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[opena. Motivation: Inverse Problem in Imaging

Inverse problems involve reconstructing unknown physical quantities from indirect
measurements.

The growing complexity of modern imaging workflows calls for a more holistic approach to
inverse problems where sensing, physics and computation are analized jointly

Key in inverse problem is the development of the interplay between physical and learned
models

* Model-based approaches more interpretable, generalize well and can reduce complexity
« Data-driven approaches can handle more complex settings
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Plato: models, priors

Need to find the right

balance between data and

prior models to develop

methods that

* reduce complexity,

* increase generalizability

» can handle lack of
training data

* can handle complex
settings

Avristotle: data
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Three Case Studies in Imaging Science
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Image restoration problems:
Invertible neural networks and
diffusion models

Light field microscopy for
neuroscience

Energy
0-40 keV
4096

channels

Technical study of Old Masters
paintings
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* Ininverse problems one looks for the right trade-off between a fidelity term and a prior

+ % =minllH@) - ylI* + ()
prior

* Models/physics can help with H and sometimes with p(x)

« Two key approaches to embed systematically priors and models into deep neural network
architectures:
* Plug-and-play approach - use neural networks as regularizers
« Deep Unfolding > embed models and priors in the network architecture
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* X =min|lH(x) - ylI* + 2p(x)
prior

¢« X= rgclivnllH(x) —ylI?+2p(v) st x=v
« Turn the constraint into a penalty: ¥ = IELnIIH(x) —ylIZ + 2p(v) + Bllx — v||?

» Solve by alternating between x and v

« Consistency step: £ = min||H(x) — y||? + B||x — v||?
y P x I ( ) y|| ﬁ” I Use Deep Learning for

/ denOiSing
« Adenoiser: ¥ = minp(v) + B]|x — v||?
v

* Venkatakrisnhan et al. Plug-and-play priors for model-based reconstruction, GlobalSip 2013
« Kamilov et al, Plug-and-Play Methods for Integrating Physical and Learned Models in Computational Imaging IEEE Signal Processing Magazine, 2023
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* X =min|lH(x) - ylI* + 2p(x)
prior

¢« X= rgclivnllH(x) —ylIZ+2p(v) st x=v

« Turn the constraint into a penalty: ¥ = n}rgivnIIH(x) —ylIZ + 2p(v) + Bllx — v||?

Use INN to impose

« Solve by alternating between x and v / consistency

« Consistency step: & = min||H(x) — y||% + Bllx — v||?
y P 9} ” ( ) y|| ﬁ” ” Use Diffusion Models

« Adenoiser: ¥ = minp(v) + B]|x — v||?
%
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Invertible Neural Networks are bijective function approximators

W|th d forward mapplng Data space X’ Latent space Z
X Y .
FQZ ]Rd - Rl fm\
X - Z - v ¢ ‘1 ¥ -+ i
. - '
and inverse mapping 3 »C
4- ‘A
_1. l d :11‘
F 0 R >R A bijective function (or -

7 X invertible function)
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Invertible Neural Networks
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How to Achieve Invertibility?
Invertible via lifting scheme like architectures

— Signal splitting = @ T
— Alternate prediction and update x ——Split —P v
_ d= x,— P(x,) x, =d+ P(x,)
—> M
Spllt—b{S:xe_l_U(d) xe=S—U(d) erge
Forward pass Backward pass

|. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into lifting Steps” 1997
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Invertible Neural Networks are ideal architectures to address inverse problems

(o P M A o
-
y w
-
n
041X INN
Z|\&
=
\ ‘---------------
inverse (sampling): [y,z] - x ——
L Invertible Neural Network |

Figure from: Ardizzone, Lynton, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W. Pellegrini, Ralf S. Klessen, Lena Maier-
Hein, Carsten Rother, and Ullrich Kothe. "Analyzing inverse problems with invertible neural networks." in Proc. of /CLR, 2019.
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Diffusion Models are good for “unconditional” generation of new samples (e.g., Denoising Probabilistic

Diffusion Models)

Xt+1

Motivation: Can we use a pretrained “unconditional” diffusion model for inverse problems?

1 1-— 1 =
Xt = \/—a_t (xt — J_l——aaftee(xt’t)) + 012. Xo,t = \/_@_t(Xt — 41— ateo(xt,t))

J. Ho, J. Ajay and P. Abbeel. "Denoising diffusion probabilistic models." in Proceedings of (NeurlPS) 2020.
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- Diffusion Models are good for “unconditional” generation of new samples (e.g., Denoising Probabilistic
Diffusion Models)

° Fromxrtoxg:

® From xO,T to xoll .

PELLLLLL

J. Ho, J. Ajay and P. Abbeel. "Denoising diffusion probabilistic models." in Proceedings of (NeurlPS) 2020.
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« Given a training set {x;, y;} which
contains N high-quality images and
their low-quality counterparts, we
learn the forward part of the INN
using the following loss:

-0

1SN, .
L(©) = NZHCz_yz”;, X —>1 Split
i=1

« Consequently, d models the lost

details that need to be recovered
with the diffusion model
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2"d_level WINNE 2"d_level WINN;

1st-level WINNg 1st-level WINN;

E —» Training Process (Modelling Degradation)

¢ =-=P Inference Process (Reconstruction)
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‘:. Algorithm 1 INDigo
xo 1: XT v N(O, I)
2. fort=1T,...,1do
3 z~N(0I)ift>1,elsez=0
4: Xo0,t = \/lo_L—t(Xt — 41— dteg(xt, t))
5: Xi—1 = \/a_t(ll__aat—l)xt + X fi;ltﬁt Xo,t + OtZ
6: C¢, dt = f?(XO,A
T %ot = fy (y,de)
8: xt—1 = X1 — (Vi ||[R0,e — X0,¢]|3
9: end for

10: return Xxg

Data-Consistency Step
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Ground Truth Degraded Reconstructed
« This approach is simple, flexible and effective

— No-need to know the degradation process
— The degradation process can be highly non-linear

— No need to retrain the diffusion model for every new degradation (just need to train
the INN)
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Results for non-linear degradation models
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Results on 4x super-resolution

Method Noisec PSNR1 FID| LPIPS| NIQE|
ILVR 0 2743 4404 0.2123 5.4689 Ground Truth
DDRM 0] 28.08 65.80 0.1722 44694 j
DPS 0] 26.67 3244 041370 4.4890
Ours 0] 2815 22.33 0.0889 4.1564
ILVR 0.05 2642 60.27 0.3045 4.6527
DDRM 0.05 2706 4590 0.2028 4.8238
DPS 0.05 25692 3171 01475 4.3743
Ours 0.05 2716 26.64 0.1215 4.1004
ILVR 010 2460 88.88 04833 4.4888
DDRM  0.10 2616 4549 0.2273 4.9644
DPS 0.10 2473 3166 0.1698 4.2388
Ours 010 26.25 28.89 0.1399 3.9659
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Results on blind unsupervised deconvolution

(b) DR2 [1] (c) DifFace [2] (d) PGDift [3]

D.You and P.L. Dragotti, “INDIGO+: A Unified INN-Guided Probabilistic Diffusion Algorithm for Blind and Non-Blind Image
Restoration”, IEEE Journal of Selected Topics in Signal Processing, 2024
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* Invertible Neural Networks are an interesting new concept

* Designing INN and combining them with diffusion models (plug-and-
play) leads to more interpretable and simpler architectures

« Good performance and good generalization ability

« Potential for further developments
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Sparsity and Deep Unfolding Strategy

Explicit embedding of priors and constraints in deep networks

Xk
,

v

fC)

0

v

£,0)

T?

h()

Xk

e —

lterative algorithm with y
as input and x as output

£,

Unfolded version of the iterative algorithm with
learnable parameters

Need to re-synthesize the input, if self-supervised

v
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« The dictionary is usually learned
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Deep Unfolding Strategy

* The sparse vector a can be found using ISTA: a;, = §;, (ax—1 + DI(x — D, ay_q1)

A -1

VAR
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O Solving by ISTA algorithm through unfolding:

X —— M, v,

ap = S)\k (ak_l + Dg(a; — Dmak_1)> :> ™
Bt

ISTA network

Dk.x

S—[Si]

B"Pk:c

Layer 1

Layer k

* Gregor Karol and LeCunYann, “Learning fast approximations of sparse coding ”, Proceedings of the 27th International

Conference on International Conference on Machine Learning, 2010

* Y. Eldar et al, “Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing”, IEEE Signal

Processing Magazine, 2021




Imperial College Art-Investigation
London

Goal: we want to separate the two x-ray
images

Approach:

« Use the visible RGB image as side
information (x-ray visible similar to
RGB image)

. Exclusion loss: the “contours” of the
two x-ray images should be as
different as possible

Visible X-ray

Francisco de Goya, Dona Isabel de Porcel (NG1473), before 1805. Oil on canvas, Images © The National Gallery
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k=1 k=1
K K
Tis = g QrsHz16) |T= E B * (21,6 + 22,k),

* The visible image and the two separated X-
ray images have a sparse representation in
proper dictionaries

*+ RGB image and visible X-ray share the
same sparse representation

* The two X-rays x;, x, share the same
dictionary

« The measured X-ray is x = x; + x,

Visible X-ray

Francisco de Goya, Dona Isabel de Porcel (NG1473), before 1805. Oil on canvas, Images © The National Gallery
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*  Given the reconstructed X-ray images x4, x,, we
expect that their edges are as different as possible
we therefore add an “exclusion term” in the

optimization
min | — @+ y, — ¥y, |7
Y1:Y2,21,k,22,k

K

+7illys = Y O 21kl 7
k=1
K 4

+7allys — > O x 2okl T
k=1

3
+’YZ [71,s — P * yl”%«“

s=1

K K
+A\1 Z |21kl + A2 Z 22,%1
k=1 k=1

, |
+ ) Hill(Wixy,) © (Wixys)lh, Visible X-ray
=1
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The sparsity model and the exclusion constraint leads to an iterative optimization method which leads to a network
through unfolding
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W. Pu et al “Mixed x-ray image separation for artworks with concealed designs”, IEEE Trans. on Image Processing, 2022
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» Macro X-ray provides volumetric data and the locations of the
pulses in the energy direction are related to the chemical
elements present in the painting.

* This potentially allows us to create maps that show the
distribution of different chemical elements

D
o

— XRF spectrum

N
o

Photon counts/sec
N
o

A Mo ookt

0 0.5 1 15 2 25 3 3.5
Energy (eV) %10

Energy
0-40 keV
4096

channels

o
3

Images © The National Gallery, London
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Extraction of Elemental Maps

Cu K-alpha -- quantity map
p—

Iron

' Lead

100

Our XRF

Deconvolution

Algorithm )

40

20

Vincent van Gogh, “Sunflowers (NG3863)”, © The National Gallery, London.
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Leonardo da Vinci’'s “The Virgin of the ,’/
Rocks” e

Highlighted is the region of an XRF dataset collected on the painting with an M6
Bruker JETSTREAM instrument (30 W Rh anode at 50 kV and 600 pA, 60 mm?2 Si drift
detector, and data collected with 350 um beam and pixel size and 10 ms dwell time).

EEEEEEEEEEEEEEEEEEEEEEEEEE———
Leonardo da Vinci, “The Virgin of the Rocks (NG1093),” about 1491/2-9 and 1506-8, oil on poplar, 189.5 x 120 cm, The National 32
Gallery, London.
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Zn confidence map Zn quantity map
-




S. Yan, J.-J. Huang, N. Daly, C. Higgitt, and P. L. Dragotti, “When de Prony Met Leonardo: An Automatic Algorithm for Chemical
Element Extraction in Macro X-ray Fluorescence Data”, IEEE Transactions on Computational Imaging, vol.7, 2021.
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* Goal of Neuroscience: to study how
information is processed in the brain

* Neurons communicate through pulses called
Action Potentials (AP)

* Need to measure in-vivo the activity of large
populations of neurons at cellular level
resolution

« Two-photon microscopy combined with right
indicators is the most promising technology
to achieve that
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Fluorescent sensors within tissues

Highly localized laser excites fluorescence Point scanning (2PLSM)
from sensors
Photons emitted from tissue are collected A A il
Focal spot sequentially scanned across Scan
samples to form image y

Two-photon microscopes in raster scan
modality can go deep in the tissue but are
slow
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* In order to speed up acquisition one can change the illumination strategy
«  This mitigates the issue but does not fix it
* Issue with scattering

Point detector Camera sensor Camera sensor

= A A

T
Pl
% yd ‘
X X X
Point illumination Line illumination Plane (light-sheet)
illumination
Excitation —> Scan direction
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Native Image Plane
Uxp)

Native Object Plane Fourier Plane
U,Gp) Us(x.p)
Light-Field Microscopy (LFM) is a high- i '
speed imaging technique that uses a 0”9‘"\/ |
simple modification of a standard ' |
microscope to capture a 3D image of an |
entire volume in a single camera snapshot gealpoint |

source at p

—
fob] f;?bj fa fu __)]sdens ‘E

Back Mictol/r;ns Image

Objective Aperture Tube Lens Array Sensor

(Telecentric Stop)
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Native Object Plane Fourier Plane Native Image Sensor Light-field PSF Eni-polar Plane I
(a) Camera (b) U,(x,p) U(x.p) Plane Uy(x,p) Plane  (image space) pl_l(aghirse— :;aecel;lage
Sensor i Objective Tube Lens :
+x

1:1 Relay lens

i
ideal point :
i

Microlens source at p . . | , ,
Array [ fohj fohj Back frl fr! X(y)
Emission ' Aperture  Microlens Array
light

LED Dichroic :
I mirror i

Excitation beam

x(y)

Objective

______ 4 2 3 x3)
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/ Point detector \ Camera sensor Camera sensor / Camera sensor \
Microlens
array <SS
A
“+ oy R Z 2Ly Y P P ——
X X X X
Point illumination Line illumination Plane (light-sheet) Volume (wide-field)

illumination \ illumination /
\o Excitation 7)—> Scan direction

Key insight: use the 2P microscope for high-resolution structural information and the LFM for monitoring the
activity of neurons.
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London + high-bandwidth, scanless functional volumes

e
Galvanometer
scanners
Coherent Monaco M2 plate
1 MHz, 40 W 530 nm 470 nm
Beam waist 2.6 mm LED LED P \
! G H Dichroic !
s B — 1 ||Lens Mi 1
e —— iror
1:1Relay 1 1
1 : u Diaphragm !
! 1
sCMOS ' L
Camera 1
1
4 MPx '
100 Hz .
Microlens array PMT
f=1250 pm Removable
d=125um
25x
1.0 NA
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Light-field Microscopy

Challenge: given a sequence of lightfields (2-D signals), need to reconstruct a sequence of
volumes (3-D+t)

Native Object Plane Fourier Plane Native Image
U x.p) UAx.p) Plane U(x,p)
! Objective Tube Lens :
+x i
i
......... S | e —, o
i
i |
. , - « :
" Joy Jobj Back [t S f./fw.a

2D Measured LF image

3D Input ¢—— Computational PR

Algorithm
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+ Challenges

«  Scattering induces blur, making inversion
more challenging

« Lack of ground-truth data for learning

*  Opportunities
* Forward model structured and linear

« Data is sparse (neurons fire rarely and are
localized in space)

*  Occlusion can be ignored

2-DLF

Volume
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* Forward model is linear which means y = Hx

* H is estimated using wave-optics

- For each depth, H is block-circulant : e
(periodically shift invariant) and can be - z=0| |[|Objective !
modelled with a filter-bank o I

* The entire forward model can be
modelled using a linear convolutional
network with known parameters (given
by the wave-optics model)

Tube Lens
Microlens!Arra

=2

o

o
—

—
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Data is sparse (neurons fire rarely and are localized in space)

Solve min(|ly — Hx||? + ||x]|;) s.tx =0
X

This leads to the following iteration:

Xr+1 = ReLU(x, — HTHx), + HTy + 1)

Approach: Convert the iteration in a deep neural network using the unfolding technique
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Convert the iteration in a deep neural network using the unfolding technique

x**t1 = ReLU(x* — HTHx* + HTy + 1)

LISTA

04>

é
|_h'01Th02
e
Lay:TZ
Layer K

Layer 1 \
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« Training, in this context, is difficult due to lack of ground-truth data
» Our approach: semi supervised learning
« Small ground truth dataset
» Light-field loss based on re-synthesizing
light-field from reconstructed volume
» Adversarial network for adversarial loss

y Ths!
- a9 Jur 10

v
S

-

N
v

Critic
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PSNR:23.18 PSNR:25.10 PSNR:33.80
SSIM:0.420 SSIM:0.525 SSIM:0.809

Ground-truth ISRA ADMM

H. Verinaz et al. "Physics-based Deep Learning for Imaging Neuronal Activity via Two-photon and Light-field
Microscopy”, |IEEE Trans. on Computational Imaging, 2023.
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Z:
&

Fast volumetric jGCaMP8f time-series extraction

>

> LISTA-based net
Volume Estimation

Input F(t): LF activity map:
LF video acquired in max(AF)/o(F)
brain slice

cortical layer 2/3 8-iteration Richardson-Lucy Deconvolution
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Fast volumetric jGCaMP8f time-series extraction

LF footprints, Y

LFM

forward >

model CNN

Forward

NLF
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Cell Number

30 -

20

1 2 3 4 5
Time (seconds)



Imperial College LISTA-based net decreases crosstalk between neighbouring
London neurons

=== R-L deconvolution (8 iterations)
- | |ISTA-based net

T .

500 ms
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Conclusions
* Inimaging problems:

» operating at the interface between physics and computation is
essential

» Cross fertilization between model-based approaches and deep
learning is fruitful

« Some computational approaches are transferable

* Inverse imaging problems:
« arefun &

« and inter-disciplinary
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Thank you!
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» Wavelet-inspired INN and Diffusion Models:
» J. Huang and P.L. Dragotti, “WINNet: Wavelet-inspired Invertible Network for Image Denoising”, IEEE
Transactions on Image Processing, 2022, software: https://github.com/pld-group/WINNet
» D.You and P.L. Dragotti, “INDIGO+: A Unified INN-Guided Probabilistic Diffusion Algorithm for Blind and
Non-Blind Image Restoration”, IEEE Journal of Selected Topics in Signal Processing, 2024, software:
https://github.com/pld-group/indigo_plus

> Light-field Microscopy:
» H. Verinaz et al. "Physics-based Deep Learning for Imaging Neuronal Activity via Two-photon and
Light-field Microscopy”, IEEE Trans. on Computational Imaging, 2023.

» Art Investigation

» W. Pu, J. Huang et al., “Mixed X-Ray Image Separation for Artworks with Concealed Designs”, IEEE
Transactions on Image Processing, 2022

» S.Yan, J.-J. Huang, N. Daly, C. Higgitt, and P. L. Dragotti, “When de Prony Met Leonardo: An Automatic
Algorithm for Chemical Element Extraction in Macro X-ray Fluorescence Data”, IEEE Transactions on
Computational Imaging, vol.7, 2021.

» S Yan, JJ Huang, H Verinaz-Jadan, N Daly, C Higgitt, PL Dragotti, “A fast automatic method for
deconvoluting macro X-ray fluorescence data collected from easel paintings”, IEEE Transactions on
Computational Imaging, 2023, software: https://github.com/pld-group/XRF_fast_deconvolution




