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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements y, = (x(t), o(t/ T — n)), you want to reconstruct x(t).

x© h(t)= g(~t/T) Yo 7T< Yi=<X(0),@(UT-n)>

Acquisition Device

Natural questions:
» When is there a one-to-one mapping between x(t) and y,?
» What are good continuous sparsity models?
» What acquisition devices can be used?
>

What reconstruction algorithm?
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Sparsity and Sampling: Is This Relevant?

Lens Sensor array

Real world

(a) Camera image acquisition

(Sampling step size is normalized)

Digital image

fl@y) —

PSF t(—z, ~y)

— g[m.n]

(b) Equivalent formulation

» The lens blurs the image.

» The image is sampled (‘pixelized’) by the CCD array.

» You want sharper and higher resolution images given the available pixels
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Motivation: Image Resolution Enhancement

pixels interpolation enhancement with sparsity priors

Images are complex but smooth contours are sparse.
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Motivation: Brain Machine Interface

Applications in Neuroscience: Spike Sorting at sub-Nyquist rates

Neuroprosthesis

ADC

. 20K Hz < fo < 30KHz|
Ve S
/@ )
6= )
-\% 3
Spike sorting
_— Processing unit

» Wireless brain-machine interface place extreme limits on sampling.

» The problem is sparse when the shape of the AP is approximately
known.
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Motivation: Application in Neuroscience

Time resolution enhancement and calcium transient detection in multi-photon
calcium imaging.
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The problem is sparse when the shape of the AP is approximately known.
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Motivation: Estimation of Diffusion Fields

& NUGLEAR FALLOUT, MAPE & T
3000/RADS “ . o
1500/RADS

I 750/RADS

» Can we localise diffusion sources and estimate their activation time
using sensor networks?
» Application:
1. Check whether your government is lying ;-)
2. Monitor dispersion in factories producing bio-chemicals

Pier Luigi Dragotti
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Motivation:

& NUGIEAR FALLOUT MAPS &
3000/RADS, < .
1500/RADS’
750/RADS

» Can we localise diffusion sources and estimate their activation time
using sensor networks?
» Application:
1. Check whether your government is lying ;-)
2. Monitor dispersion in factories producing bio-chemicals
» Note: Point Sources < Sparsity
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Problem Statement

What do all these problems have in common?
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Problem Statement

What do all these problems have in common?

> The source in normally continuous in time and/or space (discretising it
might not be an effective strategy).
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Problem Statement

What do all these problems have in common?

> The source in normally continuous in time and/or space (discretising it
might not be an effective strategy).

» There is a need to define sparsity in continuous-time.

struction driven by S| odels: Theory and Applications




Imperial College
London

Problem Statement

What do all these problems have in common?

> The source in normally continuous in time and/or space (discretising it
might not be an effective strategy).

» There is a need to define sparsity in continuous-time.

> Measurements are discrete (e.g., pixels in a camera, sensors
measurements)
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Problem Statement

What do all these problems have in common?
> The source in normally continuous in time and/or space (discretising it
might not be an effective strategy).
» There is a need to define sparsity in continuous-time.
> Measurements are discrete (e.g., pixels in a camera, sensors
measurements)
> The observation process involves deterministic smoothing functions

normally known a priori (e.g., point spread function in a camera, the
diffusion kernel for diffusion fields)
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Problem Statement

What do all these problems have in common?
> The source in normally continuous in time and/or space (discretising it
might not be an effective strategy).
» There is a need to define sparsity in continuous-time.
> Measurements are discrete (e.g., pixels in a camera, sensors
measurements)
> The observation process involves deterministic smoothing functions
normally known a priori (e.g., point spread function in a camera, the
diffusion kernel for diffusion fields)
Our Approach
» From the samples, using the knowledge of the observation process,
estimate proper integral measurements of the source (e.g., estimate the
Fourier transform at specific frequencies)
> Given the integral measurements (e.g., partial Fourier transform), solve
the inverse problem using proper sparsity priors
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Outline

Continuous-time sparsity model: FRI signals

v

v

Exact Sampling and Reconstruction of FRI Signals

v

Robust and Universal Sparse Sampling

» Approximate Strang-Fix Conditions
> Robust Recovery

v

Applications in

» Image Super-Resolution
» Neuroscience
» Sensor Networks

» Conclusions and Outlook
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Signals with Finite Rate of Innovation

Consider a signal of the form:

x(t) = 3 et - t). (1)

kEZ

The rate of innovation of x(t) is then defined as
1 T T
~im e (1), )
P07 2’2 )
where C.(—7/2,7/2) is a function counting the number of free parameters in
the interval 7.

Definition [VetterliMB:02] A signal with a finite rate of innovation is a signal
whose parametric representation is given in (1) and with a finite p as defined

in (2).

i Dragotti
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Examples of Signals with Finite Rate of Innovation

0 02 06 08

0.4
t[s]

Filtered Streams of Diracs Decaying Exponentials

1
D{\/\/\W
-1

Piecewise Sinusoidal Signals Mondrian paintings ;-)
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Sampling Kernels

2O ] h=gevn) Yo 7T< Yi=<x (1), (t/T-n)>

Acquisition Device

> Given by nature

> Diffusion equation, Green function. Ex: sensor networks.
» Given by the set-up

> Designed by somebody else. Ex: Hubble telescope, digital cameras.
> Given by design

> Pick the best kernel. Ex: engineered systems.

Pier Luig
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Sampling Kernels

Any kernel (t) that can reproduce exponentials:

Zcm,,,go(t—n):eo‘"”"h7 am=ay+miand m=0,1,..., L.
n

This includes any composite kernel of the form ~(t) * 85(t) where
Ba(t) = Bag(t) * Bay (t) * ... ¥ Ba, (t) and Ba;(t) is an Exponential Spline of first order
[UnserB:05].

R 1— ea—jw
Ba(t) & Blw) = ———
Jjw —
Notice:
» « can be complex.
» E-Spline is of compact support.

» E-Spline reduces to the classical polynomial
Eoselne b, spline when a = 0.
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Exponential Reproducing Kernels

The E-spline of first order Bq,(t) reproduces the exponential e®0t:
Z €0,nfBaq (t — n) = e°F.
n

In this case cp,, = €*0”". In general, cm n = cm,0€*™".
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Exponential Reproducing Kernels

i
— =~ Exponential ¢ %%
14] 18h —— Reproduction 00 = = ~ Exponental
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Here the E-spline is of second order and reproduces the exponential et e®1t: with
ag = —0.06 and a1 = 0.5.
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Exponential Reproducing Kernels

> emap(t —n)=e " Yme {1,2,..M}
€Z

J\

¢(t) is an E-spline
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Why Exponential Reproduction?

» Consider any x(t) with t € [0, N) and

0 sampling period T = 1.

> The sampling kernel ¢(t) satisfies

Z Cmnp(t—n)=e " m=1,.,L,
n

o > We want to retrieve x(t), from the
samples y, = (x(t), p(t — n)),
n=0,1,..,N—1.
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Why Exponential Reproduction?
We have that
SN Cmn
(x(£), S0 emante(t — )

= [T x(t)edentdt, m=1,..,L.

o0

Sm

> Note that s, is the Fourier transform of x(t) evaluated at jwpy,.

Pier Luigi
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From Samples to Signals

» The above analysis requires exponential reproducing kernels but it
applies to any signal.

Vn = X(jwm) m=1,2,..L

> Given X(jwm), use your favourite sparsity model and reconstruction
method to obtain a one-to-one mapping between the signal and its
partial Fourier transform:

x(t) & X(jwm) m=1,2,..,L

» The frequencies can be randomised if necessary [ZhangD:14].
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Sampling Streams of Diracs

v

Assume x(t) is a stream of K Diracs on the interval of size N:
x(t) = S5 g xd(t — ti), tx € [0, N).
We restrict jw, = jwo+jmA  m=1,...,L and L >2K.

v

» We have N samples: y, = (x(t), ¢(t — n)), n=10,1,..N — 1:
> We obtain
Sm = EnN:_()l Cm,nYn

75 x(t)ef“ntdt,

— 00

jwmtk
koxef'"

K—1, _jixmt, _ K—1 A .
ko Rk€ MM =375 KUy m=1,.. L

Pier Luigi D

Sampling a nstruction driven by Sparsity Models: Theory and Applications



Imperial College
London

Prony’'s Method

» The quantity

is a sum of exponentials.

» Retrieving the locations uy and the amplitudes X, from {s,}5_, is a
classical problem in spectral estimation and was first solved by
Gaspard de Prony in 1795.

» Given the pairs {uk, R}, then tx = (Inuk)/X and x = X, /e,

Pier Luig
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Overview of Prony’s Method

Assume: sy, = ZkK;Ol ayuy and consider the polynomial:
K

P(x) = H(X —u) = XK xR 4 moxK =2 b gx o+ i
k=1

It is easy to verify that

Snyk + MSpik—1+ h2Spyk—2 + ... + hxsn = Z agugP(u) =0
1<k<K
In matrix-vector form for indices n such that £ < n < £+ K, we get

St+K Se+K—1 Sy 1
SO+K+1 St+K tee Sp+1 h
he | =Tk h=0
Se+2K—2 : h.K
Se42K—1  Se42K—2 Se+K—1

Pier Luig i
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Overview of Prony's Method

The vector of polynomial coefficients h = [1, hy, ..., hk]T is in the null space of Tk
Moreover, Tk ; has size K x (K + 1) and has full row rank when the uy’'s are distinct.
Therefore h is unique.
O
Prony’s method summary:
1. Given the input sy, build the Toeplitz matrix Tk , and solve for h. This can be
achieved by taking the SVD of Tk ,.

2. Find the roots of P(x) =1+ ZHKZI hixX—k. These roots are exactly the
exponentials {uk}kK;OI.

3. Given the {uk}fgol, find the corresponding amplitudes {ak}f;Ol by solving K
linear equations.
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Sampling Streams of Diracs: Numerical Example

4
© 1
3 0.15 z
A 05 ¢y
2 0.1 g 0
1 ﬁ 008 2o ek/
0 o -1 o
0 0.5 1 0 01 02 03 04 1-05 0 05 1
t[s] t[s] Real Part
(a) Input signal, z(t) (b) Sampling kernel, h(t) (c) e®m reproduced by h(t)
— 4
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— Un — [sm 3
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Stream of Decaying Exponentials

5 5
0.06
4 4
3 0.04 8
2 2
1 0.02 "
0 o 0
0 0.5 1 0 05 1 15 0 0.5 1
tls] t[s] tls]
(a) Input signal, z(t) (b) Filtered and sampled signal (c) Reconstructed signal
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Sampling 2-D domains

The curve is implicitly defined through the equation [PanBluDragotti:11,14]:
K 1 '
f(X y _ ZZ by ; —127rxk/l\/l —j27TyI/N —0.
k=1 i=1

The coefficients by, ; are the only free parameters in the model.
This is a non-separable 2-D sparsity model.

Pier Luigi Dragotti

Sampling and Reconstruction driven by Sparsity Models: Theory and Applications




Imperial College
London

Sampling 2-D domains

samples interpolation
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Generalised Strang-Fix Conditions
A function ¢(t) can reproduce the exponential:

eemt = Z Cmnip(t — n)

if and only if
&(jwm) # 0 and @(jwm +j27l) =0 1€ Z\ {0}

where &(-) is the Fourier transform of o(t).

Also note that ¢mp = Cmoe/®™" with cmo = @(jwm) .

Pier Luigi
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Exponential Reproduction and Strang-Fix
A sampling kernel can reproduce e/ if and only if
P(jwm) #0 and  P(jwm +j2wl) =0 VI € Z\ {0}

|[®(w)
 Re [¢(1)]

1—67 1—4m 127 1 2w

Pier Luigi
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Exponential Reproduction and Strang-Fix
A sampling kernel can reproduce e/ if and only if
P(jwm) #0 and  P(jwm +j2wl) =0 VI € Z\ {0}

| @ (w)
Re [¢(t)h

0.2427 27
t = w
1—47 127 1 127 147
0.2—4m 0.2—2m 0.2 0.2427 0.2+4m
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Exponential Reproduction and Strang-Fix

A sampling kernel can reproduce e/ if and only if

P(jwm) #0 and S(jwm+j2wl)=0 VIeZ\ {0}

|®(w)
P(th
t [i=2= 1 [tr2m W
0.2—27 .2 0.2t2m
—0.2-27  —0.2 —0.2027

Pier Luigi
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Approximate Strang-Fix

> Strang-Fix conditions are not restrictive

> Any low-pass or band-pass filter approximately satisfies

— Gaussian
- E-spline

them.

T 3m/2

nd Applications

Sm/2
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Approximate Strang-Fix

> Assume ¢(t) cannot reproduce exponentials, however, we still use the
coefficients ¢, = %)e"”’”" such that:

olw
Z cnp(t — n) = &“mt.

neZ

» Approximation error

e(t) = f(t) — & =& |1 Zcp(_/wm + jorl)e*™"

(J wm) I€Z

> We only need $(jwm + j27l) = 0 | € Z\ {0}, which is satisfied when
©(t) has an essential bandwidth of size 2.
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Approximate vs Exact Strang-Fix

Exact

» Any device with unit input response of the form ~(t) * 3z(t) where
B&(t) is an E-spline of order L

» The order L and the exponents «ag, a1, .., a; are decided a-priori and
cannot be changed.

Approximate

v

Any acquisition device h(t) can be used within this framework
The essential bandwidth of h(t) = ¢(—t/T) must be at most 27/ T

We do not need to know h(t) exactly. We only need to know h(jw,,)
m=20,1,..,L
The number L of exponentials reproduced is arbitrary

v

v

v

Pier Luigi
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Arbitrary Sampling Kernel

> emap(t —n) = et Yme {1,2,...M}
neZ

o(t) from a real camera
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Robust and Universal Sparse Sampling
x(t) h(t)= q(~tT) y(t) T>< £<x(t),€p(t/T—n)>+sn
| "
Acquisition Device
» The acquisition device is arbitrary
» The measurements are noisy
» The noise is additive and i.i.d. Gaussian
» Many robust versions of Prony’s method exist (e.g., Cadzow, matrix

pencil)

Pier Luigi
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Robust Sparse Sampling

2 Diracs / 21 noisy samples . First Dirac
10
- retrieved locations o
Y 10 pm— =
— Craatrr vt o observed standard deviation
5 — Cramér—Rao bound
210°)
i
-
Wi 0 1 20 30 40 50
o Second Dirac
10 :
L, 107
5
3 10°
4
107
10 20 30 © 50 ~10 [ 10 20 30 7o) 50
input SNR (dB) input SNR (dB)

Samples are corrupted by additive noise.

This is a parametric estimation problem.

Unbiased algorithms have a covariance matrix lower bounded by CRB.
The proposed algorithm reaches CRB down to SNR of 5dB.

Pier Luigi Dragotti
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Approximate FRI recovery: Numerical Example

Gaussian Kernel

0 02 04 06 08 1 12 14 18 18 2
¢

Approximate FRI with the Gaussian kernel. K =5, N = 61, SNR=25dB.
Recovery using the approximate method with am = j355 (2m— P),

m=20,...,P where P+1=21.

D)
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Approximate Strang-Fix: when ‘Mr Approximate' is
better than ‘Mr Exact’

etroved

1
1

08
08

08
08
04 o4
oz 02,

01 oznaooososmaaasw 01 02z 03 04 05 05 07 08 O
0

(a) yn and ¥ (b) Default FRI retrieval  (c) Approx. FRI retrieval

Estimation of K = 6 Diracs with the B-Spline kernel of order L = 16, N = 31.

(b) Default polynomial recovery. (c) Approximate recovery with
=Jjtsp(@m—P), m=0,..., P where P +1 =21, SNR=25dB.

Pier Luigi
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Retrieving 1000 Diracs with Strang-Fix Kernels

— Noiseless samples
— Noise

~A Original Diracs
—* Estimated Diracs

4 6 8 10 12 14 4 6 8 10 12 14
Time (s) Time (s)
(a) yn samples (b) Reconstructed stream

» K = 1000 Diracs in an interval of 630 seconds, N = 10° samples,
T = 0.06 and SNR = 10dB

> 9997 Diracs retrieved with an error e < T/2
> Average accuracy At = 0.005, execution time 105 seconds.
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ProSparse: Sparse Representation using Prony's

The above signal, y, is a combination of two spikes and two complex exponentials of
different frequency (real part of y plotted). In matrix vector form:

y= [lN FN] x = Dx,

where ly is the N x N identity matrix and Fy is the N x N Fourier transform. The
matrix D models an over-complete dictionary and has size N x 2N, x has only K
non-zero coefficients (in the example K = 4, N = 128).

Pier Luig
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Sparsity in Fourier and Canonical Bases

v

Given y you want to find its sparse representation.

v

Ideally, you want to solve
(Po) : min ||x|]lo st. y=Dx.
» Alternatively you may consider the following convex relaxation:
(P1) : min||x|l1  st. y=Dx.
> Key result due to Donoho-Huo-2001:

> (Po) is unique when K < /N.
» (Po) and (Py) are equivalent when K < 1/N.

Pier Luig i
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Sparsity Bounds in Pairs of Bases

&
o
/60
o <, R
o
K, s R R
BP exact bound
S
o
T o i
%
%
o,
(7
L L L oo,
"o 3 6 9 12
K,

» (Po) is NP-hard for unrestricted dictionary
> Is (Pp) NP-hard also in the case of the union of Fourier and canonical bases?

Pier Luig i
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Sparsity Bounds in Pairs of Bases

ProSparse

2 exact bound

ProSparse
simplified bound |

» ProSparse works also when BP fails.

Pier Luigi Dragotti
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Example

ProSparse - Diracs ProSparse - Fourier atoms

—& Orignal 4 — Orignal
—& Estimated ) —& Estmated

L1 - Diracs L 1 - Fourier atoms

—4 Oiginal 1 =4 Orginal
—* Estimated| ) —* Estmated

N =128, K = 11, BP fails because it requires K = 10.
Note: Counter example based on Feuer-Nemirovsky work.

Simulation results courtesy of Jon Onativia Bravo (ICL).
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Overview of Super-Resolution

Set of low-resolution images

v

Registration and interpolation

« e e e

ORIRIRIR
SuuIuI

Super-Resolution Algorithm
Super-Resolved Image

rEEE

Pier Luigi Dragotti
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Intermezzo: Quadtree Structured Image
Approximation [ScholefieldD:14]

(@) A possible tile (b) The pruned rep-
with an edge. resentation.

uction driv Models: Theory and Applications
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Intermezzo: Quadtree Structured Image
Approximation

(a) Reconstruction using the (b) Reconstruction using the
prune model only. prune-join model.

Pier Luigi Dragotti
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Intermezzo: Denoising

Original

Pier Luigi Dragotti
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Intermezzo: Denoising

i v

Reconstructed with proposed method
(PSNR 24.74dB) (PSNR 24.94dB).

State-of-the-art BM3D-SAPCA

dels: Theory and Applications
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Intermezzo: Inpainting

Original Degraded (85% of pixels randomly
removed).

Pier Luigi Dragotti
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Intermezzo: Inpainting

Original
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Registration from Fourier information

Translation in space is a phase shift in frequency:

h(x,y) =flx=scy —s) & Flugw)= e_j(wxsx+wysy)F1(vawy)-

Translation parameters can be found from the NCPS:

ej(stXerysy) _ Fl(wx,wy)F;(wwiy) )
| F1(ws, wy ) F3 (wx, wy)

Construct an over-complete set of equations:

Fl(wmxawf"y)FZ*(wmx?“Umy)
Fu(wm,,wm, ) F3 (Wm,, wm, )| )’

Wm, Sx + Wm, Sy = arg <|

1

) s.t. m Z |¢(wmx +4 27r/,wmy +4 27Tk)| S Y-
myy Wmy,

1€Z\{0} k€Z\{0}
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Results: Image registration

LR image from a particular viewpoint. LR image from a different viewpoint.

100 shifts registered: RMSE is 0.012 pixels (DFT unable to distinguish the
shift).
Sampling kernel - Canon EOS 40D.

Pier Luigi Dra
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Image super-resolution: Post registration

Set of low-resolution images

v

Registration and interpolation

,,,,,,,,,,,, v

i Deconvolution |

Super-resolved image
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Image super-resolution: Post registration

Set of low-resolution images

v

Registration and interpolation

,,,,,,,,,,,, v

i Deconvolution |

Super-resolved image

truction drivi els: Theory and Applications
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Results: Image super-resolution

One of 100 LR images (40 x 40). Interpolated image (400 x 400).

Deconvolution achieved using a sparse quad-tree based decomposition model
[ScholefieldD:14]

els: Theory and Applications
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Results: Image super-resolution

One of 100 LR images (40 x 40). SR image (400 x 400).

Deconvolution achieved using a sparse quad-tree based decomposition model
[ScholefieldD:14].

els: Theory and Applications
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Application: Image Super-Resolution

Acquisition with Nikon D70

-

- >
(a)Original (2014 x 3040) (b) ROI (128 x 128)  (b) Super-res (1024 x 1024)

For more details [Baboulaz:D:09, ScholefieldD:14]

Pier Luigi Dragotti
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Application: Image Super-Resolution

(a)Original (48 x 48) (b) Super-res (480 x 480)

For more details [Baboulaz:D:09, ScholefieldD:14]

Pier Luigi Dragotti
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Neural Activity Detection [OnativiaSD:13]
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Calcium Transient Detection

(i)

i=th window

i~th window

i) f j j ) ) "[— Oorigmai sokes
"~ Locations nisogran

* “ “ Tima (<) = = “
(iv) o=f T . . .
P— ]
d e = o
+ - : & 4 +

“ Time (s)
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Calcium Transient Detection

(i-1) window :
ith window > D'r_acs |, Foreach window:
retrieval

K
(i+1) window {tk, ak}|<=1

> Retrieve Diracs using a sliding window

» Locations of true Diracs are consistent across windows
[Onativia-Uriguen-Dragotti-13]
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Calcium Transient Detection

A

\ FRI 7

™ - - - Fast deconv.

0.2 ,' ----- Deriv.&thres. ]
S R Filter&thres.

0 0.61 0.62 0.63 0.04
false positive rate

true positive rate
~
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Localisation of Diffusion Sources using Sensor
Networks [Murray-BruceD:14]

& NUGLEARFALLOUT MARE = e
3000/RADS| . ¢
1500,RADS’

I 750/ RADS:

» The diffusion equation models the dispersion of chemical plumes, smoke from
forest fires, radioactive materials

» The phenomenon is sampled in space and time using a sensor network.

» Sources often localised in space. Can we retrieve their location and the time of
activation?

i .
Pier Luigi Dragotti ¥ a:
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Localisation of Diffusion Sources using Sensor

Networks

» The diffusion equation is

%u(x, t) = pV2u(x, t) + f(x, t),

where f(x, t) is the source.

» When sources are localised in space and
time:

M
F(x,t) = > cmd(x — &m, t — Tm),
m=1

this field inversion problem is sparse.

» Goal: Estimate {cm}m,{{m}m, {Tm}m from

Locations
O Int. Sensors
/ﬁ_ R o ©  Bndry Sensors
& o ~ + Diff. Sources
b\ — — Boundary (9Q)
% o & Domain (@)
| ° ACY o
—o-
L) o o AN
\ ° o
. ° o )
o o o ) (]
c\p o, \
| ° o, of
| o © ° °
o
1 ° o/
° o8, 2

the spatio-temporal sensor measurements.
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Localisation of Diffusion Sources using Sensor
Networks

Assume we have access to the following generalised measurements:
Q(k, 1) = (W, (x)T (1), f)://wk(x)r,(t)f(x, t)dtdV,
QJt

with W) = e kt¥) k= 0,1,,2M — 1 and T,(t) = &"*/7, r = 0,1. Since

M
Fx,t) =D cmd(X — &m, t — Tm),

m=1

we obtain:

M
Q(k,r) = Z cme K(E1,m+ig2,m) g —irtm
m=1

This quantity is a sum of exponentials and parameters {cm}m, {&m}m, {Tm}m can be
recovered from it using Prony's method provided k =0,1,2M — 1.

Pier Luig
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Localisation of Diffusion Sources using Sensor
Networks

Assume r = 0, since W is analytic, using Green's theorem, we obtain:

/(/ (W, )dV — u% (W Vu — uVWy) - nagdS) dt = //Qlllkdedt:Q(k,O).

Locations
1
o O Int. Sensors
09 ™ O Bndly Sensors
$ o ~ + Diff. Sources
08 ® ‘9\ — — Boundary (39)
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07 © ° \,
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06 ° o ©° o
\ ® © CIELN
> 05 Q o
® o o L3
\ o © o, \
04 Q o ° b
| o ® 5 \
03 + 0 ° o
o to ]
02 | o o /
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01 o o _o” % . o
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Localisation of Diffusion Sources using Sensor
Networks

Assume r = 0, since W is analytic, using Green's theorem, we obtain:

/(/ (W, )dV — u% (W Vu — uVWy) - nans) dt = //Q\kadth:Q(k,O).

Locations
!
O Int. Se
0 T, O Bndry Somsors
. . ~ + Diff. Sources
» The above equation provides a w P 0, © —'— Boundary 09
. . . + o o Domain (@)
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o ° o9 °e
01 oo 0" \&\e’d
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Localisation of Diffusion Sources using Sensor
Networks

Assume r = 0, since W is analytic, using Green's theorem, we obtain:

/(/ (uW)dV — u% (W Vu — uV¥) - nans) dt = //\kadthfg(k 0).

» The above equation provides a
relationship between the generalised
measurements and the induced field

» We have only discrete spatio-temporal
sensor measurements

Pier Luigi Dragotti
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Localisation of Diffusion Sources using Sensor
Networks

Assume r = 0, since W is analytic, using Green's theorem, we obtain:

/(/ (uWy)dV — u% (W Vu —uVVy) - nagdS) dt = //\kadth, Q(k,0).

» The above equation provides a
relationship between the generalised
measurements and the induced field

» We have only discrete spatio-temporal
sensor measurements

» We build a mesh to approximate the full
field integrals

Pier Luigi Dragotti
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Localisation of Diffusion Sources using Sensor
Networks

Assume r = 0, since W is analytic, using Green's theorem, we obtain:

/</ —(u\Uk dV 1 (\lkau — UV\Uk) . ﬁanS) dt Z//kadth = Q(k7 0)
o0 tJQ

Locations

© Int. Sensors
» The above equation provides a os O By Seraor o
relationship between the generalised oo How bomain &
measurements and the induced field o
0s
» We have only discrete spatio-temporal o8
sensor measurements 04

» We build a mesh to approximate the full
field integrals
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Localisation of Diffusion Sources using Sensor
Networks

Assume r = 0, since W is analytic, using Green's theorem, we obtain:

/</ —(u\Uk dV 1 (\lkau — UV\Uk) . ﬁanS) dt Z//kadth = Q(k7 0)
o0 tJQ

Locations

O Int. Sensors

» The above equation provides a os O By Sersor o
relationship between the generalised oo How bomain &
measurements and the induced field o

0s

» We have only discrete spatio-temporal o8

sensor measurements 04

» We build a mesh to approximate the full
field integrals

» This is different from FEM because we 0 T TR TR T ;
use different priors
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Localisation of Diffusion Sources: Numerical Results

Locations

Activation Time Estimates
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(b) 100 independent trials using noisy sensor measurement samples (SNR=15dB).
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Localisation of Diffusion Sources: Real Data

Initial Thermal Map

Field infensity
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Localisation of Diffusion Sources: Real Data

Initial Thermal Map
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Conclusions

Sampling signals using sparsity models:
» New framework that allows the sampling and reconstruction of
continuous-time non-bandlimited signals.
> Use the knowledge of the acquisition process to map discrete
measurements to specific integral measurements
> Approximate Strang-Fix framework allows the use of arbitrary acquisition
devices
» Use sparsity priors to reconstruct the original signal
Outlook:
» Promising applications in neuroscience, sensor networks, super-resolution
imaging
» No silver bullet. Same framework but you need to fit the right model and
carve the right solution for your problem: continuous/discrete, fast/
complex, redundant/ not-redundant

Still many open questions from theory to practice!
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