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A Success Story

Wavelets are in the new image compression standard (JPEG2000)

Original Lena Image

(256× 256 pixels)

JPEG (Compression Ratio

43:1)

JPEG2000 (Compression

Ratio 43:1)

Note: images courtesy of dspworx.com
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Motivation

Sparse Representations
Wavelets are successful because they provide sparse representations of images.

Cameraman Wavelet decomposition 8% of coeff. (SNR=25.3dB)
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Motivation

Wavelet methods (simple and efficient):

Images are decomposed in the wavelet basis and larger coefficients are kept.

Example: denoising

SNR=17dB SNR=20.2dB

Wavelets are also useful for interpolation, classification...
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Motivation

But a nobel prize told us that

”...the 20 bits per second which the psychologists assure us,

the human eye is capable of taking in...”

Dennis Gabor

Lena Image JPEG2000 (35Kbits)

Stare at the original image for 10 seconds. You have just taken in 200bits!
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Motivation

Limitations of the wavelet transform:

• do not take advantage of dependency across scales,

• do not take advantage of geometric regularity.
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The 1-D case. Signals of interest

Signals of interest:

• piecewise smooth signals (that is, signals made of Lipshitz-α pieces),

• piecewise polynomial signals.
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Signals of Interest and Wavelet Representations

• Wavelet coefficients around smooth parts of the signal are small and have fast decay

(∼ 2−j(α+1/2)).

• Wavelet coefficients around polynomial parts of the signal are exactly zero.

• Discontinuities generate a finite number of large wavelet coefficients.
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Piecewise constant discontinuity

Insight: all the wavelet coefficients across scales generated by a step discontinuity are dependent.

They have only one degree of freedom.

f
k
(0) 

Footprint: Call footprint f
(0)
k the norm 1 scale-space vector obtained by gathering together all

the wavelet coefficients in the cone of influence of k and then imposing ‖f (0)
k ‖ = 1.

The wavelet coefficients Y generated by any step discontinuity at k are given by:

Y = α
(0)

f
(0)
k , where α

(0)
= 〈Y, f

(0)
k 〉
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Piecewise polynomial discontinuity

The set of wavelet coefficients generated by a discontinuity are dependent: they
lie on a subspace of dimension D + 1 (D maximum degree of any polynomial in
the signal).
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Piecewise polynomial discontinuity

Create D + 1 footprints f
(d)
k related to a discontinuity of order 0, 1, .., D, such that:

‖f (d)
k ‖ = 1 and < f

(i)
k , f

(j)
k >= δij.

f
k
(0)

 
f
k
(1) 

The wavelet coefficients generated by any piecewise polynomial discontinuity at k are given by:

Y =
D∑

d=0

α
(d)

f
(d)
k ,

α
(d)

= 〈Y, f
(d)
k 〉.

12



Footprints Dictionary

• Create D + 1 different footprints for each discontinuity location k ∈ [0, N − 1].

• Call D = {f (d)
k , k ∈ [0, N − 1], d = 0, 1.., D} the dictionary containing all footprints.

• The dictionary D can provide a compact representation of any piecewise polynomial signal.

• The dictionary D is unconditional for the class of piecewise polynomial signals (Dragotti-

Vetterli:03).
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Footprints in Action

Heavisine function Wavelet decomposition

Footprints approx. Residual

Cone of influence 

Theorem (Dragotti-Vetterli:03): Given is a piecewise smooth signal f(t) with α-Lipschitz regular pieces. There

exists a piecewise polynomial signal p(t) with pieces of maximum degree p = bαc such that the difference signal

g(t) = f(t)− p(t) is uniformly Lipschitz α over [0, T ].
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Applications: Compression
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Compression with Footprints: SNR=17.2dB, 0.33b/p.

Compression with SPIHT: SNR=14.3dB, 0.33b/p.
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Approximation and Compression

More formally:

• Non-linear approximation of piecewise smooth signals

– With Fourier MSE ∼ M−1

– With Wavelets MSE ∼ M−2α

• Compression of piecewise smooth signals

– With Fourier D(R) ≤ c0R
−1

– With Wavelets D(R) ≤ c1R
−2α + c2

√
R2−c2

√
R ([CohenDGO:02])

– With Footprints D(R) ≤ c3R
−2α + c42

−c5R ([DragottiV:03])

• Compression of piecewise polynomial signals

– With Wavelets D(R) ≤ c2

√
R2−c2

√
R

– With Footprints D(R) ≤ c42
−c5R
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Applications: Denoising
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Cycle-spinning (Coifman-Donoho 1995): SNR=18.9dB
Cycle-spinning with footprints: SNR=20.9dB.
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From 1-D to 2-D

With footprints we can achieve optimal performance. But how many visual signals
are 1-D?

• Grayscale images 2-D

• Color images 3-D

• Video sequences 3-D+1=4-D

• Plenoptic Function 7-D...

Thus, this is not the end of the story.
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Intermezzo: The Plenoptic Function

Adelson and Bergen change the rules of the game [AdelsonB:91]

’Assume that one is free to take photographs of a visual scene at any possible position, angle and

time. Such a complete representation of that scene can be parameterized by a single function

called the Plenoptic Function’

tt

z

f

v

1t0t 0t1t

v

0v

1v

The images or the video sequences we play with are just particular realizations of the Plenoptic

Function.
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From 1-D to 2-D (continued)

Wavelets (separable transforms) have some limitations in higher dimensions.

• In images, the action is on the edges,

• Wavelet schemes fail to recognize that the boundary is smooth,

• New scheme requires geometrical processing.
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People working on ’truly’ 2-D representations

• Ridgelets and Curvelets (Candès, and Donoho)

• Contourlets (Do and Vetterli)

• Wedgelets and Beamlets (Donoho)

• Wedgeprints (Baraniuk)

• Edgeprints (Dragotti and Vetterli)

• Edge Adapted multiscale Transform (Cohen)

• Improved quad-tree decompositions (Shukla, Dragotti, Do and Vetterli)

• Bandelets (Le Pennec and Mallat)

• Complex Wavelets (Kingsbury)

• Discrete Directional Wavelets (Velisavlievic, Beferull-Lozano , Vetterli and Dragotti)
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Image Model

• Two-dimensional piecewise smooth or polynomial functions with smooth or
polynomial boundaries.

• “Oracle” performances

– Boundary is a Cp curves: D(R) ∼ R−p

– Boundary is a polynomial: D(R) ∼ 2−cR

• Wavelet performance

– Regardless of the smoothness of the boundary: D(R) ∼ log(R)R−1
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How far are we from Lena?

Gauss-Markov Model Piecewise Polynomial Model Lena
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Quadtree Algorithms

• Prune Quadtree Algorithm.

– Quadtree segment into dyadic squares.

– Code each block with a “geometrical tile” made of two polynomial pieces divided by a

linear discontinuity.

– Prune the tree to minimize D + λR.
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• Prune-Join Quadtree Algorithm with Joint Coding.

– Find the optimal tree using the Pruned Quadtree Algorithm.

– Code neighbor segments with “similar” parameters jointly.
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To prune or not to prune

|Slope|= 

|Slope|= λ

λ

|Slope|= λ

Left child

Right child

D

R

D

D

R

Rp

p

c

c

c

c1

1

2

2

Parent Node.

Prune if: (Dc1 + Dc2) + λ(Rc1 + Rc2) > Dp + λRp
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To join or not to join

2
L

1
L j

L

Join if: LJ(λ) < L1(λ) + L2(λ) where L(λ) = D + λR.
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Example

Optimal Segmentation−Tree
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Optimal Modified Segmentation−Tree (B/W)
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D(R) ∼ 2−cR
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Quad-Tree vs Jpeg 2000

Prune-Join Quad-Tree

Decomposition

P-J Tree PSNR 28.9dB,

0.11bpp

JPEG2000 PSNR 27.8dB

0.11bpp
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Quad-Tree vs Jpeg 2000
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R−D performance for Cameraman

Pruned Quadtree
Prune−Join Quadtree
JPEG2000

PSNR=30.68dB, 0.15bpp PSNR=29.21dB, 0.15bpp Quad-Tree vs JPEG2000
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Quad-Tree vs Jpeg 2000

Prune-Join Quad-Tree JPEG2000
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Directional Wavelets

Target:

• Keep the simplicity of 1-D processing,

• Focus on discrete signals to lead to algorithmic implementations.

The separable wavelet transform is good at isolating horizontal and vertical edges.

31



WebMuseum, Paris

Mondrian, Piet
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WebMuseum, Paris

Wavelet decomposition of Mondrian masterpiece.
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Directional Wavelets

...but, it fails if directions are not horizontal or vertical.
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Directional Wavelets

Directional wavelets are as simple as traditional wavelets, but provide compact
representations of edges along different directions.
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Directional Wavelets

Directional transforms. Basic elements.

• Definition of a digital line

y[n] = bkx[n]c+ bBc
(Each pixel belongs to exactly one line for a chosen slope)

θ

• Apply a decimated or undecimated wavelet transform along the digital line

• Iterate the process along either the same or a different direction.

This leads to a wide range of different multi-directional bases or frames

• Multi-directional bases useful for compression,

• Multi-directional frames useful for denoising.
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Multi-directional Bases

Subsampling is critical to obtain a nice basis. Recall that we want to annihilate lines N → log2 N .
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Multi-directional Bases

Resort to lattice theory.

• Choose two initial directions r1 = t1/m1, r2 = t2/m2.

• Construct the corresponding lattice M1 =

(
m1 t1

m2 t2

)

• Number of cosets equal to | det(M1)|.
• Apply the 1-D transform along the two directions but threat each coset independently.

• Subsampling: M2 = 2M1.

• Iterate on the same directions or along different directions.

(2 1
0 1)M1=

(a)

(4 2
0 2)M1"=

(b)
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Multi-Directional Bases

We still have some problems with the regularity.

orthogonal

easy to invert

non-smooth

biorthogonal

easy to invert

smoother

biorthogonal

hard to invert

smooth (regular)

Haar “9-7” extended Haar

Notice, only 1-D filtering used.
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Applications: Denoising

Standard UWT Multi-directionalOriginal 10.66dB 2-D UWT 24.75dB MDir UWT 25.94dB
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Back to the Future:
Plenoptic Function and Sensor Networks

.. .
.. .

. . .
. .

..
..

• The source is distributed in space

• Sensors observe correlated data

• In our context sensors are digital cameras

• We want to perform compression but we want to avoid communication among sensors.
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Background: Distributed Source Coding

• Fundamental theoretical results

– Slepian-Wolf 1973. Lossless coding
– Wyner and Ziv 1976. Lossy coding with side information at the decoder.

• Constructive codes:

– DISCUS [Pradhan-Ramchandran:99].
– Extensions using advanced channels coded [Garcia-Frias:01, Aaron-Girod:02,

Liveris-Xiong-Georghiades:02]
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Plenoptic Constraints

In order to develop distributed compression algorithms, we need to know the correlation structure

of the data. In the case of camera sensors, this structure is given by the Plenoptic function.

0
t

1
t t

v

        Zmin

X

Ymax

Zmax

Ymin

• Assume X and Y are the positions of a point on two different images

• Key insight: Whatever the complexity of the scene, if the depth of field is bounded, the

disparity is also bounded.

• Use the information zmin, zmax and the camera locations, to develop distributed compression

algorithms
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Simulation Results

Three views of a simple synthetic scene

X1 X2 X3

• Independent coding: 18bits per vertex

• Slepian-Wolf with no occlusions: 10bits per vertex

• Slepian-Wolf with occlusions: 14bits per vertex
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Conclusions

What has the wavelet community given us?

• A unifying framework

• A new compression standard

• Improved modeling of images

• Good understanding of the interaction between representation, approximation and compression

But

• It is still not clear how to design efficient multi-dimensional bases,

• Interaction between continuous-time and discrete-time worlds

• What happens if we have only access to local information (Distributed Compression)?

”You can’t predict the future, but you can invent it.”

Dennis Gabor
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