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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements yn = 〈x(t), ϕ(t/T − n)〉, you want to reconstruct x(t).

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

Natural questions:

I When is there a one-to-one mapping between x(t) and yn?

I What signals can be sampled and what kernels ϕ(t) can be used?

I What reconstruction algorithm?
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The Information Acquisition Process
STEP LINE-EDGE ESTIMATION BY OPTIMIZATION BASED ON SAMPLING THEORY FOR FRI SIGNALS, VOL. X, NO. XX, XXXXXXX 200X 3

Real world (a) Camera image acquisition

Lens Sensor array
Digital image

(Sampling step size is normalized)

(b) Equivalent formulation

PSF ψ(−x,−y)f(x, y) - - g[m,n]

Fig. 1. Image acquisition setup

We therefore note that these coefficients are discrete-time
exponentials. From this observation, we realize immediately
that choosing E-splines with purely imaginary exponents leads
to coefficients c(αp)

n whose absolute values stay constant with
n. This is in contrast to the behaviour seen in (6) for the
coefficients used to reproduce polynomials and the stable
behaviour of this E-spline coefficients is a key fact exploited
in this paper. In particular, we will mostly use trigonometric E-
spline of first order (P = 1), which are obtained by choosing
α⃗ = (iω0,−iω0) with ω0 ∈ IR. The trigonometric E-spline of
first order can be written as follows

βα⃗(t) =





sinω0(1 + t)/ω0 (−1 ≤ t < 0),
sinω0(1− t)/ω0 (0 ≤ t < 1),

0 (t ≤ −1, t > 1).
(11)

Also note that the B-spline basis function of the same order
is given by

β1(t) =





1 + t (−1 ≤ t < 0),
1− t (0 ≤ t < 1),

0 (t ≤ −1, t > 1).
(12)

When ω0 tends to zero, the trigonometric E-spline uniformly
converges to the B-spline of the first order.

III. IMAGE ACQUISITION SETUP

The main components of a digital camera are lenses and
image sensors as shown in Fig. 1. An ideal lens maps a point
in 3D space to another point on the focal plane. Since an
actual lens is never perfect, blur always occurs. The other main
component, the image sensor, is normally a charge coupled
device (CCD) or complementary metal oxide semiconductor
(CMOS) array. This also causes blur because of the spatial
extent of each sensor. Blur is also introduced by motion
or atmospheric conditions. The overall blur caused by these
many factors can be approximately characterised using a linear
spatial invariant function called the point spread function
(PSF). Hence, if we denote with f(x, y) the original 2-D signal

and with g[m,n] the resulting pixels in the digital image, the
image acquisition process can be modelled as follows:

g[m,n] = ⟨f(x, y), ψ(x−m)ψ(y − n)⟩+ ϵ[n,m],

where ψ(x)ψ(y) is the 2-D point spread function and ϵ[n,m]
is additive noise.

The PSF is usually modeled using a Gaussian function [19],
[20]. Recently, B-spline functions have also been proposed
[21], [3], [14]. B-splines have a shape similar to a Gaussian
function [22], but have the advantage of being compactly
supported. Moreover, as discussed in the previous section,
B-splines are able to reproduce polynomials. This second
characteristic has been exploited in [3], [14] in order to devise
methods for the exact estimation of continuous step edges
in an image from the pixels. The methods use the fact that
a continuous step edge is completely determined by three
parameters: the angle, the offset and the amplitude of the edge.
These parameters can be estimated exactly from the image
pixels using the fact that B-splines reproduce polynomials [3],
[14]. The drawback of using B-splines is that, as mentioned in
Section II, the coefficients used in the polynomial reproduction
formula behave like discrete-time polynomials and this makes
the edge estimation methods often unstable. To avoid this
problem, we model the PSF using the trigonometric E-spline
function of Eq. (11). E-spline can well approximate both
Gaussians or B-splines. Further, by restricting the exponents
to be purely imaginary, as discussed before, we are guaranteed
that the coefficients c

(αp)
n have absolute values that stay

constant and this helps improving stability.

IV. LINE-EDGE ESTIMATION BY OPTIMIZATION

In this section, we first demonstrate that in noiseless settings
we can estimate exactly a continuous edge from its ‘pixelised’
version when we model the PSF with an E-splines. In this way
we extend the results first presented in [3] for B-splines to
the E-spline case. We then present an algorithm that achieves
reliable estimation of edges when images are corrupted by
noise or when edges are not exactly straight.

I The lens blurs the image.

I The image is sampled (‘pixelized’) by the CCD array.

I You want to develop techniques that give you the sharpest and highest possible
resolution images given the available acquisition device
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Motivation: Sampling Everywhere
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Neural Activity Detection
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Motivation: Sensor Networks

I The source (phenomenon) is distributed in space and time.

I The phenomenon is sampled in space and time.

I How many sensors? How can we localise the diffusion source?
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Motivation: Free Viewpoint Video

Multiple cameras are used to record a scene or an event. Users can freely
choose an arbitrary viewpoint for 3D viewing.

I This is a multi-dimensional sampling and interpolation problem.
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Outline
I Classical Sampling Formulation and Signals with FRI

I Sampling Kernels and Approximate Strang-Fix Conditions

I From Samples to Signals

I Robust and Universal Sparse Sampling

I Applications in

I Image Super-Resolution
I Neuroscience
I Sensor Networks

I Conclusions and Outlook

Pier Luigi Dragotti
Parametric Sparse Sampling and its Applications in Neuroscience and Sensor Networks



Classical Sampling Formulation

I Sampling of x(t) is equivalent to projecting x(t) into the shift-invariant
subspace V = span{ϕ(t/T − n)}n∈Z.

I If x(t) ∈ V , perfect reconstruction is possible.

I Reconstruction process is linear: x̂(t) =
P

n ynϕ(t/T − n).

I For bandlimited signals ϕ(t) = sinc(t).

φ(t)~
~

x(t) y
T

n φ(t)
x(t)^
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Nyquist Sampling Rate vs Rate of Information

Here, x1(t) and x2(t) have the same rate of innovation. However, one discontinuity
and no sampling theorems ;-)

x1(t)

t t

X1(!)

x2(t)

t t

X2(!)
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Signals with Finite Rate of Innovation

I The signal x(t) =
P

n ynϕ(t/T − n) is exactly specified by one parameter
yn every T seconds, x(t) has a finite number ρ = 1/T of degrees of
freedom per unit of time.

I In the classical formulation, innovation is uniform. How about signals
where the rate of innovation is finite but non-uniform? E.g.

I Piecewise sinusoidal signals (Frequency Hopping modulation)
I Pulse position modulation (UWB)
I Edges in images
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Signals with Finite Rate of Innovation

Consider a signal of the form:

x(t) =
X
k∈Z

γkϕ(t − tk). (1)

The rate of innovation of x(t) is then defined as

ρ = lim
τ→∞

1

τ
Cx

“
−τ

2
,
τ

2

”
, (2)

where Cx(−τ/2, τ/2) is a function counting the number of free parameters in
the interval τ .

Definition [VetterliMB:02] A signal with a finite rate of innovation is a signal

whose parametric representation is given in (1) and with a finite ρ as defined

in (2).
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Examples of Signals with Finite Rate of Innovation
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Piecewise Sinusoidal Signals Mondrian paintings ;-)
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Sampling Kernels

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

I Given by nature

I Diffusion equation, Green function. Ex: sensor networks.

I Given by the set-up

I Designed by somebody else. Ex: Hubble telescope, digital cameras.

I Given by design

I Pick the best kernel. Ex: engineered systems.
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Sampling Kernels

Any kernel ϕ(t) that can reproduce exponentials:X
n

cm,nϕ(t − n) = eαmt , αm = α0 + mλ and m = 0, 1, ..., L.

This includes any composite kernel of the form γ(t) ∗ β~α(t) where
β~α(t) = βα0 (t) ∗ βα1 (t) ∗ ... ∗ βαL (t) and βαi (t) is an Exponential Spline of first order
[UnserB:05].

eα t 

E−Spline βα(t) 

βα(t)⇔ β̂(ω) =
1− eα−jω

jω − α
Notice:

I α can be complex.

I E-Spline is of compact support.

I E-Spline reduces to the classical polynomial
spline when α = 0.
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Exponential Reproducing Kernels
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The E-spline of first order βα0 (t) reproduces the exponential eα0t :X
n

c0,nβα0 (t − n) = eα0t .

In this case c0,n = eα0n. In general, cm,n = cm,0eαmn.
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Exponential Reproducing Kernels
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Here the E-spline is of second order and reproduces the exponential eα0t , eα1t : with

α0 = −0.06 and α1 = 0.5.
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Exponential Reproducing Kernels

I The exponent α of the E-splines can be complex. This means βα(t) can
be a complex function.

I However if pairs of exponents are chosen to be complex conjugate then
the spline stays real.

I Example:

βα0+jω0 (t) ∗ βα0−jω0 (t) =

8>>>><>>>>:

sinω0t
ω0

eα0t 0 ≤ t < 1

− sinω0(t−2)
ω0

eα0t 1 ≤ t < 2

0 Otherwise

When α0 = 0 (i.e., purely imaginary exponents), the spline is called

trigonometric spline.
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Exponential Reproducing Kernels
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Here ~α = (−jω0, jω0) and ω0 = 0.2.
P

n cn,mβ~α(t − n) = e jmω0 m = −1, 1.

Notice: β~α(t) is a real function, but the coefficients cm,n are complex.
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Generalised Strang-Fix Conditions

A function ϕ(t) can reproduce the exponential:

e jωmt =
X

n

cm,nϕ(t − n)

if and only if

ϕ̂(jωm) 6= 0 and ϕ̂(jωm + j2πl) = 0 l ∈ Z \ {0}

where ϕ̂(·) is the Fourier transform of ϕ(t).

Also note that cm,n = cm,0e
jωmn with cm,0 = ϕ̂(jωm)−1.
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Generalised Strang-Fix Conditions

Sparse Sampling: Theory, Methods and an Application in Neuroscience 5
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(b) |β̂α(ω)| with α = iω0

Fig. 5: Absolute value of the Fourier transform of zero order E-splines given by (11). If the parameter α is equal to zero, the
E-spline corresponds to the sinc function. For α = iω0 purely imaginary, the Fourier transform of the E-spline is a shifted
version of the sinc function.

The exponential reproduction property is illustrated
in Fig. 4 for two different kernels that reproduce dif-
ferent exponentials. In both cases the kernels are of
compact support. The advantage of such kernels is that
the summation in (9) can be truncated and still have
a region in time where the exponential functions are
perfectly reproduced. In general, the exponentials eαmt

are perfectly reproduced when the summation is com-
puted for n ∈ Z. Let t ∈ [0, L[ be the support of ϕ(t),
that is, ϕ(t) = 0 for t /∈ [0, L[. If the summation is
truncated to n = n0, . . . , nf , it follows that the per-
fect reproduction of the exponential functions holds for
t ∈ [n0 − 1 + L, nf + 1[.

3.1 Exponential reproducing kernels

For the sake of clarity, in what follows we restrict the
analysis to the case where the parameter αm in (9) is
purely imaginary, that is αm = iωm for m = 0, 1, . . . , P ,
where ωm ∈ R. This analysis can easily be extended to
the more general case where αm has nonzero real and
imaginary parts, or is purely real.

A function ϕ(t) together with a linear combina-
tion of its shifted versions reproduces the exponentials
{eiωmt}Pm=0 as in (9) if and only if it satisfies the gen-
eralised Strang-Fix conditions:

ϕ̂(ωm) 6= 0 and ϕ̂(ωm + 2πl) = 0, (10)

where m = 0, 1, . . . , P , l ∈ Z \ {0} and ϕ̂(ω) is the
Fourier transform of ϕ(t) (Strang and Fix, 1971; Unser
and Blu, 2005; Urigüen et al, 2013). A family of func-
tions that satisfy these conditions are the exponential
B-splines, also named E-splines. These functions are
constructed through the convolution of elementary zero
order E-splines, where each elementary function repro-
duces a particular exponential eiωmt. The Fourier trans-

form of a zero order E-spline that reproduces the expo-
nential eαt is given by

β̂α(ω) =
1− eα−i ω
i ω − α . (11)

Fig. 5 illustrates the Fourier transform of zero order
E-splines for two different values of the parameter α.
The corresponding E-spline that reproduces the set of
exponentials {eαmt}Pm=0 is obtained as follows

βα(t) = (βα0 ∗ βα1 ∗ . . . ∗ βαP
) (t), (12)

where α = (α0, α1, . . . , αP ). Thus, the Fourier trans-
form of βα(t) is given by

β̂α(ω) =
P∏

m=0

(
1− eαm−i ω

i ω − αm

)
. (13)

E-splines have compact support P+1 and have P−1
continuous derivatives. It can be shown that any func-
tion that reproduces the set of exponentials {eαmt}Pm=0

can be expressed as the convolution of another function
γ(t) with the corresponding E-spline that reproduces
these exponentials, that is, ϕ(t) = γ(t) ∗βα(t) and γ(t)
satisfies

∫ +∞
−∞ e−αmtγ(t)dt 6= 0 for all αm(Unser and

Blu, 2005; Delgado-Gonzalo et al, 2012). It is also true
that if ϕ(t) reproduces a set of exponentials, this prop-
erty is preserved through convolution. Let

ψ(t) = ϕ(t) ∗ ρ(t), (14)

for ρ(t) such that
∫ +∞
−∞ e−αmtρ(t)dt 6= 0. The function

ψ(t) also reproduces the same set of exponentials. This
is easy to verify since ψ(t) also satisfies the Strang-Fix
conditions.
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From Samples to Signals

0

x(t)

I Consider any x(t) with t ∈ [0,N) and
sampling period T = 1.

I The sampling kernel ϕ(t) satisfiesX
n

cm,nϕ(t − n) = e jωmt m = 1, ..., L,

I We want to retrieve x(t), from the
samples yn = 〈x(t), ϕ(t − n)〉,
n = 0, 1, ...,N − 1.
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From Samples to Signals

We have that

sm =
∑N−1

n=0 cm,nyn

= 〈x(t),
∑N−1

n=0 cm,nϕ(t − n)〉

=
∫∞
−∞ x(t)e jωmtdt, m = 1, ..., L.

I Note that sm is the Fourier transform of x(t) evaluated at jωm.
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From Samples to Signals

I Consider FRI signals which are completely specified by a finite
number of free parameters

I This is an ‘analogue’ sparsity model

I For classes of parametrically sparse signals there is a one-to-one
mapping between samples and signal:

x(t)⇔ x̂(jωm) m = 1, 2, ..., L

I The number d of degrees of freedom of the signal must satisfy d ≤ L
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Sampling Streams of Diracs

I Assume x(t) is a stream of K Diracs on the interval of size N:

x(t) =
∑K−1

k=0 xkδ(t − tk), tk ∈ [0,N).

I We restrict jωm = jω0 + jmλ m = 1, ..., L and L ≥ 2K .

I We have N samples: yn = 〈x(t), ϕ(t − n)〉, n = 0, 1, ...N − 1:

I We obtain

sm =
∑N−1

n=0 cm,nyn

=
∫∞
−∞ x(t)e jωmtdt,

=
∑K−1

k=0 xke
jωmtk

=
∑K−1

k=0 x̂ke
jλmtk =

∑K−1
k=0 x̂ku

m
k , m = 1, ..., L.
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Prony’s Method

I The quantity

sm =
K−1∑

k=0

x̂ku
m
k , m = 1, ..., L

is a sum of exponentials.

I Retrieving the locations uk and the amplitudes x̂k from {sm}Lm=1 is a
classical problem in spectral estimation and was first solved by
Gaspard de Prony in 1795.

I Given the pairs {uk , x̂k}, then tk = (ln uk)/λ and xk = x̂k/e
α0tk .
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Overview of Prony’s Method

Assume: yn =
PK−1

k=0 αkum
k and consider the polynomial:

P(x) =
KY

k=1

(x − uk ) = xK + h1x
K−1 + h2x

K−2 + . . .+ hK−1x + hK .

It is easy to verify that

yn+K + h1yn+K−1 + h2yn+K−2 + . . .+ hK yn =
X

1≤k≤K

αkun
kP(uk ) = 0.

In matrix-vector form for indices n such that ` ≤ n < `+ K , we get266666664

y`+K y`+K−1 · · · y`
y`+K+1 y`+K · · · y`+1

...
. . .

. . .
...

y`+2K−2

. . .
. . .

...
y`+2K−1 y`+2K−2 · · · y`+K−1

377777775

2666664
1
h1

h2

...
hK

3777775 = TK ,`h = 0
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Overview of Prony’s Method

The vector of polynomial coefficients h = [1, h1, ..., hK ]T is in the null space of TK ,`.
Moreover, TK ,` has size K × (K + 1) and has full row rank when the uk ’s are distinct.
Therefore h is unique.

Prony’s method summary:

1. Given the input yn, build the Toeplitz matrix TK ,` and solve for h. This can be
achieved by taking the SVD of TK ,`.

2. Find the roots of P(x) = 1 +
PK

n=1 hkxK−k . These roots are exactly the

exponentials {uk}K−1
k=0 .

3. Given the {uk}K−1
k=0 , find the corresponding amplitudes {αk}K−1

k=0 by solving K
linear equations.
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Sampling Streams of Diracs: Numerical Example
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Sampling Streams of Diracs: Numerical Example
Sparse Sampling: Theory, Methods and an Application in Neuroscience 9
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(f) Reconstructed signal

Fig. 8: Sampling of a stream of Diracs and perfect reconstruction. K = 4 Diracs sampled with an E-spline of order P = 7
which corresponds to the critical sampling rate (P + 1 = 2K). (a) is the continuous-time stream of Dircas, (b) the sampling
kernel h(t) = ϕ(−t/T ) where ϕ(t) is an E-spline of order P = 7 that reproduces the exponentials illustrated in (c). (d) is the
continuous-time signal y(t) = x(t) ∗ h(t) and the corresponding discrete samples yn = y(t)|t=nT . In (e), |x̂(ω)| is obtained from
(24) and |sm| from samples yn linearly combined with coefficients cm,n. (f) is the reconstructed stream of Diracs from the
sequence sm. The original signal is perfectly reconstructed.

from the knowledge of values sm. The problem of esti-
mating the parameters of a sum of exponentials from
a set of samples arises in a variety of fields and has
been analysed for several years by the spectral estima-
tion community (Pisarenko, 1973; Paulraj et al, 1985;
Schmidt, 1986). One way to solve it is by realising that
the sequence sm given as in (25) is the solution to the
following linear homogeneous recurrence relation

hK sm−K + . . .+ h1 sm−1 + sm = 0. (26)

See A.1 for a description of this type of homoge-
neous systems and their solutions. Note that coefficients
h1, . . . , hK are unknown, but can be obtained from the
following linear system of K equations:




sK−1 sK−2 . . . s0
sK sK−1 . . . s1
...

...
. . .

...
s2K−2 s2K−3 . . . sK−1


 ·




h1

h2

...
hK


 = −




sK
sK+1

...
s2K−1


 . (27)

It can be shown that, if the K parameters uk in
(25) are distinct, which is a direct consequence of the
fact that all the delays tk are different, the Toeplitz
matrix in the left-hand side of (27) is of rank K, and

therefore, the solution is unique (see A.2 for a proof on
the rank of this matrix). As shown in A.1, the param-
eters uk are obtained from the roots of the polynomial
H(z) = hK z

−K + . . .+h1 z
−1 +1. Once the paramteres

uk have been obtained, the amplitudes bk of the sum
of exponentials can be directly retrieved from (25) by
solving the associated least squares problem. From uk
and bk we can then compute tk and ak. The stream of
Diracs is thus perfectly recovered. In the literature this
approach is known as Prony’s method or the annihilat-
ing filter method (Stoica and Moses, 2005).

The system of equations (27) requires at least 2K
consecutive values sm. Recall that the sequence sm is
obtained as follows sm =

∑N
n=1 cm,n yn, with m =

0, 1, . . . , P , where P+1 is the number of exponentials re-
produced by the sampling kernel. We thus have a lower
bound on the number of exponentials that the sampling
kernel has to reproduce P + 1 ≥ 2K. The perfect re-
construction of a stream of Diracs is summarised in the
following theorem.

Theorem 1 Consider a stream x(t) of K Diracs: x(t) =∑K
k=1 ak δ(t− tk), and a sampling kernel ϕ(t) that can

reproduce exponentials e i(ω0+λm)t, with m = 0, 1, . . . , P ,
and P + 1 ≥ 2K. Then the samples defined by yn =
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Note on the proof

Linear vs Non-linear

I Problem is Non-linear in tk , but linear in xk given tk
I The key to the solution is the separability of the non-linear from the linear

problem using the annihilating filter.

The proof is based on a constructive algorithm:

1. Given the N samples yn, compute the moments sm using the exponential
reproduction formula. In matrix vector form S = CY .

2. Solve a K × K Toeplitz system to find H(z)

3. Find the roots of H(z)

4. Solve a K × K Vandermonde system to find the ak

Complexity

1. O(KN)

2. O(K2)

3. O(K3)

4. O(K2)

Thus, the algorithm complexity is polynomial with the signal innovation.
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Sparse Sampling: Extensions

Using variations of Prony’s method other signals can be sampled such as for
example piecewise sinusoidal signals [BerentDragotti:10].
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Stream of Decaying Exponentials
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Fig. 9: Sampling of a stream of decaying exponentials and perfect reconstruction. Since x(t) is an infinite duration signal,
samples yn are nonzero for n ≥ n0, for some n0 that depends on the location of the first decaying exponential. However, if
the number of decaying exponentials is finite, the number of nonzero samples zn = yn − yn−1 e−αT is also finite since they are
equivalent to sampling a stream of Diracs with a compact support kernel.

〈x(t) , ϕ(t/T − n)〉 are sufficient to characterise x(t)
uniquely.

Fig. 8 illustrates the entire sampling process. Note
that, since the sampling kernel is of compact support
and the stream of Diracs is localised in time, there are
only a small number of samples yn that are nonzero.
From Fig. 8(e) it is clear that the signal is not bandlim-
ited. Furthermore, in the classical sampling setup, in or-
der to sample a continuous-time signal at rate T−1 Hz,
an antialiasing filter that sets to zero x̂(ω) for |ω| ≥ π/T
has to be applied before acquisition. The FRI frame-
work does not impose this stringent condition since the
sampling kernel is not necessarily equal to zero for all
|ω| ≥ π/T .

3.2.2 Perfect reconstruction of a stream of decaying
exponentials

Streams of Diracs are an idealization of streams of pulses.
Although this example may seem limited, the frame-
work presented to reconstruct them can be applied to
other classes of functions that model a variety of sig-
nals. For instance, calcium concentration measurements
obtained from two-photon imaging to track the activ-
ity of individual neurons can be modeled with a stream
of decaying exponentials. In this model, the time delays
correspond to the activation time of the tracked neuron,
that is, the action potentials (AP).

Let x(t) be a stream of K decaying exponentials,
that is

x(t) =
K∑

k=1

ak e
−α(t−tk) 1t≥tk =

K∑

k=1

ak ρα(t− tk), (28)

where ρα(t) := e−αt 1t≥0. See Fig. 9(a) for an example
of such signal. This is also an FRI signal since x(t) is

perfectly determined by a finite number of parameters:
{(tk, ak)}Kk=1. Let us assume that x(t) is sampled with
the acquisition device described in 3.2.1, that is, an ex-
ponential reproducing kernel h(t) = ϕ(−t/T ), followed
by a sampling stage. We thus have that ϕ(t) satisfies
(9) and the resulting samples yn can be expressed as
the inner product between x(t) and ϕ(t/T − n) as in
(8).

The reproduced exponentials eiωmt also satisfy the
same conditions as in 3.2.1. It can be shown that sam-
pling the signal in (28) with ϕ(−t/T ) and computing
the following finite differences

zn = yn − yn−1 e
−αT , (29)

is equivalent to the sequence that results from sampling
the stream of Diracs s(t) =

∑K
k=1 ak δ(t− tk) with the

following kernel

ψ(t) = βαT (−t) ∗ ϕ(t) (30)

where βαT (−t) is a zero order E-spline with parameter
αT (Oñativia et al, 2013a). We thus have that

zn = 〈s(t) , ψ(t/T − n)〉 . (31)

Since convolution preserves the exponential repro-
ducing property, ψ(t) reproduces the same exponentials
as ϕ(t). Thus, we can find the coefficients dm,n such that

∑

n∈Z
dm,n ψ(t− n) = eiωmt, m = 0, 1, . . . , P. (32)

We now have all the elements to perfectly recon-
truct the stream of decaying exponentials x(t) from
samples yn, that is, estimate the set of pairs of param-
eters {(tk, ak)}Kk=1. By combining the sequence zn with
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Sampling 2-D domains

Algorithm 1: Annihilation of indicator function
1. Compute Fourier transform of the indicator plane χ
evaluated at uniformly sampled frequency grids(

2πk
M , 2πl

N

)
;

2. Create annihilation filter according to (6) where the
elements are rearranged lexicographically;

3. Solve the annihilation coefficients ck,l based on (5)
under the Hermitian symmetry constraint on the
coefficients in (2).

4.1. Fourier Transform of Indicator Plane

In order to apply the annihilation Algorithm 1, Fourier trans-
form of the annihilable curve Γ has to be evaluated exactly. FRI
signals investigated previously in 1-D cases, are either streams
of Diracs [7] [2] or piecewise polynomials [1] whose Fourier
transform can be computed exactly. However, in the case of
annihilable curves here, no explicit expression of the Fourier
transform χ̂Γ is available in general. And we can not use DFT
of χΓ directly either. Because the indicator plane χΓ has infi-
nite bandwith, results obtained from DFT suffers from server
aliasing effect. But we can relate the Fourier transform χ̂Γ with
its samples gk,l and calculate the Fourier transform exactly. As
is in the case of streams of Diracs [7] [2], we can prove that
the Fourier transform coincides with the bandlimited discrete
Fourier transform of gk,l.

4.2. Retrieval of Signal Innovation

Once the exact Fourier transform χ̂ is evaluated, the annihilat-
ing filter is constructed according to (5), from which we can
retrieve the coefficients ck,l with annihilation filter method, a
well known approach in the reconstruction of FRI signals. Sup-
pose both ck,l and hk,l are rearranged based on the same rule,
say column-by-column rearrangement, then (5) is equivalent to
a system of equations:

HC = 0 (8)

where H is a block circulant matrix built from frequency sam-
ples of χ̂ and C is the vector that corresponds to ck,l rearranged
column-by-column. Thus we can determine the annihilating co-
efficients uniquely up to a multiplicative constant by solving the
linear system of equations (8) for noise-free cases. However,
noise is ubiquitous in signal processing, which may arise from
the sampling process (Fig 1), the computational inaccuracy as
a result of numerical integration in (7), or model mismatch dis-
cussed in Section 2 in our case here.

In the presence of noise, the annihilation equation (8) is
not satisfied exactly, yet we can still obtain the solution with
the least square approach for the same reasoning as is in 1-D
cases [7] [2]. For cases that suffer from more sever noise cor-
ruptions, it is better to denoise the samples prior to applying the
least square approach with e.g. Cadzow’s method [2] for the
robustness of the annihilation algorithm against noise perturba-
tion.

(a) Original indicator plane (b) Reconstructed indicator plane

(c) Difference image (d) Samples of indicator plane

Fig. 2. Annihilation results for noiseless case

Notice that the annihilation algorithm presented here is non-
iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.

5. SIMULATION RESULTS AND DISCUSSIONS

Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.

Another uncertainty we need to take into account of is the
accuracy of numerical integration in (7), which is controlled
by the total number of points used for calculation. To avoid
ambiguity, we refer to it as “number of numerical integration
control points”. With less computational accuracy, the samples
obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
as:

% error =
total number of non-zero pixels in error image

total number of pixels along curve Γ

5.1. Exact annihilation for noiseless case

For noise-free cases, the algorithm should exactly annihilate the
interior indicator function. In simulations, the number of nu-
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The curve is implicitly defined through the equation [PanBluDragotti:11,14]:

f (x , y) =
KX

k=1

IX
i=1

bk,ie
−j2πxk/Me−j2πyi/N = 0.

The coefficients bk,i are the only free parameters in the model.
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Sampling 2-D domains

samples interpolation inter+ curve constraint
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Robust and Universal Sparse Sampling

nx(t)
!

Acquisition Device

h(t)=   (!t/T)
y(t)

T +

"n

n !y =<x(t),   (t/T!n)>+"

I The acquisition device is arbitrary

I The measurements are noisy

I The noise is additive and i.i.d. Gaussian

I Many robust versions of Prony’s method exist (e.g., Cadzow, matrix
pencil)
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Approximate Strang-Fix

I How restrictive are the Strang-Fix conditions?

I Assume ϕ(t) cannot reproduce exponentials, we want to find the
coefficients cn = c0e

jωmn such that:X
n∈Z

cnϕ(t − n) u ejωmt .

I Approximation error

ε(t) = f (t)− e jωmt = ejωmt

"
1− c0

X
l∈Z

ϕ̂(jωm + j2πl)ej2πlt

#
.

I We only need ϕ̂(jωm + j2πl) u 0 l ∈ Z \ {0}, which is satisfied when
ϕ(t) has an essential bandwidth of size 2π.
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Generalised Strang-Fix Conditions

Sparse Sampling: Theory, Methods and an Application in Neuroscience 5

−6π −4π −2π 0 2π 4π 6π

0.2

0.4

0.6

0.8

1

1.2

ω [rad·s−1]

(a) |β̂α(ω)| with α = 0

−6π −4π −2π 0 2π 4π 6π

0.2

0.4

0.6

0.8

1

1.2 ω0

ω [rad·s−1]

(b) |β̂α(ω)| with α = iω0

Fig. 5: Absolute value of the Fourier transform of zero order E-splines given by (11). If the parameter α is equal to zero, the
E-spline corresponds to the sinc function. For α = iω0 purely imaginary, the Fourier transform of the E-spline is a shifted
version of the sinc function.

The exponential reproduction property is illustrated
in Fig. 4 for two different kernels that reproduce dif-
ferent exponentials. In both cases the kernels are of
compact support. The advantage of such kernels is that
the summation in (9) can be truncated and still have
a region in time where the exponential functions are
perfectly reproduced. In general, the exponentials eαmt

are perfectly reproduced when the summation is com-
puted for n ∈ Z. Let t ∈ [0, L[ be the support of ϕ(t),
that is, ϕ(t) = 0 for t /∈ [0, L[. If the summation is
truncated to n = n0, . . . , nf , it follows that the per-
fect reproduction of the exponential functions holds for
t ∈ [n0 − 1 + L, nf + 1[.

3.1 Exponential reproducing kernels

For the sake of clarity, in what follows we restrict the
analysis to the case where the parameter αm in (9) is
purely imaginary, that is αm = iωm for m = 0, 1, . . . , P ,
where ωm ∈ R. This analysis can easily be extended to
the more general case where αm has nonzero real and
imaginary parts, or is purely real.

A function ϕ(t) together with a linear combina-
tion of its shifted versions reproduces the exponentials
{eiωmt}Pm=0 as in (9) if and only if it satisfies the gen-
eralised Strang-Fix conditions:

ϕ̂(ωm) 6= 0 and ϕ̂(ωm + 2πl) = 0, (10)

where m = 0, 1, . . . , P , l ∈ Z \ {0} and ϕ̂(ω) is the
Fourier transform of ϕ(t) (Strang and Fix, 1971; Unser
and Blu, 2005; Urigüen et al, 2013). A family of func-
tions that satisfy these conditions are the exponential
B-splines, also named E-splines. These functions are
constructed through the convolution of elementary zero
order E-splines, where each elementary function repro-
duces a particular exponential eiωmt. The Fourier trans-

form of a zero order E-spline that reproduces the expo-
nential eαt is given by

β̂α(ω) =
1− eα−i ω
i ω − α . (11)

Fig. 5 illustrates the Fourier transform of zero order
E-splines for two different values of the parameter α.
The corresponding E-spline that reproduces the set of
exponentials {eαmt}Pm=0 is obtained as follows

βα(t) = (βα0 ∗ βα1 ∗ . . . ∗ βαP
) (t), (12)

where α = (α0, α1, . . . , αP ). Thus, the Fourier trans-
form of βα(t) is given by

β̂α(ω) =
P∏

m=0

(
1− eαm−i ω

i ω − αm

)
. (13)

E-splines have compact support P+1 and have P−1
continuous derivatives. It can be shown that any func-
tion that reproduces the set of exponentials {eαmt}Pm=0

can be expressed as the convolution of another function
γ(t) with the corresponding E-spline that reproduces
these exponentials, that is, ϕ(t) = γ(t) ∗βα(t) and γ(t)
satisfies

∫ +∞
−∞ e−αmtγ(t)dt 6= 0 for all αm(Unser and

Blu, 2005; Delgado-Gonzalo et al, 2012). It is also true
that if ϕ(t) reproduces a set of exponentials, this prop-
erty is preserved through convolution. Let

ψ(t) = ϕ(t) ∗ ρ(t), (14)

for ρ(t) such that
∫ +∞
−∞ e−αmtρ(t)dt 6= 0. The function

ψ(t) also reproduces the same set of exponentials. This
is easy to verify since ψ(t) also satisfies the Strang-Fix
conditions.
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Fig. 7: Gaussian sampling filter with σ = 1 and approximate exponential reproduction. (a) Fourier transform of Gaussian
function compared to a first order E-spline that reproduces frequencies −0.1π and 0.1π. The zoom-in box shows the region
where the E-spline is zero (ω = ωm + 2πl); the Gaussian function has a negligible amplitude. (b), (c) and (d) are examples of
exponential reproduction with the Gaussian filter. As in Fig. 4, the thin lines represent the shifted and weighted versions of
ϕ(t) (which in this case is the Gaussian function), the thick line their sum, and the dashed line the true exponentials.

(18)

which is valid for any value of t. Let ψ(t) := e−iωmtϕ(t),
we have that

∑

n∈Z
e−iωm(t−n) ϕ(t− n) =

∑

n∈Z
ψ(t− n)

(a)
=
∑

k∈Z
ψ̂(2πk) ei2πkt

(b)
=
∑

k∈Z
ϕ̂(ωm + 2πk) ei2πkt,

(19)

where (a) follows from the Possion summation formula1

and (b) from the fact that the Fourier transform of ψ(t)
is equal to the Fourier transform of ϕ(t) shifted by ωm.
Since ϕ̂(ω) satisfies the Strang-Fix conditions, from (18)
and (19) it follows that

cm,0 = [ϕ̂(ωm)]−1
. (20)

1 For appropriate functions f , the Poisson sum-
mation formula is given by:

∑+∞
n=−∞ f(t − nT ) =

1
T

∑+∞
k=−∞ f̂

(2πk
T

)
ei2πkt/T .

The dots in Fig. 6(b) illustrate the values ϕ̂(ωm) that
are used in the computation of the different cm,0 for an
E-spline with P = 6. Note that the generalised Strang-
Fix conditions (10) impose some constraints on the
choice of ωm since we have to guarantee that ϕ̂(ωm) 6=
0. From (11) and Fig. 5 it is clear that each ωm intro-
duces zeros at locations ωm + 2πl, where l ∈ Z \ {0},
we thus have to guarantee that for all pairs of distinct
m,n we have ωm − ωn 6= 2πl. In Fig. 6(b) it can be
appreciated that ϕ̂(ω) is nonzero for all ω = ωm, and
that the locations ωm + 2π and ωm − 2π are zero since
the curve in dB tends to −∞.

From (20) and (17) we can compute the cm,n coef-
ficients for our choice of (αm)Pm=0 and any value of n ∈
Z. By combining these coefficients with {ϕ(t − n)}n∈Z
the exponentials {eαmt}Pm=0 are perfectly reproduced
as shown in Fig. 4.

3.1.3 Approximate reproduction of exponentials

The generealised Strang-Fix conditions (10) impose very
restrictive constraints on the sampling kernel. This be-
comes a problem when we do not have control or flexi-
bility over the design of the acquisition device. Recent
publications (Urigüen et al, 2013; Dragotti et al, 2013)
show that these conditions can be relaxed and still have
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Approximate Strang-Fix

I Assume ϕ(t) cannot reproduce exponentials, we want to find the
coefficients cn = c0e

jωmn such that:X
n∈Z

cnϕ(t − n) u ejωmt .

I Approximation error

ε(t) = f (t)− e jωmt = ejωmt

"
1− c0

X
l∈Z

ϕ̂(jωm + j2πl)ej2πlt

#
.

I Constant Least-squares approximation

c0 = ϕ̂(jωm)−1 ⇒ cn = ϕ̂(jωm)−1e jωmn

I Advantage: only need to know the Fourier transform of ϕ(t) at jωm.
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Approximate vs Exact Strang-Fix

Exact

I Any device with unit input response of the form γ(t) ∗ β~α(t) where
β~α(t) is an E-spline of order L

I The order L and the exponents α0, α1, .., αL are decided a-priori and
cannot be changed.

Approximate

I Any acquisition device h(t) can be used within this framework

I The essential bandwidth of h(t) = ϕ(−t/T ) must be at most 2π/T

I We do not need to know h(t) exactly. We only need to know ĥ(jωm)
m = 0, 1, .., L

I The number L of exponentials reproduced is arbitrary
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Approximate FRI recovery: Numerical Example

Gaussian Kernel

0 10 20 30 40 50 60

0

0.5

1

1.5

n

 

 
yn

ỹn
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Approximate FRI with the Gaussian kernel. K = 5, N = 61, SNR=25dB.

Recovery using the approximate method with αm = j π
3.5(P+1)

(2m − P),

m = 0, . . . ,P where P + 1 = 21.
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Approximate Strang-Fix: when ‘Mr Approximate’ is
better than ‘Mr Exact’
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(a) yn and ỹn (b) Default FRI retrieval (c) Approx. FRI retrieval

Estimation of K = 6 Diracs with the B-Spline kernel of order L = 16, N = 31.

(b) Default polynomial recovery. (c) Approximate recovery with

αm = j π
1.5(P+1)

(2m − P), m = 0, . . . ,P where P + 1 = 21, SNR=25dB.
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Retrieving 1000 Diracs with Strang-Fix Kernels

Diracs 
retrieval 

{tk, ak}
k=1

K

For each window:
(i-1) window

(i+1) window

ith window

I Retrieve Diracs using a sliding window

I Locations of true Diracs are consistent across windows
[Onativia-Uriguen-Dragotti-13]
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Retrieving 1000 Diracs with Strang-Fix kernels
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Retrieving 1000 Diracs with Strang-Fix Kernels
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Fig. 5: Sequential perfect reconstruction of a noiseless stream of
1000 Diracs with 10220 yn samples. Only a small section of the
stream is shown. Rate K “ 5 Diracs per τ “ 3.125 s. N “ 50,
T “ 1{16 and P “ 9.

retrieve K Diracs using the algorithm in Sec. 2 coupled with
matrix pencil. We then store all the locations and amplitude
retrieved in that window. We then slide the window by T and
repeat the process. When the found locations correspond to
real Diracs, they will be consistent among different positions
of the sliding window that capture these Diracs. Otherwise,
locations that are not correct and correspond to noise will nor-
mally be not consistent. For example, in Figure 4-(a) we plot
the retrieved locations for different windows. The horizontal
axis represents the index of the window corresponding to a
retrieved location, and the vertical axis the Dirac location in
time. Consistent locations appear as horizontal alignments of
dots, overlapping the blue lines.

In order to detect which locations are consistent, a second
step is to construct a histogram of detected locations. Only
the peaks of the histogram are assumed to correspond to real
Diracs. For a peak in the histogram above a certain threshold,
the location of the corresponding Dirac is estimated averaging
all the retrieved locations that contribute to this peak. This is
illustrated in Figure 4-(b).

4. SIMULATION RESULTS

We have tested both versions of the algorithm: the noise-
less case for which perfect reconstruction is possible; and the
noisy scenario, where locations are estimated from the his-
togram of the retrieved locations. In the noiseless case we
always perfectly reconstruct the streams of Diracs with ran-
domly generated locations and amplitudes. This is illustrated
in Figure 5. The stream of Diracs is generated to satisfy the
maximum rate of K Diracs per τ interval.

In the noisy scenario not all the Diracs are always re-
trieved, and false positives may also happen. Note also that
there is an uncertainty in the retrieved location. A retrieved
Dirac is considered to correspond to a true Dirac if the differ-
ence between the real location and the estimated location is
smaller than a threshold. Here we have set this threshold to
T {2. We randomly generate the locations of a stream of 1000
Diracs. We then take samples, contaminate them with noise
and apply the sequential reconstruction algorithm. Figure 6
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Fig. 6: Noisy samples with a SNR “ 10 dB and reconstructed
stream from the peaks of the histogram of the retrieved locations.
The temporal locations are very accurately estimated.

shows one realisation of the procedure explained before.
To further analyse the performance variation for different

levels of noise we run the algorithm over 100 different realisa-
tions of noise for various levels of SNR. Table 1 summarises
the obtained performances.

Table 1: Algorithm’s performance. Stream of 1000 Diracs (630
seconds) and 10220 samples, T “ 1{16 s, N “ 50, P ` 1 “ 23.
The detection rate is given in percentage of detected true Diracs. The
false positives are the average number of detected Diracs that do not
correspond to true Diracs. The precision is the standard deviation of
the retrieved locations with respect to the true locations.

SNR (dB) 5 10 15 20
Detection rate 97.69 % 99.97 % 100.00 % 100.00 %
False positives 351.7 37.8 0.5 0.3
Precision (s) 0.0086 0.0049 0.0028 0.0018

The algorithm has been implemented in MATLAB and
tested using a commercial laptop (2.5 GHz Intel Core i5
CPU). The average time required to process 10220 samples
corresponding to a stream of 630 seconds containing 1000
Diracs is about 105 seconds.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a fast sequential algorithm
to retrieve infinite streams of Diracs in noiseless and noisy
environments. In the noiseless case perfect reconstruction
is achieved. In the noisy scenario we propose to retrieve
groups of K Diracs sequentially and to retain only those
Diracs whose locations have been consistently estimated in
overlapping sliding windows.

We showed that the algorithm is able to process 10K sam-
ples in about 100 seconds and can retrieve with high accu-
racy 1000 Diracs even in very low SNR regimes. We are not
aware of any current FRI algorithm able to achieve such per-
formance for the same type of data.

I K = 1000 Diracs in an interval of 630 seconds, N = 105 samples,
T = 0.06 and SNR = 10dB

I 9997 Diracs retrieved with an error ε < T/2

I Average accuracy ∆t = 0.005, execution time 105 seconds.
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Application: Image Super-Resolution
[BaboulazD:09]

Super-Resolution is a multichannel sampling problem with unknown shifts. Use
moments to retrieve the shifts or the geometric transformation between images.

(a)Original (512× 512) (b) Low-res. (64× 64) (c) Super-res ( PSNR=24.2dB)

I Forty low-resolution and shifted versions of the original.

I The disparity between images has a finite rate of innovation and can be retrieved.

I Accurate registration is achieved by retrieving the continuous moments of the
‘Tiger’ from the samples.

I The registered images are interpolated to achieve super-resolution.
Pier Luigi Dragotti
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Application: Image Super-Resolution

Image super-resolution basic building blocks

Restoration
Super-resolved

image

Set of low-resolution images Image Registration HR grid estimation

LR image 0
...

LR image k
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Application: Image Super-Resolution

I For each blurred image I (x , y):

I A pixel Pm,n in the blurred image is given by

Pm,n = 〈I (x , y), ϕ(x/T − n, y/T −m)〉,

where ϕ(t) represents the point spread function of the lens.
I We assume ϕ(t) is a spline that can reproduce polynomials:X

n

X
m

c (l,j)
m,n ϕ(x − n, y −m) = x ly j l = 0, 1, ...,N; j = 0, 1, ...,N.

I We retrieve the exact moments of I (x , y) from Pm,n:

τl,j =
X

n

X
m

c (l,j)
m,n Pm,n =

Z Z
I (x , y)x ly jdxdy .

I Given the moments from two or more images, we estimate the geometrical
transformation and register them. Notice that moments of up to order three
along the x and y coordinates allows the estimation of an affine transformation.
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Application: Image Super-Resolution

Acquisition with Nikon D70

(a)Original (2014× 3040) (b) ROI (128× 128) (b) Super-res (1024× 1024)
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Application: Image Super-Resolution

(a)Original (48× 48) (b) Super-res (480× 480)
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Neural Activity Detection [OnativiaSD:13]
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Calcium Transient Detection

Figure 6: Double consistency spike search. (i) and (ii) show the detected locations in red and the locations of the
original spikes in green for two different window sizes. In (i) the algorithm runs estimating the number of spikes
within the sliding window. In (ii) the algorithm runs assuming a fixed number of spikes equal to one for each position
of the sliding window. (iii) shows the joint histogram of the detected locations. (iv) shows the fluorescence signal in
blue with the original spikes in green and the detected spikes in red.

2.4 Generating surrogate data

We generated surrogate data with similar properties to the experimental data, in order to investigate the

changes in performance of the spike detection algorithm in terms of parameters such as data signal to noise

ratio and the sampling frequency. We assume that the spike occurrence follows a Poisson distribution with

parameter λ spikes/s. Experimental data presents occurrences between 0.45 and 0.5 spikes per second. The

probability of having k spikes in the interval considered in parameter λ (one second) is given by the probability

mass function of the Poisson distribution:

fλpkq “
λke´λ

k!
. (17)

To generate a spike train for a time interval L we divide this interval in N slots. Each slot corresponds to

a time interval of ∆t “ L
N seconds. The λ1 parameter that corresponds to this new time interval is λ1 “ λ ¨∆t.

We then generate a vector k “ pk1, . . . , kN q of size 1 ˆN where each ki „ Poispλ1q are independent random

variables. The i-th element of this vector, ki, gives the number of spikes that occurred during the i-th time

slot. We then have to generate the precise instant of time when the spike occured. For a given time slot, we

generate the ki spike instants according to a uniform distribution. The total number of spikes in the time

interval L is K “
řN

i“1 ki. Once we have generated the locations of the K spikes ptkqK
k“1 the waveform given

11
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Calcium Transient Detection
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Localisation of Diffusion Sources using Sensor
Networks [Murray-BruceD:14]

I The diffusion equation models the dispersion of chemical plumes, smoke from
forest fires, radioactive materials

I The phenomenon is sampled in space and time using a sensor network.

I Sources often localised in space. Can we retrieve their location and the time of
activation?
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Localisation of Diffusion Sources using Sensor
Networks

Good news:
I When sources are localised in space

and time, the field inversion is
equivalent to an FRI problem

I Proper linear combinations of sensors
measurements in time and space
leads to a Prony-type problem

tivation time; we conclude the section by combining these
solutions to give a single source estimation algorithm. In
Section 4 we generalize the single source algorithm to the
multiple-source case. We validate our findings through nu-
merical simulations in Section 5 and conclude the paper in
Section 6.

2. PROBLEM FORMULATION

In what follows we will formulate the diffusion field sam-
pling and reconstruction problem. Firstly let us consider an
unknown point source distribution f within a region Ω, that
induces a diffusion field u. Such a phenomena is governed by
the diffusion equation;

∂

∂t
u(x, t) = µ∇2u(x, t) + f(x, t), (1)

where µ is the diffusivity of the medium through which the
field propagates, x ∈ Rd denotes the spatial domain, whilst t
is the temporal domain. Moreover, from the theory of Green’s
functions a solution to this PDE is [15]:

u(x, t) = (g ∗ f)(x, t), (2)

where g(x, t) = 1
(4πt)d/2

e−
‖x‖2
4µt U(t) is the Green’s function

of the diffusion field. The implication of Equation (2) is such
that finding f given discrete measurements of umeans the en-
tire field can be perfectly reconstructed. We consider the case
where the sources are localized in space and concentrated in
time leading to the following source parameterization:

f(x, t) =
M∑

m=1

cmδ(x− xm, t− tm), (3)

where cm,xm, tm is the concentration, location and activa-
tion time respectively of the m-th source in a field induced by
M sources.

Hence the sampling and reconstruction problem is equiv-
alent to finding the source parameters {cm,xm, tm : m =
1, . . . ,M} given spatial and temporal samples of the diffu-
sion field u. In our analysis we consider the 2-D problem
(d = 2) and assume that we have access to field measurements
ϕn(tl) = u(xn, tl), obtained at instants tl for l = 0, . . . , L
and from sensors at spatial locations xn for n = 1, . . . , N
situated along an arbitrary domain boundary ∂Ω and its en-
closed region Ω. We note that the domain boundary ∂Ω may
be arbitrarily chosen provided all active sources are contained
within its domain Ω (see Figure 1). For simplicity however,
our simulations will consider a circular boundary with sen-
sors evenly distributed along the boundary and uniformly dis-
tributed within the region enclosed. We also briefly address
the transient source localization problem, i.e. finding the lo-
cations {xm : m = 1, . . . ,M} for sources with distribution:

f(x, t) =
M∑

m=1

cme
αm(t−tm)δ(x− xm)U(t− tm), (4)
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Fig. 1. Sensor placement along and within the boundary.

where αm < 0 is the decay coefficient.

3. DIFFUSION SOURCE ESTIMATION

In this section we first use reciprocity gap functional (RGF)
theory to derive a Vandermonde system which can be solved
for the intensities and locations of multiple point sources.
Next we address the single source activation time estimation
problem given estimates of its intensity and location. Finally
we present the single source estimation algorithm.

3.1. Multiple Source Localization and Intensity Estima-
tion

Reciprocity gap functionals are derived by comparing a field
with its adjoint ψ [16, 17]. In our setting ψ must satisfy the
time-reversed diffusion equation,

∂ψ

∂t
+ µ∇2ψ = 0 in Ω. (5)

Moreover, for the domain Ω with a sufficiently smooth bound-
ary ∂Ω Green’s second identity may be used to relate the field
at the boundary to that inside the domain as follows:
∫

Ω

∂

∂t
(ψu) dV−µ

∮

∂Ω

(ψ∇u− u∇ψ)·n̂∂Ω dS =
∫

Ω

ψf dV

(6)
where n̂∂Ω is the outward pointing unit normal vector to
∂Ω. Henceforth we shall denote the “reciprocity gap,”
the left hand side of Equation (6) as R(ψ, t) for concise-
ness. Hence the reciprocity gap in time integrated form,
on some interval t ∈ [0, T ] is such that

∫ T
0
R(ψ, t) dt =∫

Ω
ψu(x, T ) dV − µ

∮
∂Ω

(ψ∇U − U∇ψ) · n̂∂Ω dS, where
U(x) =

∫ T
0
u(x, t)dt. Therefore

∫ T

0

R(ψ, t) dt =
∫ T

0

∫

Ω

ψf dV dt. (7)
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Localisation of Diffusion Sources: Numerical Results
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(a) Ideal (noiseless) measurement samples.
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(b) 100 independent trials using noisy sensor measurement samples (SNR=15dB).

Fig. 2. Source Estimation from circular (radius = 0.15m) boundary and uniform (spacing = 0.04m) interior measurements. The
scatter-plots show sensor locations (green ‘◦’), true source locations (blue ‘+’) and estimated locations (red ‘×’).

4. Subtract its contribution from the original measure-
ments to get the “adjusted” measurement and repeat
with a larger time window. We stop when the adjusted
measurement is below a predetermined threshold.

This algorithm is evaluated in Section 5 using synthetic field
measurements.

5. SIMULATION RESULTS

In this section we provide simulation results showing the per-
formance of our multi-source estimation algorithm. We sim-
ulate the 2-D field governed by the diffusion equation, in
particular we consider the setting where the field is induced
by four sources activated at different times. Samples of the
field are then collected, at 1Hz for 28seconds, by sensors ar-
ranged along a circular boundary (∂Ω) and uniformly inside
the bounded region (Ω). The simulation parameters are sum-
marized below:

• M = 4. Intensities cm = 1 for m = 1, . . . , 4. Loca-
tions x1 = (0.113, 0.221),x2 = (0.234, 0.175),x3 =
(0.121, 0.075),x4 = (0.092, 0.113). For activation
times see legend in Figure 2a.

• Field sampled over Tend = 28seconds at sampling fre-
quency 1/∆T = 1Hz.

• K = 3, i.e. k = 0, 1, . . . , 3 for the test function family
Ψk(x) = ek(x1+jx2).

• 43 Interior Sensors and 30 Boundary sensors.

Figure 2 demonstrates the ability of the proposed algorithm
to successfully estimate the location and activation times
of the active sources. In addition, we retrieve the follow-
ing estimates, ĉ1 = 0.9777, ĉ2 = 1.0206, ĉ3 = 0.9838 and
ĉ4 = 0.9988, for the source intensities given ideal mea-
surements. For the noisy measurements (SNR=15dB), the
concentration estimates vary marginally around these esti-
mates for each source (with occasional spikes in the range
0.8 − 1.2). We have also observed that the estimation ac-
curacy is dependent on the number of interior sensors to a
higher degree, more interior sensors increases the estimation
accuracy and also reduces the spread of the estimates in the
noisy setting. The boundary sensors however have little effect
on the estimation accuracy.

6. CONCLUSION AND FUTURE WORKS

In this paper an algorithm for solving the diffusion source es-
timation problem in 2-D using boundary and interior mea-
surements of the induced field is presented. In particular we
solve the estimation problem when the sources are spatially-
localized and instantaneous. Simulations demonstrate that
the estimation algorithm is noise robust even in the multiple
source setting, thanks to the averaging effects from the time
integrated field, as well as the averaging of the multiple acti-
vation time estimates from the nearest sensors to the source.
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Conclusions

Sampling signals using sparsity models:

I New framework that allows the sampling and reconstruction of
infinite-dimensional continuous-time signals at a rate smaller than Nyquist
rate.

I It is a non-linear problem

I Different possible algorithms with various degrees of efficiency and
robustness

I Approximate Strang-Fix method: universal and robust to noise

Outlook:

I Promising applications in neuroscience

I Applications to the inversion of physical fields from sensors’ measurements

Still many open questions from theory to practice!
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