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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements yn = 〈x(t), ϕ(t/T − n)〉, you want to reconstruct x(t).

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

Natural questions:

I When is there a one-to-one mapping between x(t) and yn?

I What signals can be sampled and what kernels ϕ(t) can be used?

I What reconstruction algorithm?
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Problem Statement

Observed
scene

Samples

Acquisition
System

Lens CCD
Array

I The low-quality lens blurs the images.

I The images are sampled by the CCD array. images.
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Problem Statement

Observed
scene

Samples

Acquisition
System

Lens CCD
Array

I The world is analogue (audio, images, sound, brain), but computation is
digital

I If you like sparsity, you need ‘analogue’ sparsity models

I The sampling kernel is the bridge between these two worlds
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Motivation: Sampling Everywhere
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Neural Activity Detection
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Motivation: Sampling Everywhere

Sensor networks

I The source (phenomenon) is distributed in space and time.

I The phenomenon is sampled in space (finite number of sensors) and
time.
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Motivation: Free Viewpoint Video

Multiple cameras are used to record a scene or an event. Users can freely
choose an arbitrary viewpoint for 3D viewing.

I This is a multi-dimensional sampling and interpolation problem.
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Outline
I Sampling Kernels and Strang-Fix Conditions

I From Samples to Signals

I Traditional FRI Sampling
I e-MOMS (Maximum Order Minimum Support Kernels)
I Applications in Image Super-Resolution

I Approximate Strang-Fix

I Sparse Sampling with any Kernel

I Application in Neuroscience

I Conclusions and Outlook
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Sampling Kernels

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

I Given by nature

I Diffusion equation, Green function. Ex: sensor networks.

I Given by the set-up

I Designed by somebody else. Ex: Hubble telescope, digital cameras.

I Given by design

I Pick the best kernel. Ex: engineered systems.
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Sampling Kernels

Any kernel ϕ(t) that can reproduce exponentials:X
n

cm,nϕ(t − n) = eαmt , αm = α0 + mλ and m = 0, 1, ..., L.

This includes any composite kernel of the form γ(t) ∗ β~α(t) where
β~α(t) = βα0 (t) ∗ βα1 (t) ∗ ... ∗ βαL (t) and βαi (t) is an Exponential Spline of first order
[UnserB:05].

eα t 

E−Spline βα(t) 

βα(t)⇔ β̂(ω) =
1− eα−jω

jω − α
Notice:

I α can be complex.

I E-Spline is of compact support.

I E-Spline reduces to the classical polynomial
spline when α = 0.
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Exponential Reproducing Kernels
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The E-spline of first order βα0 (t) reproduces the exponential eα0t :X
n

c0,nβα0 (t − n) = eα0t .

In this case c0,n = eα0n. In general, cm,n = cm,0eαmn.
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Exponential Reproducing Kernels
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Exponential e0.5t
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Scaled and shifted E−splines

Here the E-spline is of second order and reproduces the exponential eα0t , eα1t : with

α0 = −0.06 and α1 = 0.5.
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Exponential Reproducing Kernels

I The exponent α of the E-splines can be complex. This means βα(t) can
be a complex function.

I However if pairs of exponents are chosen to be complex conjugate then
the spline stays real.

I Example:

βα0+jω0 (t) ∗ βα0−jω0 (t) =

8>>>><>>>>:

sinω0t
ω0

eα0t 0 ≤ t < 1

− sinω0(t−2)
ω0

eα0t 1 ≤ t < 2

0 Otherwise

When α0 = 0 (i.e., purely imaginary exponents), the spline is called

trigonometric spline.
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Exponential Reproducing Kernels
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Here ~α = (−jω0, jω0) and ω0 = 0.2.
P

n cn,mβ~α(t − n) = e jmω0 m = −1, 1.

Notice: β~α(t) is a real function, but the coefficients cm,n are complex.
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Generalised Strang-Fix Conditions

A function ϕ(t) can reproduce the exponential:

eαmt =
X

n

cm,nϕ(t − n)

if and only if

ϕ̂(αm) 6= 0 and ϕ̂(αm + j2πl) = 0 l ∈ Z \ {0}

where ϕ̂(s) is the bilateral Laplace transform of ϕ(t).

Also note that cm,n = cm,0e
αmn with cm,0 = ϕ̂(αm)−1.
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From Samples to Signals

0

x(t)

I Consider any x(t) with t ∈ [0,N) and
sampling period T = 1.

I The sampling kernel ϕ(t) satisfiesX
n

cm,nϕ(t − n) = eαmt m = 1, ..., L,

I We want to retrieve x(t), from the
samples yn = 〈x(t), ϕ(t − n)〉,
n = 0, 1, ...,N − 1.
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From Samples to Signals

We have that

sm =
∑N−1

n=0 cm,nyn

= 〈x(t),
∑N−1

n=0 cm,nϕ(t − n)〉

=
∫∞
−∞ x(t)eαmtdt, m = 1, ..., L.

I sm is the bilateral Laplace transform of x(t) evaluated at αm.

I When αm = jωm then sm = x̂(jωm) where x̂(jω) is the Fourier
transform of x(t).
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From Samples to Signals

I Consider signals which are completely specified by a finite number of
free parameters

I This is an ‘analogue’ sparsity model

I For classes of parametrically sparse signals there is a one-to-one
mapping between samples and signal:

x(t)⇔ x̂(jωm) m = 1, 2, ..., L

I The number d of degrees of freedom of the signal must satisfy d ≤ L
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Sampling Streams of Diracs

I Assume x(t) is a stream of K Diracs on the interval of size N:

x(t) =
∑K−1

k=0 xkδ(t − tk), tk ∈ [0,N).

I We restrict αm = α0 + mλ m = 1, ..., L and L ≥ 2K .

I We have N samples: yn = 〈x(t), ϕ(t − n)〉, n = 0, 1, ...N − 1:

I We obtain

sm =
∑N−1

n=0 cm,nyn

=
∫∞
−∞ x(t)eαmtdt,

=
∑K−1

k=0 xke
αmtk

=
∑K−1

k=0 x̂ke
λmtk =

∑K−1
k=0 x̂ku

m
k , m = 1, ..., L.
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Prony’s Method

I The quantity

sm =
K−1∑

k=0

x̂ku
m
k , m = 1, ..., L

is a sum of exponentials.

I Retrieving the locations uk and the amplitudes x̂k from {sm}Lm=1 is a
classical problem in spectral estimation and was first solved by
Gaspard de Prony in 1795.

I Given the pairs {uk , x̂k}, then tk = (ln uk)/λ and xk = x̂k/e
α0tk .
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Sampling Streams of Diracs: Numerical Example
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(a) Original Signal (b) Sampling Kernel (β7(t))
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(c) Samples (d) Reconstructed Signal
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Sparse Sampling: Extensions

Using variations of Prony’s method other signals can be sampled such as for
example piecewise sinusoidal signals [BerentDragotti:10].
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Numerical Example
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Sampling 2-D domains

Algorithm 1: Annihilation of indicator function
1. Compute Fourier transform of the indicator plane χ
evaluated at uniformly sampled frequency grids(

2πk
M , 2πl

N

)
;

2. Create annihilation filter according to (6) where the
elements are rearranged lexicographically;

3. Solve the annihilation coefficients ck,l based on (5)
under the Hermitian symmetry constraint on the
coefficients in (2).

4.1. Fourier Transform of Indicator Plane

In order to apply the annihilation Algorithm 1, Fourier trans-
form of the annihilable curve Γ has to be evaluated exactly. FRI
signals investigated previously in 1-D cases, are either streams
of Diracs [7] [2] or piecewise polynomials [1] whose Fourier
transform can be computed exactly. However, in the case of
annihilable curves here, no explicit expression of the Fourier
transform χ̂Γ is available in general. And we can not use DFT
of χΓ directly either. Because the indicator plane χΓ has infi-
nite bandwith, results obtained from DFT suffers from server
aliasing effect. But we can relate the Fourier transform χ̂Γ with
its samples gk,l and calculate the Fourier transform exactly. As
is in the case of streams of Diracs [7] [2], we can prove that
the Fourier transform coincides with the bandlimited discrete
Fourier transform of gk,l.

4.2. Retrieval of Signal Innovation

Once the exact Fourier transform χ̂ is evaluated, the annihilat-
ing filter is constructed according to (5), from which we can
retrieve the coefficients ck,l with annihilation filter method, a
well known approach in the reconstruction of FRI signals. Sup-
pose both ck,l and hk,l are rearranged based on the same rule,
say column-by-column rearrangement, then (5) is equivalent to
a system of equations:

HC = 0 (8)

where H is a block circulant matrix built from frequency sam-
ples of χ̂ and C is the vector that corresponds to ck,l rearranged
column-by-column. Thus we can determine the annihilating co-
efficients uniquely up to a multiplicative constant by solving the
linear system of equations (8) for noise-free cases. However,
noise is ubiquitous in signal processing, which may arise from
the sampling process (Fig 1), the computational inaccuracy as
a result of numerical integration in (7), or model mismatch dis-
cussed in Section 2 in our case here.

In the presence of noise, the annihilation equation (8) is
not satisfied exactly, yet we can still obtain the solution with
the least square approach for the same reasoning as is in 1-D
cases [7] [2]. For cases that suffer from more sever noise cor-
ruptions, it is better to denoise the samples prior to applying the
least square approach with e.g. Cadzow’s method [2] for the
robustness of the annihilation algorithm against noise perturba-
tion.

(a) Original indicator plane (b) Reconstructed indicator plane

(c) Difference image (d) Samples of indicator plane

Fig. 2. Annihilation results for noiseless case

Notice that the annihilation algorithm presented here is non-
iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.

5. SIMULATION RESULTS AND DISCUSSIONS

Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.

Another uncertainty we need to take into account of is the
accuracy of numerical integration in (7), which is controlled
by the total number of points used for calculation. To avoid
ambiguity, we refer to it as “number of numerical integration
control points”. With less computational accuracy, the samples
obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
as:

% error =
total number of non-zero pixels in error image

total number of pixels along curve Γ

5.1. Exact annihilation for noiseless case

For noise-free cases, the algorithm should exactly annihilate the
interior indicator function. In simulations, the number of nu-
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iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.

5. SIMULATION RESULTS AND DISCUSSIONS

Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.
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accuracy of numerical integration in (7), which is controlled
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ambiguity, we refer to it as “number of numerical integration
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obtained deviate more from the actual values. The discrepancy
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5.1. Exact annihilation for noiseless case

For noise-free cases, the algorithm should exactly annihilate the
interior indicator function. In simulations, the number of nu-

The curve is implicitly defined through the equation [PanBluDragotti:11]:

f (x , y) =
KX

k=1

IX
i=1

bk,ie
−j2πxk/Me−j2πyi/N = 0.

The coefficients bk,i are the only free parameters in the model.
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Sampling 2-D domains

samples interpolation inter+ curve constraint
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Robust Sparse Sampling

nx(t)
!

Acquisition Device

h(t)=   (!t/T)
y(t)

T +

"n

n !y =<x(t),   (t/T!n)>+"

I The measurements are noisy

I The noise is additive and i.i.d. Gaussian

I Many robust versions of Prony’s method exist (e.g., Cadzow, matrix
pencil)
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Robust Sparse Sampling: Best Kernel

The exponential reproducing kernel has the following form

ϕ(t) = γ(t) ∗ β~α(t).

How should we choose γ(t) and αm, m = 1, ..., L so as to minimize the
effect of noise?
Let Y = (y0, y1, ..., yN−1)T and S = (s1, s2, ..., sL)T , in the noiseless case:

S = CY .

When additive noise is present

Ŝ = CY + Cε.

Here C is the L× N matrix of the exponential reproducing coefficients
cm,n = cm,0e

αmn.
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Robust Sparse Sampling: Best Kernel (cont’d)

I We want a well-conditioned C.

I Since cm,n = cm,0e
αmn:

C =

0BBBBBBBBB@

c1,0 0 · · · 0

0 c2,0 · · · 0

...
...

. . .
...

0 0 · · · cL,0

1CCCCCCCCCA

0BBBBBBBBB@

1 eα1 · · · eα1(N−1)

1 eα2 · · · eα2(N−1)

...
...

. . .
...

1 eαL · · · eαL(N−1)

1CCCCCCCCCA
I Stability requires αm to be purely imaginary, specifically,
αm = jωm = j2π(m − 1)/L, m = 1, 2, ..., L

I and |cm,0| = 1, m = 1, 2, ..., L.
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Robust Sparse Sampling: Best Kernel (cont’d)

I Since cm,0 = ϕ̂(jωm), |cm,0| = 1 is achieved by imposing

|γ̂(jωm)β̂~α(jωm)| = 1, m = 1, ..., L.

I We pick the kernel with the shortest support:

ϕ(t) =
L−1∑

`=0

d`β
(`)
~α (t),

I In frequency:

ϕ̂(jω) = β̂~α(jω)
L−1∑

`=0

d`(jω)`,

I Therefore γ̂(jω) =
∑L−1
`=0 d`(jω)`. Thus the coefficients d` are

chosen so that the polynomial γ̂(jω) interpolates the points
(jωm, |β̂~α(jωm)|−1).
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Examples of Best Kernels
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I We call these kernels Exponential MOMS (e-MOMS), where MOMS
stands for Maximum Order Minimum Support
[Uriguen-Dragotti-Blu-11-13].

I They correspond to one period of the Dirichlet function

I SoS kernels [Eldar et al.-11] are a sub-set of eMOMS.
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Examples of E-Splines Kernels
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e-MOMS vs E-splines

21

where t̂
piq
k are the estimated time locations at iteration i and I is the total number of iterations. We

calculate (28) for a range of fixed signal-to-noise ratios and average the effects using I � 1000 noise

realisations for each SNR. We compare the performance (28) with the square root of the variance predicted

by the two different Cramér–Rao bounds (CRB) of Section III: the sample-based CRB (13) and the

moment-based CRB (15).

B. Exponential MOMS

In Figure 7(a-b) we present simulation results when we retrieve K � 2 Diracs from N � 31

samples using a standard E-Spline and the exponential MOMS kernels of Section IV-B. The former are

characterised by purely imaginary exponents αm � j π
2pP�1qp2m� P q for m � 0, . . . , P . The sampling

period is such that τ � NT � 1.
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(a) e-MOMS P � 1 � 16
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(b) e-MOMS P � 1 � 31
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original
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(c) Retrieval of K � 20 Diracs

Figure 7. Performance of e-MOMS kernels. (a-b) compare the performance of e-MOMS and E-Splines of different orders

P � 1 when noise is added to N � 31 samples. We show the recovery of the first of K � 2 Diracs. Note that e-MOMS always

outperform E-splines and achieve the moment-based CRB (s-CRB). This bound gets closer to the sample-based CRB (y-CRB)

as the value of P � 1 increases and matches it when P � 1 � N . Finally, (c) shows the retrieval of K � 20 Diracs randomly

spaced over τ � NT � 1. The signal-to-noise ratio is 15dB, and we use N � 61 samples and P � 1 � N moments.

We see that for any order P � 1, e-MOMS outperform E-splines. Moreover, e-MOMS always achieve

the moment-based CRB (in red and denoted s-CRB in the legend). This bound gets closer to the sample-

based CRB (in black and denoted y-CRB in the legend) as the value of P � 1 increases and as expected

matches it when P � 1 � N .

To further illustrate the stability of e-MOMS, in Fig. 7(c) we show the retrieval of K � 20 Diracs

randomly spaced over τ � NT � 1 and with arbitrary amplitudes. We obtain N � 61 samples,

contaminate them with AWGN of signal-to-noise ratio equal to 15dB and estimate the Diracs from

P � 1 � N moments.

May 2, 2013 DRAFT

K = 2 and we measure the error in the retrieval of the location of the Diracs.
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Retrieving 1000 Diracs with e-MOMS

Diracs 
retrieval 

{tk, ak}
k=1

K

For each window:
(i-1) window

(i+1) window

ith window

I Retrieve Diracs using a sliding window

I Locations of true Diracs are consistent across windows
[Onativia-Uriguen-Dragotti-13]
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Retrieving 1000 Diracs with e-MOMS
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Retrieving 1000 Diracs with e-MOMS
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Original Diracs

Reconstructed Diracs

Fig. 5: Sequential perfect reconstruction of a noiseless stream of
1000 Diracs with 10220 yn samples. Only a small section of the
stream is shown. Rate K “ 5 Diracs per τ “ 3.125 s. N “ 50,
T “ 1{16 and P “ 9.

retrieve K Diracs using the algorithm in Sec. 2 coupled with
matrix pencil. We then store all the locations and amplitude
retrieved in that window. We then slide the window by T and
repeat the process. When the found locations correspond to
real Diracs, they will be consistent among different positions
of the sliding window that capture these Diracs. Otherwise,
locations that are not correct and correspond to noise will nor-
mally be not consistent. For example, in Figure 4-(a) we plot
the retrieved locations for different windows. The horizontal
axis represents the index of the window corresponding to a
retrieved location, and the vertical axis the Dirac location in
time. Consistent locations appear as horizontal alignments of
dots, overlapping the blue lines.

In order to detect which locations are consistent, a second
step is to construct a histogram of detected locations. Only
the peaks of the histogram are assumed to correspond to real
Diracs. For a peak in the histogram above a certain threshold,
the location of the corresponding Dirac is estimated averaging
all the retrieved locations that contribute to this peak. This is
illustrated in Figure 4-(b).

4. SIMULATION RESULTS

We have tested both versions of the algorithm: the noise-
less case for which perfect reconstruction is possible; and the
noisy scenario, where locations are estimated from the his-
togram of the retrieved locations. In the noiseless case we
always perfectly reconstruct the streams of Diracs with ran-
domly generated locations and amplitudes. This is illustrated
in Figure 5. The stream of Diracs is generated to satisfy the
maximum rate of K Diracs per τ interval.

In the noisy scenario not all the Diracs are always re-
trieved, and false positives may also happen. Note also that
there is an uncertainty in the retrieved location. A retrieved
Dirac is considered to correspond to a true Dirac if the differ-
ence between the real location and the estimated location is
smaller than a threshold. Here we have set this threshold to
T {2. We randomly generate the locations of a stream of 1000
Diracs. We then take samples, contaminate them with noise
and apply the sequential reconstruction algorithm. Figure 6
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Original Diracs

Estimated Diracs

(b) Reconstructed stream

Fig. 6: Noisy samples with a SNR “ 10 dB and reconstructed
stream from the peaks of the histogram of the retrieved locations.
The temporal locations are very accurately estimated.

shows one realisation of the procedure explained before.
To further analyse the performance variation for different

levels of noise we run the algorithm over 100 different realisa-
tions of noise for various levels of SNR. Table 1 summarises
the obtained performances.

Table 1: Algorithm’s performance. Stream of 1000 Diracs (630
seconds) and 10220 samples, T “ 1{16 s, N “ 50, P ` 1 “ 23.
The detection rate is given in percentage of detected true Diracs. The
false positives are the average number of detected Diracs that do not
correspond to true Diracs. The precision is the standard deviation of
the retrieved locations with respect to the true locations.

SNR (dB) 5 10 15 20
Detection rate 97.69 % 99.97 % 100.00 % 100.00 %
False positives 351.7 37.8 0.5 0.3
Precision (s) 0.0086 0.0049 0.0028 0.0018

The algorithm has been implemented in MATLAB and
tested using a commercial laptop (2.5 GHz Intel Core i5
CPU). The average time required to process 10220 samples
corresponding to a stream of 630 seconds containing 1000
Diracs is about 105 seconds.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a fast sequential algorithm
to retrieve infinite streams of Diracs in noiseless and noisy
environments. In the noiseless case perfect reconstruction
is achieved. In the noisy scenario we propose to retrieve
groups of K Diracs sequentially and to retain only those
Diracs whose locations have been consistently estimated in
overlapping sliding windows.

We showed that the algorithm is able to process 10K sam-
ples in about 100 seconds and can retrieve with high accu-
racy 1000 Diracs even in very low SNR regimes. We are not
aware of any current FRI algorithm able to achieve such per-
formance for the same type of data.

I K = 1000 Diracs in an interval of 630 seconds, N = 105 samples,
T = 0.06 and SNR = 10dB

I 9997 Diracs retrieved with an error ε < T/2

I Average accuracy ∆t = 0.005, execution time 105 seconds.
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Application: Image Super-Resolution
[Baboulaz-D-09]
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(a)Original (2014× 3039) (b) Point Spread function

Pier Luigi Dragotti
Approximate Strang-Fix: Sparse Sampling with any Acquisition Device



Application: Image Super-Resolution

Acquisition with Nikon D70

(a)Original (2014× 3040) (b) ROI (128× 128) (b) Super-res (1024× 1024)
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Application: Image Super-Resolution

(a)Original (48× 48) (b) Super-res (480× 480)
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Spot the Difference
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Spot the Difference
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αm = {−0.4,−0.2, 0.2, 0.4} αm = {−j0.4,−j0.2, j0.2, j0.4}

Pier Luigi Dragotti
Approximate Strang-Fix: Sparse Sampling with any Acquisition Device



Spot the Difference
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Approximate Strang-Fix

I Assume ϕ(t) cannot reproduce exponentials, we want to find the
coefficients cn = c0e

αt such that:X
n∈Z

cnϕ(t − n) u eαt .
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Approximate Strang-Fix

I Assume ϕ(t) cannot reproduce exponentials, we want to find the
coefficients cn = c0e

αt such that:X
n∈Z

cnϕ(t − n) u eαt .

I Approximation error

ε(t) = f (t)− eαt = eαt

"
1− c0

X
l∈Z

ϕ̂(α + j2πl)ej2πlt

#
.

Pier Luigi Dragotti
Approximate Strang-Fix: Sparse Sampling with any Acquisition Device



Approximate Strang-Fix

I Assume ϕ(t) cannot reproduce exponentials, we want to find the
coefficients cn = c0e

αt such that:X
n∈Z

cnϕ(t − n) u eαt .

I Approximation error

ε(t) = f (t)− eαt = eαt

"
1− c0

X
l∈Z

ϕ̂(α + j2πl)ej2πlt

#
.

I Least-squares approximation (eαt orthogonal to span{ϕ(t − n)}n∈Z)

cn =
ϕ̂(−α)

âϕ(eα)
eαn,

where âϕ(eα) =
P

l∈Z aϕ[l ]e−αl is the z-transform of
aϕ[l ] = 〈ϕ(t − l), ϕ(t)〉, evaluated at z = eα.
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Approximate Strang-Fix

I Assume ϕ(t) cannot reproduce exponentials, we want to find the
coefficients cn = c0e

αt such that:X
n∈Z

cnϕ(t − n) u eαt .

I Approximation error

ε(t) = f (t)− eαt = eαt

"
1− c0

X
l∈Z

ϕ̂(α + j2πl)ej2πlt

#
.
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Approximate Strang-Fix

I Assume ϕ(t) cannot reproduce exponentials, we want to find the
coefficients cn = c0e

αt such that:X
n∈Z

cnϕ(t − n) u eαt .

I Approximation error

ε(t) = f (t)− eαt = eαt

"
1− c0

X
l∈Z

ϕ̂(α + j2πl)ej2πlt

#
.

I Constant Least-squares approximation

c0 = ϕ̂(α)−1 ⇒ cn = ϕ̂(α)−1eαn

I Advantage: only need to know the Laplace transform of ϕ(t) at α.
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Approximate Strang-Fix- Example with Linear
Splines
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Approximate FRI recovery

I Assume the signal to retrieve is a stream of K Diracs.

I Reproduce approximately αm m = 1, 2, ..., L

I Obtain

sm =
N−1X
n=0

cm,nyn =
K−1X
k=0

xku
m
k −

K−1X
k=0

akεm

“ tk
T

”
| {z }

ζm

I Treat the error as noise and retrieve the Diracs using robust FRI
reconstruction

I Note that given a first estimate of the Diracs, we can estimate εm

`
tk
T

´
and repeat the estimation.

Pier Luigi Dragotti
Approximate Strang-Fix: Sparse Sampling with any Acquisition Device



Approximate FRI recovery- Choice of αm

I We want a well-conditioned C.

I Since cm,n = cm,0e
αmn:

C =

0BBBBBBBBB@

c1,0 0 · · · 0

0 c2,0 · · · 0

...
...

. . .
...

0 0 · · · cL,0

1CCCCCCCCCA

0BBBBBBBBB@

1 eα1 · · · eα1(N−1)

1 eα2 · · · eα2(N−1)

...
...

. . .
...

1 eαL · · · eαL(N−1)

1CCCCCCCCCA
I Stability requires αm to be purely imaginary: αm = jωm
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Approximate FRI recovery- Choice of αm

I We want a well-conditioned C.

I Since cm,n = cm,0e
αmn:

C =

0BBBBBBBBB@

ϕ̂−1(α1) 0 · · · 0

0 ϕ̂−1(α2) · · · 0

...
...

. . .
...

0 0 · · · ϕ̂−1(αL)

1CCCCCCCCCA

0BBBBBBBBB@

1 eα1 · · · eα1(N−1)

1 eα2 · · · eα2(N−1)

...
...

. . .
...

1 eαL · · · eαL(N−1)

1CCCCCCCCCA
I Stability requires αm to be purely imaginary: αm = jωm

I Typically, ϕ(t) low-pass filter ⇒ pick jωm close to the origin
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Approximate FRI recovery- Choice of αm

I We want a well-conditioned C.

I Since cm,n = cm,0e
αmn:

C =

0BBBBBBBBB@

ϕ̂−1(α1) 0 · · · 0

0 ϕ̂−1(α2) · · · 0

...
...

. . .
...

0 0 · · · ϕ̂−1(αL)

1CCCCCCCCCA

0BBBBBBBBB@

1 eα1 · · · eα1(N−1)

1 eα2 · · · eα2(N−1)

...
...

. . .
...

1 eαL · · · eαL(N−1)

1CCCCCCCCCA
I Stability requires αm to be purely imaginary: αm = jωm

I Typically, ϕ(t) low-pass filter ⇒ pick jωm close to the origin

I Choose L ∼ N so that C square
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Approximate FRI recovery: Numerical Example
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(a) yn and ỹn (b) Default FRI retrieval (c) Approx. FRI retrieval

Estimation of K = 6 Diracs with the B-Spline kernel of order L = 16, N = 31.

(b) Default polynomial recovery. (c) Approximate recovery with

αm = j π
1.5(P+1)

(2m − P), m = 0, . . . ,P where P + 1 = 21, SNR=25dB.

Pier Luigi Dragotti
Approximate Strang-Fix: Sparse Sampling with any Acquisition Device



Approximate FRI recovery: Numerical Example

Gaussian Kernel
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Approximate FRI with the Gaussian kernel. K = 5, N = 61, SNR=25dB.

Recovery using the approximate method with αm = j π
3.5(P+1)

(2m − P),

m = 0, . . . ,P where P + 1 = 21.
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Universal FRI recovery

Numerical examples: “Approximate beats exact” III

Recovery of K = 4 random Diracs in the absence of noise sampled with a
B-Spline of order M + 1 = 6 < 2K . (a) Traditional scheme. (b)
Approximation of exponentials.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

 

 

(a) Default

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

t

 

 
original
retrieved

(b) Approximation

Jose Antonio Urigüen, Pier Luigi Dragotti & Thierry Blu
Approximate FRI with arbitrary kernels

Reconstruction of K = 4 Diracs using the default strategy, part (a), and the

approximate framework, part (b). Sampling Kernel: B-spline of order P = 5.
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Neural Activity Detection
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Calcium Transient Detection

Figure 6: Double consistency spike search. (i) and (ii) show the detected locations in red and the locations of the
original spikes in green for two different window sizes. In (i) the algorithm runs estimating the number of spikes
within the sliding window. In (ii) the algorithm runs assuming a fixed number of spikes equal to one for each position
of the sliding window. (iii) shows the joint histogram of the detected locations. (iv) shows the fluorescence signal in
blue with the original spikes in green and the detected spikes in red.

2.4 Generating surrogate data

We generated surrogate data with similar properties to the experimental data, in order to investigate the

changes in performance of the spike detection algorithm in terms of parameters such as data signal to noise

ratio and the sampling frequency. We assume that the spike occurrence follows a Poisson distribution with

parameter λ spikes/s. Experimental data presents occurrences between 0.45 and 0.5 spikes per second. The

probability of having k spikes in the interval considered in parameter λ (one second) is given by the probability

mass function of the Poisson distribution:

fλpkq “
λke´λ

k!
. (17)

To generate a spike train for a time interval L we divide this interval in N slots. Each slot corresponds to

a time interval of ∆t “ L
N seconds. The λ1 parameter that corresponds to this new time interval is λ1 “ λ ¨∆t.

We then generate a vector k “ pk1, . . . , kN q of size 1 ˆN where each ki „ Poispλ1q are independent random

variables. The i-th element of this vector, ki, gives the number of spikes that occurred during the i-th time

slot. We then have to generate the precise instant of time when the spike occured. For a given time slot, we

generate the ki spike instants according to a uniform distribution. The total number of spikes in the time

interval L is K “
řN

i“1 ki. Once we have generated the locations of the K spikes ptkqK
k“1 the waveform given

11
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Calcium Transient Detection
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Application in Neuroscience

Applications in NeuroscienceNeural	
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Application in Neuroscience

Insight: Sample at lower rate and reconstruct the signal outside the
implant

Objec)ve	
  
•  Sample	
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  lower	
  rate	
  and	
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  implant.	
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Stream of Pulses with unknown Shape
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Application in Neuroscience

I Classical Sampling (C) fs = 24KHz

I Sparse Sampling (F) fs = 5.8KHzSpike	
  sor)ng	
  comparison	
  
•  Two	
  recordings	
  of	
  1000	
  spikes	
  from	
  3	
  different	
  neurons.	
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Conclusions

Sampling signals using sparsity models:

I New framework that allows the sampling and reconstruction of
infinite-dimensional continuous-time signals at a rate smaller than Nyquist
rate.

I It is a non-linear problem

I Different possible algorithms with various degrees of efficiency and
robustness

I Approximate Strang-Fix method: universal and robust to noise

Outlook:

I Promising applications in neuroscience

I Applications to the inversion of physical fields from sensors’ measurements

Still many open questions from theory to practice!
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Structural-Sparsity vs Sparse Samples

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

Algorithm 1: Annihilation of indicator function
1. Compute Fourier transform of the indicator plane χ
evaluated at uniformly sampled frequency grids(

2πk
M , 2πl

N

)
;

2. Create annihilation filter according to (6) where the
elements are rearranged lexicographically;

3. Solve the annihilation coefficients ck,l based on (5)
under the Hermitian symmetry constraint on the
coefficients in (2).

4.1. Fourier Transform of Indicator Plane

In order to apply the annihilation Algorithm 1, Fourier trans-
form of the annihilable curve Γ has to be evaluated exactly. FRI
signals investigated previously in 1-D cases, are either streams
of Diracs [7] [2] or piecewise polynomials [1] whose Fourier
transform can be computed exactly. However, in the case of
annihilable curves here, no explicit expression of the Fourier
transform χ̂Γ is available in general. And we can not use DFT
of χΓ directly either. Because the indicator plane χΓ has infi-
nite bandwith, results obtained from DFT suffers from server
aliasing effect. But we can relate the Fourier transform χ̂Γ with
its samples gk,l and calculate the Fourier transform exactly. As
is in the case of streams of Diracs [7] [2], we can prove that
the Fourier transform coincides with the bandlimited discrete
Fourier transform of gk,l.

4.2. Retrieval of Signal Innovation

Once the exact Fourier transform χ̂ is evaluated, the annihilat-
ing filter is constructed according to (5), from which we can
retrieve the coefficients ck,l with annihilation filter method, a
well known approach in the reconstruction of FRI signals. Sup-
pose both ck,l and hk,l are rearranged based on the same rule,
say column-by-column rearrangement, then (5) is equivalent to
a system of equations:

HC = 0 (8)

where H is a block circulant matrix built from frequency sam-
ples of χ̂ and C is the vector that corresponds to ck,l rearranged
column-by-column. Thus we can determine the annihilating co-
efficients uniquely up to a multiplicative constant by solving the
linear system of equations (8) for noise-free cases. However,
noise is ubiquitous in signal processing, which may arise from
the sampling process (Fig 1), the computational inaccuracy as
a result of numerical integration in (7), or model mismatch dis-
cussed in Section 2 in our case here.

In the presence of noise, the annihilation equation (8) is
not satisfied exactly, yet we can still obtain the solution with
the least square approach for the same reasoning as is in 1-D
cases [7] [2]. For cases that suffer from more sever noise cor-
ruptions, it is better to denoise the samples prior to applying the
least square approach with e.g. Cadzow’s method [2] for the
robustness of the annihilation algorithm against noise perturba-
tion.

(a) Original indicator plane (b) Reconstructed indicator plane

(c) Difference image (d) Samples of indicator plane

Fig. 2. Annihilation results for noiseless case

Notice that the annihilation algorithm presented here is non-
iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.

5. SIMULATION RESULTS AND DISCUSSIONS

Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.

Another uncertainty we need to take into account of is the
accuracy of numerical integration in (7), which is controlled
by the total number of points used for calculation. To avoid
ambiguity, we refer to it as “number of numerical integration
control points”. With less computational accuracy, the samples
obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
as:

% error =
total number of non-zero pixels in error image

total number of pixels along curve Γ

5.1. Exact annihilation for noiseless case

For noise-free cases, the algorithm should exactly annihilate the
interior indicator function. In simulations, the number of nu-

Structural Sparse
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is in the case of streams of Diracs [7] [2], we can prove that
the Fourier transform coincides with the bandlimited discrete
Fourier transform of gk,l.
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ing filter is constructed according to (5), from which we can
retrieve the coefficients ck,l with annihilation filter method, a
well known approach in the reconstruction of FRI signals. Sup-
pose both ck,l and hk,l are rearranged based on the same rule,
say column-by-column rearrangement, then (5) is equivalent to
a system of equations:
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where H is a block circulant matrix built from frequency sam-
ples of χ̂ and C is the vector that corresponds to ck,l rearranged
column-by-column. Thus we can determine the annihilating co-
efficients uniquely up to a multiplicative constant by solving the
linear system of equations (8) for noise-free cases. However,
noise is ubiquitous in signal processing, which may arise from
the sampling process (Fig 1), the computational inaccuracy as
a result of numerical integration in (7), or model mismatch dis-
cussed in Section 2 in our case here.

In the presence of noise, the annihilation equation (8) is
not satisfied exactly, yet we can still obtain the solution with
the least square approach for the same reasoning as is in 1-D
cases [7] [2]. For cases that suffer from more sever noise cor-
ruptions, it is better to denoise the samples prior to applying the
least square approach with e.g. Cadzow’s method [2] for the
robustness of the annihilation algorithm against noise perturba-
tion.
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Notice that the annihilation algorithm presented here is non-
iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.

5. SIMULATION RESULTS AND DISCUSSIONS

Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.

Another uncertainty we need to take into account of is the
accuracy of numerical integration in (7), which is controlled
by the total number of points used for calculation. To avoid
ambiguity, we refer to it as “number of numerical integration
control points”. With less computational accuracy, the samples
obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
as:

% error =
total number of non-zero pixels in error image

total number of pixels along curve Γ
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a system of equations:

HC = 0 (8)

where H is a block circulant matrix built from frequency sam-
ples of χ̂ and C is the vector that corresponds to ck,l rearranged
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Notice that the annihilation algorithm presented here is non-
iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.

5. SIMULATION RESULTS AND DISCUSSIONS

Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.

Another uncertainty we need to take into account of is the
accuracy of numerical integration in (7), which is controlled
by the total number of points used for calculation. To avoid
ambiguity, we refer to it as “number of numerical integration
control points”. With less computational accuracy, the samples
obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
as:
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total number of non-zero pixels in error image

total number of pixels along curve Γ

5.1. Exact annihilation for noiseless case

For noise-free cases, the algorithm should exactly annihilate the
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cussed in Section 2 in our case here.
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Notice that the annihilation algorithm presented here is non-
iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.

5. SIMULATION RESULTS AND DISCUSSIONS

Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.

Another uncertainty we need to take into account of is the
accuracy of numerical integration in (7), which is controlled
by the total number of points used for calculation. To avoid
ambiguity, we refer to it as “number of numerical integration
control points”. With less computational accuracy, the samples
obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
as:
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total number of non-zero pixels in error image

total number of pixels along curve Γ
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For noise-free cases, the algorithm should exactly annihilate the
interior indicator function. In simulations, the number of nu-
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