
Solving Inverse Source Problems for Linear PDEs using
Sparse Sensor Measurements

John Murray-Bruce and Pier Luigi Dragotti

7 November 2016

Murray-Bruce and Dragotti
Solving Inverse Source Problems for Linear PDEs using Sparse Sensor Measurements



Outline

1. Introduction
I Motivation
I Problem Formulation

2. Source Reconstruction Framework
I Source Reconstruction using structured least-squares methods
I PDE-driven Inverse Problems and Sampling Theory

3. Simulation Results
4. Conclusions

Murray-Bruce and Dragotti
Solving Inverse Source Problems for Linear PDEs using Sparse Sensor Measurements



Estimation of Physical Fields with Sensor Networks

I Sensor networks are deployed to monitor and estimate various physical
phenomena
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Sensor Networks and Inverse Problems

Sensor networks measure:
I Leakages in/from factories,
I Temperature in server rooms,
I Nuclear fallouts (Fukushima).
I Acoustic sources localization

In the case of diffusion field: the field u(x, t) induced by a source distribution
f (x, t) satisfies the following PDE:

∂

∂t u(x, t)− µ∇2u(x, t) = f (x, t). (1)
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Sensor Networks and Inverse Problems

I Different physical fields are regulated by different (linear) PDEs
I Other PDEs: Wave Equation, Laplace’s Equation,

Advection-/Convection-Diffusion Equation, Helmholtz and many more.

I Let u(x, t) denote the field induced by a source distribution f (x, t) then a
physics-driven system, in general, has the Green’s function solution:

u(x, t) = (f ∗ g)(x, t)

where g(x, t) is the Green function of the field.
I Goal: Given the measurements of the field, estimate the source f (x, t).

I f (x, t) might be sparse,
I u(x, t) is normally not sparse
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Problem Formulation: Field Measurements
Aim
Estimate f (x, t) from spatiotemporal samples {ϕn,l = u(xn, tl )}n,l for
n = 1, . . . ,N and l = 0, . . . , L, of the measured field.

g(·)f u ϕ
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Problem Formulation: Sources of Interest

Instantaneous Non-Instantaneous

Po
in

t

f (x, t)=
M∑

m=1

cmδ(x−ξm, t−τm) f (x, t)=
M∑

m=1

cmeαm(t−τm)
δ(x−ξm)H(t−τm)

Li
ne f (x, t)=cL(x)δ(t − τ) f (x, t)=cL(x)eα(t−τ)H(t − τ)

Po
ly

go
na

l

f (x, t)=cF (x)δ(t − τ) f (x, t)=cF (x)eα(t−τ)H(t − τ)

Where,
I L(x) ∈ Ω describes a line with endpoints {ξ1, ξ2}.
I F (x) ∈ Ω describes a convex polygon with vertices {ξ1, ξ2, . . . , ξM}.
I αm, cm, ξm and τm is the release rate, intensity, location and activation

time of m-th source.
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Traditional Sampling vs Sampling Physical Fields

Source	  Localiza-on	  in	  Diffusive	  Fields Allerton	  2011

Sampling	  the	  Diffusion	  Fields

5

Tradi-onal	  Sampling	  Set-‐up:

-‐The	  signal	  f(t)	  lies	  in	  a	  subspace,	  is	  sparse	  (e.g.,	  CS),	  is	  parametric	  (e.g.,	  FRI)	  
-‐The	  acquisi-on	  device	  given	  by	  the	  set-‐up	  or	  by	  design	  (e.g.,	  random	  matrix)

Sampling	  physical	  fields:

-‐	  No	  assump-on	  on	  the	  field	  but	  on	  the	  sources,	  
-‐	  The	  acquisi-on	  device	  performs	  only	  temporal	  filtering,	  no	  spa-al	  filtering

PDE !(x,t) !u(x,t)f(x,t) n,l

source field
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Source Reconstruction Framework

Recall that

u(x, t) =
∫

x′∈R2

∫
t′∈R

g(x′, t ′)f (x− x′, t − t ′) dt ′dx′

= 〈f (x′, t ′), g(x− x′, t − t ′)〉x′,t′ .

Mathematically the spatiotemporal sample ϕn,l is

ϕn,l = u(xn, tl )
= 〈f (x, t), g(xn − x, tl − t)〉x,t (2)
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Consider a weighted-sum of the samples {ϕn,l}n,l :

R(k) =
N∑

n=1

L∑
l=0

w (k)
n,l ϕn,l =

N∑
n=1

L∑
l=0

w (k)
n,l 〈f (x, t), g(xn − x, tl − t)〉x,t

=
〈

f (x, t),
N∑

n=1

L∑
l=0

w (k)
n,l g(xn − x, tl − t)︸ ︷︷ ︸
=Ψk (x)Γ(t)

〉
,

(3)

where wn,l ∈ C are some arbitrary weights (to be determined).
We wish to find f (x, t):

I For our source types, can we choose functions Ψk(x) and Γ(t) that
makes this problem tractable? — YES!
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Let these (new) generalized measurements be

R(k) =
N∑

n=1

L∑
l=0

w (k)
n,l ϕn,l =〈f (x, t),Ψk(x)Γ(t)〉

=
∫

Ω

∫
t∈[0,T ]

Ψk(x)Γ(t)f (x, t)dtdV ,

where Ψk(x) for k ∈ Zd and Γ(t) a family of properly chosen spatial and
temporal sensing functions, respectively.
Proper choice =⇒ solvability & stability of new problem.

I As an example, take the instantaneous source distribution

f (x, t) =
M∑

m=1
cmδ(x− ξm, t − τm), then:

R(k) =
M∑

m=1
cmΨk(ξm)Γ(τm).
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Choice of Sensing Functions: 2D Case
For x ∈ R2, we may choose

I Γ(t) = e−jt/T , and
I Ψk(x) = e−k(x1+jx2), for k = 0, 1, . . . ,K .

Then,

R(k) =
M∑

m=1
cme−jτm/T e−k(ξ1,m+jξ2,m)

=
M∑

m=1
c ′mvk

m.

Can be solved to jointly recover c ′m = cme−jτm/T and vm = e−(ξ1,m+jξ2,m)

using Prony’s method for m = 1, . . . ,M providing K ≥ 2M − 1.
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Computing R(k) reliably from sensor
Measurements?

Recall that,

R(k) =
N∑

n=1

L∑
l=0

w (k)
n,l ϕn,l

I Thus computing R(k) is equivalent to finding the weights wn,l .

I Note that R(k) may be computed in a distributed fashion using
gossip algorithms (physics-driven gossip)

I The weights may be found using results from sampling theory and
approximation theory
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Approximation of Exponentials
I Let’s assume a 1-D static field and uniformly spaced sensors.
I We want to find coefficients w (k)

n that give us a good approximation
of the exponentials: ∑

n
w (k)

n g(x − n) ' ejkx

I For best approximation, we need to compute the coefficients wn that
give the orthogonal projection of the exponential ejkx onto
V = span{g(x − n)}n∈Z

I Since this is a shift-invariant space, we have close-form expressions
for the coefficients and the error.

I Approximation error

ε(x) = f (x)− ejkx = ejkx

[
1− w0

∑
l∈Z

ĝ(jk + j2πl)ej2πlx

]
.
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ĝ(jk + j2πl)ej2πlx

]
.

Murray-Bruce and Dragotti
Solving Inverse Source Problems for Linear PDEs using Sparse Sensor Measurements



Generalised Strang-Fix Conditions
A function g(x) can reproduce the exponential:

ejωk x =
∑

n

w (k)
n g(x − n)

if and only if

ĝ(jωk ) 6= 0 and ĝ(jωk + j2πl) = 0 l ∈ Z \ {0}

where ĝ(·) is the Fourier transform of g(x).

Note: most Green’s functions approximately satisfy Strang-Fix conditions:
I if g(x, t) is the diffusion kernel, Strang-Fix approximately satisfied
I if g(x, t) is the wave kernel, Strang-Fix not satisfied in time (pre-filtering

in time required)
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Source Estimation Algorithm

1. Input: sensors measurements: ϕn,l

2. Compute

R(k) =
N∑

n=1

L∑
l=0

w (k)
n,l ϕn,l

I the weights are determined using Strang-Fix theory and depend on
the Green’s function of the physical field

I R(k) can be found using gossip algorithms

3. R(k) =
∑M

m=1 c ′
mv k

m.

4. Use Prony’s method to retrieve the source f (x, t) from R(k), the physical
field is given by u(x, t) = g(x, t) ∗ f (x, t)
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Synthetic data: Point Diffusion Source
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Synthetic data: Triangular Diffusion Source
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Simulation Results: Real Diffusion DataSimulation Results: Real Diffusion Data
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Figure 12 Sensor distribution, location estimates and the field reconstructions. Source is
located at (0.06058, 0.03465) and activated at τ = 6.25s. A 15−bit uniform quantizer with
dynamic range (−1, 1) is used; for K = 5.
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Simulation Results: Laplace - Synthetic data
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Figure: Single point source recovery in 3D using samples obtained by N = 57
sensors with K1 = K2 = 1 for spatial sensing function family. Results for 20
independent trials are given.
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Conclusions and Future Work

Conclusions
I Universal framework to solve PDE-driven source inverse problems

I Solution based on connecting inverse problem to sparse sampling
theory and Strang-Fix conditions

I Both centralized and distributed algorithms are possible
Future work

I Consider moving sensors
I Estimate simultaneously sensors’ location and inducing sources
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