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- Energy-efficient sensing inspired by nature (integrate and fire like neurons)
« The pixels are independent and asynchronous

« Pixel “fires” when measuring light intensity changes

- Information stored: location of pixel that fired and time of when it fired

Videos taken from
Inivation.com
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New sensing technologies also lead to new sampling challenges
— How can we embed information related to complex signals into the timing
information of spikes?

— Besides its theoretical implications, addressing this question will lead to new
neuromorphic sensing devices

— Can new sampling results inspire new end-to-end neural networks?
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London Outline

- Sampling based on timing
— Integrate and fire systems
— Time-based sampling of sparse signals (1D and 2D+t cases)

* Model-based deep learning for event cameras
— End-to-end neural networks for event cameras

— Deep unfolding approach for video reconstruction

 Conclusions and outlook
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Bio-Inspired Energy Efficient Sensing

«  Current sensing methods are energy inefficient especially when low-latency is needed.
- Example: Rainfall estimation
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Approach 2

Only record the day when the bucket is full and then empty it

July 18 July 28 September 2
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Approach 2 maps analogue information into a time sequence and is used by nature (e.g., integrate-
and-fire neurons)

Time encoding appears in nature, as a mechanism used by neurons to represent sensory

information as a sequence of action potentials, allowing them to process information very
efficiently.
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Integrate-and-fire System
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imperial College Reconstruction from time-encoded information

Reconstruction achieved by imposing iteratively:
— Consistency constraint
— Signal prior (e.g., bandlimited function) constraint

S —
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Reconstruction achieved by imposing iteratively:
— Consistency constraint
— Signal prior (e.g., bandlimited function) constraint

July 18 July 28 September 2
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Comparator System
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« At the crossing times, x(t,,) — g(t,,) = 0 hence x(t,,) = g(t,).
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» The iterative approach proposed by Aldroubi and Grochenig

Input Function f(t)
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» The iterative approach proposed by Aldroubi and Grochenig

Non-uniform Sampling
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» The iterative approach proposed by Aldroubi and Grochenig

Piecewise Constant Interpolation
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» The iterative approach proposed by Aldroubi and Grochenig

Projecting onto V' (¢) - Iteration: 1
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» The iterative approach proposed by Aldroubi and Grochenig

Non-uniform Sampling
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» The iterative approach proposed by Aldroubi and Grochenig

Non-uniform Sampling
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» The iterative approach proposed by Aldroubi and Grochenig

Piecewise Constant Interpolation
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» The iterative approach proposed by Aldroubi and Grochenig

Projecting onto V (¢) - Iteration: 2
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London Reconstruction from time-encoded information

» The iterative approach proposed by Aldroubi and Grochenig

Projecting onto V'(y) - Iteration: 1 Projecting onto V() - Iteration: 2

15¢F
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» The iterative approach proposed by Aldroubi and Grochenig

Projecting onto V' (¢) - Iteration: 2
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» The iterative approach proposed by Aldroubi and Grochenig

Projecting onto V' (¢) - Iteration: 3
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» The iterative approach proposed by Aldroubi and Grochenig

Projecting onto V(¢) - Iteration: 5
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» The iterative approach proposed by Aldroubi and Grochenig

Projecting onto V() - Iteration: 15
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« Key result: if the density of samples D=1 then perfect reconstruction can be achieved
(Aldroubi and Grochenig?)

* Key Issue 1: In the case of uniform sampling the density is D = 1. This means that
current TEMs are less energy efficient than uniform sampling!

*  Key Issue 2: Cannot sample sparse (non-bandlimited) signals with the current methods.

2A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces” SIAM Review 2001
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London

. For integrate-and-fire machines exact reconstruction proved here: A. A. Lazar and L. T.
Toth, “Time encoding and perfect recovery of bandlimited signals”, ICASSP 2003
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See also: Gauntier-Vetterli-2014, Adam et al 2019,
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London Time-based Sampling of Sparse Signals

Signals:

*  We consider sparse continuous-time signals like stream of pulses, piecewise constant or

regular signals
Sensing Systems:
*  We filter before using a TEM

V o p(-t)

f(t)
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y(tn) = (x(t), on(t — tn))
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« Reconstruction of x(t) depends on the
— sampling kernel ¢(t)
— the density of time instants {t,,}

*  We achieve a sufficient density of output samples by imposing conditions on:
— The trigger mark of the integrator (integrate-and-fire TEM ).
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+ Given the times ty, t,, ..., t,, the amplitude values are

Yn=Yy(th) = £Cr = /t,: f(r)dr = /t,: /x(a)go(oz — t)dadT.
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16(t —11)
x(t) f(t) y(t) Threshold r | I ‘S
—  o(-t) Integrator — L
Detector ! t, |ta|ts  ta W+
f § - V‘ x19(11 — t)
spike triggered reset 1
oo™ e (@ ap)(t =) ]
(‘plqz)(t ) \
: é 1* -f1: tt3
| —!
I

* Equivalently the output samples can be expressed as:

y(tn) = (x(t), (¢ * go,)(t — tn—1)),
where 0, = t, — tp—1 and gy, (t) is defined as:

o {1 ostson
035 = 0, otherwise.
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London
xlb‘(;—rl)
Cr N
———»x(t) o(—t) UQ) Integrator y® T;;S::&,I? — I ¢ /A
' t1 |ta|ts  ts T /
= V‘ xX1¢(T1 — t)
T spike triggered reset _____! | @rae— / 7
et P, N—
« When ¢(t) is e.g., an E-spline, the equivalent kernel (¢ * qo )(t — t,,_1) is able to reproduce
exponentials

» So trigger mark must guarantee enough samples in a short interval

o tion: Amin (1 _ g (Lo L
Proposition: when Cr < 102 (1 cos( . )) then tq,t,, t3 € [Tl,rl + 2] and perfect

reconstruction is possible
- -
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Z Cm,ngo(n - t) ~ ejwmt

Pulse shape Reproduction of exponentials
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* Key Insight: Reproduction of exponentials can be achieved locally in

I, using at least two non-uniform shifts of the kernel:
N

Z Cran@n(t —t,) = e *mt N > 2

n=1
 The kernels should be continuous within that local interval 1.

tq1 - discontinuity of o (t — t;)

tqz - discontinuity of @(t — t,)
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. The output samples are: y(t,,) = (x(t), (¢ * ) (t)) = x10,(71)
Since @, (t) = agne™* + a; ne™t, we find cq, ¢, dq, d; such thatin I; = [t, — T, t4]:
c1 1(t) + c2 @2 (t) = e’
dy @1(t) + dy @a(t) = e*t?
We then use these coefficients to define the signal moments, in I; = [t, — T, t4]:
So = a1y (t1) + 2y (t2) = x1[c101(T1) + c202(71)] = x, %™
s1 = diy(ty) + dyy(ty) = x1[d11(t1) + dop2(71)] = x1 €M%
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1F Q =—© |nput signal —® Output non-uniform spikes
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...................................................................

spike triggered reset

This is equivalent to the way a pixel operates in neuromorphic video cameras
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D-Z ‘ D-i If the distance S between discontinuities
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3R. Alexandru and P.L. Dragotti, Reconstructing Classes of Non-bandlimited Signals from Time
Encoded Information, IEEE Trans. on Signal Processing, vol.68, 2020.
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London
o ) Time encoding at each pixel
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« Key insight: design an end-to-end neural network where the
acquisition process is part of the learned architecture

» Key approach: each pixel behaves differently
 The network architecture for reconstruction is model-based

. pixels corresponding to pg, g

pixels corresponding to p;, q;
V2E I &
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. Lowpass Events
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Ll filter Generation
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v
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Customized v2e
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Deep Unfolding Strategy

Explicit embedding of priors and constraints in deep networks
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Iterative algorithm with x
as input and I as output
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Unfolded version of the iterative algorithm with
learnable parameters

Need to re-synthesize the input, if self-supervised
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* The network architecture for reconstruction is model-based: intensity and
event frames share the same sparse representation
« The dictionary is usually learned
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events
— n :
Assumption: intensity and SSIRRIRSIRNERMERRERNEREERRY)):
event frames share the same m>n

sparse representation DI
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« The network architecture for reconstruction is model-based: intensity and
event frames share the same sparse representation Z;
« The sparse vector can be found using ISTA: Z¥ = hg(Z¥1 + DI (X, — D, ZK™1)

ISTAK

Z{“LI
Dy, ~D Py

h9k =ZZ“€

—
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» The network architecture for reconstruction is model-based: intensity and
event frames share the same sparse representation

Ct—2 Z{, G2
g1 b M= vZiy Zi_, Z¢ - ‘
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static

slow very slow very slow slow
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« Key insight: design an end-to-end neural network where the
acquisition process is part of the learned architecture

» Key approach: each pixel behaves differently
 The network architecture for reconstruction is model-based

. pixels corresponding to pg, g

pixels corresponding to p;, q;
V2E I &

(It—9' gy It) |
Every 10 frames

Y
: *“I@

Adaptive
Upsampling

. Lowpass Events
_ - b
Ll filter Generation

feo = aife Co = qC* Sh_‘)t
fea=asfé €y =qsC* | Noise
v
to voxel
grids

Customized v2e




:_mpﬁrial College Sensing Diversity for Neuromorphic Cameras
ondaon

without sensing diversity with sensing diversity
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« Neuromorphic sensing systems inspire a new paradigm for sampling

« Sampling provides insights into the design of event-driven systems
(end-to-end learning)

* Model-based deep learning leads to lighter and more universal
architectures
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Thank you!
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