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Estimation of Physical Fields with Sensor Networks

» Sensor networks are deployed to monitor and estimate various physical
phenomena
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Sensor Networks and Inverse Problems

Sensor networks measure:

> Leakages in/from factories, . . .' '.
» Temperature in server rooms, . g °
> Nuclear fallouts (Fukushima). ’ . .’

> Acoustic sources localization . :

In the case of diffusion field: the field u(x, t) induced by a source distribution
f(x, t) satisfies the following PDE:

O e, )~ uulx 1) = F(x, ). (1)
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Sensor Networks and Inverse Problems

> Different physical fields are regulated by different (linear) PDEs

» Other PDEs: Wave Equation, Laplace's Equation,
Advection-/Convection-Diffusion Equation, Helmholtz and many more.

and Dragotti

e Source Problems for Linear PDEs using Sparse Sensor Measurements




Sensor Networks and Inverse Problems

> Different physical fields are regulated by different (linear) PDEs

» Other PDEs: Wave Equation, Laplace's Equation,
Advection-/Convection-Diffusion Equation, Helmholtz and many more.

> Let u(x, t) denote the field induced by a source distribution f(x, t) then a
physics-driven system, in general, has the Green's function solution:

u(x, t) = (f = g)(x, t)

where g(x, t) is the Green function of the field.
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Sensor Networks and Inverse Problems

> Different physical fields are regulated by different (linear) PDEs

» Other PDEs: Wave Equation, Laplace's Equation,
Advection-/Convection-Diffusion Equation, Helmholtz and many more.

> Let u(x, t) denote the field induced by a source distribution f(x, t) then a
physics-driven system, in general, has the Green's function solution:

u(x, t) = (f x g)(x, t)
where g(x, t) is the Green function of the field.
> Goal: Given the measurements of the field, estimate the source f(x, t).

> f(x,t) might be sparse,
> u(x, t) is normally not sparse
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Problem Formulation: Field Measurements

Estimate f(x, t) from spatiotemporal samples {¢, | = u(Xn, t;)}n, for
n=1,...,Nand /=0,...,L, of the measured field.

f—— a) [T
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Problem Formulation: Sources of Interest

Instantaneous Non-Instantaneous

- M M

-5 f(x, t)= E CmO(X—Emy t—Tm) f(x, t)= E Cme®mETTm) 5 (x— £, Y H(t—Tm)
m=1 m=1

g

3 f(x, t)=cL(x)8(t — 7) f(x, t)=cL(x)e* =T H(t — )

“©

S

2 f(x, t)=cF(x)6(t — T) f(x, t)=cF(x)e*~ T H(t — 1)

&

Where,

> L(x) € Q describes a line with endpoints {£1, &2}.

> F(x) € Q describes a convex polygon with vertices {&1,&2,...,&m}.

> Qm,Cm,&Em and T, is the release rate, intensity, location and activation
time of m-th source.
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Traditional Sampling vs Sampling Physical Fields

Traditional Sampling Set-up:

F) eV —— o) 7 Ym

-The signal f(t) lies in a subspace, is sparse (e.g., CS), is parametric (e.g., FRI)
-The acquisition device given by the set-up or by design (e.g., random matrix)

Sampling physical fields:

source field

fox,0) PDE u(x,f) o) —"—— o

- No assumption on the field but on the sources,
- The acquisition device performs only temporal filtering, no spatial filtering

IR v
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Source Reconstruction Framework

Recall that
u(x, t) / g(xX, t)f(x —x',t —t')dt'dx
x' €R? t’G]R
=(f(<,t), gx =Xt = t') -
Mathematically the spatiotemporal sample ¢, is

©n,l = U(Xn, tl)
(f(x,t),g(xn—x,t — t)>x’t (2)

nd Dragotti

Source Problems for Linear PDEs using Sparse Sensor Measurements



Consider a weighted-sum of the samples {¢n ;}n

N L N L
k
R(K) =D "> wions =D D wi (Fx, 1), g(x0 —x, 1 = ), ,
n=1 /=0 n=1 /=0
N L
= <f(x, t),zz w,(f,)g(x,, — X, t — t)> )
n=1 |=0

where w, ; € C are some arbitrary weights (to be determined).
We wish to find f(x, t):
» For our source types, can we choose functions W (x) and I'(t) that
makes this problem tractable? — YES!
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Let these (new) genera/ized measurements be

k) Zzwnlwnl— Xt) \Uk() ()>

n=1 /=0

//E[O - x)M(t)f (x, t)dtdV,

where W, (x) for k € Z9 and T'(t) a family of properly chosen spatial and
temporal sensing functions, respectively.
Proper choice = solvability & stability of new problem.
> As an example, take the instantaneous source distribution
M

t) = Z Cmd(x — Em, t — Tm), then:

R =3 cnWi(€m)T (7).
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Choice of Sensing Functions: 2D Case

For x € R?, we may choose

» I(t)=e7, and

> Wy (x) = e kutix) for k =0,1,... K.
Then,

eI/ T g=k(ELmtie,m)

M=

R(k) =

m=1

’ .k
CnVm-

M=

1

3
Il

Can be solved to jointly recover ¢/, = cme i™/T and v,, = e~ (&1.mtit2m)
using Prony’s method for m=1,..., M providing K > 2M — 1.
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Computing R(k) reliably from sensor

Measurements?
Recall that,
N L
Rk =3 whn
n=1 |=0

» Thus computing R(k) is equivalent to finding the weights w,, .
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Computing R(k) reliably from sensor

Measurements?
Recall that,
N L
Rk =3 whn
n=1 |=0

» Thus computing R(k) is equivalent to finding the weights w,, .

» Note that R(k) may be computed in a distributed fashion using
gossip algorithms (physics-driven gossip)
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Computing R(k) reliably from sensor

Measurements?
Recall that,
N L
Rk =3 whn
n=1 |=0

» Thus computing R(k) is equivalent to finding the weights w,, .

» Note that R(k) may be computed in a distributed fashion using
gossip algorithms (physics-driven gossip)

» The weights may be found using results from sampling theory and
approximation theory
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Approximation of Exponentials

» Let's assume a 1-D static field and uniformly spaced sensors.

» We want to find coefficients W,(,k) that give us a good approximation

of the exponentials:

Z wlFg(x — n) ~ &
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Approximation of Exponentials

» Let's assume a 1-D static field and uniformly spaced sensors.
» We want to find coefficients W,(,k) that give us a good approximation

of the exponentials:
Z wlFg(x — n) ~ &

» For best approximation, we need to compute the coefficients w, that
give the orthogonal projection of the exponential ¢/*< onto
V = span{g(x — n)}nez

» Since this is a shift-invariant space, we have close-form expressions
for the coefficients and the error.
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Approximation of Exponentials

» Let's assume a 1-D static field and uniformly spaced sensors.
» We want to find coefficients W,(,k) that give us a good approximation

of the exponentials:
Z wlFg(x — n) ~ &

» For best approximation, we need to compute the coefficients w, that
give the orthogonal projection of the exponential ¢/*< onto
V = span{g(x — n)}nez

» Since this is a shift-invariant space, we have close-form expressions
for the coefficients and the error.

» Approximation error

e(x) = f(x) — ™ =& |1—wo Y &(jk + j2rl)e*™
ez
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Generalised Strang-Fix Conditions

A function g(x) can reproduce the exponential:
& =" wig(x — n)

if and only if
g(jwk) # 0 and g(jwi +j2nl) =0 1€ Z\ {0}

where g(-) is the Fourier transform of g(x).
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Generalised Strang-Fix Conditions

A function g(x) can reproduce the exponential:
& =" wig(x — n)

if and only if
g(jwk) # 0 and g(jwi +j2nl) =0 1€ Z\ {0}

where g(-) is the Fourier transform of g(x).

Note: most Green's functions approximately satisfy Strang-Fix conditions:
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Generalised Strang-Fix Conditions

A function g(x) can reproduce the exponential:
& =" wig(x — n)

if and only if
g(jwk) # 0 and g(jwi +j2nl) =0 1€ Z\ {0}

where g(-) is the Fourier transform of g(x).

Note: most Green's functions approximately satisfy Strang-Fix conditions:

> if g(x, t) is the diffusion kernel, Strang-Fix approximately satisfied
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Generalised Strang-Fix Conditions

A function g(x) can reproduce the exponential:
& =" wig(x — n)

if and only if
g(jwk) # 0 and g(jwi +j2nl) =0 1€ Z\ {0}

where g(-) is the Fourier transform of g(x).

Note: most Green's functions approximately satisfy Strang-Fix conditions:
> if g(x, t) is the diffusion kernel, Strang-Fix approximately satisfied

> if g(x,t) is the wave kernel, Strang-Fix not satisfied in time (pre-filtering
in time required)
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Source Estimation Algorithm

1. Input: sensors measurements: Pn,l
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Source Estimation Algorithm

1. Input: sensors measurements: Pn,l

2. Compute

N L
Rk =D wlen

n=1 I=0

> the weights are determined using Strang-Fix theory and depend on
the Green's function of the physical field
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Source Estimation Algorithm

1. Input: sensors measurements: @n,
2. Compute

N L
Rk =D wlen

n=1 I=0

> the weights are determined using Strang-Fix theory and depend on
the Green's function of the physical field
» R(k) can be found using gossip algorithms
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Source Estimation Algorithm

1. Input: sensors measurements: @n,
2. Compute

N L
ROk =D wien

n=1 I=0

> the weights are determined using Strang-Fix theory and depend on
the Green's function of the physical field
» R(k) can be found using gossip algorithms
3. R(k) = 25:1 V.
4. Use Prony’'s method to retrieve the source f(x,t) from R(k), the physical
field is given by u(x,t) = g(x, t) * f(x, t)
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Simulation Results
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Synthetic data: Point Diffusion Source

Evolution of Intensity Estimates
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Distributed estimation for M = 1 source using 45 sensors, field is
sampled for Te,y = 10s at ﬁ =1Hz. K=1.
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Synthetic data: Triangular Diffusion Source

Estimates of Source Vertices Activation Time Estimates
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N = 90 arbitrarily placed sensors, field sampled at 10Hz for T = 10s
with measurement SNR=35dB. K =6 and R = 5.
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Simulation Results: Real Diffusion Data

True Thermal Field (1=7.15)

Initial Thermal Map

o
i

(b) Real field (left) and its reconstruction (right) at t = 7.1s.

True Thermal Field (1=8.25) Reconstructed Thermal Field (+=8.25)

(a) Thermal distribution (immediately after
activation) and location estimates.
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Simulation Results: Laplace - Synthetic data

Intensity

Figure: Single point source recovery in 3D using samples obtained by N = 57
sensors with K1 = K> = 1 for spatial sensing function family. Results for 20
independent trials are given.
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Conclusions and Future Work

Conclusions

» Universal framework to solve PDE-driven source inverse problems
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Conclusions and Future Work

Conclusions
» Universal framework to solve PDE-driven source inverse problems

» Solution based on connecting inverse problem to sparse sampling
theory and Strang-Fix conditions
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Conclusions and Future Work

Conclusions
» Universal framework to solve PDE-driven source inverse problems

» Solution based on connecting inverse problem to sparse sampling
theory and Strang-Fix conditions
» Both centralized and distributed algorithms are possible
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Conclusions and Future Work

Conclusions
» Universal framework to solve PDE-driven source inverse problems

» Solution based on connecting inverse problem to sparse sampling
theory and Strang-Fix conditions
» Both centralized and distributed algorithms are possible

Future work
» Consider moving sensors
» Estimate simultaneously sensors’ location and inducing sources
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Thank You.
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