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Invertible Neural Networks (INNs) are bijective function 

approximators which have a forward mapping 

and inverse mapping
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How to Achieve Invertibility? 

Invertible via lifting scheme like architectures

● Signal splitting 
● Alternative prediction and update

1. Overview of Invertible Neural Networks
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Also known as Normalizing Flow for generative modeling

● Tractable Jacobian, allows explicit computation of posterior probability 
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1. Overview of Invertible Neural Networks

Kingma, Durk P., and Prafulla Dhariwal. "Glow: Generative flow with invertible 1x1 convolutions." in Proceedings 
of Advances in Neural Information Processing Systems (NeurIPS), 2018.



Inverse problems involve reconstructing unknown physical 
quantities from indirect measurements :

● denoising

● super-resolution

● deblurring

● inpainting

● … 
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1. Overview of Invertible Neural Networks



Invertible Neural Networks are ideal architectures to address 

inverse problems
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1. Overview of Invertible Neural Networks

Ardizzone, Lynton, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W. Pellegrini, Ralf S. Klessen, Lena Maier-Hein, 
Carsten Rother, and Ullrich Köthe. "Analyzing inverse problems with invertible neural networks." in Proceedings of
International Conference on Learning Representations (ICLR), 2019.
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Image Denoising

● Recover a clean image from noisy observations

● Raw image data is usually noisy

2. Wavelet-inspired Invertible Neural Network 
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y = x+ e

NoiseCleanMeasured

Denoising is the “simplest” inverse problem yet
plays an important role in many applications



2. Wavelet-inspired Invertible Neural Network 
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Deep Learning methods are effective while less interpretable and 

controllable
DnCNN

U-Net RED-Net



Wavelet Thresholding is a widely used denoising approach

● Wavelets provide invertible sparse representations of piecewise smooth images

2. Wavelet-inspired Invertible Neural Network 
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Universal threshold

BayesShrink threshold



Motivation:

• Whether it is possible to combine the merits of Wavelet Thresholding 
and DNNs for image denoising and other image restoration tasks?

Idea:

• Learning a redundant transform with perfect reconstruction property using 

a Wavelet-inspired INvertible Network (WINNet)

2. Wavelet-inspired Invertible Neural Network 
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2. Wavelet-inspired Invertible Neural Network 
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Lifting inspired Invertible Neural Network (LINN)

2. Wavelet-inspired Invertible Neural Network 
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When no operation is applied on the representation, perfect reconstruction 
can be achieved using the backward pass.

Detail part

Coarse part

Detail part

Coarse part
Image to representation Representation to image

● Forward pass ● Backward pass



Lifting inspired Invertible Neural Network (LINN)

● Predictor/Updater networks

● Separable convolutional networks with soft-thresholding non-linearity

● Noise adaptive soft-threshold

2. Wavelet-inspired Invertible Neural Network 
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Sparsity-driven Denoising Network 
● Non-invertible component
● A well-understood denoising network can lead to enhanced interpretability

2. Wavelet-inspired Invertible Neural Network 
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Sparsity-driven Denoising Network 

● We model the denoising process as Convolutional Sparse Coding

● Unfold it in to CLISTA Network  

2. Wavelet-inspired Invertible Neural Network 
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Model-inspired Noise Estimation Network
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2. Wavelet-inspired Invertible Neural Network 

X. Liu, M. Tanaka and M. Okutomi, "Single-Image Noise Level Estimation for Blind Denoising," in IEEE Transactions on 
Image Processing (TIP), vol. 22, no. 12, pp. 5226-5237, Dec. 2013.



Model-inspired Noise Estimation Network
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2. Wavelet-inspired Invertible Neural Network 

Visualization of the selected patches for noise level estimation



Experimental Settings:

● Training loss:

● Mean squared error between restored image and clean image

● Spectral norm loss for LINN

● Orthogonal loss for CLISTA Network

● Optimizer:

● Adam with learning rate 1×10"# which decays to 1×10"$ at the 30-th epoch

● Training data:

● 400 images of size 180×180
21

2. Wavelet-inspired Invertible Neural Network 



Experimental Results — Non-blind denoising

2. Wavelet-inspired Invertible Neural Network 
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Comparison of average PSNR (dB) and number of parameters of different methods. 
The testing dataset is Set12 with noise level σ = [15, 25, 50].



Experimental Results — Blind denoising

2. Wavelet-inspired Invertible Neural Network 
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Training noise levels Unseen noise levels



Application on Image Deblurring
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2. Wavelet-inspired Invertible Neural Network 

⊗= +

Blur Image Sharp Image Blurring Kernel Noise



Image Deblurring with WINNet
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2. Wavelet-inspired Invertible Neural Network 

%Noise Estimation and Denoising

%Auxiliary Update



Experimental Results on Image Deblurring
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2. Wavelet-inspired Invertible Neural Network 



Take home message:

• With proper nonlinear over-parameterization, Wavelet-inspired 

network architecture can achieve good performance, strong 

controllability, generalization ability and high interpretability

2. Wavelet-inspired Invertible Neural Network 
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J.-J. Huang, and P.L. Dragotti, "WINNet: Wavelet-inspired Invertible Network for Image Denoising," in IEEE 

Transactions on Image Processing (TIP), 2022. 

J.-J. Huang, and P.L. Dragotti, "LINN: Lifting Inspired Invertible Neural Network for Image Denoising,"

in Proceedings of 29th European Signal Processing Conference (EUSIPCO), Ireland, 2021. 
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●Impose consistency using the forward part of the INN

●Impose the prior using diffusion models

●Iterate
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3. INN and Diffusion Models



Diffusion Models are good for “unconditional” generation of new samples (e.g., 
Denoising Probabilistic Diffusion Models)

Motivation: Can we use a pretrained “unconditional” diffusion model for inverse 
problems?
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3. INN and Diffusion Models

J. Ho, J. Ajay and P. Abbeel. "Denoising diffusion probabilistic models." in Proceedings of Advances in Neural Information 
Processing Systems (NeurIPS) 2020.

Review: A Classic Diffusion Model: 
Denoising Diffusion Probabilistic Model (DDPM)[1]

• DDPM defines a T–step forward process transforming complex data distribution into simple 
Gaussian noise distribution and a T-step reverse process recovering data from noise. 

… …

#&	 #'#(	 #()*	#(+*	

[1] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in Neural Information Processing Systems 33 (2020): 
6840-6851.



• Given a training set {𝑥&, 𝑦&} which 
contains N high-quality images and 
their low-quality counterparts, we 
learn the forward part of the INN 
using the following loss:

• Consequently, 𝑑 models the lost 
details that need to be recovered with 
the diffusion model
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(a) 1-level lifting scheme

(b) 2-level lifting scheme

Fig. 2: The wavelet transform obtained using the lifting
scheme.

sample an arbitrary state xt directly from the input x0 as
follows:

xt =
p
↵̄tx0 +

p
1� ↵̄t✏ (2)

where ↵t = 1 � �t, ↵̄t =
Qt

i=0 ↵i and ✏ ⇠ N (0, I). For
the reverse process, we can calculate the posterior distribution
q(xt�1|xt,x0) using Bayes theorem and write the expression
of xt�1 using Eq. (2) as follows:

xt�1 =
1

p
↵t

✓
xt �

1� ↵t
p
1� ↵̄t

✏

◆
+ �tz, (3)

where �t=
q

1�↵̄t�1

1�↵̄t
�t and z ⇠ N (0, I). To predict the

noise ✏ in the above equation, DDPM uses a neural network
✏✓(xt, t) for each time-step t. To train ✏✓(xt, t), DDPM
uniformly samples a t from {1, ..., T} and updates the network
parameters ✓ with the following gradient descent step:

r✓||✏� ✏✓(
p
↵̄tx0 +

p
1� ↵̄t✏, t)||

2
2, (4)

where x0 is a clean image from the dataset and ✏ ⇠ N (0, I) is
random noise. By replacing ✏ with the approximator ✏✓(xt, t)
in Eq. (3) and iterating it T times, DDPM can yield clean
images x0 ⇠ q(x) from initial random noises xT ⇠ N (0, I),
where q(x) represents the image distribution in the training
dataset.

Solvers of inverse problems that use diffusion models have
shown remarkable performance and versatility, and can be
divided into two groups. The first group of methods [29]–[33]
has focused on designing and training conditional diffusion
models suitable for image reconstruction tasks. The second
group [13]–[24] has instead focused on keeping the training
of unconditional diffusion models unaltered, and only modify
the inference procedure to enable sampling from a conditional
distribution. The approach proposed in this paper falls in the
latter category and has the advantage of leveraging the pre-
trained diffusion models to make them serve as a strong gen-
erative prior without the need of retraining diffusion models.

B. Wavelet Transform and Invertible Neural Networks
The wavelet transform is widely used in many imaging

applications due to its ability to concentrate image features

in a few large-magnitude wavelet coefficients, while small-
value wavelet coefficients typically contain noise and can be
shrunk or removed without affecting the image quality. The
lifting scheme [34] is often used to construct a wavelet trans-
form. As shown in Fig. 2(a), the forward wavelet transform
converts the input signal into coarse and detail components
and then the original signal is reconstructed by the inverse
transform. Specifically, the lifting scheme first splits the signal
x = (xk)k2Z into an even xe = (x2k)k2Z and an odd part
xo = (x2k+1)k2Z . A predictor is used to predict the odd part
from the even part, and thus the difference between the odd
part and its prediction reflects high-frequency details d of the
signal. Based on this difference, the update step is used to
adjust the even part to make it a smoother coarse version c of
the original signal. The above lifting procedure implementing
the forward wavelet transform can be described as:

d = xo � P (xe), c = xe + U(d). (5)

The inverse transform can immediately be found by reversing
the operations and flipping the signs. Therefore, the original
signal can be recovered as follows:

xe = c� U(d), xo = d+ P (xe). (6)

The above equations illustrate that no matter how P and U
are chosen, the scheme is always invertible and thus leads
to critically sampled perfect reconstruction filter banks [34].
Furthermore, this scheme allows multiple levels and multiple
pairs of predictors and updates (see Fig. 2(b)).

Inspired by the above idea, Huang et al. [35] propose a
lifting-inspired invertible neural network (LINN) for image de-
noising. The forward transform of LINN non-linearly converts
the input noisy image into coarse channel and detail channels.
A denoising network performs the denoising operation on the
detail part, and then the backward transform of the LINN
reconstructs the denoised image using the original coarse
channel and the denoised detail channels. In this architecture,
INN consists of several invertible blocks where P and U in
Eq. (5) and Eq. (6) become functions parameterized by neural
networks. Specifically, the Predict and Update networks are
applied alternatively to update the coarse and detail parts. The
m-th pair of update and predict operations of the k-th level
INN can be expressed as:

dk
m = dk

m�1 � P k
m

�
ckm�1

�
, (7)

ckm = ckm�1 + Uk
m

�
dk
m

�
, (8)

where dk
m and ckm denotes the updated detail part and coarse

part using the m-th Predict network P k
m(·) and Update network

Uk
m(·), respectively. Similarly, the inverse transform of the k-

th level INN can be expressed as:

ckm�1 = ckm � Uk
m

�
dk
m

�
, (9)

dk
m�1 = dk

m + P k
m

�
ckm�1

�
. (10)

There are also other choices for INN architectures, including
coupling layer [36], affine coupling layer [37], reversible
residual network [38] and i-RevNet architecture [39]. The
invertible architecture that we design in this paper is based
on the lifting-inspired invertible blocks in [35]. However, we
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use an alternative training strategy where we try to ensure
that the coarse version produced by the network is as close as
possible to the measured degraded image y.

III. INDIGO+ APPROACH

A. Overview
For a general image restoration problem y = H(x,n), we

aim to obtain an image x̃ that ensures data consistency while
maintaining realistic textures. To simultaneously achieve these
two goals, we leverage the merit of the perfect reconstruction
property of INN and the strong generative prior of pretrained
diffusion models. An overview of the proposed approach is
shown in Fig. 3 and Fig. 4. We first train our INN so that
its forward part [c,d] = f�(x) decomposes an image x
in a coarse and detail part so that c ⇡ H(x,n). In other
words, f�(·) is trained to mimic the degradation process H.
Then during the diffusion posterior sampling process, we
impose an additional data consistency step after each original
unconditional sampling update. Specifically, we first utilize
our pretrained INN to decompose the intermediate result x0,t

into the coarse part ct that should approximate the degraded
measurements and the detail part dt that models the details
lost during the degradation. We then replace ct with the
given observed measurements y. Next, the INN-optimized
image x̂0,t is constructed by inverse transform f�1

� (·) of INN.
Therefore, this INN-optimized result x̂0,t guides the sampling
towards satisfying the consistency constraint. Simultaneously,
x̂0,t maintains rich details obtained by diffusion posterior sam-
pling without affecting data consistency. Then, the diffusion
posterior sampling at the following step is guided by our data-
consistent result, x̂0,t, through a gradient operation. Due to the
fact that we train an INN to model the degradation process,
our algorithm is more flexible than other methods and also
more effective given that the invertibility property of the INN
ensures that we compute implicitly the equivalent of an inverse
at each iteration.

In the following subsections, we will explain in details how
our approach can solve non-blind and blind inverse problems,
respectively.

B. INDIGO for Non-Blind Image Restoration
In this subsection, we start with non-blind inverse problems

and introduce the design of our INN and how it works in the
diffusion process.

Modelling the degradation process with INN: By exploit-
ing the invertibility of INN, we propose to treat its forward
transform f� as a simulator of the degradation process and
treat its inverse transform f�1

� as the reconstruction process.
To realize this framework, we start with adopting the lifting-
inspired invertible blocks in [35] (as in Section II-B), which
can be expressed as follows:

[c,d] = f�(x), x = f�1
� (c,d), (11)

where the forward transform of INN generates the coarse and
detail parts, c and d, while the inverse transform of INN can
perfectly recover the input original image from c and d. To
model the degradation process, we impose that c resembles

!!"#
…

Sampling Step

!!!$ !%

!%,!

"! #! $

%!%,!

INN INN-1

Data-Consistency Step

…

Gradient
Step

&!!"#

Fig. 3: Overview of our INDIGO for non-blind image restora-
tion. Given a degraded image y during inference, the diffusion
posterior sampling is guided by our data-consistency step
with INN at each step t. We show the detailed algorithm in
Algorithm 1.

y. Given a training set
�
xi,yi

 N

i=1
, which contains N high-

quality images and their low-quality counterparts, we optimize
our INN with the following loss function:

L (�) =
1

N

NX

i=1

��f c
�(x

i)� yi
��2
2
, (12)

where � denotes the set of learnable parameters of our INN
and f c

�(x
i) and fd

�(x
i) denote the first and second part of the

output of f�(xi), respectively. Once we constrain one part of
the output of f�(xi) to be close to y, due to invertibility, the
other part of the output will inevitably represent the detailed
information lost during the degradation process.

Sampling with the guidance of pretrained INN: In the
unconditionally trained DDPM [8], the reverse diffusion pro-
cess iteratively samples xt�1 from p(xt�1|xt) to yield clean
images x0 ⇠ q(x) from initial random noise xT ⇠ N (0, I).
Here, we rewrite Eq. 3 with the pre-trained approximator
✏✓(xt, t) and split it into the following two equations:

x0,t =
1

p
↵̄t

(xt �
p
1� ↵̄t✏✓(xt, t)) (13)

and

xt�1 =

p
↵t(1� ↵̄t�1)

1� ↵̄t
xt +

p
↵̄t�1�t

1� ↵̄t
x0,t + �tz. (14)

As illustrated in Eq. 13, x0,t is the predicted clean image
from the noisy image xt. To solve inverse problems, we need
to refine each unconditional transition using y to ensure data
consistency. In our proposed algorithm, we impose our data-
consistency step by modifying the clean image x0,t instead of
the noisy image xt.

As shown in Algorithm 1, we impose an additional data
consistency step (in blue) with our off-the-shelf INN after
each original unconditional sampling update. In this additional
step, we apply the forward transform f�(·) to the intermediate
result x0,t leading to the decomposition of x0,t into coarse
and detail part ct, dt respectively. We then replace the coarse



●This approach is simple, flexible and effective

● No-need to know the degradation process

● The degradation process can be highly non-linear

● No need to retrain the diffusion model for every new degradation (just need to 
train the INN) 34
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Ground Truth                      Degraded                                 Reconstructed



Results for non-linear degradation models
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INDigo: An INN-Guided Probabilistic Diffusion Algorithm for Inverse
Problems

Di You1,
Andreas Floros1,
Pier Luigi Dragotti1

Introduction

Background
The inverse problem is typically modelled as:

y = H(x) + n (1)

whereHmodels the degradation process and n ∼
N (0,σ02I) is additive noise. Many imaging tasks
fall under this model including deblurring, super-
resolution and removal of compression artefacts.

Contributions
• A novel INN-guided probabilistic diffusion algo-
rithm for inverse problems, namely INDIGO.

• First attempt to combine perfect reconstruction
property of INN with the strong generative prior
of diffusion models for inverse problems.

• Effectively estimates details lost in the degra-
dation process without requiring a closed-form
degradation model.

• SOTA performance on super-resolution, jpeg
compression and real degraded image recon-
struction.

Figure 1: Overview of our INDIGO for image restoration. Given a degraded
imagey during inference, the diffusion posterior sampling is guided by our
data-consistency step with INN at each step t.

Method

Modelling the degradation process with INN
Our proposed INN can be expressed as follows:

[c,d] = fφ(x), x = f−1
φ (c,d), (2)

where the forward transform of INN generates the
coarse and detail parts, c and d, while the inverse
transform of INN can perfectly recover the input
original image from c and d.

Figure 2: The forward and inverse transform of our INN during inference.

To model the degradation process, we impose that
c resembles y. Given a training set

{
xi,yi

}N

i=1
,

which contains N high-quality images and their
low-quality counterparts, we optimize our WINN
with the following loss function:

L (Θ) =
1

N

N∑

i=1

∥∥ci − yi
∥∥2
2
, (3)

whereΘ denotes the learnable parameter set in our
INN. Once we constrain one part of the output of
fφ(x) to be close to y, due to invertibility, the other
part of the output dwill inevitably represent the de-
tailed information lost during the degradation pro-
cess.

Samplingwith the guidance of pretrained INN
We impose an additional data consistency step af-
ter each original unconditional sampling update.
The INN-optimized x̂0,t is composed of the coarse
information y and the details generated by the dif-
fusion process.

Experiments

Results on 4x Super-Resolution:
Table 1: Quantitative results on the problems of bicubic downsampling
(4×) with different levels of Gaussian noise on the FFHQ 1k validation
dataset. The best results are highlighted.

Method Noise σ PSNR ↑ FID ↓ LPIPS ↓ NIQE↓
ILVR 0 27.43 44.04 0.2123 5.4689
DDRM 0 28.08 65.80 0.1722 4.4694
DPS 0 26.67 32.44 0.1370 4.4890
Ours 0 28.15 22.33 0.0889 4.1564
ILVR 0.05 26.42 60.27 0.3045 4.6527
DDRM 0.05 27.06 45.90 0.2028 4.8238
DPS 0.05 25.92 31.71 0.1475 4.3743
Ours 0.05 27.16 26.64 0.1215 4.1004
ILVR 0.10 24.60 88.88 0.4833 4.4888
DDRM 0.10 26.16 45.49 0.2273 4.9644
DPS 0.10 24.73 31.66 0.1698 4.2388
Ours 0.10 26.25 28.89 0.1399 3.9659

Figure3: Visual comparisons on solving the super-resolution problem (x4)
with σy= 0.05 on FFHQ validation dataset.

Results with Non-linear DegradationModel

Bicubic Ours Ground TruthInput

Figure 4: Results of our algorithm on solving non-linear inverse problem
on CelabA HQ validation dataset.

Results with Real DegradationModel

Figure 5: Result of our algorithm on reconstructing real images from
DRealSR with resolution enhancement by a factor 4 per direction.
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Results on 4x super-resolution
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DRealSR with resolution enhancement by a factor 4 per direction.
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Abstract—Recently it has been shown that using diffusion

models for inverse problems can lead to remarkable results.

However, these approaches require a closed-form expression of

the degradation model and can not support complex degradations.

To overcome this limitation, we propose a method (INDigo) that

combines invertible neural networks (INN) and diffusion models

for general inverse problems. Specifically, we train the forward

process of INN to simulate an arbitrary degradation process and

use the inverse as a reconstruction process. During the diffusion

sampling process, we impose an additional data-consistency step

that minimizes the distance between the intermediate result and

the INN-optimized result at every iteration, where the INN-

optimized image is composed of the coarse information given

by the observed degraded image and the details generated by

the diffusion process. With the help of INN, our algorithm

effectively complements the details lost in the degradation process

and is no longer limited by the requirement of knowing the

closed-form expression of the degradation model. Experiments

demonstrate that our algorithm obtains competitive results

compared with recently leading methods both quantitatively and

visually. Moreover, our algorithm performs well on more complex

degradation models and real-world low-quality images.

Index Terms—inverse problems, diffusion models, invertible

neural networks.

I. INTRODUCTION

In this paper, we focus on the problem of reconstructing a
high-quality image x from noisy and degraded measurements
y. This inverse problem is typically modelled as follows:

y = H(x) + n (1)

where H models the degradation process and n ⇠ N(0,�0
2
I)

is additive noise. In this paper, we assume that H(·) can be
either linear or non-linear. Many imaging tasks fall under this
model including deblurring, super-resolution and removal of
compression artefacts.

With the emergence of deep learning techniques, many deep
learning-based algorithms for inverse problems have achieved
excellent success and we refer to [1] for a recent overview.

Recently, the generative prior of diffusion models [2–6] has
become one of the most popular priors due to their remarkable
ability to approximate the natural image manifold. A line
of work [7–16] has focused on leveraging the learned score
function as a generative prior of the data distribution to solve
general inverse problems. Earlier works [7–10] have also

Ground Truth DPS Ours

Fig. 1: Visual comparisons of DPS [15] and our method on
solving super-resolution problem (x4) on CelebA.

demonstrated the great ability of diffusion models for inverse
problems. A classic example is ILVR, which leverages a trained
diffusion model guided by the low-frequency information
from a conditional image through the diffusion process. While
promising, this method is limited by the assumption that H(·)
is a linear operator and that there is no noise.

Several approaches [11–13] have been proposed to solve
noisy inverse problems using diffusion models. These methods
run SVD/Range-Null space decomposition on intermediate
results during iterations. Although their results on noisy
cases show impressive reconstruction performance and good
interpretability, they cannot solve non-linear inverse problems,
e.g. Jpeg compression. Furthermore, they suffer from high
computational complexity when handling more complicated
degradation models.

More recently, several gradient-based methods [14–16] have
been proposed to further generalize to non-linear noisy inverse
problems. During the T -step diffusion process, these methods
impose an additional data-consistency step in the measurement
domain. Specifically, at each iteration t, they minimize the
distance between y and H(x0,t). This strategy avoids high-
complexity computation and allows their models to have the
potential to solve more complex inverse problems. However,
there are two main limitations of this type of approaches.



Results on blind unsupervised deconvolution 

37

3. INN and Diffusion Models

D. You, F. Andreas, and P.L. Dragotti. "INDigo: An INN-Guided Probabilistic Diffusion Algorithm for Inverse 
Problems." in Proceedings of IEEE 25th International Workshop on Multimedia Signal Processing (MMSP), 2023. 
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(a) Input (b) DR2 [1] (c) DifFace [2] (d) PGDiff [3] (e) StableSR [4] (f) Ours

Fig. 1: Comparisons with state-of-the-art blind image restoration approaches [1]–[4] on the real-world low-quality images. Our
algorithm produces high-quality reconstruction results and preserves more details than the recent leading methods. (Zoom in
for best view).

The above non-blind and blind IR approaches have demon-
strated the effectiveness of the generative diffusion models for
IR tasks. However, they are faced with the following limita-
tions: (1) In the task of non-blind IR, most existing approaches
require a closed-form expression of the degradation model to
guide the sampling process. However, the image processing
pipeline of many modern imaging systems is so complex that
it is often impossible to describe it explicitly. (2) In the task
of blind IR, most existing blind IR approaches rely on pre-
defined degradation models for training the IR network g(·),
which also limits their flexibility in real-world scenarios.

To address the above issues, we propose an INN-guided
probabilistic diffusion algorithm for both non-blind 1 and blind
image restoration. During the sampling process of diffusion
model, we impose an additional data-consistency step by intro-
ducing an off-the-shelf light-weight invertible neural network
(INN). Specifically, we pre-train the forward process of INN to
simulate an arbitrary degradation process. At testing stage we
alternate between an unconditional diffusion sampling step that
gives us an intermediate image consistent with the diffusion
model and a consistency step guided by the INN that forces
the reconstruction to be consistent with the measurements. In
particular, given at each step an estimated image, the forward
part of the INN produces a coarse image which we then
force to be consistent with the measurements and the details
estimated by the diffusion process. We then use the inverse
part of the INN as a reconstruction process to obtain an
intermediate result that guides the next step of the reverse
diffusion process. Therefore, our method guides the sampling
towards satisfying the consistency constraint while maintain-
ing rich details provided by the diffusion prior. In the task of
non-blind IR, INN is pretrained with datasets on any specific
degradation, so it is no longer limited by the requirement of
knowing the analytical expression of the degradation model. In
the task of blind IR, we first initialize the parameters of INN
by training it with synthetic dataset pairs that model different
degradation processes. Then, by alternating between refining
the INN parameters for the unknown degradation model and
updating intermediate image results with the guidance of INN
during sampling, our approach is more flexible and can handle
different degradation settings in real-world scenarios.

We summarize our contributions as follows:

1The work on non-blind inverse problem was presented in part at IEEE
MMSP conference 2023 [24].

• We propose a novel INN-guided probabilistic diffusion
algorithm for non-blind and blind image restoration,
namely INDIGO and BlindINDIGO. In contrast to most
existing approaches, our algorithm introduces prior degra-
dation information to the diffusion reverse process by
simulating it with INN, which help to boost IR perfor-
mance and improve flexibility.

• To the best of our knowledge, this is the first attempt to
combine the merits of the perfect reconstruction prop-
erty of INN with strong generative prior of diffusion
models for blind image restoration. With the help of
INN, our algorithm effectively estimates the details lost
in the degradation process and is able to handle arbitrary
degradation processes.

• We further propose a novel consensus strategy which
estimate several enhanced versions of the corrupted im-
age that can then be combined to further improve the
performance of our approach. In addition, we introduce
an initialization strategy to accelerate our algorithm by
reducing the number of timestep.

• Extensive experiments show that our approach for both
non-blind and blind image restoration achieves state-of-
the-art results compared with other methods on synthet-
ically degraded and real low-quality images (see Fig. 1
for an example).

II. BACKGROUND

A. Review of Denoising Diffusion Probabilistic Models

Diffusion models, e.g. [8], [9], sequentially corrupt training
data with slowly increasing noise, and then learn to reverse
this corruption in order to form a generative model of the
data. Here we describe a classic diffusion model: denoising
diffusion probabilistic model (DDPM) [8]. DDPM defines a
T -step forward process transforming complex data distribution
into simple Gaussian noise distribution and a T -step reverse
process recovering data from noise. The forward process
slowly adds random noise to data, where, in the typical setting,
the added noise has a Gaussian distribution. Consequently, the
forward process yields the present state xt from the previous
state xt�1:

q(xt|xt�1) = N (xt;
p

1� �txt�1,�tI) (1)

where xt is the noisy image at time-step t, �t is a predefined
scale factor. As noted in [8], the above process allows us to



1. Overview of Invertible Neural Networks

● Origin of INN and Normalizing flows

● INN for Inverse Problems

2. Wavelet-Inspired Invertible Neural Network

3. INN and diffusion models: INDigo
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Deep Unfolded Reflection Removal Network

● Overparameterize the wavelet transform as a learnable INN
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4. Other Applications of INN: Blind Source Separation

Exclusion Prior:

where W denotes wavelet transform.

J.-J. Huang, et al. "DURRNET: Deep Unfolded Single Image Reflection Removal Network with Joint Prior“, in 
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024.

Glass

T
R



Deep Unfolded Reflection Removal Network

4. Other Applications of INN: Blind Source Separation
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Ø Subjective comparisons

Ø Objective comparisons:

Ø PSNR v.s. FLOPS and 
#Params



Adversarial Attack via Invertible Neural Networks: 
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4. Other Applications of INN: Adversarial Attacks
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Z. Chen, et al. "Imperceptible Adversarial Attack Via Invertible Neural Networks." in Proceedings of the AAAI 
Conference on Artificial Intelligence, 2023.

Less perceptible adversarial examples with 100% 
attacking success rate!
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● The perfect reconstruction property of the Invertible Neural 
Networks is intriguing

● Designing INN using wavelets/lifting leads to more interpretable 
and simpler architectures 

● Good generalization ability

● Invertible neural networks have the potential for many 

image/signal processing applications
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Conclusions



Thanks for listening!
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