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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements y, = (x(t), o(t/ T — n)), you want to reconstruct x(t).

x© ho=g-vr | YO 7T< Yi=<X(0.(UT-n)>

Acquisition Device

Natural questions:
> When is there a one-to-one mapping between x(t) and y,?
» What signals can be sampled and what kernels ((t) can be used?

» What reconstruction algorithm?
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The Information Acquisition Process

Lens Sensor array

Real world

(a) Camera image acquisition

(Sampling step size is normalized)

flz,y) — PSF ¢(—z, —y)

— g[m.n]

(b) Equivalent formulation

Digital image

» The lens blurs the image.

» The image is sampled (‘pixelized’) by the CCD array.

» You want to develop techniques that give you the sharpest and highest possible
resolution images given the available acquisition device

Pier Luigi Dragotti
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Motivation: Sampling Everywhere

Applications in Neuroscience

Neuroprosthesis

ADC
20K Hz < fs < 30K Hz|

Spike sorting

_— Processing unit
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Neural Activity Detection
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Motivation: Sensor Networks
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» The source (phenomenon) is distributed in space and time.
» The phenomenon is sampled in space and time.

» How many sensors? How can we localise the diffusion source?

Pier Luigi Dragotti
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Motivation: Free Viewpoint Video

Multiple cameras are used to record a scene or an event. Users can freely
choose an arbitrary viewpoint for 3D viewing.
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» This is a multi-dimensional sampling and interpolation problem.
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» Classical Sampling Formulation and Signals with FRI
» Sampling Kernels and Approximate Strang-Fix Conditions
» From Samples to Signals
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> Applications in
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» Sensor Networks

» Conclusions and Outlook
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Classical Sampling Formulation

> Sampling of x(t) is equivalent to projecting x(t) into the shift-invariant
subspace V = span{p(t/T — n)}rez.

> If x(t) € V, perfect reconstruction is possible.
> Reconstruction process is linear: X(t) = > yap(t/T — n).
» For bandlimited signals ¢(t) = sinc(t).

T A
W) 0 My — o) | X(0)
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Nyquist Sampling Rate vs Rate of Information

Here, x1(t) and x2(t) have the same rate of innovation. However, one discontinuity
and no sampling theorems ;-)
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Signals with Finite Rate of Innovation

> The signal x(t) =", ya(t/T — n) is exactly specified by one parameter
yn every T seconds, x(t) has a finite number p = 1/T of degrees of
freedom per unit of time.

» In the classical formulation, innovation is uniform. How about signals

where the rate of innovation is finite but non-uniform? E.g.

> Piecewise sinusoidal signals (Frequency Hopping modulation)
> Pulse position modulation (UWB)
> Edges in images
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Signals with Finite Rate of Innovation

Consider a signal of the form:

x(t) = 3 yep(t — ). (1)

keZ

The rate of innovation of x(t) is then defined as
1 T T
~im e (1), )
P07 2’2 )
where C.(—7/2,7/2) is a function counting the number of free parameters in
the interval 7.

Definition [VetterliMB:02] A signal with a finite rate of innovation is a signal
whose parametric representation is given in (1) and with a finite p as defined

in (2).

Pier Luigi Dragotti
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Examples of Signals with Finite Rate of Innovation
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Filtered Streams of Diracs Decaying Exponentials

1
D{\/\/\W
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Piecewise Sinusoidal Signals Mondrian paintings ;-)
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Sampling Kernels

2O ] h=gevn) Yo 7T< Yi=<x (1), (t/T-n)>

Acquisition Device

> Given by nature

> Diffusion equation, Green function. Ex: sensor networks.
» Given by the set-up

> Designed by somebody else. Ex: Hubble telescope, digital cameras.
> Given by design

> Pick the best kernel. Ex: engineered systems.
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Sampling Kernels

Any kernel (t) that can reproduce exponentials:

Zcm,,,go(t—n):eo‘"”"h7 am=ay+miand m=0,1,..., L.
n

This includes any composite kernel of the form ~(t) * 85(t) where
Ba(t) = Bag(t) * Bay (t) * ... ¥ Ba, (t) and Ba;(t) is an Exponential Spline of first order
[UnserB:05].

R 1— ea—jw
Ba(t) & Blw) = ———
Jjw —
Notice:
» « can be complex.
» E-Spline is of compact support.

» E-Spline reduces to the classical polynomial
Eoselne b, spline when a = 0.
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Exponential Reproducing Kernels

The E-spline of first order Bq,(t) reproduces the exponential e®0t:
Z €0,nfBaq (t — n) = e°F.
n

In this case cp,, = €*0”". In general, cm n = cm,0€*™".
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Exponential Reproducing Kernels
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Here the E-spline is of second order and reproduces the exponential et e®1t: with
ag = —0.06 and a1 = 0.5.

Pier Luigi Dragotti
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Exponential Reproducing Kernels
> The exponent « of the E-splines can be complex. This means (3(t) can
be a complex function.

> However if pairs of exponents are chosen to be complex conjugate then
the spline stays real.

» Example:
sin;;gteagt 0 <t< 1
Bag+jun (t) * Bag—jun(t) = § —Sneeli=Bgoot 1 <t <2
0 Otherwise

When ap = 0 (i.e., purely imaginary exponents), the spline is called
trigonometric spline.
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Exponential Reproducing Kernels

Here & = (—jwo, jwo) and wg = 0.2. 3°, cp,mBa(t — n) = &m0 m=-1,1.
Notice: 35(t) is a real function, but the coefficients ¢, are complex.
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Generalised Strang-Fix Conditions
A function ¢(t) can reproduce the exponential:

eemt = Z Cmnip(t — n)

if and only if
&(jwm) # 0 and @(jwm +j27l) =0 1€ Z\ {0}

where &(-) is the Fourier transform of o(t).

Also note that ¢mp = Cmoe/®™" with cmo = @(jwm) .
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Generalised Strang-Fix Conditions

12 12 wo
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0.6 0.6
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-6n —-4n -2n 0 2n 4m  6m —6n —4n -2n 0 2m 4mw 67
w [rad-s7!] w [rad-s7!]
(a) |Ba(w)| with a =0 (b) |Ba(w)| with a = iwo
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From Samples to Signals

» Consider any x(t) with t € [0, N) and

0 sampling period T = 1.

> The sampling kernel ¢(t) satisfies

Z Cmnp(t—n) =" m=1,..1L,

o > We want to retrieve x(t), from the
samples y, = (x(t), p(t — n)),
n=0,1,..,N—1.
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From Samples to Signals
We have that
Sm = on o CmnYn
= (x(1), sy el — )

= [ x(t)eomtdt, m=1,..,L

o0

> Note that s, is the Fourier transform of x(t) evaluated at jwp,.
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From Samples to Signals

» Consider FRI signals which are completely specified by a finite
number of free parameters

» This is an ‘analogue’ sparsity model

» For classes of parametrically sparse signals there is a one-to-one
mapping between samples and signal:

x(t) & x(jwm) m=1,2,...,L

» The number d of degrees of freedom of the signal must satisfy d < L

ampling and its Applications in Neuroscience and Sensor Networks
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Sampling Streams of Diracs

v

Assume x(t) is a stream of K Diracs on the interval of size N:
x(t) = Y30 xud(t — ti), te € [0, N).

» We restrict jw, = jwg +jmA m=1..L and L >2K.
» We have N samples: y, = (x(t), ¢(t — n)), n=10,1,..N — 1:
» We obtain

N—-1
Sm = Zn:o Cm,nYn

75 x(t)ef“ntdt,

— 00

Zk o Xkl

K—1, _jixmt, _ K—1 A .
ko Rk€ MM =375 KUy m=1,.. L
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Prony’'s Method

» The quantity

is a sum of exponentials.

» Retrieving the locations uy and the amplitudes X, from {s,}5_, is a
classical problem in spectral estimation and was first solved by
Gaspard de Prony in 1795.

» Given the pairs {uk, R}, then tx = (Inuk)/X and x = X, /e,

Sampling and its Applications in Neuro and Sensor Networks
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Overview of Prony’s Method

Assume: y, = Zf;ol ayup’ and consider the polynomial:
K

P(x) = H(X —u) = XK xR 4 moxK =2 L b gx o+ i
k=1

It is easy to verify that

Ynik + MYnik—1+ maYnik—2+ ..+ heyn = > opupP(u) =0.

1<k<K
In matrix-vector form for indices n such that £ < n < £+ K, we get

Ye+K Ye+K—1 cee ye 1
Ye+K+1 Ye+k Ye+1 h
. . ho —Teeh=0
Yer2K—2 : h.
K
Ye+2K—1  Ye+2K—2 Ye+K—1
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Overview of Prony's Method

The vector of polynomial coefficients h = [1, hy, ..., hk]T is in the null space of Tk
Moreover, Tk ; has size K x (K + 1) and has full row rank when the uy’'s are distinct.
Therefore h is unique.
O
Prony’s method summary:
1. Given the input y,, build the Toeplitz matrix T , and solve for h. This can be
achieved by taking the SVD of Tk ,.

2. Find the roots of P(x) =1+ ZHKZI hixX—k. These roots are exactly the
exponentials {uk}kK;OI.

3. Given the {uk}fgol, find the corresponding amplitudes {ak}f;Ol by solving K
linear equations.
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Sampling Streams of Diracs: Numerical Example

o
o
" L
(a) Original Signal (b) Sampling Kernel (37(t))
35| o
«
b |

(c) Samples (d) Reconstructed Signal
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Sampling Streams of Diracs: Numerical Example
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(a) Input signal, z(t)

1
o5 e/'/ \‘\
0

Imaginary Part

SR,
1

-1-05 0 05 1
Real Part

(c) e®m reproduced by h(t)

Pier Luigi Dragotti
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Note on the proof

Linear vs Non-linear
» Problem is Non-linear in t,, but linear in x, given t,
» The key to the solution is the separability of the non-linear from the linear
problem using the annihilating filter.
The proof is based on a constructive algorithm:
1. Given the N samples y,, compute the moments sp, using the exponential
reproduction formula. In matrix vector form S = CY.
2. Solve a K x K Toeplitz system to find H(z)
3. Find the roots of H(z)
4. Solve a K x K Vandermonde system to find the aj
Complexity
1. O(KN)
2. O(K?)
3. O(K?)
4. O(K?)

Thus, the algorithm complexity is polynomial with the signal innovation.
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Sparse Sampling: Extensions

Using variations of Prony’s method other signals can be sampled such as for
example piecewise sinusoidal signals [BerentDragotti:10].
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Stream of Decaying Exponentials

5 5
0.06
4 4
3 0.04 8
2 2
1 0.02 "
0 o 0
0 0.5 1 0 05 1 15 0 0.5 1
tls] t[s] tls]
(a) Input signal, z(t) (b) Filtered and sampled signal (c) Reconstructed signal

Pier Luigi Dragotti
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Sampling 2-D domains

The curve is implicitly defined through the equation [PanBluDragotti:11,14]:

K

f(x,y) = Zzb —jamxk/M —j2myi/N _ o

k=1 i=1

The coefficients by ; are the only free parameters in the model.

Pier Luigi Dragotti
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Sampling 2-D domains

samples interpolation

mpling and its Applications in Neur
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Robust and Universal Sparse Sampling
x(t) h(t)= q(~tT) y(t) T>< £<x(t),€p(t/T—n)>+sn
| "
Acquisition Device
» The acquisition device is arbitrary
» The measurements are noisy
» The noise is additive and i.i.d. Gaussian
» Many robust versions of Prony’s method exist (e.g., Cadzow, matrix

pencil)
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Approximate Strang-Fix

> How restrictive are the Strang-Fix conditions?

> Assume ((t) cannot reproduce exponentials, we want to find the
coefficients ¢, = coe/“™" such that:

Z crp(t — n) &= &t

n€Z
» Approximation error
e(t) = f(t) — & =" |1 - Y pjwm + jorl)e* ™"
IeZ

> We only need @(jwm + j2nl) = 0 | € Z\ {0}, which is satisfied when
©(t) has an essential bandwidth of size 2.
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Generalised Strang-Fix Conditions

12 12 wo
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(a) |Ba(w)| with a =0 (b) |Ba(w)| with a = iwo
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Approximate Strang-Fix
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Approximate Strang-Fix

> Assume @(t) cannot reproduce exponentials, we want to find the
coefficients ¢, = coe/*™" such that:

> cnp(t — n) =

neZ
> Approximation error
e(t) = (1) — &' =t |10 Y @ljwm + j2rl)e*™
ez
» Constant Least-squares approximation
& = Pliom) " = 6 = Pljwm)

» Advantage: only need to know the Fourier transform of ¢(t) at jwm.

Sampling and its Applications in Neuro and Sensor Networks
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Approximate vs Exact Strang-Fix

Exact

» Any device with unit input response of the form ~(t) * 3z(t) where
B&(t) is an E-spline of order L

» The order L and the exponents «ag, a1, .., a; are decided a-priori and
cannot be changed.

Approximate
» Any acquisition device h(t) can be used within this framework
> The essential bandwidth of h(t) = ¢(—t/T) must be at most 27/ T

> We do not need to know h(t) exactly. We only need to know h(jwn)
m=20,1,..,L

The number L of exponentials reproduced is arbitrary

>

Pier Luigi
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Approximate FRI recovery: Numerical Example

Gaussian Kernel

0 02 04 06 08 1 12 14 18 18 2
¢

Approximate FRI with the Gaussian kernel. K =5, N = 61, SNR=25dB.
Recovery using the approximate method with am = j355 (2m— P),

m=20,...,P where P+1=21.

D)

Pier Luigi Dragotti
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Approximate Strang-Fix: when ‘Mr Approximate' is
better than ‘Mr Exact’

etroved

1
1

08
08

08
08
04 o4
oz 02,

01 oznaooososmaaasw 01 02z 03 04 05 05 07 08 O
0

(a) yn and ¥ (b) Default FRI retrieval  (c) Approx. FRI retrieval

Estimation of K = 6 Diracs with the B-Spline kernel of order L = 16, N = 31.

(b) Default polynomial recovery. (c) Approximate recovery with
=Jjtsp(@m—P), m=0,..., P where P +1 =21, SNR=25dB.
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Retrieving 1000 Diracs with Strang-Fix Kernels

(i-1) window :
ith window > Dlr_acs | Foreach window:
retrieval ¢ K
(i+1) window {tk ak},_,

» Retrieve Diracs using a sliding window

» Locations of true Diracs are consistent across windows
[Onativia-Uriguen-Dragotti-13]
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Retrieving 1000 Diracs with Strang-Fix kernels

1
35 —— True Diracs
1 — Histogram
9 % —— Threshold
— 25
v 8
o, 20
E s
L
10
5
o True locations of Diracs 5
e Detected locations o i
50 100 150 4 5 6 7 8 9 10 1
n Time (s)

IR v

Pier Luigi Dragotti ¥ a:
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Retrieving 1000 Diracs with Strang-Fix Kernels

— Noiseless samples
— Noise

~A Original Diracs
—* Estimated Diracs

4 6 8 10 12 14 4 6 8 10 12 14
Time (s) Time (s)
(a) yn samples (b) Reconstructed stream

» K = 1000 Diracs in an interval of 630 seconds, N = 10° samples,
T = 0.06 and SNR = 10dB

> 9997 Diracs retrieved with an error e < T/2
> Average accuracy At = 0.005, execution time 105 seconds.
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Application: Image Super-Resolution
[BaboulazD:09]

Super-Resolution is a multichannel sampling problem with unknown shifts. Use
moments to retrieve the shifts or the geometric transformation between images.

(a)Original (512 x 512)  (b) Low-res. (64 x 64)  (c) Super-res ( PSNR=24.2dB)

» Forty low-resolution and shifted versions of the original.
» The disparity between images has a finite rate of innovation and can be retrieved.

» Accurate registration is achieved by retrieving the continuous moments of the
" LE LB

Pier Luigi Dragotti ¥ a:
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Application: Image Super-Resolution

Image super-resolution basic building blocks

] © ©
o O B
' O!HO ©
' O
' Q Super-resolved
> % - —»| Restoration | =+
dP— ) 3 ) O estoration image
' L5 ®)
: IADE
| o
O
o e
@® LR image 0
O LR image k
Set of low-resolution images Image Registration HR grid estimation
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Application: Image Super-Resolution
» For each blurred image I(x, y):
> A pixel Pp, , in the blurred image is given by
va" = <I(X7y)7gD(X/T - n7.y/T - m)>7

where o(t) represents the point spread function of the lens.
> We assume ¢(t) is a spline that can reproduce polynomials:

SO et —my —m) =Xy 1=0,1,.,N;j=0,1,..,N.

> We retrieve the exact moments of /(x, y) from Pp, »:

T’J:ZZC,&H mn:///(X,y)lejdxdy.

» Given the moments from two or more images, we estimate the geometrical
transformation and register them. Notice that moments of up to order three
along the x and y coordinates allows the estimation of an affine transformation.

Sampling and its Applications in Neuroscience and Sensor Networks




Imperial College
London

Application: Image Super-Resolution

Acquisition with Nikon D70

-

- >
(a)Original (2014 x 3040) (b) ROI (128 x 128)  (b) Super-res (1024 x 1024)

Pier Luigi Dragotti
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Application: Image Super-Resolution

(a)Original (48 x 48) (b) Super-res (480 x 480)

Pier Luigi Dragotti
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Neural Activity Detection [OnativiaSD:13]

Pier Luigi gotti
Parametric e Sampling and its Applications in Neuroscience and Sensor Networks




Imperial College
London

Calcium Transient Detection

i=th window

i~th window

i) f j j ) ) "[— Oorigmai sokes
"~ Locations nisogran

* “ “ Tima (<) = = “
(iv) o=f T . . .
P— ]
d e = o
+ - : & 4 +

“ Time (s)

Pier Luigi Dr:
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Calcium Transient Detection

1 " T
E /7 = -o5 =
© 0.8t PR ST -
o ¢"\““ ’\’\_\—
023 0.6 ,\\(o - _
= R
S Al FRI
Q 04] 4- 7
g 4 - - - Fast deconv.
= %2 " """ Deriv.&thres.|]
N T Filter&thres.
O L

0 0.61 0.62 0.63 0.04
false positive rate

Pier Luigi Dragotti
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Localisation of Diffusion Sources using Sensor
Networks [Murray-BruceD:14]

& NUGLEARFALLOUT MARE = e
3000/RADS| . ¢
1500,RADS’

I 750/ RADS:

» The diffusion equation models the dispersion of chemical plumes, smoke from
forest fires, radioactive materials

» The phenomenon is sampled in space and time using a sensor network.

» Sources often localised in space. Can we retrieve their location and the time of
activation?

i .
Pier Luigi Dragotti ¥ a:
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Localisation of Diffusion Sources using Sensor
Networks
Locations
AW
fo \0‘0—0—'9‘9\
07] g o ‘o . o . ..
Good news: Lo o a0 e o}
» When sources are localised in space o R N
and time, the field inversion is o b\ ° Ty N
equivalent to an FRI problem R ie”:'s LA ;.
» Proper linear combinations of sensors o T I

measurements in time and space O 0T 0F 03 o4 05 08 07 08 09
leads to a Prony-type problem

Pier Luigi Dragotti
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Localisation of Diffusion Sources: Numerical Results

Locations

Activation Time Estimates

®°o o %O
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Independent Trial Index

— Estimate (t)
— Estimate (t,)
- = Estimate (t,)
- = -Estimate (t,)

--=--True Activation Times

(b) 100 independent trials using noisy sensor measurement samples (SNR=15dB).

Pier Luigi Dragotti
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Conclusions

Sampling signals using sparsity models:

» New framework that allows the sampling and reconstruction of
infinite-dimensional continuous-time signals at a rate smaller than Nyquist
rate.

» [t is a non-linear problem

> Different possible algorithms with various degrees of efficiency and
robustness

» Approximate Strang-Fix method: universal and robust to noise
Outlook:
» Promising applications in neuroscience
» Applications to the inversion of physical fields from sensors’ measurements

Still many open questions from theory to practice!
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