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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements y, = (x(t), o(t/ T — n)), you want to reconstruct x(t).

x© ho=g-vr | YO 7T< Yi=<X(0.(UT-n)>

Acquisition Device

Natural questions:
> When is there a one-to-one mapping between x(t) and y,?
» What signals can be sampled and what kernels ((t) can be used?

» What reconstruction algorithm?
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Problem Statement

i

Observed
scene
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Samples

Acquisition
System

» The low-quality lens blurs the images.

> The images are sampled by the CCD array. images.
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Problem Statement

i

Observed
scene

Samples

Acquisition
System

» The world is analogue (audio, images, sound, brain), but computation is
digital
» If you like sparsity, you need ‘analogue’ sparsity models

» The sampling kernel is the bridge between these two worlds
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Motivation: Sampling Everywhere

Applications in Neuroscience

Neuroprosthesis

ADC
20K Hz < fs < 30K Hz|

Spike sorting

_— Processing unit

arse Sampling with any Acquisition Device
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Neural Activity Detection

Pier Luigi Dragot
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Motivation: Sampling Everywhere

Sensor networks

» The source (phenomenon) is distributed in space and time.

» The phenomenon is sampled in space (finite number of sensors) and
time.

uisition
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Motivation: Free Viewpoint Video

Multiple cameras are used to record a scene or an event. Users can freely
choose an arbitrary viewpoint for 3D viewing.
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» This is a multi-dimensional sampling and interpolation problem.
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Outline

» Sampling Kernels and Strang-Fix Conditions
» From Samples to Signals

» Traditional FRI Sampling
» e-MOMS (Maximum Order Minimum Support Kernels)
» Applications in Image Super-Resolution

Approximate Strang-Fix
Sparse Sampling with any Kernel

Application in Neuroscience

vV v v Y

Conclusions and Outlook

arse Sampling with any Acquisition Device
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Sampling Kernels

2O ] h=gevn) Yo 7T< Yi=<x (1), (t/T-n)>

Acquisition Device

> Given by nature

> Diffusion equation, Green function. Ex: sensor networks.
» Given by the set-up

> Designed by somebody else. Ex: Hubble telescope, digital cameras.
> Given by design

> Pick the best kernel. Ex: engineered systems.

arse Sampling with any Acquisition Device
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Sampling Kernels

Any kernel (t) that can reproduce exponentials:

Zcm,,,go(t—n):eo‘"”"h7 am=ay+miand m=0,1,..., L.
n

This includes any composite kernel of the form ~(t) * 85(t) where
Ba(t) = Bag(t) * Bay (t) * ... ¥ Ba, (t) and Ba;(t) is an Exponential Spline of first order
[UnserB:05].

R 1— ea—jw
Ba(t) & Blw) = ———
Jjw —
Notice:
» « can be complex.
» E-Spline is of compact support.

» E-Spline reduces to the classical polynomial
Eoselne b, spline when a = 0.
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Exponential Reproducing Kernels

The E-spline of first order Bq,(t) reproduces the exponential e®0t:
Z €0,nfBaq (t — n) = e°F.
n

In this case cp,, = €*0”". In general, cm n = cm,0€*™".
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Exponential Reproducing Kernels
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Here the E-spline is of second order and reproduces the exponential et e®1t: with
ag = —0.06 and a1 = 0.5.

Pier Luigi Dragotti
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Exponential Reproducing Kernels
> The exponent « of the E-splines can be complex. This means (3(t) can
be a complex function.

> However if pairs of exponents are chosen to be complex conjugate then
the spline stays real.

» Example:
sin;;gteagt 0 <t< 1
Bag+jun (t) * Bag—jun(t) = § —Sneeli=Bgoot 1 <t <2
0 Otherwise

When ap = 0 (i.e., purely imaginary exponents), the spline is called
trigonometric spline.

arse Sampling with any Acquisition Device
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Exponential Reproducing Kernels

Here & = (—jwo, jwo) and wg = 0.2. 3°, cp,mBa(t — n) = &m0 m=-1,1.
Notice: 35(t) is a real function, but the coefficients ¢, are complex.

arse Sampling with any Acquisition Device
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Generalised Strang-Fix Conditions

A function ¢(t) can reproduce the exponential:
et = Z Cmnp(t — n)
n

if and only if
&(am) #0 and $(am +j271)=0 €7\ {0}

where @(s) is the bilateral Laplace transform of ¢(t).

Also note that cm.n = cm0e™™" with cmo = @(am) ™t

Pier Luigi
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From Samples to Signals

» Consider any x(t) with t € [0, N) and

0 sampling period T = 1.

> The sampling kernel ¢(t) satisfies

Z Cmpp(t —n)=e*"" m=1,..,1L,
n

o > We want to retrieve x(t), from the
samples y, = (x(t), p(t — n)),
n=0,1,..,N—1.

: Sparse Sampling with any Acquisition Device
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From Samples to Signals

We have that

N-1
Zn:O Cm,nYn

(x(£), N3 cmnip(t — )

= [ x(t)e*mtdt, m=1,..,L

o0

Sm

> sp is the bilateral Laplace transform of x(t) evaluated at ap,.

» When apy, = jwn, then sp, = X(jwm) where X(jw) is the Fourier
transform of x(t).
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From Samples to Signals

» Consider signals which are completely specified by a finite number of
free parameters

» This is an ‘analogue’ sparsity model

» For classes of parametrically sparse signals there is a one-to-one
mapping between samples and signal:

x(t) & x(jwm) m=1,2,...,L

» The number d of degrees of freedom of the signal must satisfy d < L

Pier Luigi
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Sampling Streams of Diracs

v

Assume x(t) is a stream of K Diracs on the interval of size N:
x(t) = S5 g xd(t — ti), tx € [0, N).
We restrict a, =g+ m\  m=1,....L and L >2K.

v

» We have N samples: y, = (x(t),¢(t — n)), n=10,1,..N — 1:
> We obtain
Sm = Z,I:l:_ol Cm,nYn
= [T x(t)e*tdt,
= ,’fz_ol X *mk

K—1 4 mt, __ K—-1 4 _
Doko ket =" Reu,  m=1,.., L

x: Sparse Sampling with any Acquisition Device



Imperial College
London

Prony’'s Method

» The quantity

is a sum of exponentials.

» Retrieving the locations uy and the amplitudes X, from {s,}5_, is a
classical problem in spectral estimation and was first solved by
Gaspard de Prony in 1795.

» Given the pairs {uk, R}, then tx = (Inuk)/X and x = X, /e,

parse Sampling with any Acquisition Device
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Sampling Streams of Diracs: Numerical Example

o
o
" L
(a) Original Signal (b) Sampling Kernel (37(t))
35| o
«
b |

(c) Samples (d) Reconstructed Signal

arse Sampling with any Acquisition Device
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Sparse Sampling: Extensions

Using variations of Prony’s method other signals can be sampled such as for
example piecewise sinusoidal signals [BerentDragotti:10].

arse Sampling with any Acquisition Device




Imperial College
London

Numerical Example
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Sampling 2-D domains

The curve is implicitly defined through the equation [PanBluDragotti:11]:

K

f(x,y) = Zzb —jamxk/M —j2myi/N _ o

k=1 i=1

The coefficients by ; are the only free parameters in the model.

Pier Luigi Dragotti
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Sampling 2-D domains

samples interpolation

y Acquisition
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Robust Sparse Sampling

T

’ €n

Acquisition Device

x® h(t)= q(~t/T) ERIC ﬂ(%) = XO G,

» The measurements are noisy
» The noise is additive and i.i.d. Gaussian

» Many robust versions of Prony’s method exist (e.g., Cadzow, matrix
pencil)

parse Sampling with any Acquisition Device
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Robust Sparse Sampling: Best Kernel

The exponential reproducing kernel has the following form
o(t) = (1) * Ba(t)-

How should we choose 7(t) and a,, m =1, ..., L so as to minimize the

effect of noise?
Let Y = (yo,¥1,.,yn—1)" and S = (s1,%,...,5.)", in the noiseless case:

S=CY.
When additive noise is present
S=CY +Ce

Here C is the L x N matrix of the exponential reproducing coefficients

Cm,n = Cm,0€“™".

ix: Sparse Sampling with any Acquisition Device
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Robust Sparse Sampling

» We want a well-conditioned C.

> Since Cm,n = Cmoe™™™:

Cl,O 0 0
0 €0 0
c =
0 0 CL,0

. Best Kernel (cont'd)

1 e™ e@1(N=1)
1 e™ e@2(N-1)
1 e eat(N=1)

> Stability requires am to be purely imaginary, specifically,
am = jwm = j2r(m—1)/L, m=1,2,..,L

» and |cmo| =1, m=1,2,..., L

: Sparse Sampling with any Acquisition Device
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Robust Sparse Sampling: Best Kernel (cont'd)

v

Since ¢mo = @(jwm), |cmo| =1 is achieved by imposing
Y(wm)Baliwm) =1, m=1,..., L.

» We pick the kernel with the shortest support:
L—1
©
p(t) =) dfBy (1),
£=0

v

In frequency:

B(w) = Balio) - i)’

£=0

v

Therefore 4(jw) = Zle‘;ol dy(jw)®. Thus the coefficients d; are
chosen so that the polynomial 4(jw) interpolates the points

Gwms |Ba(jwm)| 7).
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Examples of Best Kernels

v

We call these kernels Exponential MOMS (e-MOMS), where MOMS
stands for Maximum Order Minimum Support
[Uriguen-Dragotti-Blu-11-13].

v

They correspond to one period of the Dirichlet function
SoS kernels [Eldar et al.-11] are a sub-set of eMOMS.

v
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Examples of E-Splines Kernels
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e-MOMS vs E-splines

London
. —— - MOMS
10 —y— e-MOMS y-CRB
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Retrieving 1000 Diracs with e-MOMS

(i-1) window :
ith window > Dlr_acs | Foreach window:
retrieval ¢ K
(i+1) window {tk ak},_,

» Retrieve Diracs using a sliding window

» Locations of true Diracs are consistent across windows
[Onativia-Uriguen-Dragotti-13]

arse Sampling with any Acquisition Device
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Retrieving 1000 Diracs with e-MOMS
! 35 — True Diracs
10 —— Histogram
9 30 —— Threshold
— 25
\(9/ 8
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g’ -
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| True locations of Diracs 5
¢ o Detected locations o Al
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Retrieving 1000 Diracs with e-MOMS

— Noiseless samples
— Noise

—A Original Diracs
—* Estimated Diracs

4 6 8 10 12 14 4 6 8 10 12 14
Time (s) Time (s)

(a) yn samples (b) Reconstructed stream

» K = 1000 Diracs in an interval of 630 seconds, N = 10° samples,
T = 0.06 and SNR = 10dB

> 9997 Diracs retrieved with an error e < T/2
> Average accuracy At = 0.005, execution time 105 seconds.

Sparse Sampling with any Acquisition Device
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Application: Image Super-Resolution
[Baboulaz-D-09]

sssss (perpendicular)

(a)Original (2014 x 3039) (b) Point Spread function

ix: Sparse Sampling with any Acquisition Device
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Application: Image Super-Resolution

Acquisition with Nikon D70

-

- >
(a)Original (2014 x 3040) (b) ROI (128 x 128)  (b) Super-res (1024 x 1024)

Pier Luigi Dragotti
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Application: Image Super-Resolution

(a)Original (48 x 48) (b) Super-res (480 x 480)

Pier Luigi Dragotti
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Spot the Difference

1
09 09 ,
08 og ,
07 o i
o5 05 ,
o5 os ,
04 04 4
03 03 ,
02 02 ,
01 01 ,

is B 75 5 35 4 15 7 25 3 35 .

! .

Pier Luigi Dragotti
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Spot the Difference

1
09 09
08 og
07 o
o5 05
o5 os
04 04
03 03
02 02
01 01
is B 75 5 35 4 15 7 25 3 35 .
! .

am = {—0.4,-0.2,0.2,0.4} am = {—j0.4,—j0.2,0.2,j0.4}

se Sampling with any Acquisition Device
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Spot the Difference
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'Explodential’ Spline ;-)’
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Approximate Strang-Fix

> Assume @(t) cannot reproduce exponentials, we want to find the
coefficients ¢, = coe®" such that:

Z cap(t — n) = et

neZ

arse Sampling with any Acquisition Device
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Approximate Strang-Fix

> Assume @(t) cannot reproduce exponentials, we want to find the
coefficients ¢, = coe®" such that:

Z cap(t — n) = et

neZ

> Approximation error

e(t) =f(t) — e =e" |1 - Z@(a + jorl)e*™"
Iez

arse Sampling with any Acquisition Device
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Approximate Strang-Fix

> Assume @(t) cannot reproduce exponentials, we want to find the
coefficients ¢, = coe®" such that:

Z cnp(t — n) = ™.
nez

» Approximation error

e(t)=f(t) — e =e* |1—c »_ @a+ j2r))e*™"

1€z

> Least-squares approximation (e*' orthogonal to span{y(t — n)}nez)

92(_05) an

N € )

ap(e”)

where 3,(e”) = 3", ap[/le”*' is the z-transform of
a[l] = (e(t = 1), ¢(t)), evaluated at z = e®.

Ch =

parse Sampling with any Acquisition Device
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Approximate Strang-Fix

> Assume @(t) cannot reproduce exponentials, we want to find the
coefficients ¢, = coe®" such that:

Z cap(t — n) = et

neZ

> Approximation error

e(t) =f(t) — e =e" |1 - Z@(a + jorl)e*™"
Iez

arse Sampling with any Acquisition Device
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Approximate Strang-Fix

v

Assume ¢(t) cannot reproduce exponentials, we want to find the
coefficients ¢, = coe®" such that:

Z cap(t — n) = et

neZ

> Approximation error

e(t) =f(t) — e =e" |1 - Z@(a + jorl)e*™"
Iez

v

Constant Least-squares approximation

=3 = c=@(a) e

v

Advantage: only need to know the Laplace transform of o(t) at «.

arse Sampling with any Acquisition Device
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Approximate Strang-Fix- Example with Linear
Splines

Repr. of 1 (exact) Repr. of t (exact) Approx. of Re{e 1%}

Approx. of Re{e /15t Approx. of Re e i Tt Approx. of Re eIt
PP

arse Sampling with any Acquisition Device
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Approximate FRI recovery

Assume the signal to retrieve is a stream of K Diracs.

Reproduce approximately am m=1,2,...,L

» Obtain

N—1 K—1 K—1
_ _ m ti
Sm = g Cm,nYn = E XUy — E AkEm ?
n=0 k=0 k=0

Cm

Treat the error as noise and retrieve the Diracs using robust FRI
reconstruction

Note that given a first estimate of the Diracs, we can estimate ¢, (%k)
and repeat the estimation.

arse Sampling with any Acquisition Device
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Approximate FRI recovery- Choice of a,

» We want a well-conditioned C.

> Since Cm,n = Cm,0e™™™:

o 0 -+ 0 1 et ... eu(N-1)
0 o 0 1 e ... g(N-1)

C =
0 0 - <o 1 et g (N—1)

> Stability requires aom to be purely imaginary: am = jwm

parse Sampling with any Acquisition Device
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Approximate FRI recovery- Choice of a,

» We want a well-conditioned C.

> Since Cm,n = Cm,0e™™™:

¢~ (o) 0 e 0 1 em ... goulN-1)
0 ¢ Ha2) - 0 1 e ... gmN-1)

C =
0 0 e @) 1 et ... eotN=1)

> Stability requires am to be purely imaginary: am = jwm

> Typically, ¢(t) low-pass filter = pick jwm close to the origin

: Sparse Sampling with any Acquisition Device
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Approximate FRI recovery- Choice of a,

» We want a well-conditioned C.

> Since Cm,n = Cm,0€™™™:

¢~ (aa) 0 e 0 1 e ... gu(N-1)
0 ¢ (a) - 0 1 % ... eoalN-1

C =
0 0 s TN an) 1 e ... gu(N-1)

> Stability requires am to be purely imaginary: am = jwm
> Typically, p(t) low-pass filter = pick jwm close to the origin
» Choose L ~ N so that C square

: Sparse Sampling with any Acquisition Device
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Approximate FRI recovery: Numerical Example

etroved

1

08
08

08
08
04 o4
o2 02, ]

1 01

01 azosooasasmaans 02 03 04 05 06 07 08 08 1
0

(a) yn and 7 (b) Default FRI retrieval  (c) Approx. FRI retrieval

Estimation of K = 6 Diracs with the B-Spline kernel of order L = 16, N = 31.

(b) Default polynomial recovery. (c) Approximate recovery with
am = jigprpy(2m— P), m=0,..., P where P41 =21, SNR=25dB.

: Sparse Sampling with any Acquisition Device
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Approximate FRI recovery: Numerical Example

Gaussian Kernel

0 02 04 06 08 1 12 14 18 18 2
¢

Approximate FRI with the Gaussian kernel. K =5, N = 61, SNR=25dB.
Recovery using the approximate method with am = j355 (2m— P),

m=20,...,P where P+1=21.

D)

: Sparse Sampling with any Acquisition Device
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Universal FRI recovery

04
02
02
o 02 04 06 08 1 o 02 04

t t

(a) Default (b) Approximation

Reconstruction of K = 4 Diracs using the default strategy, part (a), and the
approximate framework, part (b). Sampling Kernel: B-spline of order P = 5.

arse Sampling with any Acquisition Device
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Neural Activity Detection

Pier Luigi Dragot
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Calcium Transient Detection

i=th window

i~th window

i) f j j ) ) "[— Oorigmai sokes
"~ Locations nisogran

* “ “ Tima (<) = = “
(iv) o=f T . . .
P— ]
d e = o
+ - : & 4 +

“ Time (s)

Pier Luigi Drag
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Calcium Transient Detection

A

\ FRI 7

™ - - - Fast deconv.

0.2 ,' ----- Deriv.&thres. ]
S R Filter&thres.

0 0.61 0.62 0.63 0.04
false positive rate

true positive rate
~
N\

Pier Luigi Dragotti
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Application in Neuroscience

Applications in Neuroscience

Neuroprosthesis

ADC
20K Hz < fs < 30K Hz|

Spike sorting

_— Processing unit

rse Sampling with any Acquisition Device
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Application in Neuroscience

Insight: Sample at lower rate and reconstruct the signal outside the
implant

Neuroprosthesis Processing unit

ADC Spike
Classical sorting
Neuroprosthesis Processing unit
ADC ) Kf) Spike
Sparse Reconstruction sorting

Pier Luigi Dragotti
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Stream of Pulses with unknown Shape

o e
FRI Sampling
. =(8(0),0@t/T-n)) | [
l‘ M
i Estimation
Iteration 0 Module

d(t) estimation

i

p(t) estimation
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Stream of Pulses with unknown Shape

o e
FRI Sampling
. =(8(0),0@t/T-n)) | [
l‘ M
i Estimation
Iteration 1 Module

d(t) estimation

i

p(t) estimation
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Stream of Pulses with unknown Shape

FRI Sampling

¥, =(g(®),0(t/T —n)) we ‘ [

[—owm ]

Estimation
Module

Iteration 2

d(t) estimation

i

p(t) estimation
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Application in Neuroscience

» Classical Sampling (C) f; = 24KHz
> Sparse Sampling (F) fs = 5.8KHz

* Two recordings of 1000 spikes from 3 different neurons.
— Classical sampling: fs =24KHz (C)
— FRIsampling: fs =5.8KHz (F)

* The classical sampling signal and the reconstruction from
FRI sampling are fed to a spike sorting algorithm.

Missed spikes False positives | Misclassified spikes | Unclassified spikes Success Rate
Spikeset | Noises.d. | 24K C | 5.8KF | 24KC | 58KF | 24KC | 58KF | 24KC | 58KF | 24KC | 58KF
Easy (1) 0.05 111 135 0 2 22 21 30 20 83.7 822
0.1 93 91 6 9 29 34 9 4 863 86.2
0.15 143 129 7 21 50 56 1 2 79.9 79.2
0.2 248 216 1 18 37 44 1 2 71.3 72
Difficult (2) 0.05 140 149 0 0 17 7 70 7 713 713
0.1 101 80 0 16 418 199 0 16 48.1 69.9
0.15 115 86 1 20 346 454 0 0 53.8 44
02 160 108 3 19 441 420 0 0 453
(Av.) 0.125 138.88 | 124.25 224 13.13 170 15438 13.88 14.38 67.5 69.51
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Conclusions

Sampling signals using sparsity models:

» New framework that allows the sampling and reconstruction of
infinite-dimensional continuous-time signals at a rate smaller than Nyquist
rate.

» [t is a non-linear problem

> Different possible algorithms with various degrees of efficiency and
robustness

» Approximate Strang-Fix method: universal and robust to noise
Outlook:
» Promising applications in neuroscience
» Applications to the inversion of physical fields from sensors’ measurements

Still many open questions from theory to practice!

parse Sampling with any Acquisition Device
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