [6], [37]. Our first main contribu-
tion is to prove that exponential (polynomial) splines locally
preserve their exponential (polynomial) reproducing properties
in the context of time-based sampling. Specifically, we show
that within intervals where there are no knots of at least
N non-uniformly shifted kernels, we can locally reproduce
exponentials (polynomials) of degree N . The second aspect
of our contribution is to leverage these properties to address
the problem of reconstructing some classes of non-bandlimited
signals from timing information. We initially develop our
reconstruction framework for the case of one Dirac, where we
show how a linear combination of its non-uniform samples
leads to a sequence of signal moments, which can then be
annihilated using Prony’s method [38], in order to retrieve
the free parameters of the input. Furthermore, we extend this
method to reconstruct infinite streams and bursts of Diracs,
sequences of pulses as well as piecewise constant signals, for
which we can achieve local reconstruction given the compact
support of the filter. Finally, we depart from the ideal case,
and present a universal reconstruction strategy that works with
timing-based samples taken by arbitrary kernels.

This paper is organized as follows. In Section II-A, we
describe the principles of time encoding, with two exemplary
cases. Then, in Section II-B we show that sampling kernels
which reproduce exponentials or polynomials preserve this
property locally, when sampling is based on timing informa-
tion. Furthermore, in Section III we present methods for the
reconstruction of non-bandlimited signals from their timing
information obtained using a crossing TEM. We first propose
a method for estimation of a single Dirac, and extend this
to retrieve streams of Diracs and bursts of Diracs. Then, in
Section IV we demonstrate the perfect retrieval of classes
of non-bandlimited signals from timing information, obtained
using an integrate-and-fire TEM. These estimation methods
are then extended in Section V to the case of arbitrary
sampling kernels. Here we also present results for the case
of noisy signals. Finally, we highlight the high efficiency of
sampling based on timing information in Section VI, and
present concluding remarks in Section VII. Please note that
the code to reproduce our simulations is available online [39].

II. TIME ENCODING MECHANISMS

A. Acquisition Models

In this section, we introduce the time encoding machines
considered in this paper: the crossing TEM and the integrate-

and-fire TEM. Specifically, we show how these TEMs map a
real signal x(t) to a strictly increasing sequence of times {tn}
[27]. We also show that although no measure of the amplitude
of the signal is recorded, time encoding is equivalent to a non-
uniform sampling problem.

1) Crossing Time Encoding Machine: The crossing time
encoding strategy is inspired by the A/D conversion scheme
in e.g. [27], [40], and is depicted in Fig. 1. It consists
of a compact-support filter ϕ(−t), and a comparator with
a sinusoidal reference g(t). The output of the acquisition
device is the sequence {tn}, corresponding to the time instants
when the filtered input signal crosses the reference, i.e. when
y(tn) − g(tn) = 0. Moreover, since the shape of the test
function g(t) is known, we can retrieve the amplitudes of
the output samples, given by yn = y(tn) = g(tn). Hence,
decoding the input signal is equivalent to a non-uniform
sampling problem, where we aim to reconstruct x(t) from
the non-uniform samples given by:

yn = y(tn) =

∫
x(τ)ϕ(τ − tn)dτ = 〈x(t), ϕ(t− tn)〉. (1)

In Fig. 2 we depict the time encoded information of an input
signal of 3 Diracs, obtained using the TEM in Fig. 1.

Fig. 1: Crossing Time Encoding Machine.

Fig. 2: Time encoding based on the Crossing TEM.

2) Time Encoding based on an Integrate-and-fire System:
The operating principle of this time encoding strategy is
similar to the one in [20], and is depicted in Fig. 3. The signal
is first filtered with a compact-support filter with impulse
response ϕ(−t), before being passed to an integrator. When
the output of the integrator reaches the positive trigger mark
CT , the time encoding machine outputs a spike and the
integrated signal y(t) is reset to zero. Similarly, a spike is
generated and y(t) resets to zero, when the integrator reaches
the negative trigger mark −CT . The time instants when the
integrator reaches the threshold ±CT are recorded in the
sequence {tn}. Then, we can compute the output sample y(tn)
at each spike tn as:

yn = y(tn) = ±CT =

∫ tn

tn−1

f(τ)dτ, (2)

where n ≥ 2 and f(t) is defined as:

f(t) =

∫
x(α)ϕ(α− t)dα, for t ∈ [tn−1, tn]. (3)
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Similarly, assuming that the input signal x(t) = 0, for t <
τ1, and that the filter ϕ(−t) is causal, then the first output
sample is given by:

y1 = y(t1) = ±CT =

∫ t1

τ1

f(τ)dτ. (4)

Hence, time encoding with an integrate-and-fire model is
equivalent to a non-uniform sampling problem, where we aim
to estimate the input x(t) from the non-uniform samples y(tn).
In Fig. 4 we depict the time encoding of an input signal,
obtained using the device in Fig. 3, for CT = 0.15.

Fig. 3: Time Encoding Machine based on Integrate-and-fire.

Fig. 4: Time Encoding based on the Integrate-and-fire TEM.

Furthermore, leveraging the results in [41], we can show
that the non-uniform output samples we obtain using the
acquisition model in Fig. 3 are the same as those obtained
by filtering the input with the modified kernel (ϕ ∗ qθn)(t):

y(tn) = 〈x(t), (ϕ ∗ qθn)(t− tn−1)〉, (5)

where θn = tn − tn−1 and qθn(t) is defined as:

qθn(t) =

{
1, 0 ≤ t ≤ θn,
0, otherwise.

(6)

We can prove Eq. (5) by re-writing Eq. (2) as follows:

y(tn) =

∫ tn

tn−1

f(τ)dτ =

∫ tn

tn−1

∫ ∞
−∞

x(t)ϕ(t− τ)dtdτ

(a)
=

∫ ∞
−∞

x(t)

∫ tn

tn−1

ϕ(t− τ)dτdt

(b)
=

∫ ∞
−∞

x(t)

∫ t−tn−1

t−tn
ϕ(τ)dτdt

(c)
=

∫ ∞
−∞

x(t)

∫ t−tn−1

t−tn
ϕ(τ)qθn(t− tn−1 − τ)dτdt

(d)
=

∫ ∞
−∞

x(t)(ϕ ∗ qθn)(t− tn−1)dt

= 〈x(t), (ϕ ∗ qθn)(t− tn−1)〉.

(7)

In the derivations above, (a) holds since we assume both the
input x(t) and the filter ϕ(t) have compact support, and (b)
follows from a change of variable. Moreover, (c) follows from
the fact that qθn(t−tn−1−τ) = 1 for τ ∈ [t−tn, t−tn−1] and
(d) holds since qθn(t−tn−1−τ) = 0 for τ /∈ [t−tn, t−tn−1],
as defined in Eq. (6).

Finally, the first output sample can be computed as:

y(t1)
(a)
=

∫ t1

τ1

f(τ)dτ = 〈x(t), (ϕ ∗ qθ1)(t− τ1)〉, (8)

where θ1 = t1 − τ1, and (a) follows from Eq. (4).
We conclude this subsection by making the following re-

mark. We observe that from the timing sequence {tn}, we
can either recover y(tn) = 〈x(t), ϕ(t − tn)〉 for the case of
the crossing TEM or y(tn) = 〈x(t), (ϕ ∗ qθn)(t − tn−1)〉 for
the integrate-and-fire model. This means that in both cases, the
reconstruction of x(t) will depend on the proper choice of the
sampling kernel ϕ(t) and on its non-uniform shifts ϕ(t− tn).

In what follows we focus on two families of kernels,
polynomial and exponential splines [6], [42], [43], and show
that some of their fundamental properties are preserved in the
case of non-uniform shifts.

B. Sampling Kernels

The sampling kernels ϕ(t), that we consider in this paper
are all anti-causal since they are the time reversed versions of
causal filters.

1) Polynomial splines: A B-spline βP (t) of order P is
computed as the (P + 1)-fold convolution of the box function
β0(t) [42]:

βP (t) = β0(t) ∗ β0(t).... ∗ β0(t)︸ ︷︷ ︸
P+1 times

,

where the anti-causal version of β0(t) is defined as:

β0(t) =

{
1, −1 ≤ t ≤ 0,

0, otherwise.

The B-spline of order P satisfies the Strang-Fix conditions
[44] and hence, together with its uniform shifts, it can repro-
duce polynomials of maximum degree P :∑

n∈Z

cm,nβP (t− n) = tm, (9)

where m ∈ {0, 1, ..., P}, and for a proper choice of the
coefficients cm,n.

For instance, the first-order B-spline satisfies Eq. (9) for
P = 1, which means it can reproduce constant and linear
polynomials, and is defined as:

β1(t) =


−t, −1 ≤ t ≤ 0,

2 + t, −2 ≤ t < −1,
0, otherwise.

The first order B-spline has two continuous regions, each
of which is a linear polynomial: βA1 (t) = −t, for t ∈ (−1, 0)
and βB1 (t) = 2 + t, for t ∈ (−2,−1). Using this observation,
it is possible to show that the first-order B-spline, together
with its non-uniformly shifted versions can locally reproduce
polynomials of maximum degree 1. In other words, it is
possible to prove that within a time interval I where the shifted
kernels β1(t−tn) have no knots, the following equation holds:

N−1∑
n=0

cIm,nβ1(t− tn) = tm, (10)

where N ≥ 2, m ∈ {0, 1}, t ∈ I and {tn} are non-uniform.
The proof can be outlined by setting N = 2 for simplicity.

Then, let I be an interval where there are no knots of β1(t−t0)
and β1(t− t1), with I ⊂ (t1−1, t0). Furthermore, let v0(t) =
β1(t−t0) = −t+t0 for t ∈ I and v1(t) = β1(t−t1) = −t+t1
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for t ∈ I . In the vector space of linear polynomials in I which
is a two-dimensional space, the elements v0(t) and v1(t) are
linearly independent and so form a basis of the space, provided
t0 6= t1. Therefore, using a linear combination of the two
functions, we can uniquely represent any vector in this space,
including the vector t. In other words, we can determine the
unique coefficients cI1,0 = t1

t0−t1 and cI1,1 = t0
t1−t0 that ensure

cI1,0v0(t) + cI1,1v1(t) = t, for t ∈ I . Similarly, we find the
unique coefficients cI0,0 = 1

t0−t1 and cI0,1 = 1
t1−t0 such that

cI0,0v0(t)+cI0,1v1(t) = 1, for t ∈ I . Hence, Eq. (10) is satisfied
in the knot-free interval I for N = 2.

In the same manner, one can show that reproduction of
constant and linear polynomials is achieved on any interval
spanned by knot-free regions of at least two non-uniformly
shifted B-splines. Lastly but importantly, for different knot-
free intervals, the solution to Eq. (10) differs, and this fact is
highlighted in Fig. 5. Here, we depict two non-uniform shifts
of the first-order B-spline, namely β1(t−2) and β1(t−2.625).
The shifted kernel β1(t − 2) has knots at t = 0, t = 1 and
t = 2, whilst β1(t− 2.625) has knots at t = 0.625, t = 1.625
and t = 2.625. As a result, reproduction of polynomials is
possible within the knot-free regions I1 = (0.625, 1) and I2 =
(1, 1.625), however with a different linear combination of the
B-splines overlapping these regions, i.e. with cI1m,n 6= cI2m,n.

Fig. 5: Reproduction of constant and linear polynomials in two
different time intervals, I1 = (0.625, 1)s in (a) and (b), and
I2 = (1, 1.625)s in (c) and (d). In this case, two knot-free regions
of two non-uniformly shifted first-order B-splines overlap I1 and I2.

One can extend this result to the case of higher order
polynomials by using B-splines of order P > 1. This is due
to the fact that polynomial splines are piecewise polynomial
functions of degree P . Hence, in any interval I that contains
P + 1 knot-free shifted versions of splines, it is possible to
reproduce polynomials up to degree P .

2) Exponential splines: The anti-causal version of the E-
spline of first-order is defined as:

ϕ1(t) =

{
e−α0t, −1 ≤ t ≤ 0,

0, otherwise.

where α0 can be either real or complex.
As with polynomial splines, E-splines of order P are

obtained from the convolution of first-order E-splines [43]:
ϕP (t) = ϕα0(t) ∗ ϕα1(t).... ∗ ϕαP−1(t). (11)

An E-spline of order P has compact support and can
reproduce P different exponentials of the form e−αmt [43]:∑

n∈Z

cm,nϕ(t− n) = e−αmt,

where m = 0, 1, ..., P , and for a suitable choice of the
coefficients cm,n.

For example, the E-spline of order P = 2 of support of
arbitrary length L is defined as:

ϕ2(t) =


ec1−c0
c1−c0

e−α0t + e−c1+c0

c0−c1
e−α1t, −L ≤ t < −L

2
,

1
c0−c1

e−α0t + 1
c1−c0

e−α1t, −L
2
≤ t ≤ 0,

0, otherwise,
(12)

where αi ∈ C (if <{αi} = 0 then ϕ2(t) ∈ R), and where
ci = αi

L
2 for i = 0, 1 in order to ensure continuity of

ϕ2(t). Throughout the remainder of the paper, we assume for
simplicity that L = 2.

The second-order E-spline can reproduce the exponentials
e−α0t and e−α1t. In fact, we notice that within each of its
knot-free regions, the function ϕ2(t) can be expressed as
a linear combination of the exponentials e−α0t and e−α1t.
This observation helps us prove that within any time interval
I which contains knot-free regions of non-uniformly shifted
first-order E-splines, we can reproduce two exponentials:

N−1∑
n=0

cIm,nϕ2(t− tn) = e−αmt, (13)

where N ≥ 2, m ∈ {0, 1}, t ∈ I and {tn} are non-uniform.
For example, let I be an interval which contains knot-free

regions of ϕ2(t−t0) and ϕ2(t−t1), with I ⊂ (t1−L, t0− L
2 ).

Moreover, let v0(t) = ϕ2(t − t0) for t ∈ I and v1(t) =
ϕ2(t− t1) for t ∈ I . The elements v0(t) and v1(t) are linear
combinations of e−α0t and e−α1t, and therefore belong to the
vector space spanned by these two exponentials. Moreover,
v0(t) and v1(t) are linearly independent and so, form a basis
of that vector space, since t1 6= t0. Hence, using a linear
combination of v0 and v1, we can uniquely represent any
vector in this space, including e−α0t and e−α1t. Therefore,
in the interval I where there are no knots, we can find
unique coefficients cIm,0 and cIm,1 such that Eq. (13) holds
for m ∈ {0, 1}.

Similarly, reproduction of two different exponentials is
possible on any time interval spanned by knot-free regions of
at least two shifted E-splines. Note that for different intervals
I1 and I2, the solution to Eq. (13) differs, i.e. cI1m,n 6= cI2m,n.
This is highlighted in Fig. 6, where exponential reproduction
is possible in the regions I1 and I2, but using a different linear
combination of the E-splines that overlap these regions.

Fig. 6: Reproduction of <{ej
2π
5
t} in two different intervals, I1 =

(0.625, 1)s and I2 = (1, 1.625)s, overlapped by continuous regions
of two non-uniformly shifted second-order E-splines.
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By using the same argument we can prove similar results
for the general case of an E-spline of order P and support
of length L which can reproduce P different exponentials.
Specifically, within an interval I containing knot-free regions
of at least P non-uniformly shifted E-splines, we can repro-
duce P different exponentials, such that Eq. (13) holds for
N ≥ P and m ∈ {0, 1, ..., P − 1}. This is due to the fact that
any knot-free interval of an E-spline of order P is a linear
combination of P different exponentials.

Finally, let us consider the kernel (ϕP ∗g)(t), where ϕP (t) is
a P -order E-spline which can reproduce the exponentials eαmt,
for m = 0, 1, ..., P − 1. Furthermore, let us assume that g(t)
has compact support [−ε, ε]. The support of ϕP (t) is [−L, 0]
and its knots are located at instants (−L + nLP ) with n ∈
N. Then, in the knot-free interval (−L

P , 0) we can compactly
represent ϕP (t) =

∑P−1
m=0 ame

αmt, for some coefficients am.
If the length of the support of g(t) satisfies 2ε ≤ L

P and∫
g(t)e−αmtdt exists, then (ϕP ∗ g)(t) is given by:

(ϕP ∗ g)(t) =
P−1∑
m=0

amGme
αmt, (14)

where t ∈ (ε− L
P ,−ε) and Gm =

∫ ε
−ε g(t)e−αmtdt.

Therefore, in the interval (ε − L
P ,−ε), (ϕP ∗ g)(t) is a

linear combination of P exponentials. As a result, within
I = (tN−1 + ε− L

P , t1 − ε), (ϕP ∗ g)(t) and its non-uniform
shifts can reproduce P exponentials, as follows:

N−1∑
n=0

cIm,n(ϕP ∗ g)(t− tn) = e−αmt, (15)

where N ≥ P , and m ∈ {0, 1, ..., P − 1}.

III. PERFECT RECOVERY OF SIGNALS FROM TIMING
INFORMATION OBTAINED WITH A CROSSING TEM

In the previous section, we showed how time encoding maps
the input signal to a sequence of non-uniform samples, which
depend on the signal and non-uniform shifts of the sampling
kernel. In what follows we assume that the sampling kernel
ϕ(t) is a second-order exponential reproducing spline, such
that a linear combination of its non-uniformly shifted versions
can reproduce two different exponentials, as described in
Section II-B2. Moreover, ϕ(t) has compact support of length
L, with ϕ(t) = 0 for t /∈ [−L, 0] and the two frequencies that
this kernel can reproduce are α0 = jω0 and α1 = −α0, which
ensures that ϕ(t) is a real-valued function.

Under these assumptions, we study the problem of recon-
structing different classes of non-bandlimited signals, from
timing information obtained using the crossing TEM in Fig. 1.
Specifically we present a method for estimation of an input
Dirac. Here we show that two output spikes are sufficient to
retrieve the input, provided they are located suitably close to
the Dirac, which is guaranteed by imposing conditions on
the frequency and amplitude of the comparator’s sinusoidal
reference signal. We then extend this to retrieval of streams of
Diracs and bursts of Diracs. While the reconstruction method
proposed to retrieve one Dirac might not be unique, it has
the advantage that it naturally generalizes to multiple Diracs.
We note that similar results could be proved using polynomial

splines, but we omit these proofs to keep the focus of the
paper on E-splines.

A. Estimation of an Input Dirac
Let us consider a single input Dirac of the form:

x(t) = x1δ(t− τ1). (16)
Proposition 1. Let the sampling kernel ϕ(t) be a second-order
E-spline of support of length L, defined as in Eq. (12), with
ω1 = −ω0 and 0 < ω0 ≤ π

L . The filter ϕ(t) and its non-
uniform shifts can reproduce the exponentials ejω0t and ejω1t

as in Eq. (13). In addition, suppose that the reference signal
g(t) = A cos(wst) of the comparator in Fig. 1 has amplitude
A > |x1| and period Ts <

2L
5 . Then, the timing information

{t1, t2, ..., tN} provided by the comparator TEM is a sufficient
representation of an input Dirac as in Eq. (16).
Proof. From the timing information {t1, t2}, we can retrieve
the non-uniform output samples y(t1) and y(t2), as described
in Eq. (1). In what follows we show that we can find a linear
combination of the samples y(t1) and y(t2) to get cm,1y(t1)+
cm,2y(t2) = x1e

jωmτ1 , for m = 0, 1, from which we can
retrieve the input parameters x1 and τ1.

For simplicity, suppose that the amplitude of the input
Dirac satisfies x1 > 0. In addition, the hypothesis that
ϕ(t) reproduces e±jω0t with 0 < ω0 ≤ π

L means that
0 ≤ ϕ(t) < 1, for t ∈ [−L2 , 0]. Then, since 0 < x1 < A,
the output y(t) = x1ϕ(τ1 − t) of the crossing TEM satisfies
0 ≤ y(t) < A = max(g(t)), for t ∈ [τ1, τ1 + L

2 ]. Since we
assume 5Ts

4 < L
2 , this means that 0 ≤ y(t) < A = max(g(t)),

for t ∈ [τ1, τ1 + 5Ts
4 ].

Let us then define the continuous function h(t) = g(t) −
y(t). Using Bolzano’s intermediate value theorem [45] and
the fact that 0 ≤ y(t) < max(g(t)), we show that within
the interval (τ1, τ1 + 5Ts

4 ], the signal h(t) crosses zero at least
twice. In other words, ∃t1, t2 ∈ (τ1, τ1+ 5Ts

4 ] such that h(t1) =
h(t2) = 0. For example, if we assume h(τ1) = g(τ1) > 0, then
g(τ1+ Ts

2 ) < 0 and since y(t) ≥ 0, we get h(τ1+ Ts
2 ) = g(τ1+

Ts
2 ) − y(τ1 + Ts

2 ) < 0. Then, Bolzano’s intermediate value
theorem states that ∃t1 ∈ (τ1, τ1 + Ts

2 ] such that h(t1) = 0.
Using the same argument one can then show that ∃t2 ∈

(τ1 + Ts
2 , τ1 + 5Ts

4 ] such that h(t2) = 0. This follows from the
assumption that g(τ1) > 0, which implies that ∃ε ∈ [0, Ts2 ]
such that g(τ1 + 3Ts

4 + ε) = cos(τ1 + 3Ts
4 + ε) = max(g(t)) =

A, as highlighted in Fig. 7. At the same time, we showed
that 0 ≤ y(t) < A for t ∈ [τ1, τ1 + 5Ts

4 ] and hence, we get
h(τ1 + 3Ts

4 + ε) = g(τ1 + 3Ts
4 + ε) − y(τ1 + 3Ts

4 + ε) > 0.
Since h(τ1 + Ts

2 ) < 0 and h(τ1 + 3Ts
4 + ε) > 0, Bolzano’s

intermediate value theorem guarantees that ∃t2 ∈ (τ1+Ts
2 , τ1+

3Ts
4 + ε] such that h(t2) = 0, for ε ∈ [0, Ts2 ]. Therefore, at the

maximum value of ε, we have proved that the second output
spike satisfies t2 ∈ [τ1 + Ts

2 , τ1 + 5Ts
4 ].

Hence, since we assume L
2 > 5Ts

4 , we obtain the inequality
t2 ≤ τ1 + 5Ts

4 < τ1 + L
2 . This guarantees that in a region

(τ1, τ1 + L
2 ) following a Dirac at τ1, there are at least 2 output

samples, namely y(t1) and y(t2), as depicted in Fig. 8.
Then, in the interval I = (t2−L2 , t1), which does not contain

knots of either ϕ(t− t1) or ϕ(t− t2), we can reproduce two
exponentials as described in Section II-B2. Specifically, we
can find coefficients cIm,n such that:
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Fig. 7: Input Dirac located at τ1, filtered input and sinusoidal
reference signal.

2∑
n=1

cIm,nϕ(t− tn) = ejωmt, for m ∈ {0, 1}. (17)

We then define the signal moments sm as follows:

sm =

2∑
n=1

cIm,ny(tn)
(a)
=

2∑
n=1

cIm,n〈x(t), ϕ(t− tn)〉

(b)
=

∫ ∞
−∞

x(t)

2∑
n=1

cIm,nϕ(t− tn)dt

(c)
=

∫ ∞
−∞

x1δ(t− τ1)
2∑

n=1

cIm,nϕ(t− tn)dt

(d)
=

∫
I

x1δ(t− τ1)ejωmtdt = x1e
jωmτ1 = b1u

m
1 ,

(18)

where b1 := x1e
jω0τ1 , u1 := ejλτ1 , the frequencies ωm =

ω0 + λm, for m ∈ {0, 1}, and λ = −2ω0.

Fig. 8: Time encoding of an input Dirac located at τ1 ∈ I , when
L
2
> 5Ts

4
. In the interval I , ϕ(t− t1) and ϕ(t− t2) have no knots.

In these derivations, (a) follows from Eq. (1), (b) from the
linearity of the inner product, and (c) from Eq. (16). Moreover,
(d) holds since t1, t2 ∈ (τ1, τ1 + L

2 ), which means τ1 ∈ I , and
from the local exponential reproduction property of ϕ(t) in
the region I , as given in Eq. (17).

The unknowns {b1, u1} can be uniquely retrieved from the
signal moments, as follows: b1 = s0 and u1 = s1

s0
. More

generally, the parameters {b1, u1} can also be found using the
annihilating filter method [46], also known as Prony’s method
[38] (see Appendix A). Then, we get the Dirac’s amplitude
and location, using b1 = x1e

jω0τ1 and u1 = ejλτ1 .

B. Estimation of a Stream of Diracs
Let us now consider the case of a stream of Diracs:

x(t) =
∑
k

xkδ(t− τk). (19)

Proposition 2. Let the sampling kernel ϕ(t) be a second-
order E-spline of support of length L, defined as in Eq. (12),
with ω1 = −ω0 and 0 < ω0 ≤ π

L . The filter ϕ(t) and its
non-uniform shifts can reproduce the exponentials ejω0t and
ejω1t as in Eq. (13). In addition, suppose that the reference
signal g(t) = A cos(wst) of the comparator has amplitude
A > |xk|, ∀k and period Ts <

2L
5 , and that the minimum

spacing between consecutive Diracs is larger than L. Then,

the timing information {t1, t2, ..., tN} provided by the device
shown in Fig. 1 is a sufficient representation of a stream of
Diracs as in Eq. (19).

Proof. The input stream of Diracs can be sequentially esti-
mated as follows. The first Dirac x1δ(t− τ1) can be uniquely
estimated using the first two non-zero samples y(t1) and y(t2),
as presented in Section III-A. Once we know τ1, we retrieve
the first two non-zero samples y(tn) and y(tn+1) located
after τ1 + L, and use these to estimate the second Dirac
x2δ(t − τ2). We then sequentially retrieve the next Dirac
using the first two non-zero samples located after τ2 + L,
as illustrated in Fig. 9. In what follows we show that once
x1δ(t−τ1) has been estimated, we can use y(tn) and y(tn+1)
to estimate the second Dirac in the stream. Since we assume
that the separation between input Diracs is larger than the
length L of the kernel’s support, then the location τ2 of the
second Dirac satisfies τ1 + L < τ2 < tn. Moreover, provided
the period of the comparator’s signal satisfies Ts < 2L

5 ,
Bolzano’s intermediate value theorem [45] guarantees that
y(tn), y(tn+1) ∈ (τ2, τ2+L

2 ), as previously outlined in Section
III-A. Then, the interval I = (tn+1− L

2 , tn) contains no knots
of either ϕ(t − tn) or ϕ(t − tn+1), and perfect exponential
reproduction can be achieved. Hence we can compute the
signal moments using similar derivations as in Eq. (18):

sm = cIm,ny(tn) + cIm,n+1y(tn+1) = x2e
jωmτ2 .

Finally, we can estimate x2 and τ2 from sm, using Prony’s
method. Once the second Dirac has been estimated, we use
subsequent non-uniform output samples after τ2 + L in order
to sequentially retrieve the next Diracs.

The time encoding of the stream of Diracs is depicted in
Fig. 9. Here, the filter is a second-order E-spline, of support
length L = 2, which can reproduce the exponentials e±j

π
3 t.

The frequency of the comparator’s test signal is fs = 1.26 >
5

2L and the separation between Diracs is at least L = 2. The
amplitudes and locations of the estimated Diracs are exact to
numerical precision.

Fig. 9: Sampling of a stream of Diracs using the crossing TEM.
The input signal, filtered input and sinusoidal reference signal are
depicted in the top plot, and the output non-uniform samples in the
bottom plot. The output samples used to retrieve each Dirac in the
input stream are highlighted in red.

C. Multi-channel Estimation of Bursts of Diracs
Let us now consider a sequence of bursts of K Diracs:

x(t) =
∑
b

K∑
k=1

xb,kδ(t− τb,k), (20)
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where the amplitudes xb,k in the same burst b have the same
sign and satisfy |xb,k| < Amax.

Proposition 3. Let us consider a system of M ≥ K TEM
devices as in Fig. 1.The filter ϕ(t) of the mth TEM is a second-
order E-spline whose support has length L, and which can
reproduce two different exponentials, ejωm0 t and ejωm1 t, with
ωm0

= ω0 + λm, λ = −2ω0

2M−1 , 0 < ω0 ≤ π
L , ωm1

= −ωm0
,

and m = 0, 1, ...,M − 1. Furthermore, suppose the reference
signal g(t) = A cos(wst) has amplitude A > KAmax and
period Ts < 2L

7 . In addition, let us assume the spacing
between consecutive bursts is larger than L, and the maximum
separation between the last and first Dirac in any burst b
satisfies τb,K − τb,1 < Ts

2 . Then, the timing information
t1,m, t2,m, ..., tN,m for m = 0, 1, ...,M − 1 provided by M
devices as in Fig. 1 is a sufficient representation of bursts of
K Diracs as in Eq. (20).

Proof. See Appendix B.

We summarize the results in this section by showing pos-
sible choices of the hyperparameters of the crossing TEM,
and how they influence the density of output samples. This
relationship is presented in Table I, for the case of a sequence
of bursts of K Diracs. Here, M is the minimum number
of channels, P is the order of the sampling kernel for each
channel, L is the length of the support of the sampling
kernel and fmins the minimum frequency of the comparator’s
sinusoidal reference. The table shows both the average sample
density, as well as the ideal sample density1 required for
perfect estimation of each of the bursts of K Diracs.

TABLE I: Choice of hyperparameters of the crossing TEM for
reconstructing bursts of K Diracs.

K M P L fmins Ideal sample
density

(samples/s)

Sample
density

(samples/s)

1 1 2 2 sec 5
2L

= 1.25 Hz 2
L+ε

2fs = 2.5

2 2 2 2 sec 7
2L

= 1.75 Hz 4
L+ε

2Mfs = 7

4 4 2 2 sec 7
2L

= 1.75 Hz 8
L+ε

2Mfs = 14

We conclude this section by making the observation that the
number of redundant samples of the crossing TEM is large,
since samples are recorded even when the input is zero. In this
case, output samples are recorded at the time instants when
the sinusoidal reference signal crosses zero. In what follows,
we aim to use the same decoding framework, however with a
more efficient acquisition device, the integrate-and-fire TEM.

IV. PERFECT RECOVERY FROM TIMING INFORMATION
OBTAINED WITH AN INTEGRATE-AND-FIRE TEM

We now shift our focus on the integrate-and-fire TEM in
Fig. 3. In particular, we show how to perfectly estimate an
input Dirac, and extend this method to streams and bursts of
Diracs, streams of pulses as well as piecewise constant signals.

1The ideal sample density is computed under the assumption that two samples
are necessary to reconstruct one Dirac and that on average there are K Diracs
in an interval L+ ε with ε > 0.

The retrieval of these signals from their timing information is
perfect, provided the threshold of the trigger comparator is
small enough to ensure a sufficient density of output samples.
As it will become evident in Section VI, an important feature
of the integrate-and-fire model is that it can be more efficient
than the comparator or a system based on uniform sampling,
in the case of input signals with a small number of Diracs,
because it leads to a smaller number of samples.
A. Estimation of an Input Dirac
Proposition 4. Let the sampling kernel ϕ(t) be a second-order
E-spline of support of length L, defined as in Eq. (12), with
ω1 = −ω0 and 0 < ω0 ≤ π

L . The filter ϕ(t) and its non-
uniform shifts can reproduce the exponentials ejω0t and ejω1t

as in Eq. (13). In addition, suppose that the trigger mark of
the comparator satisfies:

0 < CT <
Amin
3

∫ L
2

0

ϕ(−t)dt,

where Amin is the absolute minimum amplitude of the Dirac.
Then, the timing information {t1, t2, ..., tN} provided by the
integrate-and-fire TEM in Fig. 3 is a sufficient representation
of an input Dirac as in Eq. (16).

Proof. We will prove that the upper bound on CT guarantees
that the integrated filtered input y(t) = x1ϕ(τ1 − t) reaches
the trigger mark at least three times in the interval (τ1, τ1+ L

2 ).
We will then show how we can use the second and third output
samples y(t2) and y(t3) to perfectly estimate the input Dirac,
given that the integrated filtered input has no discontinuities
in the interval (τ1, τ1 + L

2 ).
First, we note that:∫ L

2

0

ϕ(−t)dt =
∫ τ1+L

2

τ1

ϕ(τ1 − t)dt
(a)
=

1

ω2
0

[1− cos(ω0
L

2
)], (21)

where (a) follows from Eq. (12), given α0 = −jω0, α1 =
−jω1 and ω1 = −ω0.

Then, we assume for simplicity that the Dirac’s amplitude
satisfies x1 > 0 and re-write the upper bound on CT as:

3CT < Amin

∫ L
2

0

ϕ(−t)
(b)
<

∫ τ1+L
2

τ1

x1ϕ(τ1 − t)dt, (22)

where (b) follows from Eq. (21).
Furthermore, from Eq. (2) and (4), we know that:

3CT =

∫ t3

τ1

f(t)dt
(c)
=

∫ t3

τ1

x1ϕ(τ1 − t)dt, (23)

where (c) follows from Eq. (3) and given the input signal is
x(t) = x1δ(t− τ1).

Then, from Eq. (22) and Eq. (23), we obtain the inequality:∫ t3

τ1

x1ϕ(τ1 − t)dt <
∫ τ1+L

2

τ1

x1ϕ(τ1 − t)dt. (24)

Using the hypothesis ω1 = −ω0, together with Eq. (12), we
obtain ϕ(τ1 − t) = sin(ω0(t−τ1))

ω0
, for t ∈ (τ1, τ1 + L

2 ). Given
the assumption 0 < ω0 ≤ π

L , we get 0 ≤ ω0(t− τ1) ≤ π
2 and

therefore, sin(ω0(t − τ1)) > 0 for t ∈ (τ1, τ1 + L
2 ). Hence,

since ϕ(τ1− t) is positive in the range (τ1, τ1 + L
2 ) and using

Eq. (24), we get that t3 < τ1 + L
2 .

As a result, the locations of the first non-uniform output
samples satisfy t1, t2, t3 ∈ (τ1, τ1 + L

2 ), and can be computed
using Eq. (8) and Eq. (7) as follows:

y(t1) =

∫ t1

τ1

f(t)dt = 〈x(t), (ϕ ∗ qθ1)(t− τ1)〉,
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y(t2) = 〈x(t), (ϕ ∗ qθ2)(t− t1)〉, (25)
y(t3) = 〈x(t), (ϕ ∗ qθ3)(t− t2)〉, (26)

for θ1 = t1 − τ1, θ2 = t2 − t1 and θ3 = t3 − t2.
Furthermore, since ϕ(t) is a second-order E-spline which

can reproduce the exponentials ejω0t and ejω1t as in Eq. (12),
and given the definition of qθn(t) in Eq. (6), we have that:

(ϕ ∗ qθ1)(t− τ1) =
1

ω0(ω0 − ω1)
[(e−jω0t1 − e−jω0τ1)ejω0t

+ (e−jω1t1 − e−jω1τ1)ejω1t],

for t ∈ (t1 − L
2 , t1).

Similarly:
(ϕ ∗ qθ2)(t− t1) =

1

ω0(ω0 − ω1)
[(e−jω0t2 − e−jω0t1)ejω0t

+ (e−jω1t2 − e−jω1t1)ejω1t],

for t ∈ (t2 − L
2 , t2), and

(ϕ ∗ qθ3)(t− t2) =
1

ω0(ω0 − ω1)
[(e−jω0t3 − e−jω0t2)ejω0t

+ (e−jω1t3 − e−jω1t2)ejω1t],

for t ∈ (t3 − L
2 , t3).

The shifted kernel (ϕ ∗ qθ1)(t− τ1) depends on the Dirac’s
location τ1, and hence its shape cannot be determined a-priori.
On the other hand, the shifted kernels (ϕ ∗ qθ2)(t − t1) and
(ϕ∗ qθ3)(t− t2) are independent of τ1 and can be written as a
linear combination of the exponentials ejω0t and ejω1t, for t ∈
(t3− L

2 , t1). Therefore, in the interval I = (t3− L
2 , t1), where

there are no knots of either the shifted kernel (ϕ∗ qθ2)(t− t1)
or (ϕ ∗ qθ3)(t− t2), we can use the proof in Section II-B2 to
find the unique coefficients cIm,2 and cIm,3 such that:

3∑
n=2

cIm,n(ϕ ∗ qθn)(t− tn−1) = ejωmt, (27)

for m ∈ {0, 1} and t ∈ (t3 − L
2 , t1).

Then, we can define the signal moments as:

sm =

3∑
n=2

cIm,ny(tn)
(d)
= x1

3∑
n=2

cIm,n(ϕ ∗ qθn)(τ1 − tn−1)

(e)
= x1e

jωmτ1 , for m ∈ {0, 1}.

(28)

In the derivations above, (d) follows from Eq. (16), (25)
and (26), and (e) follows from τ1 ∈ (t3− L

2 , t1) which is true
given Eq. (24), and since the property in Eq. (27) holds within
(t3 − L

2 , t1). Finally, using Prony’s method we can uniquely
estimate parameters x1 and τ1, from the two signal moments
sm given by Eq. (28), for m ∈ {0, 1} and ω1 = −ω0.

B. Estimation of a Stream of Diracs
Proposition 5. Let the sampling kernel ϕ(t) be a second-
order E-spline of support of length L, defined as in Eq. (12),
with ω1 = −ω0 and 0 < ω0 ≤ π

L . The filter ϕ(t) and its
non-uniform shifts can reproduce the exponentials ejω0t and
ejω1t as in Eq. (13). In addition, assume that the minimum
separation between consecutive Diracs is L and the trigger
mark of the comparator satisfies:

0 < CT <
Amin

4ω2
0

[1− cos(ω0
L

2
)], (29)

where Amin is the absolute minimum amplitude of any Dirac
in the input signal.

Then, the timing information {t1, t2, ..., tN} provided by the
integrate-and-fire TEM in Fig. 3 is a sufficient representation
of a stream of Diracs as in Eq. (19).

Proof. The first Dirac δ1 = x1δ(t − τ1) can be correctly
estimated using the method in Section IV-A, since Eq. (29)
satisfies the requirements of Proposition 4. Then, suppose
we aim to estimate the second Dirac in the input signal,
and let us assume for simplicity that its amplitude satisfies
x2 > 0. Moreover, let us denote the output spike locations
in the interval (τ1, τ1 + L) with t1, t2, ..., tn−1, and the time
information after τ1 +L with tn, tn+1, ..., tN . Then, given the
hypothesis that the minimum separation between consecutive
Diracs is L, the location of the second Dirac must satisfy
τ2 ∈ (τ1 + L, tn). We also have that:∫ τ2+L

2

τ2

f(τ)dτ =

∫ τ2+L
2

τ2

x2ϕ(τ2 − τ)dτ
(a)
=
x2

ω2
0

[1− cos(ω0
L

2
)],

where (a) follows from Eq. (12), for ω1 = −ω0.
This shows the upper bound in Eq. (29) is equivalent to:

4CT <

∫ τ2+L
2

τ2

f(τ)dτ. (30)

Furthermore, we have that:∫ tn+2

τ2

f(τ)dτ =

∫ tn+2

tn−1

f(τ)dτ −
∫ τ2

tn−1

f(τ)dτ

(b)
= 3CT −

∫ τ2

tn−1

f(τ)dτ
(c)
< 4CT ,

(31)

where (b) follows from Eq. (2), and (c) holds since tn−1 and
tn are consecutive output spikes, and tn > τ2 > tn−1.

As a result, Eq. (30) and (31) give the following inequality:∫ tn+2

τ2

f(τ)dτ <

∫ τ2+L
2

τ2

f(τ)dτ. (32)

As shown in Section IV-A, the sampling kernel satisfies
ϕ(t) > 0 for x2 > 0, within the interval (τ2, τ2 + L

2 ). This
means that the inequality in Eq. (32) is equivalent to tn+2 <
τ2+ L

2 , which guarantees that the output samples yn, yn+1 and
yn+2 occur in the time interval (τ2, τ2 + L

2 ). Using the model
of Fig. 3, we compute these non-uniform output samples as:

y(tn) = yn =

∫ τ1+L

tn−1

x1ϕ(τ1 − τ)dτ +

∫ tn

τ2

x2ϕ(τ2 − τ)dτ,

y(tn+1) = yn+1 =

∫ tn+1

tn

x2ϕ(τ2 − τ)dτ,

y(tn+2) = yn+2 =

∫ tn+2

tn+1

x2ϕ(τ2 − τ)dτ.

The sample y(tn) contains information of both δ1 and δ2,
and hence cannot be used for estimation of the latter Dirac.
On the other hand, since tn+1, tn+2 ∈ (τ2, τ2+ L

2 ), we can use
the samples yn+1 sand yn+2 to compute the signal moments
as in Section IV-A:

sm = cm,1yn+1 + cm,2yn+2 = x2e
jωmτ2 , for m ∈ {0, 1}.

Once δ2 is estimated from sm using Prony’s method, we
use the non-uniform output samples after τ2 + L, in order to
sequentially retrieve the next Diracs in the input signal.

The sampling and reconstruction of a stream of K = 3
Diracs of minimum absolute amplitude Amin = 1 are depicted
in Fig. 10. Here, the filter is a second-order E-spline, of
support of length L = 2, which can reproduce the exponentials
e±j

π
3 t, and the comparator’s trigger mark is CT = 0.11, which

satisfies Eq. (29). Fig. 10(b) shows the filtered input and the
output of the integrator. The amplitudes and locations of the
estimated Diracs are exact to numerical precision. Finally, in
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Fig. 10(c) we observe that there are no output spikes in a
region where the input signal is constant (zero), which leads
to small average density of samples.

Fig. 10: Sampling of a stream of Diracs using the integrate-and-fire
TEM. The input is shown in (a), the filtered input in (b), the output
non-uniform samples in (c), and the reconstructed signal in (d).
C. Estimation of a Stream of Pulses

Let us now consider a stream of pulses of the form x(t) ∗
g(t), where x(t) is defined in Eq. (19) and the support of g(t)
is [−ε, ε]. Filtering this signal with the second-order E-spline
ϕ(t) is equivalent to filtering the stream of Diracs x(t) with the
kernel (ϕ∗g)(t). As a case in point, let us consider the cosine-
squared pulse g(t) = cos2(t), and assume that 2ε < L

2 , where
L is the length of the filter’s support. In addition, suppose
we want to estimate the first pulse (x1 ∗ g)(t) in the stream
x(t)∗g(t) and denote its timing information with t1, t2, ..., tN .
The first three output samples can be computed as follows:

y(t1) =

∫ t1

τ1

f(t)dt = 〈x1(t), (ϕ ∗ g ∗ qθ1)(t− τ1)〉,

y(t2) = 〈x1(t), (ϕ ∗ g ∗ qθ2)(t− t1)〉, (33)
y(t3) = 〈x1(t), (ϕ ∗ g ∗ qθ3)(t− t2)〉, (34)

where x1(t) = x1δ(t−τ1) is the first Dirac in the stream x(t)
with x1 > 0, θ1 = t1 − τ1, θ2 = t2 − t1 and θ3 = t3 − t2.

Assuming 2ε < L
2 we can leverage the results in Eq. (14)

to show that in the interval (ε− L
2 ,−ε), we get (ϕ ∗ g)(t) =

Aeα0t+Beα1t, for some constants A and B. Then, in the inter-
val (t2− L

2 +ε, t1−ε), the function (ϕ∗g∗qθ2)(t−t1) can also
be expressed as a linear combination of the exponentials eα0t

and eα1t. Similarly, (ϕ∗g∗qθ3)(t−t2) is a linear combination
of the same exponentials in the interval (t3− L

2 +ε, t2−ε). As
a result, in the knot-free interval I = (t3 − L

2 + ε, t1 − ε), we
can perfectly reproduce two exponentials as in Eq. (15), using
the shifted kernels (ϕ∗g∗qθn+1

)(t−tn), for n = 1, 2. We can
then compute two signal moments as in Eq. (28), and retrieve
the amplitude and location of the first Dirac x1δ(t−τ1) in the
stream x(t) using Prony’s method.

In order for these derivations to hold we need to ensure that
τ1 ∈ I , or in other words that t1 > τ1 +ε and t3 < τ1 + L

2 −ε.
Since the filtered input corresponding to the first pulse satisfies
x1(ϕ ∗ g)(τ1 − t) > 0, for t ∈ (τ1 − ε, τ1 + L + ε) and
x1(ϕ ∗ g)(−t + τ1) = 0 otherwise, the condition t1 > τ1 + ε
holds provided the trigger mark of the comparator satisfies:

CT >

∫ τ1+ε

τ1−ε
(ϕ ∗ g)(τ1 − t)dt =

∫ ε

−ε
(ϕ ∗ g)(−t)dt. (35)

Using the same reasoning as in Section IV-B, the condition
t3 < τ1 + L

2 − ε holds provided:

CT <
Amin
4

∫ L
2
−ε

−ε
(ϕ ∗ g)(−t)dt, (36)

where Amin is the minimum amplitude of the Diracs in x(t).
We also note that in order for Eq. (35) and (36) to be simul-

taneously satisfied, we need to impose additional constraints
on ε, such that:∫ ε

−ε
(ϕ ∗ g)(−t)dt < 1

4

∫ L
2
−ε

−ε
(ϕ ∗ g)(−t)dt.

Finally, once the first pulse centered around τ1 has been
estimated, and assuming a minimum separation between con-
secutive pulses of at least L + 2ε (which is the length of the
support of (ϕ ∗ g)(t)), we can use subsequent samples after
τ1 +L+ 2ε to retrieve the next pulse (x2 ∗ g)(t) in the input.

The sampling and perfect retrieval of a stream of cosine-
squared pulses are depicted in Fig. 11, for CT = 0.8.

Fig. 11: Sampling of a stream of pulses using the integrate-and-fire
TEM. The input is shown in (a), the non-uniform samples used for
retrieval of the first pulse in (b), and the reconstructed signal in (c).

D. Multi-channel Estimation of Bursts of Diracs

Let us now consider the estimation of a sequence of bursts
of Diracs as in Eq. (20). This problem is equivalent to the
estimation of a stream of Diracs, however, this time, the
K Diracs can be arbitrarily close to each other. Therefore,
the estimation of a burst of K Diracs involves retrieving
a larger number of moments (at least 2K) to accurately
retrieve the Diracs. We employ a multi-channel scheme of
M ≥ K different acquisition devices, each of which will help
us compute 2 different signal moments. We will show that it is
sufficient to record 2 output samples for each channel in order
to perfectly reconstruct each burst in the input signal, and that
the trigger mark of the threshold detector can be adjusted to
ensure these output samples are located suitably close to the
input burst of Diracs. Specifically, we need to ensure that the 2
samples we use for estimation have contributions from all the
K Diracs, and hence, occur after the last Dirac in the burst.

Proposition 6. Let us consider a system of M ≥ K TEM
devices as in Fig. 3. The filter ϕ(t) of the mth TEM is a
second-order E-spline whose support has length L, and which
can reproduce two different exponentials, ejωm0 t and ejωm1 t,
with ωm0

= ω0 + λm, λ = −2ω0

2M−1 , 0 < ω0 ≤ π
L , ωm1

=
−ωm0

, and m = 0, 1, ...,M − 1. Moreover, let us assume
the spacing between consecutive bursts is larger than L, and
the maximum separation between the last and first Dirac in
any burst b satisfies τb,K − τb,1 < L

2 . In addition, suppose
that the comparator’s trigger mark CT satisfies the following
conditions for each device m and burst b:

CT >
(K − 1)Amax

ω2
m0

[1− cos(ωm0(τb,K − τb,1))], (37)

CT <
KAmin

5ω2
m0

[1− cos(ωm0(
L

2
− (τb,K − τb,1)))], (38)

where Amax and Amin are the absolute maximum and mini-
mum amplitudes of the input, respectively.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2019.2961301, IEEE
Transactions on Signal Processing

10

Then, the timing information t1,m, t2,m, ..., tN,m for m =
0, 1, ...,M−1 provided by M devices as in Fig. 3 is a sufficient
representation of bursts of K Diracs as in Eq. (20).

Proof. See Appendix C.
Even though we considered the sampling of bursts of Diracs

using a multi-channel system, it is possible under slightly more
restrictive conditions, to achieve the same using a single TEM
device. Therefore, for the sake of completeness, we state the
following result without proof:

Proposition 7. Let us consider the integrate-and-fire TEM
in Fig. 3. Let the sampling kernel ϕP (t) be an E-spline
of order P ≥ 2K and support of length L, which can
reproduce P different exponentials ejωmt, with ωm = ω0+mλ,
m = 0, 1, ..., P − 1, and 0 < ω0 ≤ π

L . In addition, setting
P even and λ = −π

P ensures ϕ(t) is a real-valued function.
In this setting, let us assume the spacing between bursts is
larger than L, and the separation between the last and first
Diracs within any burst b satisfies τb,K−τb,1 < L

P . In addition,
suppose the trigger mark of the comparator CT satisfies:

CT > (K − 1)Amax

∫ ∆b

0

ϕ(−τ)dτ, (39)

CT <
KAmin

P + 3

∫ L
P

0

ϕ(−τ)dτ, (40)

where ∆b = max(τb,K − τb,1).
Then, the timing information {t1, t2, ..., tN} provided by the

integrate-and-fire TEM in Fig. 3 is a sufficient representation
of a sequence of bursts of K Diracs as in Eq. (20).

E. Estimation of Piecewise Constant Signals
Let us now consider a piecewise constant signal x(t), and

assume that we filter this with the derivative of an E-spline
ϕ(t) of order P ≥ 2, obtained using Eq. (11). Filtering x(t)

with dϕ(t)
dt ensures that in a region where the input is constant,

there are no output spikes, since dϕ(t)
dt has average value

equal to zero. This leads to energy-efficient sampling of the
piecewise constant signal, resulting in a small average number
of output spikes. In this setting, the filtered input is given by:

f(t) = x(t) ∗ dϕ(t)
dt

=
dx(t)

dt
∗ ϕ(t).

This shows that filtering a piecewise constant signal x(t)

with dϕ(t)
dt is equivalent to filtering the stream of Diracs

corresponding to the discontinuities of the piecewise constant
signal with the E-spline ϕ(t). The discontinuities of dx(t)

dt can
be estimated from the output spikes, by extending the results
of Proposition 5 to the case of a P -order E-spline ϕP (t), with
P ≥ 2. In this case, the E-spline ϕP (t) of support of length L
can reproduce P ≥ 2 different complex exponentials ejωmt,
with ωm = ω0 + λm. and m = 0, 1, ..., P − 1. Moreover,
choosing λ = −2ω0

P−1 and P even ensures the kernel ϕP (t)
is a real-valued function. As before, the separation between
consecutive Diracs must be larger than L and the trigger mark
of the comparator satisfies:

0 < CT <
Amin

P + 2

∫ L
P

0

ϕP (−τ)dτ. (41)

Suppose we want to estimate the kth discontinuity in dx(t)
dt ,

of amplitude zk and located at τk, and let us denote the
locations of the first output spikes after τk with tn, tn+1, ...tN .
Then, using a similar proof as in Section IV-B, we can show
that the constraint in Eq. (41) guarantees that τk ∈ I =

(tn+P − L
P , tn). Then, we can compute the following signal

moments:

sm =

P∑
i=1

cIm,ny(tn+i)
(a)
= zk

P∑
i=1

cIm,n(ϕP ∗ qθn+i)(τk − tn+i−1)

(b)
= zke

jωmτk , for m = 0, 1, ..., P − 1.

In these derivations, (a) follows from Eq. (7), and (b) holds
given τk ∈ (tn+P − L

P , tn), and the fact that none of the
kernels (ϕP ∗ qθn+i)(τk − tn+i−1) have any discontinuities
in (tn+P − L

P , tn), for i = 1, 2, ..., P . As before, we can use
Prony’s method to estimate zk and τk from the signal moments
sm. Finally, we can retrieve the piecewise constant signal x(t)

once we have estimated its discontinuities dx(t)
dt .

The sampling and reconstruction of a piecewise constant
signal are depicted in Fig. 12. The filter is the derivative of
the fourth-order E-spline, with support length L = 4, as seen
in Fig. 12(b), the separation between input discontinuities is
larger than the length of the kernel’s support as depicted in
Fig. 12(a), and the comparator’s trigger mark is CT = 0.001.
The estimation of the input is exact to numerical precision.

Fig. 12: Sampling of a piecewise constant signal with sufficiently
separated discontinuities, using the integrate-and-fire TEM. The input
is shown in (a), the sampling kernel in (b), the non-uniform samples
used for estimation of the first two input discontinuities in (c), and
the reconstructed signal in (d).

Similarly, the results of Propositions 6 and 7 can be ex-
tended to the case of a piecewise constant signal x(t), where
the discontinuities dx(t)

dt are bursts of arbitrarily close Diracs,
as in Eq. (20). For example, in Fig. 13, we show the time
encoding and perfect decoding of a piecewise constant signal,
with two arbitrarily close discontinuities.

Fig. 13: Sampling of a piecewise constant signal, with arbitrarily
close discontinuities, using the integrate-and-fire TEM. The input is
shown in (a), the non-uniform samples used for estimation of the first
burst of two discontinuities in (b), and the reconstructed signal in (c).

We conclude this section by summarizing possible choices
of hyperparameters in our sampling framework based on an
integrate-and-fire system. Specifically, let us consider the case
of streams of bursts of K Diracs, and discuss the relationship
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between the sampling kernel and the trigger mark of the
comparator, and how these parameters determine the density
of output samples. The sampling kernel is assumed to be the E-
spline given in Eq. (11) of order P , and support length L = P .
Furthermore, the conditions of the trigger mark CT ensure
that the output samples used for reconstruction are located
sufficiently close to the burst of Diracs, and in a region where
the filtered input is continuous. As a result, these conditions
depend on the separation ∆b between the Diracs, as well as on
the location of the knots of the sampling kernel, which in turn
depends on the length of the support of this kernel. Setting
CT to its maximum theoretical value ensures that the number
of samples is minimised.

The choice of the hyperparameters of the integrate-and-fire
TEM is summarised in Table II. Here, a burst of K = 2
Diracs was time encoded using an M -channel system. The
amplitudes of each of the Diracs was chosen uniformly at
random in the interval [1, 2] and the trigger mark CT computed
using Eq. (38). The results were averaged over 100 different
experiments.
TABLE II: Choice of hyperparameters for estimating a burst
of 2 Diracs, using an M -channel integrate-and-fire system.

M P L CmaxT ω0 ∆b Average number of
samples per burst

2 2 2 0.1218 −π
3

0.2 44.8

2 2 2 0.0947 −π
3

0.3 56.21

1 4 4 0.0114 −π
3

0.2 202.24

2 2 2 0.1286 −π
2

0.2 43.25

2 4 4 0.0133 −π
3

0.2 413.3

Finally, we make the remark that only some of the output
samples are used for input reconstruction. For online recon-
struction applications, these are the only samples that need to
be stored. This is depicted in Fig. 14, where we highlight in
red the samples used for reconstruction of each burst of Diracs,
of one of the two channels. Only the second and third output
samples, located at t(1)

2 and t(1)
3 need to be recorded and used

to retrieve the first burst of 2 Diracs. Once the first burst has
been estimated, we record the second and third output samples
after τ2 + L, located at t(2)

2 and t
(2)
3 in order to retrieve the

next burst.

Fig. 14: Time encoding of a sequence of bursts of 2 Diracs, using
an integrate-and-fire system. The input is shown in the top plot, and
the output samples in the bottom plot.

V. GENERALIZED TIME-BASED SAMPLING

To highlight the potential practical implications of the
methods developed in the previous sections, we present here

extensions of our framework to deal with arbitrary kernels and
the noisy scenario, and show that reliable input reconstruction
can be achieved also in these scenarios.

A. Sampling with Arbitrary Kernels
In the previous sections we have presented methods for

perfect retrieval of certain classes of non-bandlimited signals
from timing information. We have seen that these methods
require the sampling kernel ϕ(t) to locally reproduce expo-
nentials, in order to be able to map this problem to Prony’s
method. In reality, however, the sampling kernel may not
have the exponential reproducing property as in Eq. (13). Let
us now consider an arbitrary kernel ϕ̃(t), and find a linear
combination of its non-uniform shifted versions that gives the
best approximation of P exponentials f(t) = ejωmt within
an interval I , for ωm = ω0 + λm, m = 0, 1, ..., P − 1,
and λ = −2ω0

P−1 . In other words, we want to find the optimal
coefficients cIm,n such that:

N∑
n=1

cIm,nϕ̃(t− tn) ≈ ejωmt, (42)

for t ∈ I and n = 1, 2, ..., N , with N being the number of
kernels ϕ̃(t− tn) overlapping I .

We find the coefficients cm,n using the least-squares ap-
proximation method described in [47]. The coefficients are
computed using the orthogonal projection of f(t) onto the
space spanned by the non-uniform shifts ϕ̃(t− tn), such that:

〈f(t)−
N∑
k=1

cIm,kϕ̃(t− tk), ϕ̃(t− tn)〉 = 0, (43)

for t ∈ I and n = 1, 2, ..N .
Furthermore, Eq. (43) is equivalent to:

〈f(t), ϕ̃(t− tn)〉 =
N∑
k=1

cIm,k〈ϕ̃(t− tk), ϕ̃(t− tn)〉,

which represents a system of N equations from which we can
determine the N coefficients cIm,k, for each m = 0, 1, ..., P−1.

We then use the calculated coefficients cIm,k to compute the
signal moments as in Section IV. Finally, the estimation of
the input can be further refined using the Cadzow iterative
algorithm in order to increase the accuracy of the signal
moments, before applying Prony’s method [48], [49].

The sampling and reconstruction of bursts of 2 Diracs are
depicted in Fig. 16. We use the multi-channel estimation
method presented in Section IV-D, where the filter of each
channel is a third order B-spline β3(t), such that the modified
kernel (β3 ∗ qθn)(t) in Eq. (5) cannot reproduce exponentials.
Moreover, we aim to approximately reproduce 4 different
exponentials for each channel, and hence we require a number
of 4 non-uniform samples, as discussed in Section II-B. In
Fig. 15, we depict the approximate exponential reproduction
in Eq. (42), within the interval I = (0.82, 1.4) overlapping the
first burst of Diracs. The mean-squared error of the exponential
reproduction within this interval is 9.47 × 10−13. Finally,
the estimation of the input is close to exact, as depicted in
Fig. 16(c). In particular, the mean-squared error in the time
locations of the Diracs is 2.44× 10−4, and the mean-squared
error in the amplitudes of the Diracs is 2.04× 10−10.
B. Robustness of the Integrate-and-fire TEM to Noise

In many practical circumstances, the input signal is cor-
rupted by noise, which is typically assumed to be white,
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Fig. 15: Approximate exponential reproduction using non-uniform
shifts of the kernel (β3 ∗ qθn)(t). The kernels are shown in (a), and
the exponential reproduction using these shifted kernels in (b).

Fig. 16: Universal sampling of a sequence of bursts of Diracs using
the integrate-and-fire TEM. The input signal is shown in (a), the
output non-uniform samples of one channel used for estimation in
(b), and the reconstructed signal in (c).

additive Gaussian noise. When this happens, the non-uniform
times {tn} change which means that the sequence of moments
sm is also corrupted, and perfect reconstruction may no longer
be possible. Nevertheless, if the noise has average value equal
to 0, it is in part removed by the integrator in the TEM, as a
result of the averaging effect of the integral.

In Fig. 17 we show the reconstruction of a piecewise
constant signal corrupted by white, additive Gaussian noise,
using the method in Section IV-E. The filter is the derivative
of a fourth-order E-spline with support length L = 4 which
can reproduce the exponentials e±j

π
3 t and e±j

π
6 t, the trigger

mark of the comparator is CT = 0.001, the standard deviation
of the noise is σ = 0.1 (SNR= 21.56dB), and the separation
between consecutive discontinuities of the input is larger than
L. The reconstruction of the input from noisy samples is very
accurate. A quantitative analysis of the effect of noise on the
retrieval of this piecewise constant signal is presented in Table
III. The table shows the error of the estimated locations and the
relative error of the estimated amplitudes of the discontinuities
in the input signal, averaged over 10000 experiments.

Fig. 17: Estimation of a piecewise constant signal from noisy samples,
obtained using the integrate-and-fire TEM. The noisy input is shown
in (a), and the reconstruction in (b).

TABLE III: Effect of noise on the estimation of a piecewise
constant signal, from spikes obtained using the integrate-and-
fire TEM. The error εt is the average absolute difference
between the true and estimated locations, εA is the relative
error of the estimated amplitudes of the input discontinuities
and SER is the signal-to-error-ratio, for amplitude estimation.

SNR(dB) σ εt εA SER(dB)
43.33 0.01 2.61× 10−4 6.21× 10−5 43.11
29.63 0.05 0.0015 2.1509× 10−4 24.59
23.38 0.1 0.0042 0.0026 22.83

In Fig. 18 we show the reconstruction errors, for the case
of a stream of Diracs, for different SNR values, averaged over
1000 experiments. Here, the input signal is corrupted by white,
additive Gaussian noise, and the sampling kernel is a second-
order E-spline whose support has length L = 2, defined as
in Eq. (12), for α0 = −α1 = j π3 . When SNR= 20dB, the
amplitude mean-squared error is 1.17 × 10−3 and the mean-
squared error in time locations is 2.5×10−3. Finally, in Fig. 19
we depict the estimation of an input stream of Diracs corrupted
by noise, from its timing information, when SNR= 10dB.

Fig. 18: Left: Average mean-squared errors in estimated time lo-
cations and amplitudes of a stream of Diracs corrupted by white,
additive Gaussian noise; Right: Average signal-to-error ratio (SER)
along signal-to-noise ratio, for amplitude estimation.

Fig. 19: Estimation of a stream of Diracs from noisy samples,
obtained using the integrate-and-fire TEM. For SNR= 10dB, the
noisy input is shown in (a), the filtered input and output of integrator
in (b), and the reconstruction in (c).

C. Time Encoding and Decoding of Bursts of Diracs of
Arbitrary Signs

In Section IV-D we presented sufficient conditions for
perfect retrieval of bursts of Diracs defined as in Eq. (20).
These conditions rely on various assumptions, including that
the amplitudes xb,k of the Diracs xb,kδ(t− τb,k) in the same
burst b, have the same sign. In reality, this assumption may
not always hold, and in this section we empirically show that
the reconstruction framework presented in this paper usually
performs well also when the amplitudes of the Diracs in the
same burst have opposite signs. We consider the estimation
of a burst of 2 Diracs from its time encoded information
using a 2-channel approach. We assume that the filter of each
channel is a second-order E-spline defined as in Eq. (12) with
support length L = 2. We denote the output information
of channel 1 with t1,1, t2,1, ..., tN,1, and that of channel 2
with t1,2, t2,2, ..., tN,2. We assume that the amplitudes of these
Diracs are distributed as Gaussian variables, of mean µ = 0
and variance σ = 1.

The decoding scheme presented in Section IV-D showed
that we can reliably use the samples y(t3,1), y(t4,1) of the first
channel and y(t3,2), y(t4,2) of the second channel, in order to
perfectly retrieve an input burst of 2 Diracs of same sign. The
sufficient conditions on the trigger mark of the integrator given
in Eq. (37) and (38) ensure that these samples are located
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after the second Dirac at τ2. Here, we choose CT below
its minimum theoretical value given in Eq. (37), in order to
ensure a sufficient number of output samples is obtained, even
when the two Diracs in the input have opposite signs and
are located closely to each other. However, when lowering
CT , the samples y(t3,1), y(t4,1) and y(t3,2), y(t4,2) are not
guaranteed to occur after τ2, and hence, may not be reliably
used for reconstruction of both Diracs. Therefore, we adjust
the reconstruction scheme as follows. Using y(t2,1), y(t3,1) of
the first channel and y(t2,2), y(t3,2) of the second channel we
compute the signal moments sm as described in Appendix C
and then build matrix S as in Appendix A. If the rank of the
matrix S is 1, then t3,1 < τ2 and t3,2 < τ2. Hence, we can use
y(t2,1), y(t3,1) to estimate the first Dirac x1δ(t−τ1). Once the
first Dirac has been estimated, we remove its contribution from
the output spikes, and use the next non-zero samples in order
to estimate the second Dirac x2δ(t−τ2). Otherwise, if the rank
of matrix S is 2, then at least for one of the channels i, we get
ti,3 > τ2. As a result of the similarity between the sampling
kernels of the two channels, it is likely that ti,3 > τ2 for both
i = 1 and i = 2. In other words, the samples y(t4,1), y(t5,1)
and y(t4,2), y(t5,2) are likely to have contributions from both
Diracs and hence, we can use the method in Section IV-D to
estimate the burst. In Table IV we show the probability of
correct estimation of the 2 Diracs, against different values of
∆b and trigger mark CT , averaged over 1000 experiments. The
results show that we still achieve perfect reconstruction in most
cases. The reconstruction typically fails when the number of
samples required for estimation is not achieved (for example,
when the amplitudes of the Diracs are very small or when they
have similar magnitudes, but opposite signs).
TABLE IV: Probability of perfect reconstruction of a burst of
2 Diracs, with random Gaussian amplitudes.

∆b = τ2 − τ1 CT P{perfect estimation}
0.05 0.01 0.950
0.1 0.01 0.959
0.5 0.001 0.959
1.5 0.001 0.978

VI. DENSITY OF NON-UNIFORM SAMPLES OBTAINED
WITH AN INTEGRATE-AND-FIRE TEM

In the previous sections, we have presented techniques for
estimation of non-bandlimited signals from timing informa-
tion. We have seen that perfect estimation can be achieved
using simple algorithms, and physically realisable kernels. In
this section we outline the fact that in many settings sampling
based on timing using our integrate-and-fire system is an
efficient way to acquire signals, resulting in a smaller density
of samples, compared to classical sampling.

As a case in point we consider the retrieval of bursts of K
Diracs, described in Section IV-D. We have seen that perfect
reconstruction from timing information can be achieved, pro-
vided the separation between consecutive bursts is at least L,
and that the Diracs within any burst are sufficiently close. In
particular, let us denote the maximum separation between the
last and first Dirac within a burst with ∆ = max(τK − τ1) <
L
2 , which can be determined according to Eq. (37) and (38).
Moreover, let us assume the input is sufficiently sparse, such
that the average separation between consecutive bursts is L+S,

with S > 0. Under these assumptions, the results in [6]
show that in order to retrieve the K Diracs from uniform
samples, we need at least 2K samples within the interval
L−∆ following the burst of Diracs. As a result, the uniform
sampling period must satisfy T ≤ L−∆

2K . Then, the number
of uniform samples we record within an interval of length
L + S is L+S

T = 2K(L+S)
L−∆ . On the other hand, in the case

of time encoding using the integrate-and-fire TEM in Fig. 3,
the results in Section IV-D show that we need to record 4
output samples for each of the K channels (or equivalently,
4K samples for the case of single-channel sampling), for
each burst of K Diracs. We note that Eq. (38) shows that
in many situations, the TEM outputs more than 4 spikes per
channel. Nevertheless, these samples can be discarded since
they are not used in estimation. For example, one way to stop
recording spikes once we have obtained 4 non-zero samples,
is to increase the trigger mark CT of the comparator in Fig. 3,
for a duration of L−∆.

Moreover, when the input is constant (zero), the integrate-
and-fire TEM does not fire, and hence there are no output
samples. Therefore, in an interval of size L + S, the number
of stored samples from a K-Dirac burst is 4K, ∀S.

Furthermore, 2K(L+S)
L−∆ > 4K for S ≥ L−2∆ > 0 and ∀K,

which shows that the average number of non-uniform spikes
required for the retrieval of K Diracs is lower than the number
of uniform samples required to estimate the same number of
free input parameters, when the input is sufficiently sparse.

VII. CONCLUSIONS

In this work we established time encoding as an alterna-
tive sampling method for some classes of signals that are
neither bandlimited, nor belong to shift-invariant subspaces.
The proposed sampling scheme is based on first filtering
the input signal, before retrieving the timing information
using a crossing or integrate-and-fire TEM. We demonstrated
sufficient conditions for the exact recovery of streams of
Diracs, streams of pulses and piecewise constant signals,
from their time-based samples. Central to our reconstruction
methods is the use of specific filters that we proved can locally
reproduce polynomials or exponentials. We further highlighted
the potential of this new framework by showing that it is
resilient to noise and that it can handle non-ideal filters.
Finally, the diverse applications of previous results of finite
rate of innovation theory [8], [32]–[34] also serve as evidence
for the potential for real-world applications of the theoretical
framework developed in this paper.

APPENDIX A
PRONY’S METHOD

One way to solve the problem of estimating the parameters
{bk, uk}Kk=1 from the sequence sm =

∑K
k=1 bku

m
k is given

by the annihilating filter method, also referred to as Prony’s
method [38]. The name of this approach comes from the
observation that if we filter sm with a filter which has zeros
at {uk}Kk=1, the output is zero, or in other words, this filter
annihilates the sequence sm.

The z-transform of the annihilating filter satisfies:

H(z) =

K∑
m=0

hmz
−m =

K∏
k=1

(1− ukz−1), (44)
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which evaluates to zero when z = uk.
Filtering the sequence sm with hm corresponds to the

convolution of these sequences:

hm ∗ sm =

K∑
l=0

hlsm−l =

K∑
k=1

bku
m
k

K∑
l=0

hlu
−l
k

(a)
= 0, (45)

where (a) holds since z = uk gives H(z) = 0 in Eq. (44).
Eq. (45) can be written in matricial form as follows:

sK sK−1 · · · s0

sK+1 sK · · · s1

...
...

. . .
...

s2K−1 s2K−2 · · · sK−1




1
h1

...
hK

 = Sh = 0. (46)

It can be shown that provided {bk}Kk=1 are non-zero and
{uk}Kk=1 are distinct, matrix S has full row rank K, which
means the solution h given by Eq. (46) is unique. Moreover,
the solution h can be obtained by performing a singular
value decomposition of S, where h is the singular vector
corresponding to the zero singular value.

Then, once the coefficients hm of the polynomial H(z) are
known, the parameters {uk}Kk=1 are obtained from the roots
of this filter. Finally, once {uk}Kk=1 are found, the parameters
{bk}Kk=1 can be computed from the linear system of K equa-
tions given by sm =

∑K
k=1 bku

m
k , with m = 0, 1, ...,K − 1.

APPENDIX B
A. Proof of Proposition 3

For simplicity, let us assume the number of devices equals
the number of Diracs in a burst, i.e. M = K. Suppose
we want to estimate the Diracs in the first burst, located
at τ1,1, ...., τ1,K . Moreover, assume for simplicity that their
amplitudes satisfy x1,1, ..., x1,K > 0. In addition, let us
consider the output of the mth TEM device, and denote its
timing information with {t1, t2, ..., tN}.

Since we assume all the amplitudes in the first burst satisfy
0 < x1,k < Amax, and since 0 ≤ ϕ(t) < 1, we get 0 ≤ y(t)

and y(t) =
∑K
k=1 xkϕ(τk − t) < KAmax < A = max(g(t)).

Then, Bolzano’s intermediate value theorem [45] guarantees
that the mth TEM outputs at most one sample in the interval
(τ1,1, τ1,K), given the assumption τ1,K − τ1,1 < Ts

2 , and the
fact that 0 ≤ y(t) < max(g(t)). At the same time, this
theorem also guarantees that the filtered input y(t) crosses
the sinusoidal reference signal in at least 3 points, within the
window (τ1,1, τ1,1+ 7Ts

4 ), such that t3−τ1,1 ≤ 7Ts
4 . Moreover,

the assumption Ts ≤ 2L
7 ensures that t3 − τ1,1 ≤ L

2 . Hence,
whilst the spike at t1 may occur before τ1,K , the second and
third spikes satisfy t2, t3 ∈ (τ1,K , τ1,1 + L

2 ), which means that
τ1,1, τ1,2, ...τ1,K ∈ (t3 − L

2 , t2).
Since in the interval I = (t3 − L

2 , t2) there are no knots of
either ϕ(t − t2) or ϕ(t − t3), we can compute the following
signal moments for the mth channel:

smi =

3∑
n=2

cImi,ny(tn)
(a)
=

3∑
n=2

cImi,n〈x(t), ϕ(t− tn)〉

(b)
=

∫ ∞
−∞

x(t)

3∑
n=2

cImi,nϕ(t− tn)dt
(c)
=

∫ ∞
−∞

x(t)ejωmi tdt

(d)
=

∫
I

K∑
k=1

x1,kδ(t− τ1,k)ejωmi tdt =
K∑
k=1

x1,ke
jωmiτ1,k .

where i ∈ {0, 1}, and ωm0
= ω0 + λm and ωm1

= −ωm0
.

In the derivations above, (a) follows from Eq. (1), (b)
from the linearity of the inner product, and (c) from the
local exponential reproduction property of the sampling kernel
described in Eq. (13), for N = 2. Moreover, (d) follows from
Eq. (20), and given that τ1,1, τ1,2, ...τ1,K ∈ (t3 − L

2 , t1).
By using the same approach on each of the K channels,

we can retrieve 2K different moments and, due to the specific
choice of exponents, the 2K moments can be expressed as:

sp =

K∑
k=1

x1,ke
jω0τ1,kejλpτ1,k =

K∑
k=1

bku
p
k,

where bk = ejω0τ1,k , uk = ejλτ1,k , and p = 0, 1, ..., 2M − 1.
We can then apply Prony’s method on sp to retrieve the K

amplitudes and the K locations of the Diracs. Finally, we use
subsequent output samples, located after τ1,K + L to retrieve
the free parameters of the Diracs in the second burst, and we
reiterate the process for the following bursts.

The sampling and reconstruction of a sequence of bursts of
2 Diracs are depicted in Fig. 20. Here, the sampling kernel is
a second-order E-spline for each channel, of support of length
L = 2, shown in Fig. 20(c) and (d). The first channel’s kernel
reproduces the exponentials e±j

π
3 t, whereas the second kernel

reproduces e±j
π
9 t. Moreover, the comparator’s reference signal

has frequency fs = 1.76 > 7
2L , and the separation between

consecutive bursts of Diracs is at least L. The amplitudes and
locations of the estimated Diracs are exact.

Fig. 20: Sampling of bursts of Diracs using the crossing TEM. The
input signal is shown in (a), the reconstructed signal in (b), the
sampling kernels of both channels in (c) and (d) respectively, and
the corresponding non-uniform samples in (e) and (f).

APPENDIX C
A. Proof of Proposition 6

The input stream of bursts of Diracs can be sequentially
estimated as follows. We estimate the first burst using the
first four non-zero samples of each channel and the methods
presented below. We then retrieve the second burst using
the first four non-zero samples of each channel located after
τ1,K + L, where τ1,K denotes the estimated location of the
last Dirac in the first burst, and L is the length of the kernel’s
support. We then use the first non-zero samples located after
τ2,K +L to estimate the third burst, and repeat this procedure
to estimate the subsequent bursts of Diracs.

Let us assume we want to retrieve burst b and denote with
tn, tn+1, tn+2, tn+3 the first four output spikes located after
τb−1,K + L. Then we have that tn > τb,1 > tn−1, where τb,1
is the location of the first Dirac in the bth burst. Furthermore,
let us assume for simplicity that the Diracs in the bth burst
satisfy xb,1, ..., xb,K > 0, as depicted in Fig. 21.
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Fig. 21: Time encoding of a sequence of 2 bursts of 2 Diracs, when
the amplitudes of the Diracs in a burst have the same sign.

In what follows, we show that the samples y(tn+2) and
y(tn+3) can be reliably used to estimate the bth burst.

We first prove that the following conditions hold:
tn+1 > τb,K , (47)

and:
tn+3 < τb,1 +

L

2
. (48)

We note that since we assume xb,1, ..., xb,K > 0, the filtered
input defined in Eq. (3) satisfies f(τ) > 0, and hence the
condition in Eq. (47) is equivalent to:∫ tn+1

τb,1

f(τ)dτ >

∫ τb,K

τb,1

f(τ)dτ. (49)

The left-hand side of this inequality can be expressed as:∫ tn+1

τb,1

f(τ)dτ =

∫ tn+1

tn−1

f(τ)dτ −
∫ τb,1

tn−1

f(τ)dτ

(a)
= 2CT −

∫ τb,1

tn−1

f(τ)dτ
(b)
> CT ,

(50)

where (a) holds given Eq. (2) and (b) since tn > τb,1 > tn−1.
The right-hand side of Eq. (49) can be re-written as:∫ τb,K

τb,1

f(τ)dτ
(c)
<

K−1∑
k=1

Amax

∫ τb,K

τb,k

ϕ(τb,k − τ)dτ

(d)
<

(K − 1)Amax

ω2
m0

[1− cos(ωm0(τb,K − τb,1))]

(e)
< CT

(f)
<

∫ tn+1

τb,1

f(τ)dτ,

which proves the inequality in Eq. (47).
In the derivations above, (c) follows from the definition in

Eq. (3) and since we assume Amax > xb,1, ..., xb,K > 0. In
addition, (e) follows from Eq. (37) and (f) from Eq. (50).
Finally, condition (d) follows from:∫ τb,K

τb,k

ϕ(τb,k − τ)dτ
(h)
=

1

ω2
m0

[1− cos(ωm0(τb,K − τb,k))]

(i)
<

1

ω2
m0

[1− cos(ωm0(τb,K − τb,1))].

where (h) follows from the definition of ϕ(τb,k − τ) in
Eq. (12) for τ ∈ [τb,k, τb,K ] with τb,K < τb,k + L

2 , and
from the hypothesis that ϕ(τ) reproduces the exponentials
e±jωm0τ . Moreover, (i) follows from the hypothesis that
0 < ωm0

≤ π
L which is equivalent to 0 <

ωm0
L

2 ≤ π
2 , and

from the assumption that τb,K − τb,k < L
2 , which means that

0 < ωm0
(τb,K − τb,k) < π

2 , and hence 1 − cos(ωm0
(τb,K −

τb,1)) > 1− cos(ωm0
(τb,K − τb,k)) ∀k = 2, ...,K.

In Fig. 21 we notice that in some cases (third burst of 2
Diracs), the spike tn may occur in the interval (τb,1, τb,K).
Nevertheless, the condition in Eq. (49) ensures that the sample
at tn+1 happens after τb,K .

Similarly, since f(τ) > 0, Eq. (48) is equivalent to:∫ τb,1+L
2

τb,1

f(τ)dτ >

∫ tn+3

τb,1

f(τ)dτ, (51)

where the left-hand side can be expressed as:∫ τb,1+L
2

τb,1

f(τ)dτ
(a)
=

K∑
k=1

∫ τb,1+L
2

τb,k

xkϕ(τb,k − τ)dτ

(b)
=

1

ω2
m0

K∑
k=1

xb,k[1− cos(ωm0(
L

2
− (τb,k − τb,1)))]

(c)
>

1

ω2
m0

K∑
k=1

xb,k[1− cos(ωm0(
L

2
− (τb,K − τb,1)))]

(d)
>
KAmin

ω2
m0

[1− cos(ωm0(
L

2
− (τb,K − τb,1)))]

(e)
> 5CT ,

(52)

where (a) follows from Eq. (3), (b) follows from the definition
of ϕ(τb,k − τ) in Eq. (12) for τ ∈ (τb,k, τb,1 + L

2 ), and (c)
follows from the hypothesis that 0 < ωm0

≤ π
L which is

equivalent to 0 <
ωm0

L

2 ≤ π
2 , and since τb,k − τb,1 < L

2 ∀k =
2, ...,K. Moreover, (d) holds since we assume xb,1, ..., xb,K >
0, and (e) follows from Eq. (38).

Finally, the right-hand side of Eq. (51) is equivalent to:∫ tn+3

τb,1

f(τ)dτ
(f)
= 4CT−

∫ τb,1

tn−1

f(τ)dτ
(g)
< 5CT

(h)
<

∫ τb,1+L
2

τb,1

f(τ)dτ,

hence proving the result in Eq. (48).
In these derivations, (f) follows from Eq. (2), (g) holds

since tn > τb,1 > tn−1 and (h) follows from Eq. (52).
The conditions in Eq. (47) and (48) ensure that the output

samples y(tn+2) and y(tn+3) have contributions only from all
the Diracs in the bth burst. These samples can be computed
using Eq. (5) and (20) for each channel m, as follows:

y(tn+2)
(a)
=

K∑
k=1

xb,k(ϕ ∗ qθn+2)(τb,k − tn+1). (53)

Similarly, we can write y(tn+3) as:

y(tn+3) =

K∑
k=1

xb,k(ϕ ∗ qθn+3)(τb,k − tn+2). (54)

For each channel m, the signal (ϕ ∗ qθn+2
)(t − tn+1) is a

linear combination of the exponentials ejωm0 t and ejωm1 t, for
t ∈ (tn+2 − L

2 , tn+1), given Eq. (12) and Eq. (6). Similarly,
(ϕ∗qθn+3

)(t−tn+2) is a linear combination of the exponentials
ejωm0

t and ejωm1
t, for t ∈ (tn+3− L

2 , tn+1). Therefore, in the
interval (tn+3 − L

2 , tn+1), where there are no knots of either
(ϕ∗qθn+2)(t−tn+1) or (ϕ∗qθn+3)(t−tn+2), we use the proof
in Section II-B2 to find unique cmi,2 and cmi,3 such that:

cmi,2(ϕ ∗ qθn+2)(t− tn+1)+ cmi,3(ϕ ∗ qθn+3)(t− tn+2) = ejωmi t,
(55)

for i ∈ {0, 1}, t ∈ [tn+3 − L
2 , tn+1], m0 = m and m1 =

2K − 1−m (which ensures ωm1 = −ωm0 ).
Then, for each channel m we can compute the signal

moments as before:
smi = cmi,2y(tn+2) + cmi,3y(tn+3)

(a)
=

K∑
k=1

xb,k

3∑
l=2

cmi,l(ϕ ∗ qθl)(τb,k − tl+n−1)
(b)
=

K∑
k=1

xb,ke
jωmiτb,k ,

where i ∈ {0, 1}, m0 = m and m1 = 2K − 1−m.
In the derivations above, (a) follows from Eq. (53) and (54),

and (b) from τb,1, ..., τb,K ∈ (tn+3 − L
2 , tn+1) and the fact

that Eq. (55) holds within this interval. We can then uniquely
retrieve the 2K input parameters of the bth burst from the 2K
signal moments smi of all channels, using Prony’s method.
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Finally, we make the observation that the inequalities in
Eq. (37) and Eq. (38) impose additional constraints on the
maximum separation between the Diracs in a burst b, namely
on τb,K − τb,1. Specifically, we need to impose:

5

∫ τb,K

τb,1

f(τ)dτ <

∫ τb,1+L
2

τb,1

f(τ)dτ,

which may give different constraints on the Dirac separation
according to the filter characteristics, Amax and Amin.

REFERENCES

[1] M. Unser. Sampling-50 years after Shannon. Proceedings of the IEEE,
88(4):569–587, Apr 2000.

[2] C. E. Shannon. Communication in the presence of noise. Proceedings
of the IRE, 37(1):10–21, Jan 1949.

[3] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: ex-
act signal reconstruction from highly incomplete frequency information.
IEEE Transactions on Information Theory, 52(2):489–509, Feb 2006.

[4] D. L. Donoho. Compressed sensing. IEEE Transactions on Information
Theory, 52(4):1289–1306, Apr 2006.

[5] E. J. Candès and C. Fernandez-Granda. Towards a mathematical theory
of super-resolution. CoRR, abs/1203.5871, 2012.

[6] P. L. Dragotti, M. Vetterli, and T. Blu. Sampling Moments and
Reconstructing Signals of Finite Rate of Innovation: Shannon Meets
Strang-Fix. IEEE Transactions on Signal Processing, 55(5):1741–1757,
May 2007.

[7] M. Vetterli, P. Marziliano, and T. Blu. Sampling signals with finite rate
of innovation. IEEE Transactions on Signal Processing, 50(6):1417–
1428, Jun 2002.

[8] R. Tur, Y. C. Eldar, and Z. Friedman. Innovation Rate Sampling of Pulse
Streams With Application to Ultrasound Imaging. IEEE Transactions
on Signal Processing, 59(4):1827–1842, Apr 2011.

[9] Y. M. Lu and M. N. Do. A Theory for Sampling Signals from a Union of
Subspaces. IEEE Transactions on Signal Processing, 56(6):2334–2345,
Jun 2008.

[10] C. S. Seelamantula and M. Unser. A generalized sampling method for
finite-rate-of-innovation-signal reconstruction. IEEE Signal Processing
Letters, 15:813–816, 2008.

[11] R. Alexandru and P. L. Dragotti. Time-based sampling and recon-
struction of non-bandlimited signals. In ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 7948–7952, May 2019.

[12] R. Alexandru and P. L. Dragotti. Time encoding and perfect recovery of
non-bandlimited signals with an integrate-and-fire system. In SampTA
2019 - 13th International Conference on Sampling Theory and Appli-
cations, Jul 2019.

[13] B. F. Logan. Information in the zero crossings of bandpass signals. The
Bell System Technical Journal, 56(4):487–510, Apr 1977.

[14] R Steele. Delta Modulation Systems. Pentech Press & Halsted Press,
1975.

[15] A. A. Lazar and L. T. Toth. Perfect recovery and sensitivity analysis of
time encoded bandlimited signals. IEEE Transactions on Circuits and
Systems I: Regular Papers, 51(10):2060–2073, Oct 2004.

[16] E.D.A. Adrian. The basis of sensation: the action of the sense organs.
Hafner, 1928.

[17] P. Dayan and L. F. Abbott. Theoretical Neuroscience: Computational
and Mathematical Modeling of Neural Systems. The MIT Press, 2005.

[18] W. Gerstner and W. Kistler. Spiking Neuron Models: An Introduction.
Cambridge University Press, New York, NY, USA, 2002.

[19] T. Delbrück, B. Linares-Barranco, E. Culurciello, and C. Posch.
Activity-driven, event-based vision sensors. In Proceedings of 2010
IEEE International Symposium on Circuits and Systems, pages 2426–
2429, May 2010.

[20] A. A. Lazar. Time encoding with an integrate-and-fire neuron with a
refractory period. Neurocomputing, 65:65–66, 2005.

[21] A. A. Lazar and L. T. Toth. Time encoding and perfect recovery
of bandlimited signals. In 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP
’03)., volume 6, pages VI–709, Apr 2003.

[22] A. A. Lazar and E. A. Pnevmatikakis. Video Time Encoding Machines.
IEEE Transactions on Neural Networks, 22(3):461–473, Mar 2011.

[23] H. Feichtinger, J. Prı́ncipe, J. Romero, A. Singh Alvarado, and G. Ve-
lasco. Approximate Reconstruction of Bandlimited Functions for the
Integrate and Fire Sampler. Adv. Comput. Math., 36(1):67–78, Jan 2012.

[24] A. A. Lazar, E. K. Simonyi, and L. T. Toth. Fast recovery algorithms for
time encoded bandlimited signals. In Proceedings. (ICASSP ’05). IEEE
International Conference on Acoustics, Speech, and Signal Processing,
2005., volume 4, pages iv/237–iv/240 Vol. 4, Mar 2005.

[25] K. Adam, A. Scholefield, and M. Vetterli. Multi-channel time encoding
for improved reconstruction of bandlimited signals. In 2019 IEEE
International Conference on Acoustics, Speech, and Signal Processing.
Proceedings. (ICASSP ’19)., May 2019.

[26] D. Florescu and D. Coca. A novel reconstruction framework for time-
encoded signals with integrate-and-fire neurons. Neural Computation,
27(9):1872–1898, 2015.

[27] D. Gontier and M. Vetterli. Sampling based on timing: Time encoding
machines on shift-invariant subspaces. Applied and Computational
Harmonic Analysis, 36(1):63 – 78, 2014.
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