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ABSTRACT
The problem of image super-resolution from a set of low resolution
multiview images has recently received much attention and can be
decomposed, at least conceptually, into two consecutive steps as:
registration and restoration. The ability to accurately register the
input images is key to the success and the quality of image super-
resolution algorithms. Using recent results from the sampling theory
for signals with Finite Rate of Innovation (FRI), we propose in this
paper a new technique for subpixel extraction from low resolution
images of local features like step edges and corners for image regis-
tration. By exploiting the knowledge of the sampling kernel, we are
able to locate exactly the step edges on synthetic images. We also
present results of full frame super-resolution of real low resolution
images using our registration technique. We obtain super-resolved
images with a much improved visual quality compared to using a
standard local feature detection approach like a subpixel Harris cor-
ner detector.

Index Terms— Image super-resolution, Image edge analysis,
Image registration, Spline functions, Image restoration.

1. INTRODUCTION

Many techniques in image processing rely on successful extractions
of image features like edges, corners or ellipses. When a given scene
is observed by several cameras situated at unknown locations, reg-
istering the different images as accurately as possible is often the
very first task to complete and is critical to the output quality of any
subsequent processing.

Algorithms for image super-resolution aim at constructing a sin-
gle detailed image with a higher resolution after registration, fusion
and restoration of a set of low resolution images taken at different un-
known locations. Because it is an inverse ill-conditioned and some-
times underdetermined problem, the output quality of the restora-
tion step depends heavily on the accuracy of the registration. Many
works on image super-resolution concentrate on the restoration prob-
lem and often assume that input images are already accurately reg-
istered beforehand. Furthermore as pointed out in [1], the correct
registration of images at a subpixel precision is the most crucial and
difficult part of restoration problems like image super-resolution.

There exists various methods to register images. In a previous
study, we showed how to obtain moments that can provide accurate
registration of affine related low resolution images [2]. Another ap-
proach proposed in [1] jointly registers images and reconstructs a
super-resolved image using Maximum Likelihood and Maximum A
Posteriori rules. Their work focuses in particular on images related
by translations. In [3], interest points like corners are extracted in
each image to a sub-pixel accuracy with the Harris-Plessey corner
detector. Corner correspondences are first obtained using a correla-
tion matching algorithm and are then refined with a RANSAC algo-
rithm by estimating the transformation that fits the largest number

of corresponding corners. Using local features instead of global fea-
tures allows to estimate more complicated transformations between
images (e.g. projective transformation). In [3], the set of images to
register was captured by a digital video camera with the usual resolu-
tion. This allows a large number of feature points (several hundreds)
to be extracted which, by an averaging effect, allows to register ac-
curately the images. Their super-resolution results are then obtained
for regions of interest of40x25 pixels where fusion and restoration
are accomplished with either a Maximum Likelihood estimation or
a Maximum A Posteriori estimation.

The underlying goal of this study is to carry out “full frame”
image super-resolution where the only available images have very
low resolution (e.g. of size64x64 pixels) and where the entire ob-
served view is super-resolved. As opposed to [2] where we retrieved
global features, here we want to retrieve very accurately local fea-
tures in images of low-resolution so that a precise registration is ob-
tained. As the resolution decreases, the local two-dimensional struc-
ture of an image degrades and two-dimensional features like corners
get more difficult to track and to locate. However, since only one
coordinate is sufficient to define its location (like iny = f (x)), an
edge is mainly one-dimensional and its structure is therefore more
resistant to downsampling. We are thus interested in this research in
retrieving the parameters of step edges and in inferring the location
of possible corners at edge intersections for registration purposes. To
achieve this efficiently at very low resolution, we assume to know the
point-spread function (the optical blur) of the lens that acquired the
images. Note that this assumption is not needed in the work of [3]
and [1]. The novelty of this paper is first of all to show that it is
possible to retrieve from the samples the exact parameters of simple
edges and this is demonstrated on synthetic images. Secondly we
show that this approach can be extended to real images with appli-
cation to image registration. We finally provide results of full frame
image super-resolution of a real scene using the proposed image reg-
istration approach.

The next section introduces the model of our sampling setup for
image acquisition as well as the model of the considered type of
edges. In Section 3, we show how a continuous edge can be exactly
retrieved from a low resolution sampled image by using results from
the sampling theory of signals with Finite Rate of Innovation (FRI).
Section 4 shows applications of our subpixel edge location algorithm
for image registration and image super-resolution. We conclude the
discussion in Section 5.
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Fig. 1. Image acquisition model



2. PROBLEM SETUP

2.1. Image acquisition model

In Figure 1, we model a digital camera. The incoming signal en-
tering its lens is the continuous high resolution irradiance light-field
f(x, y) limited to the field of view of the camera and parallel to the
image plane. When going through the lens, this signal is filtered
with the point spread functionϕ (x, y) of the lens which makes it
blurred. The smoothed versionf (x, y)∗ϕ (−x/Tx,−y/Ty) is then
uniformly sampled at the sensor of the image plane to produce the
set of image samplesSm,n:

Sm,n = 〈f (x, y) , ϕ (x/Tx − m, y/Ty − n)〉 (1)

with x, y ∈ R , m, n ∈ Z, and whereTx, Ty ∈ R
+ are the sampling

periods alongx andy respectively. The standard basis forR
2 cen-

tered in the middle of the image plane is chosen forx andy, whilem
andn refer respectively to the columns and the rows of the discrete
image.

2.2. Sampling kernel

The functionϕ (x, y) is thereafter referred to as thesampling kernel
and is assumed known. The optical blur introduced by a lens is often
modeled in the literature by a Gaussian function whose support is
infinite. In our camera model, we consider the sampling kernel to
be a B-spline functionβρ(x, y) of a orderρ and of compact support.
Motivations are that B-splines are very similar to a Gaussian function
for order as low as 2 and the B-spline of infinite order is equal to a
Gaussian function.

The family of B-spline functions enjoys many interesting prop-
erties. First, a B-spline is uniquely characterized by its orderρ and
is obtained from successive convolutions of the box B-spline [4]:

βρ(x) = β0(x) ∗ . . . ∗ β0(x)︸ ︷︷ ︸
ρ + 1 times

, β0(x) =





1, |x| < 1
2

1
2
, |x| = 1

2
0, otherwise

The 2-D B-splineβρ(x, y) is obtained by tensor product of two 1-
D B-splinesβρ(x) andβρ(y) and is therefore a variable separable
function.

In addition, B-spline functions form a Riesz basis and satisfy
Strang-Fix conditions [5]:

βρ(x) ⇔ B
ρ(f) = [sinc(f)]ρ+1 →

{
B

ρ(0) 6= 0
Dj

B
ρ(2πk) = 0.

wherek ∈ Z, j = 0, 1, . . . , ρ, B
ρ(f) is the Fourier transform of

βρ(x) andDj is the differential operator. Strang-Fix conditions en-
sure that a linear combination of B-splines are reproducing polyno-

mials up to degreeρ. Thus there exists a set of coefficients
{

c
(p)
m

}

such that: ∑

m∈Z

c(p)
m βρ (x − m) = xp, (2)

where
c(p)

m = 〈xp, β̃ρ(x − m)〉

with p = 0, . . . , ρ. The functionβ̃ρ(x) is the dual B-spline associ-
ated withβρ(x) [4]:

β̃ρ(x) =
∞∑

k=−∞

(b2ρ+1)−1[k] · βρ(x − k)

wherebρ[k] is the discrete B-spline of orderρ:

bρ[k] = βρ(x)
∣∣
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Fig. 2. Step edge model

2.3. Step edge model

There exists a variety of types of edges that can be found on natural
images. Examples of edges are roof edges, bar edges or step edges.
We focus on ideal straight step edges as shown in Figure 2. This type
of edge can be described by three parameters, namely its amplitude
α, its orientationθ with respect to the x-axis and its offsetγ on the
x-axis. Let ~N be the unit vector normal to the orientation of the edge
and let define~d for any point(x, y) in R

2:

~N =

(
−sinθ

cosθ

)
, ~d =

(
x − γ

y

)

A straight continuous step edgeh (x, y) can be mathematically ex-
pressed using the Heaviside functionU as:

h (x, y) = αU
(

~d · ~N
)

(3)

Although such function is not bandlimited because it exhibits a sin-
gularity, it has a finite rate of innovation (FRI) as three parameters
completely describe it.

3. EDGE LOCATION

Edge location refers to the problem of finding as accurately as pos-
sible the parameters of a continuous edge from its digital representa-
tion in an image. This problem of finding edge parameters is there-
fore different from the problem of edge detection where a binary
solution is looked for showing whether or not an edge is present at a
pixel precision (e.g.with a Canny edge detector). Moment-based ap-
proaches have been widely used for subpixel edge location, seee.g.
[6] for a recent study. In [7], an overcomplete set of step functions
called wedgelets was designed to find edges at subpixel accuracy.
The sampling theory of FRI signals (see [8]) aims at reconstruct-
ing perfectly from the samples signals which are not bandlimited but
which present a finite number of degree of freedom per unit of time.
As seen in Section 2.3, straight step edges belong to the class of FRI
signals. We therefore propose to apply recent developments in this
theory to the problem of edge parameters extraction.

Let h (x, y) be the function describing an ideal step edge as in
Equation (3) and consider its sampled versionhm,n obtained as in
Equation (1):

hm,n = 〈h (x, y) , ϕ (x − m, y − n)〉

We now filter the sethm,n with a finite difference operator and get a
new set of differentiated samples denoteddm,n:

dm,n = hm+1,n − hm,n (4)

The discrete differentiation is intimately related to the derivation in
the continuous domain with the introduction of a modified sampling
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Fig. 3. (a) original image before acquisition (512x512 pixels); (b) acquiredsampleshm,n (32x32 pixels); (c) differentiated samplesdm,n; (d)
retrieved edges plotted on the original image.

kernel[8]. It follows that:

dm,n = 〈
dh (x, y)

dx
, ϕ (x − m, y − n) ∗ β0 (x − m)〉

Moreover we have:
dh (x, y)

dx
= −αsinθ · δ

(
~d · ~N

)

whereδ is the Dirac function. Since the sampling kernelϕ (x, y) is
a 2-D B-spline of orderρ, it follows that:

dm,n = −αsinθ · 〈δ
(

~d · ~N
)

, βρ+1 (x − m) βρ (y − n)〉

Let τ (p)
n be the linear combination of samplesdm,n along the rown

only with the coefficientscp
m from Equation (2):

τ (p)
n =

∑

m

cp
mdm,n (5)

It can then be proved that:

τ (0)
n = −α and τ (1)

n = −α

(
2n + 1

2tanθ
+ γ

)

Thus by considering two consecutive rows and computingτ
(0)
n , τ

(1)
n

andτ
(1)
n+1, the parameters of the step edge can be retrieved exactly:

α = −τ (0)
n , tanθ =

−α

τ
(1)
n+1 − τ

(1)
n

, γ = −
τ

(1)
n

α
−

2n + 1

2tanθ
.

(6)
Based on this model, we implemented a local algorithm to ex-

tract edges with a very high accuracy in low-resolution images. The
pseudo-code is given in Algorithm 1. The measure of similarity of
two edges is based on the similarity of their parametersα, tanθ and
γ. For better results, Algorithm 1 is run on the sampled image as well
as on the transposed sampled image and both results are merged and
averaged again.

Figure 3 shows the results of the edge location on a synthetic im-
age where edge parameters were exactly retrieved. The “continuous”
observed scene is shown in Figure 3(a) and its sampled version is in
Figure 3(b). Figure 3(c) shows the differentiated samplesdm,n and
Figure 3(d) shows the retrieved edges plotted on the original scene
for a visual appreciation of the proposed method.

4. IMAGE REGISTRATION AND SUPER-RESOLUTION

4.1. Image registration

Real-world images cannot obviously be considered as a FRI sig-
nal. However, locally, the images can exhibit a FRI structure that
can be retrieved precisely using the the sampling theory of FRI sig-
nals. These local FRI regions can, in particular, represent important
features in image registration, such as corners or edges. Retriev-
ing these features with the highest possible accuracy can therefore
improve greatly the efficiency of registration algorithms and subse-

Algorithm 1 Subpixel Edge Location

Defineweight = 1,
Compute the differentiated samples using Equation (4),
Run a Canny-like edge detector on sampled image,
for all position(i, j) detected as an edgedo

find the differentiated samples in the neighborhood of(i, j),
calculateτ (0)

j , τ
(1)
j andτ

(1)
j+1 using Equation (5),

calculateα, tanθ andγ using Equations (6),
store[α tanθ γ weight] as a candidate edge

end for
while there exists similar edgesdo

Merge similar edgesi.e. average[α tanθ γ] and add
weight together,

end while
Discard edges having a too small weight.

quent processing (like image super-resolution). In [9], a local algo-
rithm for corner detection was proposed based on directional deriva-
tives and the sampling theory of FRI signals. Although exact corner
location was obtained theoretically, the method was not practically
satisfying due to the complicated nature of the modified sampling
kernel. Our proposed approach requires a single horizontal differen-
tiation which makes the modified sampling kernel easier to compute.
Besides the retrieved parameters are averaged along edges to gain
in stability and robustness. Edge intersections are used as feature
points. Only intersections close to the location where edges were es-
timated are considered as corner points. In addition to its position, a
corner can also be described by the angle of its two generative edges.

Once the feature points are extracted, we use a similar approach
to [3] to find corner correspondences (inliers) across images: puta-
tive correspondences are obtained using correlation matching of the
samples in the neighborhood of each corners. Given this correspon-
dence, a first estimation of the transformations between images is
calculated. Note that correlation matching methods are not efficient
for images with low resolutions and the transformation estimation
is often not good. However corner correspondences and transfor-
mation estimation can then be jointly refined using the RANSAC
algorithm. The RANSAC algorithm operates only on the extracted
feature points and therefore does not depend on the resolution of the
available images. Thus, the lack of precision in the feature locations
can be overcome by the number of extracted features so that accu-
rate image transformations can be computed (as in [3]). However,
because we are dealing with low-resolution images, only a small
number of feature points can be extracted, it is therefore of utmost
importance to know their precise subpixel location to register as ac-
curately as possible the set of images.
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Fig. 4. (a) Acquired low resolution image (64x64); (b) Retrieved edges and corners (⊕) plotted on high resolution image; (c) Super-resolved
image using Harris corner detector (512x512); (d) Our result: super-resolved image using features extracted with Algorithm 1 (512x512).

4.2. Image super-resolution
To assess the accuracy of the proposed feature extraction method,
we implemented an image super-resolution algorithm using the pro-
posed image registration approach. We acquired a high resolution
image of a simple scene presenting step edges, text and textures.
From this image, twenty shifted images were created by cropping
an area of 512x512 pixels at different randomly-generated locations.
Each of these images was then downsampled by a factor8 to 64x64
pixels with a 2-D quadratic B-spline. This new set of low resolution
images constitutes the input of our image super-resolution algorithm.
The super-resolved image has size 512x512 pixels (zoom factor = 8).
Note that with twenty images, the system is underdetermined.

In order to compare our results, we implemented a simplified
image super-resolution algorithm inspired by [3] using the Matlab
functions provided by [10]. Corners were extracted using a tradi-
tional subpixel Harris corner detector and their correspondences ob-
tained using correlation matching and a RANSAC algorithm. Due to
the low resolution, around twenty feature points only were extracted
on each image. During the simulations, no corner correspondence er-
ror were observed that would have led to bad registration results. For
both approaches, differences between corresponding corners were
calculated and averaged to give the estimated subpixel translation
between images. We then applied a bicubic interpolation procedure
to estimate missing samples on the high resolution grid. For the
image restoration step, we chose to use the Wiener filter as the de-
convolution procedure for both case as well. The choice of using a
Wiener filter was dictated by the simplicity and the efficacy of this
method as it has also been reported in the recent experiments of [1].

Figure 4 shows the obtained results. Figure 4(a) presents the ac-
quired low resolution image used as reference (64x64 pixels). Fig-
ure 4(b) shows the edges and corners extracted with Algorithm 1
and plotted on the high resolution image. Figure 4(c) is the super-
resolved image using the subpixel Harris corner detector approach
(PSNR = 14.95dB). Figure 4(d) shows our result of image super-
resolution using the Algorithm 1 for feature extraction (PSNR =
15.96dB). This latter image presents a much better visual quality
than Figure 4(c). With our approach, artifacts are visible essentially
on the border of the super-resolved image. This is due to the fact
that the low resolution images are all overlapping with the center
of the scene (the envelope). Thus, after registration, there exists a
higher density of samples in the middle than at the border of the
image (e.g. the CD) where artifacts appear after restoration. Ex-
act registration was achieved using Algorithm 1 whereas the average
registration error with the Harris corner detector is 0.0923 pixels. Al-
though this error seems relatively small, the reconstruction quality is
severely degraded given the same restoration procedure. This shows
how much accurate registration schemes are essential and needed for
obtaining good image super-resolution results.

5. CONCLUSION

In this paper, we developed new theoretical results for step edge lo-
cation from a sampled image using the sampling theory of signals
with finite rate of innovation. We also implemented and applied
these new results to real images and proposed a novel approach for
image registration when step edges occur. This new registration ap-
proach was used for full frame image super-resolution and the ex-
periments showed that exact registration was possible by using the
proposed approach. We finally obtained super-resolved images of a
better quality when compared with a similar image super-resolution
algorithm based on the Harris corner detector for registration. Fur-
ther works should investigate the possibility of extracting different
features having a finite number of parameters, and analyze the ro-
bustness of the method to the noise level.
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