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1. Overview of Invertible Neural Networks

Invertible Neural Networks (INNs) are bijective function

approximators which have a forward mapping

Fo:R? - R 2
X -z |

and inverse mapping

F;: R - R4 — _
A bijective function (or
Z = X invertible function)



1. Overview of Invertible Neural Networks

How to Achieve Invertibility?

Invertible via lifting scheme like architectures X /) g
e Signal splitting w — Joorie \7: U
e Alternative prediction and update , i
Xe O S
| d= x, — P(x,) x, =d+ P(x,)
Sp“t_’{s=xe+U(d) {xe=S_U(d)—>Merge
Forward pass Backward pass

| Daubechies, W Sweldens
Journal of Fourier analysis and applications 4 (3), 245-267

[ Factoring wavelet transforms into lifting steps 3900 1998 ]




1. Overview of Invertible Neural Networks

Invertible Neural Networks are bijective function approximators

which have a forward mapping

Data space A’ Latent space Z
. d [ oy
Fy:R% > R ~ .
F %) - g oun

and inverse mapping

Fg': R - R?
A bijective function (or
Z = X invertible function)



1. Overview of Invertible Neural Networks

Also known as Normalizing Flow for generative modeling

e Tractable Jacobian, allows explicit computation of posterior probability

f1 Zo fz(zz 1 fz—}-l(zz
O ® - © @ -

~

-~ _

Zgy ~ Po(Zo) i sz( ) Zp ~ pK ZK

Figure 1: Synthetic celebrities sampled from our model; see Section 3 for architecture and method,
and Section 5 for more results.

Kingma, Durk P., and Prafulla Dhariwal. "Glow: Generative flow with invertible 1x1 convolutions." in Proceedings
of Advances in Neural Information Processing Systems (NeurlPS), 2018.




1. Overview of Invertible Neural Networks

Inverse problems involve reconstructing unknown physical

guantities from indirect measurements :

e denoising
e super-resolution
e deblurring
e inpainting




1. Overview of Invertible Neural Networks

Invertible Neural Networks are ideal architectures to address

iInverse problems

' N

forward (simulation): x — y

---------------*

> &
Yy
@4 |X < INN > 1
- 3\
Z >(7',
*-——-—--—-———-_- D
\ —J J

inverse (sampling): [y, z] — x

Invertible Neural Network |

Ardizzone, Lynton, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W. Pellegrini, Ralf S. Klessen, Lena Maier-Hein,
Carsten Rother, and Ullrich Kothe. "Analyzing inverse problems with invertible neural networks." in Proceedings of
International Conference on Learning Representations (ICLR), 2019.
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2. Wavelet-inspired Invertible Neural Network

Image Denoising

e Recover a clean image from noisy observations

e Raw image data is usually noisy

Denoising is the “simplest” inverse problem yet
plays an important role in many applications

y =X+ €

/TN

Measured Clean Noise




2. Wavelet-inspired Invertible Neural Network

Deep Learning methods are effective while less interpretable and
controllable

DnCNN

Noisy Image Residual Image

Conv + RelLU
Conv

A

Conv + BN + RelLU
Conv + BN + RelLU
Conv + BN + RelLU

1 16 16
: U-Net RED-Net
) &>
R Deconvolution
u 32 A
E Vi
a ”’ W ‘” ’4;“
) Wi
- ) 0 64 64

) =) Conv + BN + LRelU

5 ' 2 - » . =) Conv_stride2 + BN + LRelU
b =) Deconv + Upsampling

~m

D> Copy and add




2. Wavelet-inspired Invertible Neural Network

Wavelet Thresholding is a widely used denoising approach
e Wavelets provide invertible sparse representations of piecewise smooth images

Universal threshold

’ T = +/202logN
BayesShrink threshold
T {41/\ -Y — ¥ — Denoising E——
o

| Daubechies
Communications on pure and applied mathematics 41 (7), 909-996

[Orthonormal bases of compactly supported wavelets 12504 1988 ]
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2. Wavelet-inspired Invertible Neural Network

Motivation:

 Whether it is possible to combine the merits of Wavelet Thresholding

and DNNs for image denoising and other image restoration tasks?
Idea:

« Learning a redundant transform with perfect reconstruction property using

a Wavelet-inspired INvertible Network (WINNet)
O
7

13




2. Wavelet-inspired Invertible Neural Network

Overall architecture

g2
t
Model-inspired
Noise Est.

Network LINN R

high- low- . high- low- | _
XN freq freq freq freq
Noisy image  (forward) ’ (forward)
Sparsity-driven Sparsity-driven
Denoising Network Denoising Network
(backward) (backward)
HE B B IOW- «
freq

Denoised image



2. Wavelet-inspired Invertible Neural Network

Lifting inspired Invertible Neural Network (LINN)

e Forward pass e Backward pass

Detail part Detail part Detail part Detail part
/) o R 4D M
At e j ‘ ' ‘ L 4
s| s| 8| s A . = il s| s| & s "
§ _t-_U, g % . v '.’: I g _c§ g % 'R
2 B §| B 5\ 5| E| 3| E
VA fan . i )
U A (= N
Coarse part Coarse part e P _ , Coarse part
Representation to image

Image to representation

When no operation is applied on the representation, perfect reconstruction

can be achieved using the backward pass.
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2. Wavelet-inspired Invertible Neural Network

Lifting inspired Invertible Neural Network (LINN)

e Predictor/Updater networks

e Separable convolutional networks with soft-thresholding non-linearity

e Noise adaptive soft-threshold

}' Depthwise Conv |
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Noise adaptive
soft-threshold
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2. Wavelet-inspired Invertible Neural Network

Sparsity-driven Denoising Network

e Non-invertible component

e A well-understood denoising network can lead to enhanced interpretability

LINN
(forward)

e L

Noisy image
Denoising
Network

\\ LINN
AN (backward)
Denoised image

17



2. Wavelet-inspired Invertible Neural Network

Sparsity-driven Denoising Network

e \We model the denoising process as Convolutional Sparse Coding

M
ZD ® g +Eai gl
=1

e Unfold it in to CLISTA Network G, =Ty, (Gi-1 + W, ® (D§;, — W, ® G;_,))

g = argmln

AnaIyS|s dict.
== —————— = — — = w
iy éW%“ Synthesis dict. |
w w Ww. | w | W, _
90 —E@—Se—®—a<i®—se~®—“éd,’&




2. Wavelet-inspired Invertible Neural Network

Model-inspired Noise Estimation Network

]
M Natural image

o Selected
® patches
G I
.50
w Zer= : \\

1 2 3 4 e 46 47 48 49 .

Principal component I
) thres = 751.9 thres = 334.2
B Gaussian noise 05 ' AN
L Patch nuiwber:222574
©
>
g =
S 1 62 = 2.03
H BB EEEEEN | | |

1 2 3 4 46 47 48 49
Principal component

X. Liu, M. Tanaka and M. Okutomi, "Single-Image Noise Level Estimation for Blind Denoising," in IEEE Transactions on
Image Processing (TIP), vol. 22, no. 12, pp. 5226-5237, Dec. 2013. 19




2. Wavelet-inspired Invertible Neural Network

Model-inspired Noise Estimation Network

]
M Natural image
. SENet —»N
g » 4‘ : .. S l
w y ;.., B . o
B * = SVD(Pdiag(w)PT) ——> 0
$ To :
1 2 3 4 e 46 47 48 49
Principal component patches |
. P
B Gaussian noise
. Noise Estimation Network
B
=
g
w
H B B EEEEN
i1 2 3 4 e 46 47 48 49

Principal component

(a) Clean image. (b) & =1. () o = 20. (d) o = 60.
Visualization of the selected patches for noise level estimation 20



2. Wavelet-inspired Invertible Neural Network

Experimental Settings:

e Training loss:

K M

e Spectral norm loss for LINN Lo= 7 \[ 7 ., Y 1P slls + 11U ;

k=1m=1 j=1

e Orthogonal loss for CLISTA Network £, = [|[W, @ W, — 4%

N
. . 1 -
e Mean squared error between restored |mage and clean |mage Lr =35 § 1X; — X3
||S

e Optimizer:
e Adam with learning rate 1x10~3 which decays to 1x10~* at the 30-th epoch
e Training data:

e 400 images of size 180x180
21



2. Wavelet-inspired Invertible Neural Network

Experimental Results — Non-blind denoising

30.35
@ ®
= 3030 & DeamNet DRUNet
Q
‘g 30.25 o WINNet2iv
530.20 WINNet 1lvl
& FFDNet
= 30.15
® DnCNN

2 30.10 ®
o SGN
< 30.05 @ DnINN
Q
-
Z

30.00 BF-CNN

29.95

10° 10° 107 108

Number of Parameters

Comparison of average PSNR (dB) and number of parameters of different methods.
The testing dataset is Set72 with noise level ¢ = [15, 25, 50].
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2. Wavelet-inspired Invertible Neural Network

Experimental Results — Blind denoising

Dataset Methods g =5 g ='2b =45 o = 65 = 125 o =145
DnCNN-B [21] 3T.TS 29.15 26.62 23.00 11.68 10.79
BSD6S BUIFD [29] 37.41 28.76 25.61 23.07 14.45 13.52
BF-CNN [28] 3773 29.11 26.58 25.12 22.70 22.18
WINNet (1-scale) 37.82 29.13 26.66 25.23 22.81 22.23
DnCNN-B [21] 37.88 30.38 27.68 23.52 11.78 10.92
Set]2 BUIFD [29] 37.34 30.18 27.01 2427 14.66 13.73
£ BF-CNN [28] 37.81 30.33 27.58 25.83 22.74 22.07
WINNet (1-scale) 38.22 30.33 2172 26.03 22.94 22.24

patc

SENet —»ﬁr\:
v e - SVD(Pdiag(w)PT) 62
2 [¢]
hes

P
Noise Estimation Network

_ 100
£l
E 80
8
£ 60
z
z 40
E 2
=0

23.11dB

2691dB

2938dB

38.10dB

25.36dB 24.12dB



2. Wavelet-inspired Invertible Neural Network

Application on Image Deblurring

Blur Image Sharp Image Blurring Kernel Noise

o2
(32

~ L —arg Hgll“y —k X ;(;”% G “33 e Zk—l“%

1 .
s3lly — k@ |3 + A(z) m-p -

X = arg min
S0 |

[\

zp =argmin— ||z — x5 + ®(z)
z

24



2. Wavelet-inspired Invertible Neural Network

Image Deblurring with WINNet

Algorithm 1: Plug-and-Play image deblurring with
blind WINNet.
Input: Input image y, kernel k, parameter A;
Initialize: zo = y, Bo = NENet(2p), 51 = 10 x Sy,
kE—1
while 5, > 5y do

o —

L]

4 &) = AIg mln||ll k® x||2+ 52 ’\80 |l — zk_1]|3; %Auxiliary Update

5 | Br+1= NENet(wk). - — .

A 21 = WINNet(zk, 28k41): YoNoise Estimation and Denoising
7 k=k+1;

8 end

9 Output: Deblurred image & = z;_;.

25
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2. Wavelet-inspired Invertible Neural Network

Experimental Results on Image Deblurring

230 {—e

< 28
& 26
»v 24
22
20

—o—xk —e—-zk

1 2 3 4 5 6 7 8
Iteration
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2. Wavelet-inspired Invertible Neural Network

Take home message:

* With proper nonlinear over-parameterization, \Wavelet-inspired
network architecture can achieve good performance, strong

controllability, generalization ability and high interpretability

J.-J. Huang, and P.L. Dragotti, "WINNet: Wavelet-inspired Invertible Network for Image Denoising," in IEEE A
Transactions on Image Processing (TIP), 2022.
J.-J. Huang, and P.L. Dragotti, "LINN: Lifting Inspired Invertible Neural Network for Image Denoising,"

\in Proceedings of 29th European Signal Processing Conference (EUSIPCO), Ireland, 2021. )

27
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3. INN and Diffusion Models

% = min||H(x) = y||* + 2p(x)

prior

e Impose consistency using the forward part of the INN
e Impose the prior using diffusion models

e l[terate

29



3. INN and Diffusion Models

Diffusion Models are good for “unconditional” generation of new samples (e.g.,

sy, — —

Xt+1 Ay

Denoising Probabilistic Diffusion Models)

Motivation: Can we use a pretrained “unconditional” diffusion model for inverse
problems?

J. Ho, J. Ajay and P. Abbeel. "Denoising diffusion probabilistic models." in Proceedings of Advances in Neural Information
Processing Systems (NeurlPS) 2020.

30



3. INN and Diffusion Models

» Given a training set {x;, y;} which
contains N high-quality images and
their low-quality counterparts, we
learn the forward part of the INN
using the following loss: O > .. C

| ¥ |

x—s[spit | | P ] [ U]

I R NS

1/

2
2

1 L |
L(©)= NZ ch —y’|
i=1

« Consequently, d models the lost
details that need to be recovered with

the diffusion model

31



3. INN and Diffusion Models

2"d_level WINNE

>

1st-level WINNg

Cy

It

» o

)
2
= [7}
o =
nv =
a

—» Training Process (Modelling Degradation)

=-=» Inference Process (Reconstruction)

2"d_level WINN;

14

32



3. INN and Diffusion Models

Sampling Step

Graduem‘
Step & PN
xO,t
\

Data-Consistency Step

Algorithm 1 INDigo

13 XTNN(O,I)
2: fort=1T,...,1do

33 z~N(OIift>1elsez=0

4: Xo,t = \/I—(Xt — 1-— o’zteg(xt, ))

5: Xi_1 = \/_(11 aat 1)X = lﬂtx0t+0'tz
6: Ct,dt e f?(XO tf)

7 X0,t = f¢ (y,d:)

8: Xt—1 = X¢—1 — (Vx, || X0, — X0, t||2

9: end for

10: return xg

33



3. INN and Diffusion Models

Ground Truth Degraded Reconstructed

e This approach is simple, flexible and effective

e No-need to know the degradation process
e The degradation process can be highly non-linear

e No need to retrain the diffusion model for every new degradation (just need to
train the INN) 34



3. INN and Diffusion Models

Results for non-linear degradation models

Ours

Ground Truth

35



3. INN and Diffusion Models

Results on 4x super-resolution

Method Noisec PSNR1+ FID] LPIPS| NIQE]

ILVR 0] 2743 4404 0.2123 5.4689
DDRM 0] 28.08 65.80 01722 4.4694
DPS 0 26.67 3244 01370 44890
Ours 0] 28.15 22.33 0.0889 4.1564
ILVR 0.05 2642 060.27 0.3045 4.6527
DDRM 0.05 2706 4590 0.2028 4.8238
DPS 0.05 2592 3171 01475 4.3743
Ours 0.05 2716 26.64 0.1215 4.1004
ILVR 010 2460 88.88 04833 4.4888
DDRM  0.10 2616 4549 0.2273 4.9644
DPS 0.10 2473 31.66 01698 4.2388
Ours 010 26.25 28.89 0.1399 3.9659

36



3. INN and Diffusion Models

Results on blind unsupervised deconvolution

D. You, F. Andreas, and P.L. Dragotti. "INDigo: An INN-Guided Probabilistic Diffusion Algorithm for Inverse

Problems." in Proceedings of IEEE 25th International Workshop on Multimedia Signal Processing (MMSP), 2023.

(Best Paper Award)

37
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4. Other Applications of INN: Blind Source Separation

b

e Overparameterize the wavelet transform as a learnable INN “ ) Q

Deep Unfolded Reflection Removal Network

12

111111 —
zZT.ZR 2

I-— ZDT ® ZT Z DR ® ZR + )‘TPT(ZT) ] ProxModuIe
| T = V- ox

N
+ ArPr(ZR) + KE (Z D% @z’ ZDR R Z%) 1

i=1 i=1

nr ! J w ThreNet 1
Exclusion Prior: *ﬂ ,.0¢| ProxinvModule m

M T —pf ack|Proxvet i
ET,R) = ¥  |Wr®T)0(WroR)|, iz {

ProxModule

Kk
™| ProxinvModule

Z"%-H'

where W denotes wavelet transform.

J.-J. Huang, et al. "DURRNET: Deep Unfolded Single Image Reflection Removal Network with Joint Prior®, in
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024. 39




4. Other Applications of INN: Blind Source Separation

PSNR (dB)

Deep Unfolded Reflection Removal Network
> Subj

> PSNR v.s. FLOPS and -
#Params

24

DURRNet
23.80dB .
12.1M ;T;;‘dg
& T 38.4M
445.6G 2 RRNet
CoRRNet IBCLN  22.89dB (a) Input
22 21.57dB - 21.86dB 19.3M
59.5M ; 243TM 679.6G . . . .
n7sel » (Objective comparisons:
21 . CEILNet Zhangeral. BDN IBCLN CoRRN ERRNet YTMT DURRNet
Dataset Metrics e O e B e
64 128 256 512 1024 [8] [1()] [11] [14] [m] [nu [17] (proposed)
FLOPs (G) Real20 (20) PSNR (1) 18.45 2235 18.41 21.86 21.57 22.89 23.26 23.80
s - SSIM (1) 0.690 0.788 0.726  0.762 0.807 0.803 0.806 0.814
Nature (20) PSNR (1) 19.33 19.56 18.92  23.57 21.84 20.60 23.85 24.24
' SSIM (1) 0.745 0.736 0.737  0.783 0.805 0.755 0.810 0.812




4. Other Applications of INN: Adversarial Attacks

Adversarial Attack via Invertible Neural Networks:

P

"|L

rec

\l/

Table 1: Accuracy and evaluation metrics on different methods. All methods use € = 8/255 as the adversarial budget. ASR
donates the accuracy of adversarial attacks. T means the value is higher the better, and vice versa. (The best and the second best
result in each column is in bold and underline.)

> 0P > .
et Dataset | Methods | Ll loo 4 SSIM?t LPIPS| FID|  ASR(%)?
m Quanti StepLL 26.90 0.04 0.948 0.1443 25176 98.5
C&W 1033 0.07 0.977 00617 11515 91.7
Xcin e TION PGD 64.42 0.04 0.881 02155 35012 90.2
PerC-AL 1.93 0.10 0.995 0.0339 5.118 100.0
ImageNet-1K | AdvDrop 18.47 0.07 0.977 0.0639 9.687 100.0
/ Inver‘tlble \ SSAH 6.97 0.03 0.991 0.0352 5.221 99.8
AdVINN-HCT | 5.73 0.03 0.991 0.0206 3.661 100.0
py Information AdVINN-UAP |  5.84 0.03 0990 00212 2.900 100.0
o € =——————— sehamge - - _ AdVINN-CGT | 2.66 0.03 0996 00118 1.594 100.0
\
Xtgt £ T € backward . . . o
CE — _ Less perceptible adversarial examples with 100%
propagation .
Target Image Learning Module -» optional attaCkmg success rate!

Visualization &
Interpretation

Xclc Xtgt Xadv Xr |Xcic — Xaav Xdrop

Z. Chen, et al. "Imperceptible Adversarial Attack Via Invertible Neural Networks." in Proceedings of the AAAI
Conference on Artificial Intelligence, 2023. 41




Conclusions

e The perfect reconstruction property of the Invertible Neural

Networks is intriguing

e Designing INN using wavelets/lifting leads to more interpretable

and simpler architectures
e Good generalization ability

e Invertible neural networks have the potential for many

image/signal processing applications

42
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