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Abstract

In this paper, we extend the theory of sampling signals with finite rate of innovation (FRI) to a

specific class of two-dimensional curves, which are defined implicitly as the zeros of a mask function.

Here the mask function has a parametric representation as a weighted summation of a finite number of

complex exponentials, and therefore, has finite rate of innovation [1]. An associated edge image, which

is discontinuous on the predefined parametric curve, is proved to satisfy a set of linear annihilation equa-

tions. We show that it is possible to reconstruct the parameters of the curve (i.e. to detect the exact edge

positions in the continuous domain) based on the annihilation equations. Robust reconstruction algorithms

are also developed to cope with scenarios with model mismatch. Moreover, the annihilation equations

that characterize the curve are linear constraints that can be easily exploited in optimization problems

for further image processing (e.g., image up-sampling). We demonstrate one potential application of the

annihilation algorithm with examples in edge-preserving interpolation. Experimental results with both

synthetic curves as well as edges of natural images clearly show the effectiveness of the annihilation

constraint in preserving sharp edges, and improving SNRs.
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I. INTRODUCTION

Sampling plays an essential role in signal processing and communications, which aims at representing

a continuous domain signal with a few discrete samples. A major concern with sampling is whether this

set of discrete samples is a faithful representation of the original signal. For bandlimited signals, the

result is given by Shannon’s fundamental sampling theorem [2], which requires that the sampling rate be

at least twice the signal bandwidth. The classical sampling theorem can be extended to non-bandlimited

signals, which live in shift-invariant spaces, such as for example uniform splines and wavelets [3]–[6].

We refer the readers to [6] for a comprehensive review of modern developments of sampling theory.

These theories cannot deal with more general cases, when the signal is neither bandlimited nor belongs

to a shift-invariant space. A recent development by Vetterli et al. [1] (see also [7]) shows that it is possible

to develop sampling schemes for specific classes of parametric non-bandlimited signals. A common feature

of this type of signals is that they are completely characterized by a finite number of parameters per

unit time/space, and hence have finite rate of innovation (FRI). Typical examples include streams of

Diracs [1], [7], piecewise polynomials [1], and piecewise sinusoids [8]. Previous efforts to extend the

FRI framework to multi-dimensional cases give rise to various sampling schemes for 2-D Diracs [9], lines

of finite length [9], and polygons [9]–[12]. These multi-dimensional signals, however, are usually of very

simple geometry and may not have enough descriptive power to cope with various shapes encountered in

higher dimensions. Note also an inspiring approach to reconstruct polygons, and then quadrature domains

from the complex moments of their indicator image [13]–[15].

In this paper, we propose a sampling scheme and a perfect reconstruction algorithm for a certain

class of 2-D curves, which have a parametric representation with finite number of degrees of freedom.

Depending on the number of degrees of freedom, this model can describe a wide set of curves that are

much more complex than former multi-dimensional FRI-type signals. Robust algorithms to reconstruct

the FRI curve model in the presence of noise will be developed. We will demonstrate that our curve

model is able to describe edges in natural images, which is of particular interest for practical image

processing problems.

This paper is organized as follows. In Section II, we first define an edge image associated with curves

that specify the discontinuity positions (i.e. edges) in the 2D plane. Next we prove that under certain

assumptions on the parametric form of the curve model, the edge image should satisfy a set of linear

equations known as annihilation equations. A new more intuitive spatial domain interpretation will also

be presented. Based on the annihilation equation, we develop, in Section III, a perfect reconstruction
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(a) (b)

Fig. 1. A continuous domain edge image, which is discontinuous on some predefined curve. The discontinuity across the curve

can be (a) uniform or (b) varying in general.

algorithm of the curve model from a finite number of (ideal) samples of the edge image. Depending

on the level of noise, two different algorithms, namely the least-square method and Cadzow’s iterative

denoising method, are proposed to reconstruct the curve model robustly. Further in Section IV, we show

how to use the curve model in natural images. Specifically, we exemplify the potential of the curve

annihilation, which can be imposed as an edge-preserving constraint in a practical image processing

problem, e.g. image up-sampling. Experimental results with both synthetic curves, which satisfy the

exact model, and natural images are shown in Section V. We then conclude in Section VI.

II. EDGE IMAGES WITH FINITE RATE OF INNOVATION

A. Edge Images

For each curve C defined on a 2D plane, we introduce a continuously-defined edge image according

to the following contour integral (counterclockwise integration):

IC(x, y) =
1

2jπ

∫

C

f0(x0, y0)dz0
z0 − x− jy

, (1)

where f0(x, y) is an arbitrary function and z0 = x0 + jy0. It can be shown that, for most general

f0(x, y) and contours C (directed, but not necessarily closed), the complex-valued image is analytic

almost everywhere except on the curve C where it is discontinuous with jump value given by f0(x, y).

If we further restrict f0(x, y) to be analytical within the interior of a closed contour C, then by virtue

of Cauchy’s integral formula, the edge image IC(x, y) becomes equal to this analytic continuation in the

interior of the contour, and vanishes outside: see Fig. 1 (a) for f0 = Constant and Fig. 1 (b) for a more

general analytic function.

May 12, 2014 DRAFT



4 ACCEPTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING

From the contour integral representation of the edge image (1), we can calculate1 the exact Fourier

transform of the edge image (1) as:

ÎC(ωx, ωy) =
1

ωx + jωy

∫

C
f0(x0, y0)e−jx0ωx−jy0ωydz0. (2)

Note that here (2) is valid without any restrictions on the curve C, which defines the edge locations in the

continuous image domain. We will see in Section II-C1 that, by imposing that the curve C satisfies some

specific parametric forms, we can derive a set of linear equations that the edge image should satisfy.

B. Curves with Finite Rate of Innovation

We choose to represent curves implicitly through the zeros of some mask function µ: µ(x, y) = 0.

In order to have a limited number of degrees of freedom, we approximate this mask function using a

periodic Fourier expansion with few terms:

C :

µ(x,y)︷ ︸︸ ︷
K0∑

k=−K0

L0∑

l=−L0

ck,le
j 2πk
τx
x+j 2πl

τy
y = 0, where





0 ≤ x ≤ τx,

0 ≤ y ≤ τy.
(3)

Here τx and τy are some positive real numbers that specify the x-y dimensions of the rectangle that

contains the curve. We can uniquely define C within this rectangle with (2K0 +1)(2L0 +1) coefficients

ck,l, which are also known as “signal innovations” in the framework of Finite Rate of Innovation (FRI) [1].

Note however that, if no restrictions on ck,l are enforced, (3) is equivalent to two real equations (real

+imaginary part) for two real unknowns (x, y), which is unlikely to result in more than a few isolated

points. Hence, in order to allow curves as solutions, we choose to require that µ(x, y) is a real-valued

expression (i.e., one real equation for two real unknowns), which is equivalent to enforcing the Hermitian

symmetry of the coefficients ck,l:

ck,l = c∗−k,−l.

This formulation leads to curves with very diverse topologies: we may have multiply connected curves,

open curves, crossings, and non-smooth connections. Moreover, this representation is potentially very

rich: if we increase the number of degrees of freedom, we can approximate arbitrary mask functions as

accurately as we want. A closer look at (3) suggests that the coefficients ck,l annihilate the complex expo-

nentials, which are uniformly sampled at discrete frequencies (ωx, ωy) =
(

2πk
τx
, 2πl
τy

)
for k = −K0, . . . ,K0

and l = −L0, . . . , L0. This is why we term the curves defined in (3) as “annihilable curves”.

1It can be proved that the Fourier transform of 1/(x+ jy) is −2jπ/(ωx + jωy).
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We will then denote by “edge images with Finite Rate of Innovation” those edge images that are based

on FRI curves.

C. Annihilation

1) Annihilation of the Derivative of the Edge Image: The annihilating filter method, which is related

to Prony’s method in spectral estimation [16]–[18], was shown to be an effective technique to reconstruct

FRI-type signals [1], [7]–[10]. Here we will apply the same strategy to annihilate the derivative of an

edge image associated with the parametric curve defined in (3). The complex derivative involved here is

known to be of Wirtinger type in complex analysis: I ′C =
∂IC
∂x

+ j
∂IC
∂y

.

Theorem 1: Consider an annihilable curve C as defined in (3) and its associated edge image IC(x, y),

then for any frequencies ωx and ωy we have:

K0∑

k=−K0

L0∑

l=−L0

ck,lÎ
′
C

(
ωx −

2πk
τx

, ωy −
2πl
τy

)
= 0, (4)

where Î ′C(ωx, ωy) = j(ωx + jωy)ÎC(ωx, ωy).

Proof: From (2), Î ′C(ωx, ωy) = j
∫
C f0(x0, y0)e−jx0ωx−jy0ωydz0. Therefore,

lhs = j
∑

k,l

ck,l

∫

C
f0(x0, y0)e−jx0ωx−jy0ωyej

2πk
τx
x0+j

2πl
τy
y0dz0

= j

∫

C
f0(x0, y0)e−jx0ωx−jy0ωy

=0 from (3)︷ ︸︸ ︷∑

k,l

ck,le
j 2πk
τx
x0+j

2πl
τy
y0 dz0 = 0.

Hence, any ck,l that annihilates the curve C is automatically an annihilator of the derivative of the

associated edge image. Observe that the annihilation equation (4) is a linear equation with respect to

both the annihilation coefficients and the image data, Î ′C , which is completely specified by the Fourier

transform of the edge image. Therefore, in principle we should be able to reconstruct the annihilation

coefficients by solving a linear system of equations, as long as we have access to the Fourier transform

of the edge image at sufficiently many frequencies. This fact will be discussed in details in Section III-B.

2) Spatial Domain Interpretation of the Annihilation Equation: The annihilation of the derivative of

the edge image (4) is formulated as a Fourier domain convolution, which may appear obscure at first

glance. However, the underlying principle is actually very simple. We can transform every element in

the annihilation equation to the spatial domain (see Table I).

Note that the inverse Fourier transform of the annihilation coefficients ck,l is (up to a constant 4π2)

the same function µ(x, y) whose roots define the annihilable curve in (3) in the first place. The image
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TABLE I

FOURIER DOMAIN ANNIHILATION EQUATION AND ITS SPATIAL DOMAIN INTERPRETATIONS.

Fourier Domain Spatial Domain

µ̂(ωx, ωy) = 4π2
∑

k,l
ck,lδ

(
ωx − 2πk

τx
, ωy − 2πl

τy

)
µ(x, y) =

∑
k,l
ck,le

j 2πk
τx

x+j 2πl
τy

y

Î ′
C(ωx, ωy) = j(ωx + jωy)ÎC(ωx, ωy) I ′

C(x, y) =
(
∂
∂x

+ j ∂
∂y

)
IC(x, y)

convolution ∗ multiplication ×
∑
k,l ck,lÎ

′
C

(
ωx − 2πk

τx
, ωy − 2πl

τy

)
µ(x, y)× I ′

C(x, y)︸ ︷︷ ︸
derivative of edge image IC

C : µ(x, y) = 0 I ′
C(x, y) 6= 0×

= 0

(b) I ′
C (c) µ× I ′

C(a) µ(x, y)

Fig. 2. Spatial domain interpretation of the annihilation equation (4). The function µ(x, y), whose roots defines the curve,

serves as a mask to annihilate whatever is different from zero in the derivative image I ′
C (see text in Section II-C2).

data Î ′C(ωx, ωy) are obtained by taking derivatives in the spatial domain. Since the edge image is analytic

almost everywhere except on the defined curve C, the derivative image I ′C is different from zero only

on the annihilable curve. Therefore, the annihilation equation, which is a Fourier domain convolution,

corresponds to a simple spatial domain multiplication. Here the function µ(x, y) serves as a “mask” that

automatically annihilates whatever is different from zero in the derivative image I ′C (see, Fig. 2).

III. RECONSTRUCTION OF AN EDGE IMAGE

A. Ideal Samples

1) Acquisition of the Edge Image Samples: Consider the general two-dimensional signal sampling

setup (as shown in Fig. 3), where a (τx, τy)-periodic version of the continuous domain edge image,

ICper(x, y), is low-pass filtered with an anti-aliasing filter ϕ(x, y) and uniformly sampled. The question

at hand is: can we reconstruct the two dimensional curve (or equivalently the mask coefficients ck,l) from

the given finite number of samples of the edge image?
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g(x, y)
Tx, Ty

gm,n
ϕ(x, y)

ICper(x, y)
sampling kernel

Fig. 3. Sampling of edge image ICper associated with an annihilable curve C. The periodized continuous domain edge image

is low-pass filtered and then uniformly sampled.

For simplicity, assume that the edge image is convolved with a 2D sinc window (ideal low-pass) of

bandwidth2 Bx and By and sampling step Tx = τx/Nx and Ty = τy/Ny along x, y-directions. Then the

samples are (see the derivations in Appendix A-A):

gm,n =
〈
ICper(x, y), sinc

(
Bx(mTx − x)

)
sinc

(
By(nTy − y)

)〉

=
∫ ∞

−∞

∫ ∞

−∞
ICper(x, y)sinc

(
Bx(mTx − x)

)
sinc

(
By(nTy − y)

)
dxdy (5)

=
∫ τx

0

∫ τy

0
IC(x, y)ϕ(mTx − x, nTy − y)dxdy, (6)

where m = 0, 1, . . . , Nx − 1, n = 0, 1, . . . , Ny − 1 and ϕ(x, y) = sin(πBxx) sin(πByy)
BxByτxτy sin(πx/τx) sin(πy/τy)

is the 2D

Dirichlet kernel. We will stick to the sinc kernel in our analysis in the subsequent sections. Note that, in

order to get the same ideal samples, we can also use other non-ideal (even compactly supported) anti-

aliasing filters as long as they can reproduce some complex exponentials exactly—see, e.g. the exponential

reproducing kernels in [19], which avoid periodizing the edge image. Yet, in practice, we can simply

approximate these ideal samples by applying an additional post-filtering when a non-ideal anti-aliasing

filter, e.g. a Gaussian kernel ϕ(x, y) = 1
2πσ2 e−

x2+y2

2σ2 , is used (see details in Section III-C).

2) Exact Fourier Samples: Notice that in order to reconstruct the annihilation coefficients, we need

to know the exact Fourier transform of the edge image at certain frequencies (so that we can build a

linear system of equations based on the annihilation equation (4)). However, we do not have such direct

access—we only have the spatial domain samples gm,n from the sampling process of Fig. 3. Therefore,

the difficulty now lies on how we can obtain uniform samples of the Fourier transform of the edge image

from the given spatial domain samples.

The periodized edge image ICper can be expressed as a Fourier series:

ICper(x, y) =
∑

k,l∈Z
Îk,lej2πkx/τx+j2πly/τx , (7)

2Here Bxτx, Byτy are some odd integers for the consideration of the convergence of sinc function summation—see [7] for

details.
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Algorithm 1: Annihilation of the derivative of the edge image

Compute the 2-D DFT ĝk,l of the ideally low-pass filtered samples gm,n;1

Evaluate the Fourier transform of the edge image IC at uniformly sampled discrete frequencies2
(

2πk
τx
, 2πl
τy

)
using (9);

Build a discrete image data samples Î ′k,l according to (11);3

Solve for the annihilation coefficients based on (10) under the constraint of Hermitian symmetry of4

the coefficients ck,l.

where Îk,l are the Fourier series coefficients of ICper and τx, τy are the periods of the edge image along

x, y-axis respectively. Moreover, thanks to Poisson’s summation formula, we also know that

Îk,l =
1

τxτy
ÎC
(2πk
τx

,
2πl
τy

)
.

Assume that the total number of samples within one period is such that Nx ≥ Bxτx and Ny ≥ Byτy,

then from (5) and (7), we have (see the derivations in Appendix A-B):

gm,n =
1

BxBy

∑

|k|≤bBxτx/2c
|l|≤bByτy/2c

Îk,lej2πmk/Nx+j2πnl/Ny

=
1

BxByτxτy

∑

|k|≤bBxτx/2c
|l|≤bByτy/2c

ÎC
(2πk
τx

,
2πl
τy

)
ej2πmk/Nx+j2πnl/Ny (8)

A careful look at (8) reveals that the spatial domain samples gm,n are simply the band-limited inverse

discrete Fourier transform (IDFT) of the Fourier series Îk,l. Therefore, the DFT of gm,n coincides (up to

a scaling factor) with the Fourier transform of IC(x, y) for frequencies (ωx, ωy) bounded inside the box
2π
Nx

[− bBxτx/2c, bBxτx/2c
]× 2π

Ny

[− bByτy/2c, bByτy/2c
]
:

ĝk,l =





1
BxByTxTy

ÎC
(

2πk
τx
, 2πl
τy

)
for |k| ≤ bBxτx/2c and |l| ≤ bByτy/2c,

0 otherwise.
(9)

B. Curve Coefficients from Ideal Samples

We have proved in (4) that the convolution between the curve coefficients and the image data, which

is completely determined by the Fourier transform of the associated edge image, is zero. Specifically, if

we take ωx = 2πk0
τx

, ωy = 2πl0
τy

for k0, l0 ∈ Z, then (4) reduces to a discrete convolution between the

annihilation coefficients ck,l and a discrete sequence of image data Î ′k,l:
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ck,l ∗ Î ′k,l =
K0∑

k=−K0

L0∑

l=−L0

ck,lÎ
′
k0 − k, l0 − l = 0, (10)

where

Î ′k,l = Î ′C(ωx, ωy)
∣∣∣ωx=2πk/τx
ωy=2πl/τy

=
(2πk
τx

+ j
2πl
τy

)
ÎC
(2πk
τx

,
2πl
τy

)
. (11)

Therefore, we can reconstruct the coefficients ck,l (i.e. the annihilable curve) exactly from the Fourier

transform samples ÎC
(

2πk
τx
, 2πl
τy

)
, which are shown to have one to one correspondence with the spatial

domain samples (see, Section III-A2). The annihilating filter method is summarized in Algorithm 1.

Note that we can rewrite the annihilation equation (10) as a linear system of equations:

I′c = 0, (12)

where I′ is a block-circulant convolution matrix associated with the image data Î ′k,l in (11) and c is the

annihilation coefficients ck,l rearranged lexicographically as a column vector. To avoid any trivial solution

(i.e. c = 0), we may want to solve (12) under a non-zero constraint, e.g. c0,0 = 1. The solution to this

linear system of equations gives an exact reconstruction of the coefficients ck,l (up to a multiplicative

factor). With the annihilating filter method, we actually separate the reconstruction of positions (i.e. where

the curve C locates) from amplitudes (i.e. the amount of discontinuity across C in the edge image)—

see [1], [7] for a few examples in 1D. Any scaling to the reconstructed annihilation coefficients ck,l does

not alter the curve it defines, which is uniquely determined by the roots of the mask function µ(x, y)

in (3). Consequently, we can re-synthesize the curve C from ck,l, which gives the exact position of the

discontinuity (in the continuous domain) of the edge image. From this perspective, we can consider the

restoration algorithm here as an edge detector with infinite accuracy3. Moreover, we will see that the

reconstructed mask function finds more extensive applications than the binary edge map provided by

conventional edge detection algorithms (see, e.g. Section III-E and Section IV-A).

The next issue is to understand what is the minimum number of samples required in order to have

perfect reconstruction. In the 1D cases, e.g. streams of K-periodic Diracs, the minimum sampling rate is

2K + 1 samples per period [1], which is the next best thing for a signal with the rate of innovation 2K

(K positions and K amplitudes). For the annihilable curve (3), the innovation parameters are completely

determined by the (2K0 +1)(2L0 +1) complex-valued annihilation coefficients ck,l or, taking Hermitian

symmetry into account, (2K0 +1)(2L0 +1) real-valued degrees of freedom. However, in order to retrieve

these degrees of freedom, it is necessary to use more samples of the edge image, as shown in the following

theorem.

3Because what is reconstructed is a continuous domain edge model.
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K2 × L2 Data

K1 × L1 Sliding Window

Fig. 4. The total number of shifts we can have when sliding a K1 × L1 window over K2 × L2 data block is (K2 −K1 +

1)(L2 − L1 + 1).

g(x, y)
Tx, Ty

gm,n

post-filtering

ϕ̃m,n
g̃m,n

ϕ(x, y)
ICper(x, y)

sampling kernel

Fig. 5. Approximate ideal low-pass filtered samples obtained by applying additional post-filtering to non-ideal samples (see

text in Section III-C).

Theorem 2: The minimum number of samples required for the annihilating filter method to perfectly

reconstruct an annihilable curve C, which is generated from (2K0 + 1)× (2L0 + 1) coefficients ck,l, is

at least (4K0 + 1)(4L0 + 1).

Proof: The annihilation equation (10) is a convolution between the curve coefficients ck,l and the

image data Î ′k,l, which amounts to sliding ck,l over the image data block. With (4K0 + 1)(4L0 + 1)

samples, we have (2K0 + 1)(2L0 + 1) different shifts (see Fig. 4) of the image data (11), each of which

satisfies the annihilation equation. Thus we can uniquely determine the (2K0 + 1)(2L0 + 1) unknowns

(i.e. the annihilation coefficients ck,l) from the (2K0 +1)(2L0 +1) independent equations—except in the

unlikely event that these equations are linearly dependent.

C. Non-ideal Low-pass Samples

Our analysis in the previous sections assumes that the continuous domain edge image is ideally low-

pass filtered prior to sampling. However, the sinc kernel has infinite spatial support and hence cannot

be used in practice. Instead, we must consider more practical kernels for the anti-aliasing filter in the

sampling setup (Fig. 3), e.g. the Gaussian kernel ϕ(x, y) = 1
2πσ2 e−

x2+y2

2σ2 .

It is important to note that in the annihilation algorithm, we need to have access to the Fourier

coefficients of the edge image at certain frequencies, which are shown to have one to one correspondence

DRAFT May 12, 2014
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(a) (b) (c)

Fig. 6. (a) Samples with ideal sinc kernel. (b) Samples with Gaussian kernel. (c) Samples obtained by applying additional

post-filtering. The SNR of (b) and (c) compared with the ground truth (a) are 13.47 dB and 38.39 dB respectively.

with the ideal low-pass filtered samples (via the truncated DFT) in Section III-A2. But such a one-to-

one correspondence between the spatial and Fourier domain samples is no longer valid in general when

kernels that do not reproduce the required sinusoids are used in the sampling setup. Therefore, in order

to apply the same annihilation algorithm, we need to find a way to process these non-ideal samples in

such a way that we can have a good estimate of the ideal low-pass filtered samples.

In [4], Blu and Unser showed that one can design an optimal (in the least-square sense) digital filter

such that the post-filtered samples g̃m,n are the closest match with the ideal samples (Fig. 5). This optimal

filter ϕ̃m,n is specified with its discrete space Fourier transform (DSFT) as (see details in Appendix A-C):

ˆ̃ϕ(ωx, ωy) =
ϕ̂(ωx, ωy)∗

∑

k,l∈Z

∣∣∣∣∣ϕ̂
(
ωx +

2kπ
Tx

, ωy +
2lπ
Ty

)∣∣∣∣∣

2

for (ωx, ωy) ∈
[
− π

Tx
,
π

Tx

]
×
[
− π

Ty
,
π

Ty

]
. (13)

In many cases (typ., if ϕ has compact support), the infinite summation in (13) can be computed exactly.

But in practice, we may simply use a few k, l-s to approximate the infinite summation accurately (typ.,

when ϕ̂ is fastly decreasing).

We illustrate the effectiveness of the additional post-filtering with Gaussian low-pass filtered samples.

Here σ in the Gaussian kernel is chosen in such a way that one sampling step corresponds to a full width

at half maximum (FWHM). The processed samples get much closer to the ideal low-pass filtered ones

because of the additional post-filtering (Fig. 6).
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D. Curve Coefficients from Inexact Samples

In Section III-B, we have shown that the annihilable curve position can be perfectly reconstructed from

a finite number of ideally low-pass filtered samples of the associated edge image. However, the restoration

algorithm presented in Section III-B is very sensitive to sample inaccuracies, which are ubiquitous in

signal processing.

In the case of annihilable curves, “noise” may arise from two different sources: either from the

imperfection of the sampling process i.e., noise corruption (see examples in Section V-A2), quantization,

non-ideal lowpass filtering; or more generally, as a result of model mismatch, where the curves that we

try to reconstruct are not built from the exact annihilation model (3) (see examples in Section V-A3 and

Section V-C1). In either scenario, we need to make a projection to an annihilable curve model that is

the best fit for the given “noisy” samples.

Depending on the severity of deviation from an exact annihilable curve model (3), two different

denoising algorithms are at our disposal: 1) least square denoising method for mild noise perturbation

(typically for SNR above 20 dB); and 2) Cadzow’s method [20], [21] for much more severe distortions.

1) Least Square Denoising: In the presence of noise, the image data matrix I′ is only approximately

singular. However, it is reasonable to minimize the annihilation results I′c in the least-square sense [1],

[7] under a non-zero constraint, e.g. c0,0 = 1:

min
c
‖I′c‖22

subject to c0,0 = 1.

The reconstructed coefficients are c =
(
eH
0(I′HI′)−1e0

)−1((I′HI′)−1e0
)
, where ej is an indicator vector,

whose component is 1 for the j-th position and 0 otherwise.

2) Cadzow’s Iterative Denoising: The least square denoising method works quite well for moderate

levels of noise. However, as the distortion gets more severe, the reconstructed annihilation coefficients

become less reliable. From our previous experience in the 1D FRI signals [7], it is desirable to exploit

the consistencies among samples (via the annihilation equation) over a wider range to further denoise the

samples before applying the least square denoising method. This usually amounts to looking for a larger

set of annihilation coefficients as if the signal description (i.e. the annihilable curve model (3)) required

more innovation parameters than the ground-truth.

Corollary 1: Suppose the image data matrix I′ is built as if the annihilation coefficients c̃k,l were

(2K̃0 + 1)× (2L̃0 + 1), then the last
(
2(K̃0 −K0) + 1

)(
2(L̃0 − L0) + 1

)
smallest singular values of I′

are zero.
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Proof: Note that we always have one set of annihilation coefficients c̃k,l (which is of larger size

compared with ck,l)

c̃k,l =




ck,l for |k| ≤ K0 and |l| ≤ L0,

0 otherwise,

such that the annihilation equation is satisfied

K̃0∑

k=−K̃0

L̃0∑

l=−L̃0

c̃k,lÎ
′
k0 − k, l0 − l =

K0∑

k=−K0

L0∑

l=−L0

ck,lÎ
′
k0 − k, l0 − l = 0. (14)

On the other hand, the annihilation equation (4) is satisfied for any frequencies ωx and ωy. Arbitrary

frequency shifts of the image data or integer shifts of the annihilation coefficients do not change the

outcome of the annihilation (10) and (14). Specifically, consider another set of coefficients

c̃shift
k,l =




ck−k′,l−l′ for |k − k′| ≤ K0 and |l − l′| ≤ L0,

0 otherwise,

which is obtained by shifting the non-zero portion in c̃k,l (specified by ck,l) by k′ and l′ in the horizontal

and vertical directions respectively. The shifted coefficients cshift
k,l still satisfy the same annihilation

equation (14). The total number of shifts we can have are
(
2(K̃0−K0)+1

)(
2(L̃0−L0)+1

)
(see Fig. 4).

All the shifted sets of annihilation coefficients form the basis vectors of the null space of I′, i.e. the last
(
2(K̃0 −K0) + 1

)(
2(L̃0 − L0) + 1

)
smallest singular values of I′ should be zero.

In general, the convolution matrix built from the noisy samples does not satisfy the rank constraint

in Corollary 1. Like in the 1D case, we would like to find a (block)-circulant convolution matrix with

the rank that is expected from Corollary 1. Cadzow’s solution consists in iterating back and forth the

following two steps (see Algorithm 2):

(i) Thresholding step — Set the smallest singular values of the convolution matrix to zero (based on

Corollary 1);

(ii) Projection step — Find the closest block-circulant convolution matrix to the thresholded matrix

obtained in step (i).

Once the samples are “denoised” (i.e., satisfy Corollary 1), the annihilation coefficients are reconstructed

by solving the standard least square minimization problem of Section III-D1.

E. Edge Image Amplitudes

The annihilation algorithm developed in the previous subsections addresses only half of the restoration

problem: what we reconstruct is the (curve) location where the discontinuity occurs in the edge image.
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Algorithm 2: Cadzow’s Iterative Denoising

Build the image data matrix I′ as if the annihilating coefficients c̃k,l were (2K̃0 + 1)× (2L̃0 + 1)1

according to (11) and perform the SVD of I′ = USVH;

Build the diagonal matrix S0 by setting the last
(
2(K̃0 −K0) + 1

)(
2(L̃0 − L0) + 1

)
smallest2

eigenvalues in S to be zero and re-synthesize I′0 = US0VH;

Obtain the denoised image data matrix Î ′0k,l by averaging diagonals in I′0 based on the3

block-circulant structure of a 2D convolution matrix;

Repeat step 1 to 3 until the
[
(2(K̃0 −K0) + 1

)(
2(L̃0 − L0) + 1)

]th eigenvalue is smaller than a4

predefined threshold;

Take the denoised image data matrix Î ′0k,l and use the least square minimization in Section III-D15

to reconstruct the annihilation coefficients.

With the annihilating filter method, the reconstruction of amplitudes is separated from that of locations.

In the one dimensional FRI case, e.g. streams of K Diracs, the amplitudes can be recovered via data-

fitting by solving an unconstrained least square minimization problem once we obtain the position of the

Diracs [1]. This approach was feasible because only a finite number of amplitudes have to be retrieved

(K, if there are K Diracs). However, the same strategy fails for the retrieval of the jump values of the

edge image, because they require the retrieval of a complete function; i.e., an infinite number of degrees

of freedom.

In order to reconstruct the amplitudes, we may either 1) make the assumption that the amplitude

function can be represented explicitly in a parametric form (with finite number of parameters); or 2)

approximate the edge amplitudes by a smoothly varying function which can be retrieved, e.g., through an

implicit regularization framework. Since the amplitude functions may not satisfy any explicit parametric

form exactly, we adopt the second implicit approach in the rest of this paper.

For simplicity, let us assume that what we have are the ideally low-pass filtered samples ILP (for

instance, the gm,n samples of Subsection III-A) of the edge image. Instead of considering a functional

approximation problem, we may lower our ambition and consider an up-sampling problem: given the low-

resolution samples ILP , find higher resolution samples I (for instance, samples that would be obtained

for a smaller value of Tx and Ty in (6)). Specifically, the up-sampling problem is formulated as a Fourier
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domain extrapolation:

min
Îk,l

∑

k,l

∣∣∣∣∣∣



(

2πk
τx

)2

+

(
2πl
τy

)2

 Îk,l

∣∣∣∣∣∣

2

subject to Îk,l =
[
ÎLP

]
k,l

for k, l ∈ low frequency regions, (15)

ck,l ∗
(

2πk
τx

+ j 2πl
τy

)
Îk,l = 0, (16)

where Î and ÎLP are the DFT coefficients of the up-sampled image I and the known low-resolution

samples ILP respectively. Here we use the Laplacian of the up-sampled image (in the Fourier domain)

as a smoothness-inducing regularizer. Observe that in addition to the usual data-fidelity constraint (15),

annihilation of the up-sampled image (16) is also enforced. The reason is that the DFTs of both the

up-sampled image and the low-resolution one are samples of the exact Fourier transform of the same

continuously defined edge image. Therefore they should all satisfy the annihilation equation (4) and be

annihilated by the same annihilation coefficients ck,l.

When the edge curve cannot be annihilated exactly (model mismatch, noise, etc.), it is reasonable to

integrate the annihilation constraint as a part of the objective functional to be minimized:

min
Îk,l

∑

k,l

∣∣∣∣∣∣



(

2πk
τx

)2

+

(
2πl
τy

)2

 Îk,l

∣∣∣∣∣∣

2

+ λ

∥∥∥∥∥ck,l ∗
(

2πk
τx

+ j
2πl
τy

)
Îk,l

∥∥∥∥∥

subject to Îk,l =
[
ÎLP

]
k,l

for k, l ∈ low frequency regions,

(17)

where λ is a tunable weight and ‖ · ‖ is an arbitrary (unspecified) norm (e.g., `2). In this sense, we

can claim that the annihilation constraint behaves as an “edge-preserving” interpolation technique in the

up-sampling problem.

IV. GENERALIZATION FROM EDGE IMAGES TO NATURAL IMAGES

A. Annihilation-driven Interpolation

Until this section, our focus has been on synthetic curves that satisfy the annihilable curve model (3)

exactly, which can be perfectly reconstructed from a finite number of samples of the associated edge

image. In that context, we have proposed to use the annihilation equation in a regularization framework

to retrieve a good approximation of the FRI edge image (see Section III-E). We would now like to

apply this two-stage algorithm (annihilation, followed by annihilation-driven upsampling) to natural

images. A direct implementation of the Fourier algorithm that solves (17) yields readily good results

as can be seen in Fig. 8(a)). Even though the images that we consider do not satisfy the analyticity
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(a) I (b) |I ′|

Fig. 7. Natural images satisfies approximately the analyticity assumption requirement for the annihilation. (a) The original

image and (b) the modulus of the complex derivative/gradient image.

condition, their (Wirtinger) derivatives can still outline the distinction between the edges and smooth

areas—images usually have significantly larger gradients for edges (see, e.g. Fig. 7). That is why the

annihilable curve model still holds approximately and can be obtained with the denoising algorithms

presented in Section III-D.

B. Actual Implementation with a Spatial Domain Formulation

Even though we can directly apply the up-sampling algorithm (17) to natural images, it usually

demands enormous amount of memory with our current implementation4. Instead, by adopting the new

interpretation of annihilation in Section II-C2, we can approximate the exact annihilation constraint, which

is a Fourier domain convolution, with a spatial domain multiplication and reformulate (17) directly in

the spatial domain:

min
I

‖∆I‖22 + λ

annihilation︷ ︸︸ ︷
‖MDI‖kk

subject to ΦI = ILP,

(18-`k)

where k = 1, 2 depending on how we would like to enforce the annihilation constraint (see examples

in Section V-C2). Here I is the up-sampled image and ILP is the given low-resolution one (both are

rearranged as column vectors); ∆ and D are the convolution matrices associated with a discrete Laplacian

filter and the first-order derivatives respectively; Φ models the sampling process (i.e. low-pass filtering

4It is because natural edges are more complicated and hence requires an annihilation model with many more degrees of

freedom compared with the simple synthetic curves that we have considered so far.
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===⇒= 0

Î ′
k,l

===⇒× ≈ 0

I ′
k,lµk,l

Fourier domain annihilation (exact)
(a)

(b)

ck,l

∗

Spatial domain annihilation (approximate)

Fig. 8. Upsampling by a factor 3 of the small inset image in (a) and (b) using two methods: in (a) we use the exact Fourier

domain formulation, in (b) we use the approximate spatial domain formulation. Either method yields a similar result: SNR

between (a) and (b) is 34.44 dB (order of the FRI curve model: 31× 31).

and down-sampling); and M is a diagonal matrix whose diagonal entries are specified by the annihilation

mask Mi,i = µi, which is obtained directly from the given low-resolution image (i.e. samples).

Experimentally, the approximated spatial domain approach gives very similar up-sampling results

compared to the exact Fourier domain formulation (Fig. 8). However, the spatial domain formulation (18)

allows us to cope with more general cases without introducing too many difficulties in the implementation:

all we need to do is adapt the matrix Φ to account for different convolution kernels. On the contrary, the

Fourier-domain formulation is somewhat “restricted” to the ideal low-pass kernel in (17), which ensures

that the up-sampled and the known low-resolution images share the same low-frequency discrete Fourier

coefficients (Fourier-domain extrapolation). Note that our current implementation is not optimized: we

either solve directly a linear system of equations (`2 case), or use an iterated reweighted least-squares

algorithm (`1 case), with the help of Matlab sparse toolbox. In this context, the computation time is of

the order of 10 seconds (`2 case) and 40 seconds (`1 case), for images of size 255× 255 on a MacBook

Pro, 2.3GHz Intel Core i7, 16Gb RAM.
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(a) (b) (c)

Fig. 9. Exact reconstruction of the annihilable curve C with minimum number of samples of the associated edge image IC

(see, Theorem 2). The discontinuity across the curve is f0 = x + jy. (a) Modulus of the continuous domain edge image. (b)

Modulus of the noiseless samples of the edge image (size: 9× 9). (c) Perfectly reconstructed annihilable curve C.

V. EXPERIMENTAL RESULTS

A. Synthetic FRI Curves

1) Exact Reconstruction from Noiseless Samples: We exemplify the perfect reconstruction of the

annihilable curve by sampling the associated edge image at the minimum sampling rate specified in

Theorem 2. Consider an annihilable curve defined in (3) with 5 × 5 annihilation coefficients ck,l. The

discontinuity across the curve is f0(x, y) = x+ jy. The edge image is then ideally low-pass filtered and

uniformly sampled. In our case here, the minimum number of samples required to perfectly reconstruct

the annihilable curve is 81 (9× 9). The reconstructed annihilable curve is exact (Fig. 9).

2) Reconstruction from Noisy Samples: Consider the same annihilable curve and the associated edge

image as in Section V-A1, where we demonstrated perfect reconstruction from noiseless samples. Different

levels of additive Gaussian white noise are added to the ideally low-pass filtered samples such that the

signal-to-noise ratio (SNR) is 35 dB (mild distortion) and 15 dB (severe distortion) respectively. The

reconstructed annihilable curves with the least square method (Fig. 10 (d) and (g)) and with the additional

Cadzow’s denoising (Fig. 10 (e) and (h)) are compared. The extra Cadzow’s denoising improves the

robustness of the annihilating filter method particularly in the presence of high noise level.

Such an improvement does not come without cost: the additional Cadzow’s iteration is more compu-

tationally intensive as it computes the SVD of a larger convolution matrix several times (because of the

iterations) compared with the simple one-step least square minimization. Also, we observe that Cadzow’s

algorithm usually requires many more iterations to meet the same stopping criterion as the one in the

1D cases [1], [7]. A direction for future research is to devise a more efficient algorithm that would be
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Reconstruction of an annihilable curve from noisy samples. (a) Noisy samples (SNR = 35 dB). (d) Noisy samples

(SNR = 15 dB). (b) and (e) Reconstruction with least square minimization. (c) and (f) Reconstruction with additional Cadzow’s

denoising. The solid black line is the reconstructed annihilable curve while the dotted red line is the ground truth.

able to cope with severe model mismatch cases.

3) Reconstruction of Non-annihilable Curves: One potential source of uncertainties arises from the fact

that curves that we want to reconstruct may not always satisfy the exact annihilable curve model (3). Yet,

we want to show that this curve model is flexible enough to cope with more general curves. Specifically,

we create a “non-annihilable” curve by interpolating (with cubic spline) a few points on an annihilable

curve (Fig. 11). Then we obtain an annihilable curve model approximation5 of the new curve by applying

the annihilation algorithm to the samples of the edge image. The reconstructed curve model is a rather

accurate descriptor of the spline interpolated curve (which is not annihilable).

4) Reconstruction of Annihilable Curves for Non-analytic Amplitudes: It is essential for the exact

annihilation that the amplitudes on the image be specified by a function that is analytic except on the

image edges as discussed in Section II-C2. However, natural images are real-valued; hence, if this function

is not piecewise constant, analyticity will be violated and the annihilation equation is not expected to be

5In the experiment, we have assumed that the annihilable curve approximation of the spline curve has the same degrees of

freedom as the original annihilable curve which it derives from.

May 12, 2014 DRAFT



20 ACCEPTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING

(a) (b) (c) (d)
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Fig. 11. The annihilable curve model is able to represent accurately non-annihilable curve (see, text in Section V-A3). (a)

Consider a non-annihilable curve (dashed blue line) built using a cubic spline interpolation of a few samples (red circles) of an

annihilable curve (solid black line). (b) Edge image associated with the non-annihilable curve. (c) Samples of the edge image

(9 × 9 pixels). (d) The reconstructed annihilable curve (solid black line) based on the samples in (c) is barely distinguishable

from the ground truth non-annihilable curve (dashed blue line).

(a) (b) (c)

(d) (e)

Fig. 12. Reconstruction of an annihilable curve from samples of a real-valued edge image. (a) Edge image. (b) and (d) Samples

of the edge image with different sizes ((b): 13 × 13 and (d): 21 × 21). (c) and (d) Reconstructions with Cadzow’s iterative

denoising from the given samples.

satisfied exactly even with synthetic annihilable curves. We want to evaluate the influence of this (strong)

model mismatch on the accuracy of curve reconstruction.

To this end, we consider the same annihilable edge image as in the previous section except that
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(a) (b) (c)

Fig. 13. Implicit reconstruction of the amplitudes on an annihilable curve via image up-sampling. (a) The given low-resolution

samples (size: 9×9). (b) Amplitude reconstructions via image up-sampling (size: 315×315). (c) Actual (ideal low-pass filtered)

samples of the edge image at the same resolution as (b). The SNR between (b) and (c) is 34.90 dB.

the discontinuity across the curve is now real-valued: f0(x, y) = R{x + jy} = x. The reconstructed

annihilation models from two different numbers of samples with Cadzow’s iterative algorithm are shown

in Fig. 12. We observe that more samples are required in order to have a more accurate reconstruction

when a real-valued edge image is involved.

B. Synthetic FRI Edge Image Amplitudes

We demonstrate the amplitude reconstruction of an edge image in Fig. 13 where we have used the

same edge image as the one in Section V-A1. The annihilation coefficients ck,l are first retrieved from the

given 9×9 samples before we enforce the FRI curve model in the up-sampling problem. The high signal-

to-noise ratio (SNR = 34.90 dB) between the up-sampled image (Fig. 13 (b)) and the actual ground truth

(Fig. 13 (c)) samples at the same resolution clearly shows that we have a good estimate of the amplitudes

on the annihilable curve.

C. Natural Images

1) FRI Curve Approximation of Natural Edges: In the experiments, we apply the annihilation algorithm

to a low-resolution image, which are samples of the ground truth high-resolution image (low-pass filtered

and down-sampled)6. In the case when non-ideal samples are involved, we first obtain an estimate of the

ideal low-pass filtered samples by applying additional post-filtering (see details in Section III-C). The

6We consider both the sinc and bicubic kernels with a 3 : 1 down-sampling ratio, i.e. we take every pixel out of three from

the low-pass filtered image.
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(a) (b) (c)
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Fig. 14. Reconstruction of FRI curve model for natural images from (a) ideal and (d) Bicubic low-pass filtered samples of the

high-resolution ground truth image. (b) and (e) Reconstructed mask function. (c) and (f) Roots of the mask function, i.e. the

annihilable curve. The order of the FRI model is 29× 29.

annihilating filter is then built from the Fourier coefficients of the image, which are directly related to

the ideal low-pass filtered samples.

The reconstructed annihilation models, including the mask function and its roots (i.e. the reconstructed

curves), are shown in Fig. 14. If we look at the reconstructed curve alone, then the results may not

appear very promising. We need to emphasize, however, that the reconstructed edge model means more

than a simple binary edge map (contrary to most cases with conventional edge detection algorithms): the

reconstructed mask function is used to assign position-dependent weights to preserve edges in further

processing (see, e.g. Section IV-A).

2) Annihilation-driven Image Up-sampling: We exemplify the edge-preserving interpolation algo-

rithm (18) with several images shown in Fig. 15. The ground truth high-resolution image is first low-pass
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(a) chip (195× 195) (b) peppers (255× 255) (c) bank (255× 255) (d) MRI (255× 255)

Fig. 15. Test images considered in the edge-preserving interpolation experiments. The given low-resolution image, which is a

low-pass filtered and down-sampled version of the ground truth high-resolution image, is also shown on the lower right corner

of each image.

TABLE II

COMPARISONS OF DIFFERENT UP-SAMPLED IMAGES WITH THE GROUND TRUTH HIGH-RESOLUTION IMAGE.

Image
bicubic

interpolation
(imresize)

minimizing
total variation

w/o annihilation
constraint (19)

w/ annihilation
constraint (18-`2)

w/ annihilation
constraint (18-`1)

learning-based
algorithm [25],

[27]
learning-based
algorithm [29]

chip 26.43 dB 27.98 dB 27.61 dB 28.90 dB 29.14 dB 28.24 dB 28.29 dB

peppers 28.41 dB 30.31 dB 29.62 dB 30.27 dB 30.89 dB 30.00 dB 30.43 dB

bank 21.45 dB 23.06 dB 22.33 dB 22.80 dB 23.02 dB 22.26 dB 22.91 dB

MRI 23.95 dB 24.63 dB 25.25 dB 25.57 dB 25.70 dB 25.15 dB 25.40 dB

filtered with bicubic kernel and then down-sampled with a 3 : 1 down-sampling ratio7. The given low-

resolution image (i.e. samples) is then up-sampled 3 times and compared with the ground truth image

(measured in terms of PSNR). Both the `2 and `1 formulations (18) are considered. The regularization

weight λ for the annihilation constraint is set to λ`2 = 5 × 105 and λ`1 = 2 × 108 for the `2 and `1

formulations respectively, and for all the images. The up-sampled images are compared with images

obtained by minimizing the smoothness regularization subject to the data-fidelity constraint only, without

enforcing the annihilation constraint:

min
I

‖∆I‖22

subject to ΦI = ILP.

(19)

Another standard nonlinear image up-sampling formulation is also included for comparisons, where

the up-sampled image is obtained by minimizing the total-variation (TV), which is known to encourage

7We have observed an offset (variable, depending on the sampling ratio) between the samples and the imresize output.

We have adjusted the sampling grid accordingly such that the samples match the imresize result.
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(a) (b) (c) (d)

Fig. 16. Comparisons of different image up-sampling results. (a) Ground truth image. (b) Standard total variation minimizing

result (PSNR = 30.31 dB). (c) Up-sampled image without annihilation constraint (PSNR = 29.62 dB). (d) Up-sampled image

with annihilation constraint (18-`1) (PSNR = 30.89 dB).

piecewise smoothness without jeopardizing sharp edges [22], [23]. We have implemented the majorization

minimization algorithm described in [24] to solve the TV minimization problem.

Table II summarizes the up-sampling results obtained with different algorithms. The gain due to the

annihilation constraint ranges from 0.5 dB to 1.5 dB compared with the results from (19) (when the `1

formulation (18-`1) is used). It not only makes the edges of the up-sampled image sharper but also reduces

the ringing artifacts significantly (Fig. 16). Compared with total-variation minimization, the annihilation

constraint has a better balance8 between preserving sharp edges without introducing artificial edges.

Note that recent developments in computer vision [25]–[29] have given rise to some promising training-

based approaches for image up-sampling, e.g. single-image super-resolution [26], [29]. Our preliminary

experiments show that the annihilation-driven approach is still quite competitive with these algorithms.

However, our intention here is not to have comprehensive comparisons with state-of-the-art algorithms

but rather to exemplify that the curve annihilation is a method that has the potential to bring substantial

improvements in, e.g., super-resolution applications.

Observe that enforcing the annihilation constraint in the `1-norm sense generally leads to 0.2 ∼ 0.7 dB

further gain compared with the least-square `2 formulation (18-`2). One explanation might be that the

`2-norm penalizes the annihilation errors equally for all pixels in the whole image. With other alternatives,

e.g. the `1-norm, the annihilation mask gets more efficient in differentiating between the edge regions

and the smooth areas in the image, hence yielding a higher SNR for the up-sampled image.

8Arguably, this is related to the regularization weight λ that we choose for the annihilation constraint.
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VI. CONCLUSION

In this paper, we have extended one-dimensional sparse annihilation-based algorithms to two-dimensional

annihilation algorithms in order to retrieve a specific class of curves, which are defined implicitly as the

roots of a mask function. We have shown that it is possible to have a perfect reconstruction of the implicit

curve representation from a finite number of samples of the associated edge image. Further, the exact

curve annihilation model is generalized to describe edges of natural images, which can be used as a

linear constraint in a practical image processing problem, e.g. image up-sampling.

The mask function we considered in this paper is expressed as a weighted summation of sinusoids,

which is not a local representation. Hence, it may not be well adapted to characterize images with

edges that are non-uniformly distributed. We may consider replacing the complex exponentials with

other locally-varying basis, e.g. spline kernels [10], [19], in the future. Another possible extension of the

curve annihilation is to obtain local annihilation models from image patches.

APPENDIX A

PROOFS AND DERIVATIONS

A. Derivations of the Sampling Formula (6)

The ideal low-pass filtered samples gm,n of the (τx, τy)-periodized edge image ICper are:

gm,n =
∫ ∞

−∞

∫ ∞

−∞
ICper(x, y)sinc

(
Bx(mTx − x)

)
sinc

(
By(nTy − y)

)
dxdy.

Using the relation between ICper and IC

ICper(x, y) =
∑

k∈Z

∑

l∈Z
IC(x+ kτx, y + lτy),

we find that

gm,n =
∫ ∞

−∞

∫ ∞

−∞
IC(x, y)

∑

k∈Z

∑

l∈Z
sinc

(
Bx(mTx − x− kτx)

)
sinc

(
By(nTy − y − lτy)

)
dxdy

=
∫ τx

0

∫ τy

0
IC(x, y)ϕ(mTx − x, nTy − y)dxdy,

where

ϕ(x, y) =
∑

k∈Z

∑

l∈Z
sinc

(
Bx(x− kτx)

)
sinc

(
By(y − lτy)

)

=
sin(πBxx) sin(πByy)

BxByτxτy sin(πx/τx) sin(πy/τy)
.
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B. Correspondence between the Spatial and Fourier Domain Samples

By replacing the Fourier series representation (7) of the edge image in (5), we have

gm,n =
∑

k∈Z

∑

l∈Z
Îk,le

j 2kπ
τx
x+j 2lπ

τy
y ∗ (sinc(Bxx)sinc(Byy)

)∣∣∣
x=mTx
y=nTy

=
∑

k∈Z

∑

l∈Z
Îk,le

j 2kπ
τx
mTx+j

2lπ
τy
nTy 1

BxBy
rect

( k

τxBx

)
rect

( l

τyBy

)

=
1

BxBy

∑

|k|≤bBxτx/2c
|l|≤bByτy/2c

Îk,lej2πmk/Nx+j2πnl/Ny ,

where we have used the fact that τx = NxTx, τy = NyTy, and that the Fourier transform of sinc(x) is

rect
(
ω/(2π)

)
. On the other hand, we have the discrete Fourier transform (DFT) representation of gm,n

as

gm,n =
1

NxNy

Nx−1∑

k=0

Ny−1∑

l=0

ĝk,lej2πmk/Nx+j2πnl/Ny .

Hence, we have

ĝk,l =





NxNy
BxBy

Îk,l for |k| ≤ bBxτx/2c and |l| ≤ bByτy/2c,
0 otherwise,

C. Optimal Post-filter Applied to Non-ideal Samples

I(t)
sampling kernel

ϕ(t)
g(t)

T

gn

interpolation

ψ(t)
J(t)

sinc kernel

w(t)

post-filter ϕ̃n

g̃(t)
T

g̃n

Fig. 17. Optimal post-filter applied to non-ideal low-pass samples (1-D case).

For the sake of simplicity, let us consider the one-dimensional case in the derivations. The 2-D result

is a direct extension of the derived results here. We use notations that are as consistent as possible with

the 2-D case.

Our strategy to estimate the ideal low-pass filtered samples is first to obtain a continuous domain

description of the underlying signal from the given non-ideal samples via interpolation and then to apply

the standard ideal low-pass filtering and sampling to this continuous signal. Consider the sampling setup

in Fig. 17, where ϕ is a anti-aliasing filter, ψ is an interpolation kernel, and w is the ideal low-pass
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sampling kernel. From the sampling process, we have the samples are:

gn =
∫ ∞

−∞
I(t)ϕ(nT − t)dt.

Based on the given discrete samples gn we can estimate a continuous domain description of the original

signal I(t) via interpolation:

J(t) =
∑

k∈Z
gkψ(t− kT ),

for some interpolation kernel ψ(t).

The primary consideration in the design of the optimal post-filter is to ensure the consistency constraint—

if we resample the interpolated signal, we should get the same samples which we started from:
∫ ∞

−∞
J(t)ϕ(nT − t)dt = gn.

Hence,

gn =
∫ ∞

−∞

∑

k∈Z
gkψ(t− kT )ϕ(nT − t)dt

=
∑

k∈Z
gk

∫ ∞

−∞
ψ(t)ϕ(nT − kT − t)dt =

∑

k∈Z

(
ψ ∗ ϕ)((n− k)T )gk. (20)

This means that
(
ψ ∗ ϕ)(kT ) = δk. The optimal choice for ψ (in the least-square sense, see [4]) is the

dual of the sampling kernel ϕ

ψ̂(ω) =
T ϕ̂(ω)∗

∑
n∈Z |ϕ̂

(
ω + 2nπ

T

)
|2
.

For the second stage of sampling with the ideal low-pass sampling kernel, we have a similar equation

as in (20)

g̃n =
∑

k∈Z

(
ψ ∗ w)((n− k)T )
︸ ︷︷ ︸

ϕ̃n−k

gk.

Using Poisson’s summation formula, the DTFT of ϕ̃n is

∑

n∈Z
ϕ̃ne−jnTω =

∑

n∈Z

(
ψ ∗ w)((n− k)T )e−jnTω

=
1
T

∑

n∈Z
ψ̂
(
ω +

2nπ
T

)
ŵ
(
ω +

2nπ
T

)

=

∑
n∈Z ϕ̂

(
ω + 2nπ

T

)∗
ŵ
(
ω + 2nπ

T

)

∑
n∈Z |ϕ̂

(
ω + 2nπ

T

)
|2

. (21)

This is the frequency response of the post-filter needed to process the non-ideal samples gn to obtain

close to ideal samples. For the 2-D case, the result is a direct extension of (21) as shown in (13).
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