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Abstract—Fast and accurate detection of action potentials
from neurophysiological data is key to the study of information
processing in the nervous system. Previous work has shown
that finite rate of innovation (FRI) theory can be used to
successfully reconstruct spike trains from noisy calcium imaging
data. This is due to the fact that calcium imaging data can
be modeled as streams of decaying exponentials which are a
subclass of FRI signals. Recent progress in the development of
genetically encoded calcium indicators (GECIs) has produced
protein calcium sensors that exceed the sensitivity of the synthetic
dyes traditionally used in calcium imaging experiments. In this
paper, we compare the suitability for spike detection of the
kinetics of a new family of GECIs (the GCaMP6 family) with
the synthetic dye Oregon Green BAPTA-1. We demonstrate the
high performance of the FRI algorithm on surrogate data for
each calcium indicator and we calculate the Cramér-Rao lower
bound on the uncertainty of the position of a detected spike in
calcium imaging data for each calcium indicator.

I. INTRODUCTION

The firing of action potentials transmits information in
neuronal networks. In order to study information processing
in the nervous system, it is important to be able to detect
accurately the time points of action potentials (spikes) across
populations of neurons from neurophysiological data. As the
concentration of intracellular free calcium is a reliable indi-
cator of neuronal activity in many cell types, several optical
imaging methods rely on fluorescent indicators which report
calcium concentration changes via changes in their intensity
(see [1] for a review).

Throughout the past three decades synthetic dyes have been
predominantly used as the fluorescent indicator in calcium
imaging experiments, with Oregon Green BAPTA-1 (OGB-1)
and fluo-4 among the most commonly used [2]. However, a
new family of protein calcium sensors (GCaMP6) has recently
been engineered by Chen et al. [3] and has been found to ex-
ceed the sensitivity of synthetic dyes, an achievement which no
other protein calcium sensor has yet accomplished. Thestrup
et al’s ‘Twitch’ sensors, a family of optimised ratiometric
calcium indicators, further represent the recent progress in the
engineering of protein calcium sensors [4]. Unlike synthetic
dyes, protein calcium sensors are able to selectively label cell
populations and can be used for chronic in vivo imaging. These

advantages may result in protein calcium sensors such as
GCaMP6 and Twitch being preferred as fluorescent indicators
in future calcium imaging work.

Several approaches have been taken to detect spikes in
calcium imaging data. Sasaki et al. developed a supervised
machine learning algorithm that utilises principal component
analysis on calcium imaging data to detect spikes [5]. Simi-
larly, in [6] Vogelstein et al. introduce an algorithm that learns
parameters from calcium imaging data and then performs an
approximate maximum a posteriori estimation to infer the most
likely spike train given fluorescence data. In [7] Grewe et al.
employ an algorithm which detects events via a combination
of amplitude thresholding and analysis of the fluorescence
sequence integral. In [8], Schultz et al. use an event template
derived from imaging data to identify the spike train which
correlates most highly with the noisy fluorescence signal.

In this study we seek to compare the suitability for spike
detection from calcium imaging data of the kinetics of the
synthetic dye OGB-1 and two GCaMP6 sensors (the fast
variant GCaMP6f and the slow variant GCaMP6s). The pulse
in a neuron’s localised fluorescence data that occurs as a
result of the firing of an action potential has a different
characteristic shape for each of the fluorescent indicators we
consider (GCaMP6f, GCaMP6s and OGB-1). By incorporating
these characteristic pulse shapes into our model of imaging
data for each fluorescent indicator, and simulating surrogate
data based on these models, we wish to compare spike
detection performance on each surrogate data set. Moreover,
we calculate the Cramér-Rao bound for the uncertainty of
the estimated location of a spike in calcium imaging data
for each fluorescent indicator and compare the spike detection
algorithm’s performance against this lower bound.

To make our comparisons of the indicators we use the finite
rate of innovation (FRI) spike detection algorithm developed
by Onativia et al. in [9]. This algorithm exploits the fact that
calcium imaging data can be modelled as streams of decaying
exponentials, which are a subclass of FRI signals [10]. This
allows the authors to apply FRI methods (for an overview see
[11]) to reconstruct the signal from noisy data. The algorithm,
which can be performed in real-time, was shown to have a



high spike detection rate and low false positive rate on both
real and surrogate data.

This paper is organised as follows: in Section II we for-
mulate mathematically the problem of spike detection from
calcium imaging data. In Section III we provide a review of
Onativia et al.’s FRI spike detection algorithm and present
our method of generating surrogate calcium imaging data.
In Section IV we formulate an expression for the Cramér-
Rao bound on the uncertainty of the position of one spike
in calcium imaging data. We then show results from our
simulations and compare Cramér-Rao bounds for imaging data
from different fluorescent indicators in Section V. Finally, in
Section VI we conclude.

II. PROBLEM FORMULATION

Each action potential produces a characteristic pulse shape
in the corresponding neuron’s fluorescence signal. We there-
fore model the fluorescence signal of one neuron over time as
a convolution of that neuron’s spike train and the characteristic
pulse shape, such that

K
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where {t;} | are the time points of the K spikes and
the spike train is written z(t) := 25:1 o(t — tg). The
characteristic pulse shape of the fluorescence signal differs
for each fluorescent indicator due to the differences in the
indicators’ kinetics. We make the assumptions that each of the
three pulse shapes have an instantaneous rise and exponential
decay, where the speed of the decay («) and peak amplitude
(A) are different for each indicator, such that

Pa(t) = Aexp (—at) >0y 2)
III. METHODS
A. Finite rate of innovation applied to spike detection

In [9], Onativia et al. develop an FRI algorithm for spike
detection in two-photon calcium imaging data. A review of
that algorithm, which we use to detect spikes in our surrogate
data, is provided here. We refer readers to Ofiativia et al. for
further detail. We start with a useful definition.

Definition III.1. An exponential reproducing kernel is one
such that, when summated with its shifted versions, it gener-
ates exponentials of the form exp (Y, t):

D Cmnep(t —n) = exp (Ymt). 3)
nez
The values c,, , are referred to as the coefficients of the
exponential reproducing kernel. As our sampling kernel we use
an E-spline, which is a type of exponential reproducing kernel
that has compact support (see [12], [13] for more details).

Initially, the fluorescence signal f,(¢) is filtered with an
exponential reproducing kernel ¢ (f%) and sampled N times
with sampling period 7', such that

Yn :y(t”t:nT = <fa(t)7<p(% _n)>7 “4)

forn € {0,1,..., N —1}. Finite differences are then computed
to form samples

Zn = Yn — Yn—1€xp (—aT), ®)

for n € {1,2,...,N — 1}. Using Parseval’s theorem, it is
possible to show that the computation of z,, in Eg{uation 5) is
equivalent to filtering the spike train z(t) = > ;" | 6(t — t)
with a new exponential reproducing kernel ), (—%), such
that

Zn = <x(t),wa(% - n)>, (6)

where ¥, (t) = Bar(—t) * p(t) and Bur(t) is a first-order
E-spline (for further details see [12]). The initial exponential
reproducing kernel ¢ is chosen to ensure that v, (t) reproduces
exponentials with exponents of the form

Ym = Yo + mA for m € {0,1,..., P}, @)

where, in this case, we choose P = % Ensuring exponents
of this form allows us to apply the annihilating filter method
to the exponential sample moments

Sm = Z dm,nznv (3
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where d,, ,, are the coefficients of the exponential reproducing
kernel 1, (t). With exponents of the form in (7), we can
rearrange Equation (8) to become

K
sm =Y brufl, 9
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where by, = Aexp ('yo%) and up = exp ()\%) We then
construct a Toeplitz matrix S from the exponential sample
moments s,,. In the idealised, noiseless scenario in which we
know the value of K, we can use de Prony’s method along
with the condition that hy = 1 to find the unique annihilating
filter h such that

Sh = 0. (10)

Given the value of h, we can calculate the zeroes of its z-
transform, which are equivalent to {uy, }%_,. From these values
we can retrieve the spike times {t;}X_,.

In real data, we do not know the value of K and must
estimate it from noisy samples. Ofiativia et al.’s algorithm uses
a double consistency approach to do this. Firstly, for each
consecutive 32-sample window contained within the data, the
value of K in that window is estimated from the singular
value decomposition of S. The corresponding spikes are then
estimated using the annihilating filter method outlined above.

Secondly, it is assumed that there is a single spike in each
consecutive 8-sample window contained within the data, and
the position of that spike is estimated using the annihilating
filter method. A joint histogram is constructed, containing all
the estimated spikes and their position within the data. The
peaks of this histogram, corresponding to spikes which were
consistently estimated across windows, are selected as the
positions of the true spikes.



TABLE I
PARAMETERS FOR CALCIUM TRANSIENT MODEL

Calcium indicator A a
log(2)
GCaMP6f 0.19 0i42
log(2)
GCaMP6s 023 | el

1
OGB-1 0.1642 0BT

B. Generating surrogate data

We assume that the occurrence of spikes follows a Poisson
distribution with parameter A (spikes per second). We use the
spike rate parameter A = 0.25Hz, which corresponds to the
experimentally measured spontaneous spike rate in the barrel
cortex [14], as our further work will involve calcium imaging
data from this brain region. To generate the spike train we use
the fact that the waiting time between Poisson(\) occurrences
follows an exponential distribution with parameter .

For each fluorescent indicator, using the same generated
spike times {t}/_,, we calculate a fluorescence waveform

AZexp

where the parameters « and A are specific to the fluorescent
indicator used. The values for each o and A were derived from
experimental results given in [3] and can be found in Table
I. We sample each fluorescence waveform N times at time
resolution 7" and add white noise, such that we have samples

Yan = fa(nT) + €, -1}, (12)

with {En} 0 a family of independent and 1dentlcally dis-
tributed Gaussian random variables with variance o2. Using
this method we have, for each fluorescent indicator, a set of
noisy samples of the fluorescence signal. The performance of
the algorithm on surrogate data for each fluorescent indicator
is directly comparable as the same spike train and noise
realisations have been used.

alt =) Lise,ys 11

for ne{0,1,...N

IV. DERIVATION OF THE CRAMER-RAO BOUND

We calculate the Cramér-Rao bound for the uncertainty of
the estimated location of a spike in a noisy fluorescence signal.
We consider the fluorescence signal from Equation (1) in the
case that K = 1, so that f,(t) becomes

fa(t) alt —t0)) Litto)-

The signal f,(t) is then filtered with function ¢ (—%) and
sampled N times with time resolution 7', such that we obtain

the noisy samples

Yn = <fa(t)7(p (% _n)> + €n,

for n € {0,1,...,N — 1}, where {en}ﬁ:’:}l are independent

and identically distributed Gaussian random variables with

variance o2.

= Aexp (— (13)

(14)

Proposition IV.1. The Cramér-Rao bound of estimating tg
from N noisy samples of the form vy, = <fa (), (% — n) > +
€n, where {en}fy:_ol is a family of independently and identically
Gaussian distributed noise, is

N-1

L3 (a(fult),e

0-2
n=0
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N -1}
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where o2 is the variance of €, for n € {0,1, ...,
(falt),

Yn = g(thn) + €n,

Proof: We write g(tog,n) :=

15)

forn € {0,1,..., N—1}. The Fisher Information for estimating
a single parameter %, from N samples {yo, y1, ..., yn_1} With
i.i.d. Gaussian noise is
dg(to,n
3 (M)

is the variance of the noise. We have that

:<fa(t)’90(% 7n)>
:/RAexp(fa(t*to))l{tzto}@(%

where o2

g(to,n)
— n) dt

B

zA/ exp (—a(t —to)) ¢ (% — n) dt, a7
to

where B is the upper limit of the support of the kernel ¢,

we know our kernel has finite support as it is an E-spline.

Denoting the integrand as h(t,tg), we have

9g(to,n)

)40 /Bh(tt)dt (18)
aty oo \ S, '

By the Leibniz Integral Rule, as %{JO) exists and is contin-
uous in ¢y, we can write
o) B B an(t, to)
— h(t,to)dt | = —2dt — h(tg,t 19
atO(/to (70) ) /;0 6t0 (Oa 0)5 ( )
from which it follows that
1 8g(t07 ) B
1 ot a/to exp (—a(t — to))¢ (& —n) dt
—p(%-n). 20
This reduces to
dg(tg,n
% = ag(to,n) — Ap (& —n). 21
0

Plugging Equation (21) into Equation (16), we arrive at the
statement of the proposition. [ ]
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(a) Cramér-Rao bounds and RMSE of algorithm.
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(c) Algorithm performance compared to Cramér-Rao
bounds.

FRI algorithm performance compared to Cramér-Rao bounds for surrogate data with 16Hz sampling rate. Results are averaged over 1000 realisations

of noise. (a) The variance of the additive Gaussian noise (¢2) is plotted against the root mean square error (RMSE) of the FRI algorithm and the square root
of the Cramér-Rao bound for each characteristic pulse shape. (b) The noise variance o2 is plotted against the root of the Cramér-Rao bound. The crosses
indicate the point on each indicator’s curve which corresponds to an SNR of 10dB. (c) The residue of the RMSE from the root of the Cramér-Rao bound is
plotted against the noise variance o2. The dashed lines identify the point corresponding to an SNR of 10dB for each fluorescent indicator.

V. RESULTS
A. Performance analysis based on theoretical bounds

For each fluorescent indicator, we calculated the Cramér-
Rao lower bound (CRB) for the uncertainty of estimating
the position of one spike from noisy samples of fluorescence
sequence data. We compared this to the mean square error
between the position of the real spike and the position esti-
mated by the FRI spike detection algorithm. In particular, we
assumed there was one spike in a time interval of length 1 sec-
ond and that samples were obtained in the manner described
in Section III with sampling rate 16Hz. The performance of
the algorithm compared to the CRB was computed for a range
of values of the variance of the additive Gaussian noise (o2,
see Equation (12)). For each value of o2, the results were
averaged over 1000 realisations of noise.

As can be seen in Figure la, for each characteristic pulse
shape, the FRI algorithm achieves near optimal performance
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Fig. 2. FRI algorithm performance compared to Cramér-Rao bounds for
surrogate data with 16Hz sampling rate. Results are averaged over 1000
realisations of noise traces. Signal-to-noise ratio is plotted against the root
mean square error (RMSE) of the FRI algorithm and the square root of the
Cramér-Rao bound for each characteristic pulse shape.

for noise variances beneath a certain break point. This break
point is reached first for spikes with a GCaMP6s characteristic
pulse shape.

GCaMP6s spikes have the lowest theoretical lower-bound
on uncertainty for all values of o2, whereas OGB-1 spikes
have the highest, this is illustrated in Figure 1b. Furthermore,
as shown in Figure lc, the difference between the root mean
square error (RMSE) of the spike detection algorithm and the
theoretical lower bound of performance (the square root of
the CRB) is significantly smaller when detecting a GCaMP6s
characteristic pulse shape than for GCaMP6f and OGB-1 pulse
shapes.

The above analysis indicates that, under the same imaging
conditions (and therefore the same noise variance), the FRI
algorithm locates a spike with the least uncertainty when that
spike has a GCaMP6s pulse shape. This can be attributed
to the fact that GCaMP6s spikes have the highest operating
signal-to-noise ratio (SNR), a property which arises from their
relatively high peak amplitude (see Table I). When we compare
algorithm performance against SNR instead of noise variance,
we effectively normalise the amplitudes of the pulses. It can
be seen in Figure 2 that, for each SNR, the CRB and RMSE
are lowest for a GCaMPO6f characteristic pulse shape.

Our performance analysis showed that, under the same
imaging conditions, the lowest uncertainty on the position of
the detected spike is achieved when that spike has a GCaMP6s
characteristic pulse shape. The high relative performance of
GCaMP6s is likely to stem from its advantage of having the
highest peak amplitude, and thus the highest operating signal-
to-noise ratio. When the uncertainty in the position of the
detected spike is compared across the same signal-to-noise
ratios, therefore removing the impact of the discrepancy in
peak amplitudes, the GCaMP6 variant with the fastest pulse
decay (GCaMPo6f) performs best.



TABLE II
AVERAGE SPIKE DETECTION RATE (%) OF FRI ALGORITHM ON
SURROGATE DATA (MEAN == STANDARD DEVIATION ACROSS INDICATORS)

o2 Sampling rate (Hz)

8 16 32 64 128
810~ % [ 85.946.8 | 91.744.7 | 93.243.0 | 91.3£5.7 | 90.3+4.7
310~% [ 88.642.2 | 93.7£1.0 | 95.141.6 | 94.4+2.1 | 92.842.7
31075 | 89.6+0.5 | 943406 | 96.5£0.2 | 96.240.9 | 96.0+1.7
310°% [ 90.7£0.9 | 94.440.4 | 96.0+0.6 | 95.6£1.3 | 96.2+1.4

B. Simulation results

In the manner described in Section III-B, we simulated
surrogate fluorescence sequence data for 20 pairings of noise
variance (02) and sampling rate. The algorithm performance
on the GCaMP6f, GCaMP6s and OGB-1 surrogate data is
directly comparable as the same simulated noise traces and
spike trains were used. The following performance statistics
are averaged over 100 realisations for each o and sampling
rate pairing.

The FRI algorithm achieved a high spike detection rate
on surrogate data for each fluorescent indicator, regularly
detecting above 90% of spikes. Table II shows the mean and
standard deviation of the spike detection rate across surrogate
data for each fluorescent indicator. From these data it can be
seen that, for noise variances beneath 8 104, there was little
difference in the ability of the FRI algorithm to detect spikes
with the three different pulse shapes.

No false positives were produced in 81% of surrogate data
sequences. For a spike rate of 0.25Hz, the corresponding
false positive rates were 8.7 1072 Hz, 3.4 10~* Hz and 7.1
10~3 Hz for pulses with OGB-1, GCaMP6f and GCaMP6s
characteristic pulse shapes, respectively.

For a given power of noise, the three indicators have differ-
ent operating SNRs. For example, the corresponding average
SNR for a noise power of 8 10~% is 5dB, 1dB and 9.5dB for
OGB-1, GCaMPo6f and GCaMP6s pulses, respectively. If the
comparison of spike detection performance is made linearly
in terms of SNR it can be seen that the fastest decaying
pulse GCaMPo6f outperforms both OGB-1 and GCaMP6s (by
average spike detection rate margins of 2.1% and 4.3%,
respectively).

The FRI algorithm produces high spike detection rates
and low false positive rates on surrogate data for each of
the three fluorescent indicators. The performance on each
surrogate data set under the same imaging conditions (same
02 and sampling rate) was very similar. When normalising
the SNR and comparing spike detection performance, it was
seen that the fast GCaMP6 variant outperformed the other two
indicators, particularly at low SNRs.

VI. CONCLUSION

We investigated the relative suitability for spike detection
from calcium imaging data of three fluorescent indicators: the
conventionally used synthetic dye OGB-1 and two new protein
calcium sensors GCaMP6f and GCaMP6s. We demonstrated
that the FRI algorithm achieves high spike detection rates and

low false positive rates on surrogate data for each fluorescent
indicator. Furthermore, we calculated an expression for the
Cramér-Rao lower bound on the uncertainty of the estimated
position of a spike in calcium imaging data and compared
these bounds with the FRI algorithm’s performance on surro-
gate data. We found that, under the same imaging conditions,
spikes with a GCaMP6s pulse shape have the lowest Cramér-
Rao bound and the FRI algorithm is the closest to attaining
that bound when detecting GCaMP6s spikes. The superiority,
in this respect, of GCaMP6s can be attributed to the fact that,
under the same imaging conditions as other indicators, the
GCaMP6s pulse has a higher SNR. When assessing indicator
performance linearly across SNRs, it is the indicator with the
fastest decay (GCaMP6f) that performs the best.
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