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Abstract

Image Based Rendering (IBR) and in particular light field rendering has attracted a lot of

attention for interpolating new viewpoints from a set of multiview images. New images of

a scene are interpolated directly from nearby available ones, thus enabling a photorealistic

rendering. Sampling theory for light fields has shown that exact geometric information

in the scene is often unnecessary for rendering new views. Indeed, the band of the func-

tion is approximately limited and new views can be rendered using classical interpolation

methods. However, IBR using undersampled light fields suffers from aliasing effects and

is difficult particularly when the scene has large depth variations and occlusions. In order

to deal with these cases, we study two approaches:

New sampling schemes have recently emerged that are able to perfectly reconstruct

certain classes of parametric signals that are not bandlimited but characterized by a finite

number of parameters. In this context, we derive novel sampling schemes for piecewise

sinusoidal and polynomial signals. In particular, we show that a piecewise sinusoidal signal

with arbitrarily high frequencies can be exactly recovered given certain conditions. These

results are applied to parametric multiview data that are not bandlimited.

We also focus on the problem of extracting regions (or layers) in multiview images

that can be individually rendered free of aliasing. The problem is posed in a multi-

dimensional variational framework using region competition. In extension to previous

methods, layers are considered as multi-dimensional hypervolumes. Therefore the seg-

mentation is done jointly over all the images and coherence is imposed throughout the

data. However, instead of propagating active hypersurfaces, we derive a semi-parametric

methodology that takes into account the constraints imposed by the camera setup and the

occlusion ordering. The resulting framework is a global multi-dimensional region compe-
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tition that is consistent in all the images and efficiently handles occlusions. We show the

validity of the approach with captured light fields. Other special effects such as augmented

reality and disocclusion of hidden objects are also demonstrated.
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Chapter 1

Introduction

1.1 Motivation

Today’s visual media systems provide a convincing experience. However, the mainstream

capture, transmission and display technologies remain two-dimensional. A natural and

very popular extension is to provide a three-dimensional experience. Many new technolo-

gies are being developed for such purposes. Cameras, as well as memory and processing

power, are constantly improving while getting cheaper. These facts are making it increas-

ingly popular to develop systems capable of providing the user with a three-dimensional

feel of the scene. Research is being undertaken in different aspects of the problem (see [1]

for a recent overview). For instance, we have seen the development of 3D displays [46]

and stereoscopic systems that provide the user with the possibility to see the scene in

three-dimensions. Other methods focus on immersive technologies that give the user the

freedom to change the viewpoint for instance with a mouse or a joystick. Commercial

applications of these systems include environment browsing such as museums, tourist at-

tractions, hotel lobbies, sports events and so on. These applications are exciting and bring

us one step further towards the ultimate ‘being there’ experience. Before we get there,

there are some important issues which need to be solved. Obviously, such a capturing sys-

tem requires images from multiple viewpoints. The resulting data flow puts great strain

on the resources from data handling and processing to storage and transmission. It is
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therefore of prime importance to take advantage of the inherent redundancy that results

when many cameras are looking at the same scene.

In this work, we focus on the freeviewpoint aspect of the problem. That is, to

provide the user with certain degree of freedom of movement in the point from which

the scene is viewed. There are essentially two different ways to deal with this problem.

Traditional 3D graphics rendering systems create views of scenes using object models,

textures and light sources. A model of the 3D world, usually in the form of a mesh,

is available or estimated and new views are rendered by projecting the objects on an

arbitrary viewpoint. This method is a model-based approach. While it can provide great

viewing freedom, it is in general difficult to cope with cluttered natural scenes where a

full geometric model is not always easy to obtain. It requires either to use range finding

and scanning equipment or to resort to computer vision methods to estimate geometry.

Despite recent progress in scene modeling from multiview images [63], it is still difficult

to build 3D models of complicated environments.

Image based rendering (IBR) has appeared as an alternative to traditional graphics.

This approach entails capturing the scene by taking many images from different viewing

points and switching from one view to the other. Compared to a full geometric represen-

tation, images are easier to capture and are photorealistic by definition. New viewpoints

are obtained simply by interpolating intensity values from nearby available images or light

rays. In this case, the scene is represented not by the objects that constitute it but by the

collection of light rays captured by the cameras. This approach is therefore image-based

and can provide a very convincing rendering of real-world scenes without a full geometric

model. There are, however, some challenges involved in image based rendering as well.

Clearly, a smooth rendering requires taking an enormous amount of images which is dif-

ficult to capture, store and process. Interpolation enables one to use fewer images but is

difficult in cluttered scenes due to occlusions, disocclusions and large depth variations. In

these cases, artifact-free renderings require an excessively large number of images. There-

fore, there is a need to devise an automatic algorithm that, by exploiting the inherent

properties of multiview data, is able to interpolate viewpoints even in the presence of
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Figure 1.1: Capturing the plenoptic function. From the still image camera to the
video camera or multiview imaging systems, all the sensing devices illustrated sample
the plenoptic function with a varying number of degrees of freedom.

occlusions and large depth variations.

1.2 The plenoptic function and its sampling

At the heart of image based rendering is the characterization of visual information. The

data acquired by multiple cameras from multiple viewpoints can be parameterized with

a single function called the plenoptic function. It was first introduced by Adelson and

Bergen [2] in an attempt to describe what one sees from an arbitrary viewpoint in space.

Such a function requires seven dimensions in order to characterize all the free parameters.

Indeed, three are needed for the position of the viewpoint (vx, vy, vz), two for the viewing

angle (θx, θy), one for the wavelength λ and finally one for the time t. In most cases,

assumptions can be made to reduce the number of dimensions and different parameteri-

zations have been proposed (e.g. [19,36,50,55, 60, 84]). Indeed, there are many different

ways to capture the plenoptic function and most of the popular sensing setups, some of

which are illustrated in Figure 1.1, do not necessarily sample all the dimensions. From its

introduction by Levoy and Hanrahan in the mid nineties, the four-dimensional light field

parameterization [50] has benefited from a huge popularity thanks to the highly struc-
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tured nature of the data. In this case, the plenoptic function is sampled with a uniformly

distributed two-dimensional camera array. Several of such arrays have already been devel-

oped [19,79,81,86] demonstrating the technical feasibility. The problem of freeviewpoint

imaging, in this context, is the problem of interpolating light fields.

As the problem of image based rendering is in essence a sampling and interpolation

problem, the spectral properties of light fields have been extensively studied [18, 83, 84].

In these papers, it is shown in various ways that the plenoptic function is approximately

bandlimited. Moreover, it is shown that the width of the band depends mainly on the

depth variations in the scene. Such an assumption means that sampling and interpolation

in a traditional Shannon sense is possible. However, there are many reasons why the band

is in fact not limited. Indeed, scenes are often made of different objects each of which

has different textures. The boundaries of these objects are discontinuities which cause

the spectrum to be unlimited. Moreover, it can be shown that even in the absence of

occlusions and bandlimited textures, the resulting plenoptic function is not necessarily

bandlimited [26]. These spectral based methods therefore have limitations since they are

adapted to scenes with small depth variations and no occlusions or require very densely

sampled data in order to reduce aliasing.

New sampling schemes have recently been developed that are able to cope with

non-bandlimited signals. In particular, sampling schemes have recently emerged that are

capable of sampling and perfectly reconstructing signals that follow piecewise models [28,

29,75]. Using annihilating filter theory and signal moments, these schemes are able to cope

with parametric signals such as Dirac impulses and piecewise polynomial signals in the

one-dimensional [28, 29, 75] and multi-dimensional [68] cases. Some of these results have

been applied to the sampling and interpolation of parametric plenoptic functions [22,34].

However, the classes of signals that are recoverable remain limited. In this context, we

will show in Chapter 6 that more general parametric signals such as piecewise sinusoidal

and combinations of piecewise sinusoids and polynomials can be exactly recovered using

similar principles. This leads to more general classes of parametric plenoptic functions

that can be perfectly reconstructed from their sampled versions.
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(a) Conventional Light Field Rendering (b) Layered Light Field Rendering

Sparse Light Field Unsupervised extraction of plenoptic volumes

Figure 1.2: (a) Conventional light field rendering. (b) Light field interpolation with
a layered representation.

1.3 Interpolation by segmentation of multiview images

In conventional light field rendering, the data is very densely sampled (e.g. hundreds of

images) and classical linear interpolation is enough to render views with little or no aliasing.

However, more geometric information is needed when the data is sparsely sampled and

occlusions occur (see for example the blurring in Figure 1.2(a)). Some IBR methods

use complex geometry for rendering single objects [14, 36]. However, these models are

sometimes difficult to obtain in scenes containing numerous objects and occlusions. As

shown in [18, 83, 84], the main culprits causing artifacts in the interpolated images are

depth variations and occlusions. In this light, Shum et al. [69] showed that very good

quality renderings can be achieved by segmenting the light fields into approximately planar

regions. In particular, the authors decompose the light field into coherent layers (also

known as IBR objects [33]) that are represented with a collection of corresponding layers

in each of the input images. This approximate decomposition enables one to interpolate
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viewpoints without aliasing (see Figure 1.2(b)). Indeed, these layers capture the coherence

of the plenoptic function and make occlusion events explicit. Their extraction is therefore

a very useful step in numerous multiview imaging applications including not only image

based rendering [18,84], but also object-based compression [33] and disparity compensated

and shape adaptive wavelet coding [21]. Other applications include scene interpretation

and understanding [45]. All these applications make it very attractive to develop methods

that are able to extract such regions.

It is worth mentioning that layered representations were first introduced by Wang

and Adelson [78] for video coding purposes. Many dense stereo reconstruction algorithms

such as [3, 65] and later [51, 80, 89] are also based on layered representations. These

methods use two or more frames and differ from [24, 33, 69] and our approach in that

they construct a model-based representation of the scene in a reference view. That is,

the scene is modeled by a collection of layers each of which is characterized by its planar

model, texture and spatial support. New views are obtained by warping the layers and

their textures. Rendering new images with such a representation suffers from several

disadvantages. For example, the warping of layers onto the reference view and then onto

the novel view involves two resamplings which can reduce the quality of the reconstructed

image.

The segmentation of light fields into continuous and approximately planar regions

is in general a hard and ill-posed problem. In [69] and extensions such as [33], the seg-

mentation is achieved using a semi-manual approach which enables a very good accuracy.

However, this method requires human intervention and is a time consuming approach (up

to a few hours [69]). In unsupervised methods, the segmentation is usually obtained by ini-

tializing a set of regions and using an iterative method that converges towards the desired

partitioning. Some layer extraction methods include k-means clustering [78] and linear

subspace approaches [44]. Other common methodologies use graph-based methods such

as Graph Cuts [13, 51, 80]. Alternative approaches such as active contours [43] are based

on the computation of the gradient of an energy functional and use a steepest descent

methodology to converge towards a minimum. These methods have several advantages in
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particular dimensional scalability which is an attractive trait when dealing with the high

dimensional plenoptic function.

The segmentation of light fields is somewhat related to video segmentation. In-

deed, in both cases, the problem is to segment the plenoptic function albeit with different

degrees of freedom. Some methods are based on a two-frame analysis [40, 41, 53]. More

recently, authors have suggested the use of a larger number of frames in order to impose

coherence throughout the video data. That is, to treat the segmentation problem as a

three-dimensional one. For example, Mitiche et al. [56] tackled motion detection in videos

with a three-dimensional active contour. Later, Ristivojevic and Konrad [58] considered

the extraction of the tunnels carved out by layers in videos which enables one to take

into account long term effects such as occlusions. A recent survey of these methods was

presented in [45].

Similar ideas have emerged in multiview imaging, in particular, by studying the

well-structured epipolar plane image (EPI) [12]. In that paper, Bolles et al. looked at

the trajectories followed by points throughout many views in order to estimate depth in

the scene. This analysis was further extended by Feldmann et al. [31]. However, both

these methods generate a sparse or incomplete depth map. The problem of dense seg-

mentation was studied by Criminisi et al. under the name of EPI-tube extraction [24]

where collections of trajectories are gathered in order to generate a dense layer segmen-

tation. The analysis is performed in a two-dimensional fashion by analyzing slices of the

data. In all these methods it is emphasized that considering all the available images in

a single function (i.e. the plenoptic function) allows for a more robust segmentation and

generates a representation which is consistent in all the images. In this light, the key to

our approach is to take advantage of the inherent structure and redundancy in the data.

Such a method therefore requires to perform a dense four-dimensional segmentation of

light fields, a problem that has remained largely unexplored.
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1.4 Original contributions

As far as the author is aware, the following aspects of the thesis are believed to be original

contributions:

• Plenoptic hypervolumes Layers in a scene carve out object tunnels [58] in videos

and EPI-tubes [24] in multi-baseline stereo images. In extension, they carve out

multi-dimensional hypervolumes in the plenoptic function. For example, a four-

dimensional region is carved out in a light field. Following these concepts, we intro-

duce plenoptic hypervolumes (a.k.a. plenoptic manifolds [6]) in Section 2.4. These

are an image-based representation of a scene that decompose light fields into co-

herent regions. Following this concept, we look into methods to extract the whole

volumes or hypervolumes carved out by approximately planar layers in light fields.

While some similar methods for three-dimensional video analysis and EPI volumes

have been developed (e.g. [24,58]), no full coherent three or four-dimensional unsu-

pervised segmentation scheme has been explored.

• Semi-parametric variational framework for segmenting light fields Varia-

tional frameworks including the classical active contour and level-set methods extend

naturally to any number of dimensions. A first approach to extract plenoptic hy-

pervolumes in light fields is to use a classical four-dimensional active hypersurface.

However, the structure of a light field is such that points in space are mapped onto

particular four-dimensional trajectories. Moreover occlusions occur in a well-defined

manner. Therefore, in Sections 4.4 and 4.5, we impose these two constraints and

modify the classical evolution equations. This leads to a new semi-parametric evo-

lution approach. In Chapter 5, we show the validity of the proposed approach by

analysing many different natural light fields. Moreover, we show that even though

the plenoptic hypervolumes are extracted using simplified depth models, the ob-

jects still show their original shapes in the reconstructed images and aliasing-free

rendering is achieved.

• New sampling schemes for parametric non-bandlimited signals Recent sam-
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pling schemes have shown that it is possible to sample and perfectly reconstruct

signals that are not bandlimited but characterized by a finite number of degrees of

freedom per unit of time. Moreover, it is possible to do so with physically realizable

finite support sampling kernels. Current methods provide answers for Diracs and

piecewise polynomial signals. In Sections 6.5 and 6.6, we extend these results to

oscillating functions and in particular piecewise sinusoidal signals and combinations

of piecewise sinusoidal and polynomial signals. Such signals are notoriously difficult

to reconstruct since they are concentrated both in time and frequency. However, we

show that under certain conditions on the sampling kernels, they can be sampled and

perfectly reconstructed. Interestingly, the method described in these sections is able

to perfectly reconstruct piecewise sinusoidal signals with arbitrarily high frequencies

and arbitrarily close discontinuities given certain conditions on the number of sines

and discontinuities. We show that these new schemes can be applied to perfectly

reconstruct certain classes of parametric plenoptic functions.

The work presented in this thesis has led to the following publications:

• J. Berent, P. L. Dragotti, and T. Blu, “Sampling piecewise sinusoidal signals with

finite rate of innovation methods,” to be submitted, IEEE Transactions on Signal

Processing, 2008.

• J. Berent and P.L. Dragotti, “Plenoptic manifolds: exploiting structure and coher-

ence in multiview images,” IEEE Signal Processing Magazine, vol 24, no. 7, pp.

34-44, November 2007.

• J. Berent and P.L. Dragotti, “Unsupervised extraction of coherent regions for image

based rendering,” Proceedings of British Machine Vision Conference (BMVC’07),

Warwick, UK, September 10-13, 2007.

• J. Berent and P. L. Dragotti, “Segmentation of epipolar-plane image volumes with

occlusion and disocclusion competition,” Proceedings of IEEE International Work-

shop on Multimedia Signal Processing (MMSP’06), Victoria, Canada, October 3-6,

2006.
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• J. Berent and P. L. Dragotti, “Perfect reconstruction schemes for sampling piece-

wise sinusoidal signals,” Proceedings of IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP’06), Toulouse, France, May 14-19, 2006, pp.

377-380.

• J. Berent and P. L. Dragotti, “Efficient representation and segmentation of multi-

view images,” BMVA symposium on 3D Video-Analysis, Display and Applications,

London, UK, February 6, 2008.

1.5 Thesis outline

The thesis is structured as follows:

In Chapter 2, we study the structure of the plenoptic function and discuss its

sampling and interpolation. More precisely, we start by using the pinhole camera model

and discuss how points are mapped onto the plenoptic domain. In doing so, we start by

three-dimensional plenoptic functions such as videos and EPI-volumes. We then follow by

describing in more detail the structure of the four-dimensional light fields. We then discuss

the sampling and interpolation of the plenoptic function and light fields in particular. This

analysis is done both in the spatial and spectral domains. Finally, we discuss model and

image-based layered representations and introduce the concept of plenoptic hypervolumes.

In Chapter 3, we describe image segmentation using the deformable model (or ac-

tive contour) method. In particular, we describe the variational formulations that are

based on boundary or region information. For both cases, we show how to derive the

steepest descent of the error function in order to converge towards the desired segmenta-

tion. Common descriptors for dissimilarity and similarity segmentation schemes are also

presented. Finally, we discuss the issues of implementing the partial differential equations

that govern the evolution of active contours and present the popular level-set method.

Chapter 4 applies the active contour methodology to light fields in four dimensions.

However, instead of doing so in a straightforward manner, we study how the structure of

light fields can be imposed onto the evolution of the deformable models. In particular,
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this chapter shows how to constrain the shape of the evolving hypersurface such that

the structure is consistent with that of light fields. The resulting framework is a semi-

parametric approach. Initializations of the method are also discussed and the algorithm

is summarized.

Chapter 5 shows the validity of the proposed approach with captured natural light

fields. We describe all the parameters of the scheme and quantify how they were set for

the illustrated experiments. A variety of segmentation results along with interpolated

viewpoints are shown. Finally, the chapter also shows the usefulness of the plenoptic

hypervolume extraction scheme for other applications such as occlusion removal and aug-

mented reality.

Chapter 6 deals with the problem of sampling and interpolation of the plenoptic

function in a more theoretical manner. That is, new sampling schemes based on finite rate

of innovation have recently been developed that are able to sample and perfectly recon-

struct signals that are not bandlimited but characterized by a finite number of parameters.

The chapter starts by introducing current finite rate of innovations methods that use com-

pact support sampling kernels. We then propose two new sampling schemes that are able

to perfectly reconstruct piecewise sinusoidal signals. Some interesting extensions are also

shown.

Finally, Chapter 7 concludes the thesis with a summary of the achievements and a

presentation of possible directions for future research.
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Chapter 2

Introduction to the plenoptic

function and its interpolation

2.1 Introduction

The plenoptic function [2] depends on seven variables namely the viewing position

(vx, vy, vz), the viewing direction (θx, θy), the wavelength λ and the time t if dynamic

scenes are considered. It is therefore written as I = I7(θx, θy, λ, t, vx, vy, vz). In prac-

tice, the plenoptic function is usually represented with the Cartesian coordinates used in

numerous computer vision and image processing algorithms. It therefore becomes

I = I7(x, y, λ, t, vx, vy, vz), (2.1)

where x and y are analogous to the coordinates on the image plane. These parameters

are illustrated in Figure 2.1. When a camera captures an image of a scene, it is effectively

taking a sample of the plenoptic function.

It is far from trivial to deal with all the dimensions of the plenoptic function. In-

deed, the seven dimensions make it difficult to derive mathematical properties. They also

lead to a huge number of images that need to be captured in order to sample all the dimen-

sions. In an attempt to simplify the problem, most of the work on IBR makes assumptions

to reduce the dimensionality. These assumptions include dropping the wavelength, con-
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Figure 2.1: The plenoptic function. The intensity impinging on a point in space
(vx, vy, vz) depends on the viewing direction (x, y), the time t and the wavelength λ.

sidering static scenes or constraining the camera locations (or viewing space). The surface

plenoptic function [84] introduced by Zhang and Chen assumes that air is transparent and

therefore the intensity along a light ray remains constant unless it is occluded. This enables

them to drop one dimension. McMillan and Bishop introduced plenoptic modeling [55]

where the wavelength is omitted and static scenes are considered. This reduced their

parameterization to five dimensions. Coupling the assumptions of both methods leads to

the four-dimensional light field parameterization [50] introduced by Levoy and Hanrahan.

Further restricting the camera locations to a line results in the three-dimensional epipolar

plane image (EPI) volume [12]. Finally, image based rendering using a fixed camera center

is known as image mosaicing or panoramas of which Quicktime VR [23] is a good example.

Perhaps the most widespread and practical representation of the plenoptic function

is the light field [50] also known as the lumigraph [36] or the ray space [32]. In the seminal

work of Levoy and Hanrahan [50], the interpolation of the plenoptic function is done using

a large number of images and no geometric information about the scene. The interpolated

images are obtained by classical linear interpolation of the nearby available ones. This

enables a photorealistic rendering of complicated environments without modeling objects.

The drawback is the necessity of huge amounts of data which can be impractical. This

raises several interesting questions such as: How many images or viewpoints are required
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Figure 2.2: Figure 2.2(a) shows the trajectories carved out by a flat object in the
space-time volume. Figure 2.2(b) illustrates the trajectories carved out by two flat
objects in the case of a linear camera array where vx denotes the position of the
cameras along a line. Figure 2.2(c) shows the trajectories generated by two objects in
the case of a circular camera array where θ denotes the angle of the camera position
around the circle. Note that the structure in Figure 2.2(a) depends on the movement
of the objects which means it is not necessarily predefined. In both the other cases
(linear and circular still-image camera arrays), the structure is constrained by the
camera setup and occlusion events can be predicted.

for a good quality rendering? And can we use some approximate geometrical information

to enhance the rendering quality? Many pioneering works have provided answers to these

questions some of which are the object of study in this chapter.

Several authors have proposed comprehensive surveys on the plenoptic function

and IBR methods (see for instance [61, 85] and more recently [48]). In this chapter, we

look into the structure of the plenoptic function in Section 2.2 and Section 2.3 discusses

its sampling and interpolation in the spatial and spectral domains. Section 2.4 discusses

geometric representations with a particular emphasis on the differences between model-

based and image-based layered representations. In doing so this section introduces the

concept of plenoptic hypervolumes. Finally, Section 2.5 presents a summary of the chapter

and highlights some of the important points relevant to the remainder of the thesis.
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Figure 2.3: (a) Given the depth Z at which the light ray in (x′, v′x) intersects with the
object, it is possible to find the corresponding light ray in (x, vx). (b) Writing x as a
function of vx leads to the equation of a line with slope inversely proportional to the
depth. This (x, vx) space is the epipolar plane image.

2.2 Plenoptic structures

The vast majority of works on image based rendering assume the pinhole camera model.1

The model says that points in the world coordinates ~X = (X,Y,Z) are mapped onto

the image plane (x, y) in the point where the line connecting ~X and the camera center

intersects with the image plane [38]. The focal length f measures the distance separating

the camera center and the image plane. Using similar triangles, it can be shown that the

mapping is given by

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where we assume that the principal point is located at the origin. Consider now the case

of the video camera. The point in space ~X is free to move in time and its mapping onto

1There are some exceptions such as the work of Kubota et al. [47].
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the video data becomes









X(t)

Y (t)

Z(t)









7→









x

y

t









=









fX(t)/Z(t)

fY (t)/Z(t)

t









,

which is the parameterization of a trajectory in the 3D plenoptic domain. Note that the

intensity along this trajectory remains fairly constant if the radiance of the point does not

change in time. We can therefore write

I(x′, y′, t′) = I(x′ − px(t), y′ − py(t), t),

where px(t) and py(t) represent the motion of the point from time t to time t′. Assuming

the scene is made of moving objects, neighboring points in space will generate similar

neighboring trajectories in the video data (see Figure 2.2(a)). Hence, apart from the

object boundaries, the information captured varies mainly in a smooth fashion. Note that

in the general case, the trajectories do not have much structure. Indeed, there is no real

prior constraining the shape of the trajectory unless some assumptions are made on the

movement and the rigidity of the objects. Nevertheless, in natural videos, assuming a

certain degree of smoothness and temporal coherence is usually a valid assumption [45].

Let us now give one degree of freedom to the position of the camera (e.g. in vx)

instead of the time dimension. In this case, the plenoptic function reduces to the epipolar

plane image (EPI) volume [12]. It can be acquired either by translating a camera along

a rail or by a linear camera array. According to the pinhole camera model, points in

real-world coordinates are mapped onto the EPI volume as a function of vx according to









X

Y

Z









7→









x

y

vx









=









fX/Z − fvx/Z

fY/Z

vx









,

where we notice that a point in space generates a line. Given the depth Z at which

the light ray (x, y, vx) intersects with the object in (X,Y,Z), it is possible to find the
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corresponding ray in (x′, y′, v′x) which intersects the same 3D point (see Figure 2.3(a)).

Again using similar triangles, it is straightforward to derive the relations

x′ = x− f(v′x − vx)

Z

y′ = y,

which shows that points are shifted by distance depending on the depth Z and the view-

point change (v′x − vx). This shift is generally referred to as the disparity. Assuming

Lambertian2 surfaces and no occlusions, the radiance emanating from the point (X,Y,Z)

is viewed from any location vx with the same intensity. We can therefore write

I(x′, y′, v′x) = I(x′ − f(vx − v′x)

Z
, y, vx),

which means that the intensity along the line in the EPI remains constant. Furthermore,

the slope of the line is inversely proportional to the depth of the point Z. Therefore, the

data in this parameterization, as opposed to the video, has a very particular structure

which is noticeable in Figure 2.2(b). The occurrence of occlusions, for example, is pre-

dictable since a line with a larger slope will always occlude a line with a smaller slope. This

property follows naturally from the fact that points closer to the image plane will occlude

points that are further away. The example illustrated in Figure 2.4 portrays this property

with natural images. Note that the concept of EPI analysis is not necessarily restricted

to the case of cameras placed along a line and has been extended by Feldmann et. al [31]

with the Image Cube Trajectories (ICT). They show that other one-dimensional camera

setups such as the circular case illustrated in Figure 2.2(c) generate particular trajectories

in the plenoptic domain and occlusion compatible orders can be defined.

The light field is a four-dimensional parameterization of the plenoptic function

I(x, y, vx, vy) in which the viewpoints are limited to a bounding box. Light rays are most

commonly parameterized by their intersection with two planes namely the image plane

(x, y) and the camera plane (vx, vy) as illustrated in Figures 2.5 and 2.6. In its traditional

form, this data is captured by a planar camera array although other setups are possible

2A Lambertian surface is such that the light is reflected with the same intensity in all directions.
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x

y
Vx

Vx

Figure 2.4: The Epipolar Plane Image (EPI) volume. Cameras are constrained to a
line resulting in a 3D plenoptic function where x and y are the image coordinates and
vx denotes the position of the camera. Points in space are projected onto lines where
the slope of the line is inversely proportional to the depth of the point. The volume
illustrated is sliced in order to show the particular structure of the data.

including unstructured arrays [14]. Note that a three-dimensional (x, y, vx) slice of the

light field is equivalent to the epipolar plane image volume shown in Figure 2.4. This case

is also sometimes referred to as the simplified light field [19]. In the 4D case, the camera

is free to move on a plane. A point in space is therefore mapped onto









X

Y

Z









7→












x

y

vx

vy












=












X/Z − fvx/Z

Y/Z − fvy/Z

vx

vy












, (2.2)

which is a four-dimensional line as a function of vx and vy. Given the depth Z at which the

light ray (x, y, vx, vy) intersects with the object in ~X, it is possible to find the corresponding

ray (x′, y′, v′x, v
′
y) which intersects the same 3D point. By extension of the EPI volume,

we have the relations

x′ = x− f(v′x − vx)

Z

y′ = y − f(v′y − vy)

Z
,

which shows that points are shifted by distance depending on the depth Z and the view-

point change (v′x − vx, v
′
y − vy). Again, assuming Lambertian surfaces and no occlusions,



2.3 Sampling and interpolation of the plenoptic function 38

v y

v x x

y ( i , j )( k , l ) o b j e c ti m a g e p l a n ec a m e r a p l a n e0 1 N v x
1N v y 0 1 N x

N y1

Figure 2.5: One parameterization of the light field. Each light ray is uniquely param-
eterized with four dimensions namely its intersection with the camera plane (vx, vy)
and the image plane (x, y). The discretization of these two planes are indexed by (k, l)
and (i, j) for the camera and image planes respectively.

the radiance emanating from the point ~X is viewed from any location (vx, vy) with the

same intensity. We can therefore write

I(x′, y′, v′x, v
′
y) = I(x′ − f(vx − v′x)

Z
, y′ −

f(vy − v′y)

Z
, vx, vy), (2.3)

which means that the intensity along the line in the light field remains constant. The light

field therefore also has a very particular structure which is a four-dimensional extension

of the EPI volume.

2.3 Sampling and interpolation of the plenoptic function

In practice, the plenoptic function is captured by a finite number of cameras having a

finite resolution and a finite number of frames if the time dimension is captured. Usually,

the sampling periods for the image and the time dimensions are much smaller than the

camera location periods. Therefore, we will focus on the sampling and interpolation in

these dimensions and in particular using the light field representation. This will be the

case for the remainder of this chapter and indeed the remainder of the thesis.
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Using a planar camera array, we have access to the sampled version of the light

field

I[i, j, k, l] =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
I(~x)ϕ(x − iTx, y − jTy, vx − kTvx , vy − lTvy)d~x,

where ~x = (x, y, vx, vy), ϕ is the sampling kernel, {i, j, k, l} ∈ Z are the sample points

and {Tx, Ty, Tvx , Tvy} ∈ R
+ are the sampling periods for the x, y, vx and vy dimensions

respectively. The rendering of a new view is obtained by interpolating the sampled light

field I[i, j, k, l]. The interpolated value Ĩ(~x) is computed using a classical interpolation

framework in four dimensions. We therefore have

Ĩ(~x) =

Nx∑

i=0

Ny∑

j=0

Nvx∑

k=0

Nvy∑

l=0

I[i, j, k, l]ψ(x − iTx, y − jTy, vx − kTvx , vy − lTvy), (2.4)

where ψ(~x) is the interpolation kernel (or basis function). For example, one might choose

a basis function that is one on the nearest sample point to ~x and zero elsewhere. Such an

interpolation will generate a piecewise constant light field effectively acting as a nearest

neighbor method. Alternatively one might choose a quadrilinear basis function that is

one on the sample point and linearly drops down to zero at all neighboring points. The

interpolated value is thus computed from the 16 neighboring light rays. Such a rendering

is simple, computationally efficient and independent of scene complexity. However a huge

number of images is necessary for rendering viewpoints free of artifacts. Indeed, it is

common in light field rendering to use hundreds and even thousands of images [50]. The

use of an undersampled light field will result in blurring and ghosting effects. These

effects, of which an example is illustrated in Figure 2.7(a), are caused by correspondence

mismatches due to the larger viewpoint changes in between sample images. They can also

be interpreted as a form of aliasing due to undersampled data. In the lumigraph [36], these

effects are reduced by reconstructing a rough geometry of the scene. This geometry then

drives the choice of the interpolation kernel which will be designed to correct for depth.

In the following sections, we discuss these issues in the spatial and spectral domains.
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Vx

Vy

x

y

Figure 2.6: A sparse (4x4) light field image array. Light rays are parameterized with
the image coordinates (x, y) and the camera location (vx, vy).

2.3.1 Spatial analysis

In Section 2.2, we emphasized that the light field has a particular structure. It is made of

lines with slopes depending on the geometry of the objects in the scene. This geometry, if

available, can be used to adapt the interpolation kernel according to the depth [18,36,39].

The new interpolation kernel ψ′(x, y, vx, vy) is obtained by computing the corresponding

points in neighboring images with (2.3) and using the previous interpolation in (2.4) which

gives

ψ′(x− iTx, y − jTy, vx − kTvx , vy − lTvy) = (2.5)

ψ(x− iTx − f(kTvx − vx)

Z
, y − jTy − f(lTvy − vy)

Z
, vx − kTvx , vy − lTvy ).

Such a method is equivalent to interpolating along a certain direction in the EPI. Figure 2.8

illustrates the sample points used in classical linear interpolation with squares and the

depth corrected sample points are shown with triangles. Note that the depth corrected

basis function ψ′ reduces to ψ (i.e. no depth correction) when posing Z = ∞.

Clearly, the use of the depth corrected interpolation kernel requires a continuous

geometric model of the scene. For this purpose, one may reconstruct a relatively accurate

proxy for a single object as is the case for instance in [14,36]. Algorithms to estimate this
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(a) (b)

(d)(c)

Figure 2.7: Ghosting effects caused by undersampled light field rendering. Figure 2.7
(a) illustrates the result using light field rendering with no depth information. Fig-
ures 2.7 (b-c) illustrate the effect of moving the rendering depth from the minimum
to the maximum depths respectively. Figure 2.7 (d) shows the result obtained using
the optimal rendering depth in [18].

geometry include space carving [49] and variational methods [30]. However, this estimation

is a difficult task in cluttered scenes due to the presence of occlusions. In many works

such as [18, 39], a single plane is used as a proxy. Figures 2.7(b-d) illustrate interpolated

images using planar geometric proxies at different depths. From these images, it is clear

that the objects situated at a distance close to the rendering depth appear in focus. The

data is interpolated from sample values that originate from the same 3D points. However,

objects that are far from the rendering depth appear blurred and in double images. This

effect is due to the fact that the interpolation is done with points that do not correspond

to the real objects as illustrated in Figure 2.9. Another phenomenon that produces similar

problems is the occlusion which is also illustrated in the same figure. The effect of moving
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Figure 2.8: Depth corrected linear interpolation. Knowing the depth Z of the point
to interpolate in image vx, it is possible to find the corresponding light rays in the
available sample images in k and k+ 1. The squares show the points used for classical
linear interpolation and the triangles show the points used by the depth corrected
interpolation kernel.

the rendering depth along with the use of different interpolation filters has been studied

in detail in [18,39].

There are several conclusions to be drawn from the discussion above. Objects situ-

ated far from the camera plane require less depth correction since the shift, proportional

to Z−1, tends to zero. Second, a very highly sampled camera plane also requires little

or no depth correction since the terms kTvx − vx and lTvy − vy tend to zero. Inversely,

large depth variations and sparsely sampled camera arrays require some form of depth

correction. Finally, the knowledge of occlusions is useful to avoid interpolating points

from intensities that belong to two different objects in the scene.

2.3.2 Spectral analysis

In the previous section, we looked into the spatial properties of light fields in order to

interpolate new view points. The sampling and interpolation of light fields can also be

studied using classical sampling theory. That is, by computing the spectral support of the

function and determining the sampling frequency necessary for an aliasing-free interpola-
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geometric proxy

camera k camera k+1
interpolated viewpoint

Figure 2.9: View interpolation with a single depth plane as geometric proxy. Points
that are far from the rendering depth will appear blurred and in double images since
the interpolation is done with different points in the scene. Occlusions have a similar
effect.

tion. Clearly, the spectrum of the light field data will depend on the sampling rate of the

cameras and scene properties such as the reflectance of surfaces and occlusions. However,

several pioneering works such as Chai et al. [18] and Zhang and Chen [84] enable to provide

approximated answers.

The four-dimensional Fourier transform of a light field is given by

Î(ωx, ωy, ωvx , ωvy) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
I(~x)e−j(ωxx+ωyy+ωvxvx+ωvy vy)dxdydvxdvy,

where

I(x, y, vx, vy) = I(x+
fvx

Z
, y +

fvy

Z
, 0, 0),

since we assume that the scene is Lambertian and there are no occlusions. The image

I(x, y, 0, 0) is a reference image located in vx = vy = 0. As pointed out in [18], this

computation is very complicated if we take into consideration the general case. However,

some properties can be deduced from approximations. For instance, assume the scene has
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a constant depth Z = Z0. The Fourier transform of this light field is thus given by

Î(ωx, ωy, ωvx , ωvy) =

∫ ∞

−∞

∫ ∞

−∞
I(x, y, 0, 0)e−j(ωxx+ωyy)dxdy

∫ ∞

−∞
e
−j( f

Z0
ωx+ωvx )vxdvx

∫ ∞

−∞
e
−j( f

Z0
ωy+ωvy )vydvy

= 4π2Î2(ωx, ωy)δ(
f

Z0
ωx + ωvx)δ(

f

Z0
ωy + ωvy),

where Î2(ωx, ωy) is the 2D Fourier transform of I(x, y, 0, 0) and δ(x) is the Dirac distribu-

tion. This analysis enables the authors in [18] to draw several interesting conclusions. For

simplicity, we consider only the projection of Î(ωx, ωy, ωvx , ωvy) onto the (ωx, ωvx) plane

and denote it by Î(ωx, ωvx). The spectrum of the constant depth light field is supported on

a line defined by f
Z0
ωx + ωvx = 0. The spectral support of a scene with depth varying be-

tween Zmin and Zmax is therefore approximately bound by the two lines f
Zmin

ωx +ωvx = 0

and f
Zmax

ωx + ωvx = 0. These bounds are illustrated in Figure 2.10(a). Let the sampling

kernel be a Dirac function such that the samples are given by

I[i, j, k, l] =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
I(~x)δ(

x

Tx
− i)δ(

y

Ty
− j)δ(

vx

Tvx

− k)δ(
vy

Tvy

− l)d~x.

The Fourier transform of the sampled light field becomes

Î(ωx, ωy, ωvx , ωvy) =
∑

m∈Z

∑

n∈Z

∑

r∈Z

∑

q∈Z

Î(ωx − m

Tx
, ωy −

n

Ty
, ωvx − r

Tvx

, ωvy − q

Tvy

),

which is a sum of shifted versions of the original Fourier transform Î as illustrated in

Figure 2.10(b). Aliasing occurs when the replicated versions of the spectrum overlap.

Such an analysis suggests that the minimal overlap is obtained by using an interpolation

filter that is adapted to the rendering depth [18]:

1

Zopt
=

1

2
(

1

Zmin
+

1

Zmax
). (2.6)

Therefore some geometrical information about the scene (i.e. Zmin and Zmax) is beneficial.

It also becomes clear that the area of the support in the frequency domain depends on

the difference between the closest and the furthest points in the scene. A scene with
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Figure 2.10: (a) The support of the spectrum of the 2D light field is approximately
bound by the minimum and maximum depths in the scene. (b) The spectrum of
the sampled light field contains replicated versions of the original one. The optimal
reconstruction filter is skewed to the disparity 0.5(1/Zmin + 1/Zmax).

large depth variations will therefore result in more aliasing. Moreover, it is possible to

decompose the scene into a collection of approximately constant depth regions. Each

region will have a small depth variation and can be individually rendered free of aliasing.

Naturally this is an approximation since the decomposition of the scene into constant

depth regions inherently implies a windowing which translates to the convolution with

infinite support sinc functions in the frequency domain. Nevertheless a large part of the

signal’s energy lies in a bandlimited window. A formal analysis of the tradeoff between

geometry in terms of the number of bits for depth and sampling density can be found

in [18]. Finally, occlusions also imply a windowing. The spectrum of the light field will

therefore be spread and more aliasing will occur.

2.4 Layered model and image-based representations

Both the spatial and spectral analysis presented above support the fact that some geo-

metric information about the scene is beneficial for taking advantage of the coherence in

plenoptic data and in particular for view interpolation. In this section, we review different

ways to represent the geometry of a scene.
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2.4.1 Model-based layers

In layered representations, the scene is characterized by multiple layers corresponding to

different objects or parts of objects in a scene. Such a representation first appeared for

videos in [78] where the data is represented as a collection of layers undergoing a parametric

motion. Each layer is represented with its spatial support, its motion model (e.g. affine)

and its texture. In [3], a similar representation is used for decomposing multiview data

into a set of planar patches (or sprites). A per pixel depth residual is added to each

layer in order to compensate for surfaces that are not planar. The different layers are

extracted by warping images to the reference image according to a planar model. The

layer is then segmented using a matching functional (squared error for instance). This

layered representation is described on a single reference image. Such a representation

suffers from the fact that rendering an image from a virtual viewpoint will most likely

expose previously occluded areas. The rendered viewpoint will therefore have disocclusion

artifacts.

The layered depth image (LDI) [65] representation allows for a multi-valued depth

map with texture information for each depth value. It is obtained by merging information

from multiple images to a single center of projection (see Figure 2.11(a)). This repre-

sentation, along with the previous layer representation, suffers from the fact that texture

needs to be resampled when it is warped onto reference images. Moreover, synthesized

views are obtained by reprojecting the texture onto the desired viewpoint which involves a

second resampling. Such manipulations can lead to blurring effects due to the resampling

process. The LDI cube [52] partially solves the problem by effectively using multiple LDIs

to represent the scene from different viewing positions. The LDI closest to the virtual

viewing point is used which will minimize resampling problems.

2.4.2 Image-based layers and plenoptic hypervolumes

As we saw in the Section 2.2, points in space are mapped onto trajectories in the plenoptic

function. Layers that are made of neighboring points in space are therefore mapped onto

volumes (or more generally hypervolumes) that are made of neighboring trajectories. This
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Figure 2.11: The layered depth image (LDI) in (a) represents the scene with a multi-
valued depth map in a reference image. The plenoptic hypervolumes Hn in (b) are
represented with a collection of corresponding regions Hn(x, y, k) in each of the input
images k. The geometry of each plenoptic hypervolume is modeled with a simple
plane.

collection of trajectories generates a multi-dimensional hypervolume H which we will call

plenoptic hypervolume (also known as plenoptic manifold [6]). This concept can be seen

as the generalization of the object tunnels [58] in videos and the EPI-tubes [24] in EPI

volumes.

Definition 1. A plenoptic hypervolume is defined by the region carved out by a layer in

the plenoptic function.

In contrast to the LDI, the plenoptic hypervolume representation does not use

reference images. Contrary to the LDI that builds a geometric model of the scene, a

plenoptic hypervolume segments the plenoptic function itself. Thanks to this, it uses

simple geometric proxies such as planes and there is no need for an accurate per pixel depth.

Note that the concept of plenoptic hypervolume shares many ideas with the coherent layers

in [69] and the IBR objects in [33]. However, it is conceptually different in that it is a

continuous representation of the regions carved out by layers in the plenoptic function.

As illustrated in Figure 2.11(b), the intersection of the plenoptic hypervolume H with an

image in k is the layer H(x, y, k) on that image.
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There are two important elements to retain from the structure of the plenoptic

function. First, the multi-dimensional plenoptic trajectories are constrained by the cam-

era setup. This is illustrated by the way points in space are mapped onto the plenoptic

domain. In the following, we will refer to this prior as the geometry constraint. Second,

there is a well-defined occlusion ordering. Points at different depths generate different

trajectories and will intersect in the event of an occlusion. The study of these trajecto-

ries determines which point will occlude the other. This prior will be referred to as the

occlusion constraint. There are several benefits in considering the extraction of the whole

hypervolume carved out by objects instead of building a model-based layered represen-

tation. In particular, recombining the plenoptic hypervolumes reconstructs exactly the

original data as illustrated in Figure 2.12. The procedure enables a global vision of the

problem and operates on the entire available data. That is, all the images are taken into

account simultaneously and the segmentation is consistent throughout all the views which

increases robustness.

In [69], the contours of layers are semi-manually extracted on one image and prop-

agated to the other views (i.e. the two other dimensions vx and vy) using a user-defined

depth map. By performing the segmentation in this manner, the coherence of the layers

is enforced in all the views. Some authors have tackled the problem of unsupervised co-

herent region extraction. These methods are usually based on the analysis of the epipolar

plane image. The depth is estimated by computing the variance along lines in the EPI.

Occlusions are dealt with by using the fact that lines with larger slopes will occlude the

lines with smaller slopes. In [24], horizontal slices of the EPI volume are analyzed in order

to gather lines with similar slopes. Although the authors convert this segmentation to a

LDI representation by using a single reference image for texture, this method effectively

extracts plenoptic hypervolumes. As opposed to the method in [24] which analyses the

data slice by slice, the method that we presented in [6,7] which we describe in more details

in Chapter 4 is based on a four-dimensional framework. It therefore exploits coherence in

four dimensions, that is, the whole stack of images is analyzed in a global manner.
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Figure 2.12: Decomposition of the plenoptic function (EPI volume in this example)
into four plenoptic hypervolumes. When added together, the four extracted regions
reconstruct exactly the original data.

2.5 Summary

Interpolating the plenoptic function (i.e. image based rendering) is an increasingly popular

method for rendering photorealistic images from virtual viewpoints. The data is not

represented by the 3D objects that constitute the scene but by the collection of light rays

captured by the cameras (i.e. the plenoptic function). These light rays can be nicely

parameterized in the form of the four-dimensional light field. Using this parameterization,

new views are synthesized by classical interpolation (i.e. usually linear interpolation).

Depending on the scene, the amount of images necessary for an aliasing free rendering is

extremely large. In this chapter, we showed through spatial and spectral analysis that

the artifacts caused by undersampled light fields are mainly due to large depth variations

and occlusions. It is therefore beneficial to use some geometric information to drive the

choice of the interpolation kernels. Obtaining an accurate 3D model of complicated and

cluttered scenes is a difficult problem. However, the plenoptic function provides a nice

framework for studying the data in a global manner and imposing a coherent analysis.

Using this representation, we suggested that in extension to the object tunnels in videos

and EPI-tubes in multi-baseline stereo data, objects carve multi-dimensional hypervolumes

in the plenoptic function that we called plenoptic hypervolumes. Just like in the three-

dimensional cases, the hypervolumes contain highly regular information since they are
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constructed with images of the same objects. There is therefore clearly potential for

robust analysis and efficient representation.

The important aspects of the plenoptic function that emerged in this chapter are

highlighted in the following points:

• The plenoptic function is a high dimensional function (seven dimensions in general,

four dimensions in the case of the light field).

• The structure of the plenoptic function depends on the camera setup sampling it.

• Based on photoconsistency, the plenoptic function has a high degree of regularity

and coherence.

• Layers in the scene carve out plenoptic hypervolumes in the plenoptic domain.
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Chapter 3

Variational methods for

multi-dimensional data

segmentation

3.1 Introduction

The goal of segmentation is to partition the data into regions that are of particular interest.

When dealing with images, these regions are usually different objects or parts of objects

in a scene that need to be separated from a background. In automatic segmentation

schemes, the regions of interest are differentiated from each other by some mathematical

property. This is usually based on boundary information such as sharp intensity changes or

on region information such as texture, spatial homogeneity and motion or disparity. One

popular way to obtain this segmentation is to minimize an appropriate cost functional. In

variational methods, this energy minimization is solved using partial differential equations

(PDEs) to evolve a deformable model in the direction of the negative energy gradient,

thus attracting it towards the region to segment.

These methods became very popular since the active contours (a.k.a. snakes) pio-

neered by Kass et al. [43]. They have been applied successfully in a number of image and

video segmentation schemes [16,17,20,53,58], motion detection [41,42,56] and also multi-
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view scene modeling [30,35] to name but a few. The popularity of the method comes from

several attractive properties which are discussed in this chapter. One trait of relevance

in our context is the capability of the framework to extend naturally to any number of

dimensions. Several works such as [56, 58] have applied the method in three dimensions

for space-time video segmentation. An application of the four-dimensional case has been

studied in [35] for coherent space-time scene modeling from multiview images.

In this chapter, we start by formalizing the setup in Section 3.2. We then derive

the velocity vector fields that follow from the two main cues for extracting regions of

interest. First, one may use a dissimilarity model and look for the edges of the regions

to segment. These methods are called boundary-based since they only take into account

boundary information. Section 3.3 describes how to derive the velocity vector field in

this case and portrays some of the dissimilarity measures used in recent segmentation

schemes. Second, one may use a similarity measure effectively looking for points with

similar statistics or motion in the case of videos. The derivation of the velocity vector in

this context is described in Section 3.4 along with the description of some of the common

similarity measures used. Section 3.5 discusses implementation issues and describes the

popular level-set method. Finally, a summary of the chapter is presented in Section 3.6.

3.2 The setup

Let D ⊂ R
m be a multi-dimensional domain. For instance, an image gives m = 2, a video

m = 3 and a light field m = 4. The problem of segmentation can be seen as finding the

optimal partitions {H1, . . . ,HN} of D depending on a certain segmentation criteria. For

clarity, we consider here the simpler case where N = 2. That is, the domain D is separated

in two parts namely H the region to segment and H its complement. Clearly, H∪H = D.

The boundary of the two regions denoted ∂H is a closed curve which we also write as ~Γ

(see Figure 3.1). All the derivations in this chapter are valid in the general case where

N > 2 as will become clear in Chapter 4.

The problem of segmentation can be posed as an energy minimization. That is, an
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D ⊂ R
m

H

H

∂H = "Γ

Figure 3.1: The domain D is separated into the inside of the region to segment H and
its complement H. The interface between the two regions is the curve ∂H = ~Γ.

energy functional is designed such that it is minimal when the partitioning {H,H} coin-

cides with the sought after segmentation. The idea is to start with an initial estimate and

to introduce a dynamical scheme where the region H is made dependent on an evolution

parameter τ such that ∂H = ~Γ becomes ∂H(τ) = ~Γ(τ). It is then possible to compute the

derivative of the energy functional with respect to τ and deduce the steepest descent in

order to evolve ~Γ(τ) in such a way that the energy converges towards a minimum albeit

local. This evolving boundary is known as an active contour [43]. In practice, the evolving

interface is modeled by a parametric m-dimensional curve ~Γ(~σ, τ) ⊂ R
m where ~σ ∈ R

m−1.

The partial differential equation (PDE) defining the deformations of the active contour is

given by [16,43]

∂~Γ(~σ, τ)

∂τ
= ~vΓ(~σ, τ) = F (~σ, τ)~nΓ(~σ, τ) with ~Γ(~σ, 0) = ~Γ0(~σ), (3.1)

where ~vΓ(~σ, τ) is the speed function (or velocity vector field), ~nΓ is the outward normal

vector and ~Γ0 is the starting point defined by the initialization of the algorithm or the

user. Figure 3.2 illustrates this setup and shows the example of an evolving interface in

three dimensions. The problem is to define a velocity vector field ~vΓ that will attract the

active contour towards the desired region to segment based on the energy functional. The

steady state of the PDE in (3.1) should therefore be obtained when the deformable model
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region to segment

!Γ(!σ, 0) !Γ(!σ, τ1) !Γ(!σ, τ2) !Γ(!σ, τ3)

!Γ(!σ, 0)

!Γ(!σ, τ1)

!vΓ(!σ, 0)

Figure 3.2: Evolution of the active contour ~Γ(~σ, τ) towards the boundary of the region
to segment. The speed function ~vΓ(~σ, τ) defines the deformation of the contour. The
second row illustrates the evolution of an active contour in three dimensions (or active
surface) towards objects to segment.

has reached the contour of the object. That is, the speed function ~vΓ is designed such that

the curve ~Γ converges towards the region to segment when τ → ∞.

In practice, there are two main ways to define the energy functionals that will

govern the evolution of the active contours. Indeed, the energy may be defined on the

boundary of the region leading to a boundary-based method. Alternatively, the energy

may be defined on the whole region leading to a region-based method. Note that these two

methods are not mutually exclusive. In the next sections, we describe the derivations of

the speed functions and present the common segmentation criteria for images and videos.

3.3 Boundary-based segmentation

The first class of variational methods for segmentation are based on boundary information.

Therefore the energy is a function of the boundary ∂H of H only. That is, we have

E(τ) =

∫

∂H(τ)
db(~x)d~σ, (3.2)
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where db(~x) : R
m → R is a given potential function also known as a descriptor. This

energy is at the basis of the original ‘snakes’ method [43]. It is also known as the geodesic

active contour method [16] because the underlying energy functional can be seen as the

length of the contour weighted by a potential function. The descriptor is designed such

that the E(τ) is minimal when the desired region of interest has been found. Therefore,

one has to solve the minimization problem:

argmin
~Γ(τ)

∫

∂H(τ)
db(~x)d~σ, (3.3)

which may be found using a classical steepest descent method. Many authors including [16]

[42] have shown that the derivative of the functional with respect to τ is given by

dE(τ)

dτ
=

∫

~Γ
[−~∇db(~x) · ~nΓ + db(~x)κ](~vΓ · ~nΓ)d~σ,

where ~vΓ, ~nΓ and κ are the speed, the outward unit normal and the mean curvature of

~Γ respectively, ~∇ is the gradient operator and · denotes the scalar product. The steepest

descent is therefore obtained with the evolution equation

~vΓ = [−db(~x)κ+ (~∇db(~x) · ~nΓ)]~nΓ, (3.4)

where in this equation ~x = ~Γ(~σ, τ). Hence by comparing (3.4) with (3.1), we now have

the velocity for the energy minimizing active contour. Note that the case where db(~x) is

a positive constant µ leads an evolution minimizing only the length of the contour. The

velocity in this case becomes ~vΓ = −µκ~nΓ and is also known as the mean curvature flow.

3.3.1 Descriptors for boundary-based methods

The early active contour methods that have been applied to image segmentation were based

on the assumption that different objects in an image I(~x) generate intensity discontinuities

and have smooth contours. The flow driving the evolution of the curve is therefore designed

to ‘lock’ the contour on strong intensity gradients (effectively acting as an edge detector)
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while maintaining a certain smoothness. In general, this descriptor can be written as:

db(~x) = g(|~∇I(~x)|),

where ~∇I(~x) is the image gradient. The function g : [0,∞[→ R
+ is a strictly decreasing

function such as that g(r) → 0 when r → ∞. For example, one might use

g(r) =
1

1 + rp
,

where p ≥ 1. The evolution of the contour in (3.4) will therefore be inhibited in regions

with large intensity gradients. In the evolution equation (3.4), the term g(|~∇I(~x)|)κ tends

to smooth the contour by reducing its curvature unless g(|~∇I(~x)|) is close to 0 which

means a strong edge. The term (~∇g(|~∇I(~x)|) ·~nΓ) tends to evolve the contour towards an

intensity edge as long as ~∇g(|~∇I(~x)|) is not orthogonal to ~nΓ.

The geodesic active contour formulation described above has also been used for

motion tracking in videos. In particular, Mitiche et al. [56] used a three-dimensional

active surface to extract moving objects from image sequences I(x, y, t). In this work, the

authors proposed the descriptors

db(~x) = g(|δI(~x)|),

with

δI(~x) =
∂I
∂t

( ∂I
∂x

2
+ ∂I

∂y

2
)

1
2

,

which is the normal component of the optical velocity. The active surface is therefore

designed to lock onto motion discontinuities.

3.4 Statistical region-based segmentation

While for some applications, purely boundary based functionals are sufficient, it is usually

beneficial to use more information. Indeed, the regions to segment may have different

properties such as texture or spatial and motion homogeneity that cannot be included
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in a boundary-based energy functional. Moreover, due to their boundary-based nature,

these types of functionals are not adapted to objects that have diffuse boundaries. Finally,

as we saw in the previous section, they often rely on image gradients which makes them

susceptible to noise. All these issues can be dealt with by using region-based methods as

was nicely illustrated by Chan and Vese [20].

It is worth mentioning here that the region-based active contour method shares

some similarities with the watershed algorithm [8, 77]. In this method, images are con-

sidered as a topographical surface made of hills and valleys. The watershed algorithms

are designed to segment these topographical surfaces in different basins separated by the

watershed lines. In order to perform this task, the idea is to fill the valleys in a similar way

that water fills a basin. The main drawback of these methods are their sensitivity to noise,

often resulting in oversegmentation [37]. Moreover, there is no smoothness constraint in

these methods making it difficult, for instance, to track regions over multiple images [37].

Both these issues can be dealt with using the region-based active contour methods.

Zhu and Yuille [88] were the first authors to coin the term ‘region competition’

and introduced a generalized framework based on probabilities. In this formulation, the

shortest curve is sought that optimally separates the domain D into H and H given

probability functions that the point ~x in the domain belongs to H or to H. Following their

work, an optimal partition {H,H} of the image domain can be computed by minimizing

the energy

E(τ) =

∫

H(τ)
din(~x, ~pin)d~x+

∫

H(τ)
dout(~x, ~pout)d~x+

∫

∂H(τ)
µd~σ, (3.5)

where {din(~x, ~pin), dout(~x, ~pout)} : R
m → R are volume potentials that measure the coher-

ence of a point ~x with a model defined by the parameters ~pin and ~pout. For instance, these

parameters may be the mean and the variance of a normal density function. The last term

is a regularization term smoothing the contour.

Since minimizing (3.5) jointly for {H,H} and the parameters {~pin, ~pout} is very

complicated, the problem is decomposed into two iterated steps. First, given an initial

estimate of the regions, one can solve the minimization for the parameters. That is, we
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are looking for

argmin
{~pin,~pout}

∫

H
din(~x, ~pin)d~x+

∫

H
dout(~x, ~pout)d~x,

where the last term in (3.5) is omitted since it does not depend on the parameters ~pin

and ~pout. This is a standard problem and we will not delve on it here. More interesting

is the second step that consists in estimating the regions {H,H} given the parameters

{~pin, ~pout}. In this case, we are effectively solving

argmin
~Γ(τ)

∫

H(τ)
din(~x, ~pin)d~x+

∫

H(τ)
dout(~x, ~pout)d~x+

∫

∂H(τ)
µd~σ,

which means looking for the shortest curve that best separates a region that follows the

probability model din from the one that follows the probability model dout. It can be

shown that the derivative of the functional (3.5) with respect to τ is given by [41,70]

dE(τ)

dτ
=

∫

~Γ
[din(~x, ~pin) − dout(~x, ~pout) + µκ](~vΓ · ~nΓ)d~σ. (3.6)

Hence the evolution equation associated with the steepest descent of the energy becomes

~vΓ = [dout(~x, ~pout) − din(~x, ~pout) − µκ]~nΓ, (3.7)

where again by comparing (3.7) with (3.1), we now have a speed function for the active

contour. Note that the competition formulation is now clear. Indeed, discarding the cur-

vature term µκ, a point ~x belonging to the inside of the region to segment will have a small

din and large dout resulting in a positive force. The point will therefore be incorporated.

Inversely, a point belonging to the outside of the region will have a small dout and a large

din resulting in a negative speed. The point will therefore be rejected. This competition

is illustrated in Figure 3.3. The flow in (3.7) is the one used in many variational image

and video segmentation algorithms including [41,53,58] and [20].
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dout > din

dout < din

!Γ(!σ, τ)

!vΓ(!σ, τ)
H

H

Figure 3.3: Region competition determining the evolution of the active contour to-
wards the region to segment. A point belonging to the inside of the region to segment
will have a small din and large dout resulting in a positive speed ~vΓ. The point will
therefore be incorporated. Inversely, a point belonging to the outside of the region
will have a small dout and a large din resulting in a negative speed. The point will
therefore be rejected.

3.4.1 Descriptors for region-based methods

Region-based variational frameworks have attracted a lot attention and many authors

have proposed different descriptors for different segmentation problems. In this section,

we describe some of the descriptors proposed for intensity and motion-based segmentation.

The works based on probabilities such as [88] treat the segmentation problem as

a Bayesian inference. Maximizing the a posteriori probability is equivalent to minimizing

the negative logarithm which leads to the descriptors:

din(~x, ~pin) = − logP (I(~x)|~pin)

dout(~x, ~pout) = − logP (I(~x)|~pout),

where P is the probability density and ~pin and ~pout are the parameters of the density

function. For instance, one might choose the Gaussian distribution:

P (I(~x)|(ηn, ρn)) =
1√

2πρn

e
−

(I(~x)−ηn)2

2ρ2
n ,

where ηn and ρn are the mean and the variance of the region Hn respectively. A particular
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case of this functional is the Chan and Vese model or ‘active contours without edges’ [20].

Indeed, posing 2ρ2
in = 2ρ2

out = 1 gives the functionals

din(~x, ηin) = [I(~x) − ηin]2

dout(~x, ηout) = [I(~x) − ηout]
2,

which are the ones used in their paper. The active contour is therefore made to separate

regions with different mean values. While these descriptors are based on the statistics of

the intensity in the regions to segment, the availability of multiple images of a scene taken

at different times (i.e. videos) or from different viewpoints (i.e. light fields) enables one to

use other cues. For instance, regions may be segmented according to a particular motion

or depth model. This usually assumes that the radiance of a point on an object does not

change in time and that the surfaces of the objects in the scene are Lambertian. Numerous

works using active contours have used these cues for segmenting moving images, several

of which are described here.

Jehan-Besson et al. [41] used region-based active contours for motion detection. In

that paper, the authors assume a known static background B(~x) and used the descriptors

din(~x) = ζ

dout(~x) = [B(~x) − I(~x)]2,

where ζ is a positive constant. The goal is therefore to find regions in the frame I(~x) that

have moved. Clearly, the ζ parameter acts as a threshold. Indeed, we notice from the

evolution equation (3.7) that regions where the intensity changes such that [B(~x)− I(~x)]2

is larger than ζ will be included in the active contour. Inversely, the point is rejected when

the squared intensity changes are smaller than ζ. These descriptors, though quite simple,

have been applied successfully for extracting moving objects from static backgrounds.

They also have the advantage that motion parameters need not be estimated. However,

in many cases, the background is changing as well (i.e. a moving camera). In order to

account for this case, the descriptors need to take motion into account. In particular,
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Mansouri and Konrad [53] proposed the descriptors

din(~x, pin) = [I(pin(~x), ti+1) − I(~x, ti)]
2

dout(~x, pout) = [I(pout(~x), ti+1) − I(~x, ti)]
2,

where {pin(~x), pout(~x)} : R
2 → R

2 are motion transformations (e.g. affine). These descrip-

tors effectively lead to an energy minimization based on the least squares error for a point

and the motion model for each region.

The two sets of descriptors described above used two-dimensional active contours

and take into consideration only two consecutive frames. Several works (e.g. [56,58]) have

studied the use of a large amount of frames in order to impose temporal coherence in the

segmentation. In particular, Ristivojevic and Konrad [58] extended the two-frame method

in [53] by using the variance along a motion trajectory throughout a large set of frames.

This leads to the descriptors:

din(~x, pin) =
1

Nf

Nf∑

i=1

[I(pin(~x, ti)) −min(~x)]2

dout(~x, pout) =
1

Nf

Nf∑

i=1

[I(pout(~x, ti)) −mout(~x)]
2,

with

min(~x, pin) =
1

Nf

Nf∑

i=1

I(pin(~x, ti))

mout(~x, pout) =
1

Nf

Nf∑

i=1

I(pout(~x, ti)),

where Nf is the number of frames under consideration and {pin(~x, ti), pout(~x, ti)} : R
3 →

R
3 is a motion trajectory.
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3.5 Implementing the evolution of active contours

A natural way to implement the evolution equation in (3.1) consists in using an explicit

representation by discretizing the curve Γ with a set of connected control points. The

displacement for each control point is computed according to the speed ~vΓ. While this

approach is natural and computationally efficient, it has some drawbacks. First, the

control points may evolve in such a way that they are closer and closer together or further

and further apart which leads to numerical instabilities in the computation of derivatives.

Therefore one needs to introduce a reparameterizing scheme in order to retain stability.

Constantly resampling the contour, for example, is one way of achieving this. Second, the

speed function may cause the curve to be separated in two regions or inversely, to merge

with other curves (i.e. topological changes). Therefore the evolution scheme must also

introduce a numerical test to enable the merging and splitting of contours. These methods

rely on somewhat ad-hoc tests and the procedure becomes even more problematic as the

number of dimensions increases.

Other methods compute the PDE in (3.1) using an implicit discretization of the

contour. One very popular representation is the level-set method which we describe in

the next sections. The method is presented here in the two-dimensional case since the

extension to the multi-dimensional case is straightforward thereafter.

3.5.1 The level-set method

The level-set method [64] addresses stability and topology issues of active contours by

implicitly representing a curve ~Γ(s, τ) = [x(s, τ), y(s, τ)] ⊂ R
2 as the zero level of a higher

dimensional surface z = φ(x, y, τ) ⊂ R
3 and evolving the surface as opposed to the curve

itself. In order to derive an evolution equation for the surface that will solve the original

PDE in (3.1), the level-set function φ must satisfy two conditions. First, φ(~Γ(s, τ), τ) = 0

needs to hold for all s. In other terms, the partial derivative of φ(~Γ(s, τ), τ) with respect
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to s must always be zero. Applying the chain rule, we have

dφ

ds
=
∂φ

∂x

∂x

∂s
+
∂φ

∂y

∂y

∂s
= 0 ⇔

~∇φ
|~∇φ|

= −~nΓ,

where ~∇ is the gradient operator and ~nΓ is the outward normal to the curve ~Γ. Second,

φ(~Γ(s, τ), τ) = 0 needs to hold for all iterations τ . Therefore, the partial derivative of

φ(~Γ(s, τ), τ) with respect to τ must also be zero. Again applying the chain rule gives

dφ

dτ
=
∂φ

∂x

∂x

∂τ
+
∂φ

∂y

∂y

∂τ
+
∂φ

∂τ
= 0 ⇔ ∂φ

∂τ
+ ~∇φ(~Γ(s, τ), τ) · ∂

~Γ

∂τ
= 0.

Combining the two conditions along with the definition of the speed of the original curve

∂~Γ
∂τ

= F~nΓ enables one to write the level-set equation

∂φ(x, y, τ)

∂τ
= F (x, y)|~∇φ(x, y, τ)|. (3.8)

As a result of the two conditions, the solution to (3.1) will be given by the zero level of φ

in τ → ∞. For instance, the evolution for the classical region-based active contour (3.7)

becomes

∂φ(x, y, τ)

∂τ
= [dout(x, y) − din(x, y) − µκφ(x, y)]|~∇φ(x, y, τ)|,

where κφ is the curvature of the level-set of φ given by

κφ = −~∇ · (
~∇φ
|~∇φ|

).

The level set surface φ is free to expand, shrink, rise and fall in order to generate

the deformations of the original curve and topological changes are naturally handled (see

Figure 3.4). Moreover, since this evolution equation is defined over the whole domain, there

is no need to parameterize the curve with individual points. The numerical computations

are performed using finite differences on a fixed cartesian grid, thus solving the stability

issue.

In practice, the level-set function φ(x, y, τ) is usually defined as the signed distance

function from the curve ~Γ. That is, for each point (x, y) and ∀τ ≥ 0, the function φ
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z
z

Figure 3.4: The level-set method. The evolving curve ~Γ is implicitly represented as
the zero level of a higher dimensional function φ. Numerical computations for the
curve evolution are performed on a fixed cartesian grid and topological changes are
naturally handled.

represents the signed distance of (x, y) from the contour ~Γ. The negative values of φ are

defined as inside the curve and the positive values are outside (see Figure 3.4).

3.5.2 Reinitialization

Computing the level-set function φ using the evolution equation (3.8) may cause the

evolving interface to get stuck in local minima or lead to a very large amount of evolution.

This is due to the fact that the gradient of the function φ may tend to infinity as the

number of iterations is increasing. Inversely, the gradient may tend to zero which inhibits

the evolution of the boundary. This problem is usually solved by reinitializing φ to a

signed distance function such that |∇φ| = 1. This is performed by using the evolution

equation

∂φ(x, y, τ)

∂τ
= sign(φ(x, y, τ))(1 − |∇φ(x, y, τ)|), (3.9)
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where sign(x) is a function that gives the sign of x. By alternating this evolution equation

with the one in (3.8), it is ensured that the level-set function will remain regular.

Other more sophisticated methods have also been proposed that modify the partial

differential equation. The speed function F is computed only on points belonging to the

contour ~Γ. The speed is then extended to the whole domain in such a manner that the

PDE remains stable and the reinitialization does not need to be performed.

3.5.3 Fast methods

The advantages of the level-set method clearly come at a the cost of computational com-

plexity since the gradients and the amount of evolution need to be computed for all the

levels of φ. Some solutions to reduce the number of computations have been developed

such as the narrowband method [64]. This implementation enables one to reduce the com-

plexity of the level-set method from O(N2) to O(kN) where N is the size of the grid on

which the level-set function is evaluated. The basic idea is to perform the computations

not on the whole image domain but on a narrow band in the vicinity of the zero level of

the level-set function φ. The narrow band is updated when the evolving front reaches its

borders.

Other methods have been proposed that reduce the number of computations but

provide only approximate solutions [67]. The solutions of the evolution equations are not

found using PDEs but through an optimality condition for the final contour based on

a speed test. Only simple decisions are made such as the insertion or the deletion of

points in the contour. These methods enable a considerable reduction of computations

and real-time video segmentations have been reported in [45].

3.6 Summary

Variational frameworks using active contours have had a big impact on segmentation

methods in the computer vision and image processing communities. Throughout the past

few decades, these methods have enabled many authors to solve successfully image and
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video segmentation problems.

In the first part of the chapter, we showed that the segmentation problem can be

posed as an energy minimization problem. This energy minimization can be solved by

initializing a set of regions bounded by active contours and evolving them in the direction

of steepest descent. In order to do this, the derivatives of the energy functionals had to be

computed. While doing so, we made the distinction between boundary-based and region-

based methods. For both cases, we described some of the criteria used in image and video

segmentation. In the last part of the chapter, we discussed the issues of implementing the

PDEs that govern the evolution of the active contours. We then presented the level-set

method which straightforwardly enables a stable implementation and has the ability to

handle topological changes.

The key points to retain are highlighted in the following:

• Active contour methods are straightforward to extend to multi-dimensional signals.

• The methods are flexible in terms of the criteria (i.e. the descriptors) for segmenta-

tion.

• The level-set method enables a stable implementation and topological changes are

naturally handled.
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Chapter 4

A semi-parametric approach for

extracting plenoptic hypervolumes

in light fields

4.1 Introduction

The data in light fields is characterized with a particular structure and a high degree

of regularity. This regularity is nicely captured with plenoptic hypervolumes that are

characterized by the region carved out by layers in each of the images. It is therefore

beneficial to extract these regions for numerous applications involving multiview images.

However, obtaining an approximate and continuous decomposition of the light filed is a

challenging task. In [69], the segmentation is performed in a supervised fashion where

the contours of layers are semi-manually defined on a key frame. These contours are then

propagated to all the views using a user defined planar depth map. Despite progress in

unsupervised stereo methods [59] and layer extraction schemes (e.g. [3,51,78,89]), it is still

difficult to obtain a coherent segmentation. Most of these methods focus on the extraction

of layers rather than the coherent volumes or hypervolumes carved out in multiview data.

Moreover, not all these methods are scalable to higher dimensional plenoptic functions and

treat all the images equally. Several authors have tackled the problem using the particular
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structure of the EPI images [24,31]. However, these methods remain local or provide only

sparse depth maps.

In this chapter, we address the problem of deriving an unsupervised multi-

dimensional analysis to extract coherent regions in structured multiview data. Our method

is based on the fact that layers in the scene carve out EPI-tubes [24] in EPI volumes and

more generally hypervolumes in light fields. Unlike the methods in [24,31], our approach

imposes coherence in all dimensions in order to extract these volumes or hypervolumes and

generates a regular and approximate decomposition of the scene. The method presented

is a novel multi-dimensional variational framework that explicitly takes into account the

structure of the data. That is, the contours of the hypervolumes in the image dimensions

(x, y) are extracted using the level-set method [64] which is a non-parametric approach.

However, the dependencies between viewpoints (vx, vy) and occlusions are constrained by

the camera setup. They can therefore be parameterized. The resulting framework is a

semi-parametric region competition that is global and hence uses all the available data

jointly. This in turn insures that the segmentation is coherent across all the images and

occlusions are efficiently and naturally handled.

The chapter is organized as follows: In Section 4.2 we pose the problem in a more

formal way. Section 4.3 derives a light field segmentation scheme based on the classical

active contour method. Section 4.4 discusses the plenoptic constraints and how they affect

the segmentation framework. In Section 4.5, we present a novel variational framework

based on the shape constraints of the regions carved out by plenoptic hypervolumes in

light fields. Section 4.6 deals with initializations of the algorithm. Finally, Section 4.7

gives an overview of the segmentation scheme and we conclude in Section 4.8. Note that

experimental results are presented and discussed in the following chapter.

4.2 Problem formulation

Let I(x, y, vx, vy) be a light field where (x, y) are the image coordinates and (vx, vy) define

the position of the camera on a plane. Our goal is to partition the four-dimensional image
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x

Vx

Figure 4.1: The descriptor is given by the squared difference between the intensity
I(~x) and the mean of the intensity along the line the point belongs to.

domain D into a set of plenoptic hypervolumes {H1, . . . ,HN} such that each region Hn

is consistent with an approximate depth model. In essence, the problem of extracting the

plenoptic hypervolumes consists in finding the boundaries of the regions ∂Hn = ~Γn ⊂ R
4

that delimit the contour of the layers on all the views. Note that due to occlusions, the

full hypervolumes Hn are not always available. Therefore we denote with H⊥
n the available

hypervolume. This notation will become clearer in Section 4.4.2.

The first step in this segmentation process is to design a measure dn(~x, pn) that

measures the consistency of a point ~x = (x, y, vx, vy) with a particular depth model pn.

Recall from Chapter 2 that points in space ~X = (X,Y,Z) are mapped onto the light field

according to:









X

Y

Z









7→












x

y

vx

vy












=












X/Z − vx/Z

Y/Z − vy/Z

vx

vy












, (4.1)

where we assume for simplicity that the focal length of the cameras is unity. A point in

space is therefore mapped onto a four-dimensional trajectory in the light field hypervolume.
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Call xn = X/Z and yn = Y/Z the projection of the point ~X onto the image in vx = vy = 0

and define pn = 1/Z. We can therefore assume that

I(xn − vxpn, yn − vypn, vx, vy) = I(xn − v′xpn, yn − v′ypn, v
′
x, v

′
y),

∀{(xn − vxpn, yn − vypn, vx, vy), (xn − v′xpn, yn − v′ypn, v
′
x, v

′
y)} ∈ H⊥

n ,

where we are considering Lambertian surfaces. The effect of specularities in the EPI setup

has been studied in [24, 71] although we will not take these effects into account here.

It is worth mentioning that there are methods to remove specular highlights using EPI

analysis [24]. Since we do not take into account reflections, we may define the consistency

measure dn(~x, pn) as the normalized squared difference between I(~x) and the mean of the

intensities along the plenoptic trajectory defined by the slope pn (see Figure 4.1). We

therefore have

dn(~x, pn) = [I(~x) −mn(~x, pn)]2 (4.2)

with

mn(~x, pn) =

∫ ∫
In(xn − vxpn, yn − vypn, vx, vy)dvxdvy

∫ ∫
On(xn − vxpn, yn − vypn, vx, vy)dvxdvy

where the functions In(~x) and On(~x) are introduced in order to define the integration

bounds. That is,

In(~x) =







I(~x), ~x ∈ H⊥
n

0, ~x /∈ H⊥
n

and On(~x) is the binary function

On(~x) =







1, ~x ∈ H⊥
n

0, ~x /∈ H⊥
n .

We are therefore looking for a partitioning {H⊥
1 , . . . ,H⊥

N} of the light field such that

Etot(~Γ1, . . . , ~ΓN ) =

N∑

n=1

En(~Γn) =

N∑

n=1

∫

H⊥
n

dn(~x, pn)d~x (4.3)
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is minimal. Therefore the minimization problem we are seeking to solve is the following:

argmin
{~Γ1,...,~ΓN ,p1,...,pN}

N∑

n=1

∫

H⊥
n

dn(~x, pn)d~x. (4.4)

This is a classical region-based optimization problem that may be solved using a variational

framework and active contours.

4.3 A 4D variational approach based on active contours

In this section, we derive a region-based variational method to extract plenoptic hyper-

volumes based on four-dimensional active contours. That is, we represent the light field

with N plenoptic hypervolumes H⊥
n each of which is bounded by the hypersurface ~Γn. A

straightforward approach is to apply the variational method described in Chapter 3. Note

that for the moment, we will assume that the depth models pn are known. Their estima-

tion will be treated further on in Section 4.5.2. The regions H⊥
n are made dependent on

an evolution parameter τ such that the derivative can be computed in order to evolve the

hypervolumes in a steepest descent fashion. One way to minimize the Etot in (4.3) consists

in iteratively evolving each hypervolume H⊥
n . Take for example the case where there are

two layers and a background. The hypervolumes are H⊥
1 , H⊥

2 and H⊥
3 = D \ {H⊥

1 ∪H⊥
2 }

where D is the four-dimensional light field domain. The energy functional in (4.3) may

therefore be written as

E1
tot(τ) =

∫

H⊥
1 (τ)

d1(~x, p1)d~x+

∫

H⊥
2 (τ)

d2(~x, p2)d~x+

∫

H⊥
3 (τ)

d3(~x, p3)d~x

︸ ︷︷ ︸
R

H⊥
1 (τ)

dout
1 (~x,pout

1 )d~x

= E1
in(τ) + E1

out(τ),

which is equivalent to the standard two-region case described in Chapter 3. Similarly, for

any region H⊥
n , the energy is written as

En
tot(τ) =

∫

H⊥
n (τ)

dn(~x, pn)d~x+

∫

H⊥
n (τ)

dout
n (~x, pout

n )d~x, (4.5)
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where all the other regions are gathered in H⊥
n (τ) and dout

n (~x, pout
n ) = di(~x, pi) when ~x ∈ H⊥

i

for all i 6= n. Region-based active contour methods have shown that the gradient of the

energy is:

dEn
tot(τ)

dτ
=

∫

~Γn

[dn(~x, pn) − dout
n (~x, pout

n )](~vΓn · ~nΓn)d~σ, (4.6)

where ~vΓn = ∂~Γn

∂τ
is the velocity, ~nΓn is the outward unit normal vector, d~σ is a differential

hypersurface element and · denotes the scalar product. The steepest descent of the energy

therefore yields the following partial differential equation:

~vΓn = [dout
n (~x, pout

n ) − dn(~x, pn)]~nΓn . (4.7)

This flow will drive the evolution of the hypersurfaces ~Γn in an unconstrained fashion as

illustrated in Figure 4.2(a). While the equation in (4.7) is valid in the general case, it

does not take into account the geometry and occlusion constraints that are inherent to

the plenoptic function and in particular light fields (see Chapter 2). As we will see in

Section 5.3, this method fails to capture regions that are strongly occluded and does not

necessarily generate a coherent segmentation. Recall that points in space are mapped onto

lines in the plenoptic domain and the slope of the lines are inversely proportional to the

depth of the points. The next sections show how the evolution of the hypersurfaces can

be modified in order to take into account these constraints.

4.4 Imposing the plenoptic constraints

In this section, we study the effects of the plenoptic constraints, namely the geometry and

occlusion constraints, and how to impose them in the energy minimization framework.

4.4.1 Geometry constraints

Let ~γn(s, τ) = [xn(s, τ), yn(s, τ)] be the 2D contour defined by the intersection of the

hypersurface ~Γn and the image plane in vx = vy = 0. That is, it represents the contour
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(a) (b)

xx

Vx Vx

Figure 4.2: Unconstrained and constrained surface evolutions under the EPI param-
eterization. In Figure 4.2(a) no particular shape constraints are applied to the active

surface ~Γ. In Figure 4.2(b) the surface is parameterized using the two-dimensional
contour ~γ in vx = 0 and is constrained to evolve in a particular manner coherent with
the structure of the EPI.

of the layer on a single image. In general, the intersection of the hypervolume with an

image in (vx, vy) = constant is the layer on that image. According to (4.1), the boundary

plenoptic hypervolume under these assumptions can be parameterized by

~Γn(s, vx, vy, τ) =












xn(s, τ) − vxpn(s, τ)

yn(s, τ) − vypn(s, τ)

vx

vy












(4.8)

and is completely determined by the curve ~γn(s, τ) if we assume that pn(s, τ) is known. It

is therefore possible to propagate the position and the shape of ~γn(s, τ) on all the images.

That is, the shape variations in the hypersurface ~Γn are completely determined by the

shape variations of the curve ~γn in the two-dimensional subspace. Moreover, an explicit

derivation of the normal and velocity vectors shows that the projection of ~vΓn · ~nΓn onto

the subspace is related to ~vγn · ~nγn with

~vΓn · ~nΓn = χn(s, vx, vy, τ)(~vγn · ~nγn), (4.9)
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where χn(s, vx, vy, τ) is the weighting function depending on the pn and the camera setup.

We prove in Appendix A the following proposition:

Proposition 1. Assume a four-dimensional hypersurface parameterized by

~Γ(s, vx, vy, τ) =











x(s, τ) − vxp(s, τ)

y(s, τ) − vyp(s, τ)

vx

vy











,

where ~γ(s, τ) = [x(s, τ), y(s, τ)] is the contour of the surface in vx = vy = 0. The τ is the

evolution parameter and ~vΓ = ∂~Γ/∂τ and ~vγ = ∂~γ/∂τ are the velocities. Then the normal

speed ~vΓ ·~nΓ of ~Γ projected onto the subspace in vx = vy = 0 is related to the normal speed

~vγ · ~nγ of ~γ by the relation ~vΓ · ~nΓ = χ(s, vx, vy, τ)(~vγ · ~nγ) with

χ(s, vx, vy, τ) =
(1 + ∂p

∂x
vx + ∂p

∂y
vy)

√

(∂x
∂s

)2 + (∂y
∂s

)2
√

(∂x
∂s

+ ( ∂p
∂x

∂x
∂s

+ ∂p
∂y

∂y
∂s

)vx)2 + (∂y
∂s

+ ( ∂p
∂x

∂x
∂s

+ ∂p
∂y

∂y
∂s

)vy)2
.

In order to understand the consequences of this constraint, let us look at particular

cases using a simplified light field with vy = 0 (i.e. the three-dimensional EPI volume).

Assume we impose that the layers are fronto-parallel such as the one illustrated in Fig-

ure 4.3(a). In this case the pn(s, τ) is constant since all the lines in the EPI are parallel

and we have χn(~σ) = 1 (see Figures 4.3(b-c)). The intuition behind this property is eas-

ily grasped. Given the fact that the layer is fronto-parallel, its contour will simply be a

translated version of itself on all the images.1 Moreover, every point will contribute with

the same weight since χ is unity. Assume now that the layer is slanted as illustrated in

Figure 4.3(d). In this case, we have pn(s, τ) = a1x(s, τ) + a0 and therefore ∂p
∂x

= a1 and

∂p
∂y

= 0. An example of an EPI with this depth model is illustrated in Figure 4.3(e). The

weighting function becomes:

χ(s, vx, τ) =
(1 + a1vx)

√

(∂x
∂s

)2 + (∂y
∂s

)2
√

(∂x
∂s

(1 + a1vx))2 + (∂y
∂s

)2
,

1Recall that we assume the pinhole camera model.
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Figure 4.3: Normal speed correspondences in the fronto-parallel and slanted plane
cases. Figures 4.3(a-c) illustrate the first image, the EPI and the χ respectively for
the fronto-parallel case. Figures 4.3(d-f) illustrate the slanted plane case.

of which an example is plotted in Figure 4.3(f). Note that the χ(s, vx, τ) falls down to zero

in the point where all the lines in the EPI intersect (i.e. vx = −1/a1). This corresponds

to the degenerate case where the normal of the slanted plane is orthogonal with the line

connecting the plane and the camera center in vx. Therefore the plane is effectively not

visible from this viewpoint which physically justifies the χ = 0. Note also that more weight

(i.e. a bigger χ) is attributed to the cameras in the viewpoints vx where the texture of

the slanted plane is better sampled. This again makes physical sense.

4.4.2 Occlusion constraints

In the previous section, we have seen how to constrain the shape of the plenoptic hyper-

volume depending on the geometry of the layer and the camera setup. The second main

factor to consider is occlusion and the occlusion ordering. Let Hn be the plenoptic hyper-
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Figure 4.4: The occlusion constraint with two 3D plenoptic hypervolumes under the
EPI parameterization. When put together, plenoptic hypervolumes H1 and H2 become

H⊥
1 and H⊥

2 . The occlusion constraint says that H⊥
1 = H1 and H⊥

2 = H2 ∩H⊥

1
.

volume as if it was not occluded and H⊥
n denote the hypervolume with the occluded areas

removed as illustrates in Figure 4.4. Assuming the camera centers lie on a line or a plane

(as in the light field parameterization), the occlusion ordering stays constant throughout

the views. Therefore, if the Hns are ordered from front (n = 1) to back (n = N), the

occlusion constraint [5, 7] can be written as

H⊥
n = Hn ∩

n−1∑

i=1

H⊥
i , (4.10)

where ·⊥ denotes that the plenoptic hypervolume has been geometrically orthogonalized

such that the occluding hypervolume carve through the background ones (see Figure 4.4).

A commonly used approach to deal with occlusions in EPI analysis is to start by extract-

ing the frontmost regions (or lines) and removing them from further consideration [24,31].

That is, when extracting each Hn, the
∑n−1

i=1 H⊥
i is known. While this approach is straight-

forward, it has some drawbacks. First, the extraction of occluded objects will depend on

how well the occluding objects were extracted. Second, it does not enable a proper com-

petition formulation since the background regions are not being estimated at the time of

the extraction of the foreground ones.
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4.5 A constrained region competition method

From Sections 4.4.1 and 4.4.2, we know that the shapes of the plenoptic hypervolumes in

the light field are constrained. In this section, we show how the evolution equation for

the deformable model can be modified in order to take into account these constraints. In

particular, we show that the problem can be solved using a two-dimensional active contour

method instead of a four-dimensional one.

4.5.1 Estimation of the contours given the depth models

In this step of the energy minimization, we fix the parameters pn and seek to solve

argmin
{~Γn}

∫

H⊥
n (τ)

dn(~x, pn)d~x+

∫

H⊥
n (τ)

dout
n (~x, pout

n )d~x,

subject to the constraints in (4.8) and (4.10). Consider the following manipulation to the

gradient of the energy functional in (4.6):

dEn(τ)

dτ
=

∫

~Γn

[dn(~x, pn) − dout
n (~x, pout

n )](~vΓn · ~nΓn)d~σ

=

∫

~Γn

[dn(~x, pn) − dout
n (~x, pout

n )]χn(s, vx, vy)(~vγn · ~nγn)d~σ

=

∫

~γn

(~vγn · ~nγn)

∫ ∫

On(~x)[dn(~x, pn) − dout
n (~x, pout

n )]χn(s, vx, vy)dvxdvy

︸ ︷︷ ︸

Dn(s,pn)−Dout
n (s,pout

n )

ds,

where we have used (4.9) and the fact that (~vγn · ~nγn) does not depend on (vx, vy). The

gradient of the energy can therefore be rewritten as

dEtot(τ)

dτ
=

∫

~γn

[Dn(s, pn) −Dout
n (s, pout

n )](~vγn · ~nγn)ds,

where the Dn(s, pn) and Dout
n (s, pout

n ) are the original descriptors weighted by χ and in-

tegrated over the lines delimiting the hypersurface ~Γn. This leads to a new evolution

equation for the 2D contour:

~vγn = [Dout
n (s, pout

n ) −Dn(s, pn)]~nγn .
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In practice, we use the evolution equation

~vγn = [Dout
n (s, pout

n ) −Dn(s, pn) − µκn(s)]~nγn , (4.11)

where a smoothness term proportional to the curvature κn(s) of ~γn is added in order

insure regular curves and reject outliers. The µ is a positive constant weighting factor

determining the influence of the regularization term. There are several advantages to

using evolution equation (4.11) as opposed to (4.7). First, it constrains the shape of

the hypervolume according to the camera setup. Second, it is implemented as an active

contour in two dimensions instead of an active hypersurface in four dimensions which

reduces the computational complexity.

We now have a constrained evolution that takes into account the geometry con-

straint. The second constraint to take into account are occlusions. Due to the occlusion

ordering in (4.10), a foreground region evolving changes the background regions. That

is, the evolution of H⊥
n changes all the H⊥

i where i goes from n + 1 to N . Hence these

occluded regions will contribute to the
dEn

tot(τ)
dτ

which leads to a competition. However, the

other hypervolumes (i.e. H⊥
i where i goes from 1 to n− 1) are not affected by the shape

changes in H⊥
n and thus do not contribute to the derivative with respect to τ . Hence they

will not compete. Take for example the case where there are two layers and a background,

and we are evolving the first hypervolume. The regions are:

H⊥
1 (τ) = H1(τ)

H⊥
2 (τ) = H2 ∩H⊥

1 (τ)

H⊥
3 (τ) = D ∩ (H⊥

1 (τ) ∩H⊥
2 (τ)),

where we notice that all three regions are evolving (i.e. they depend on τ). Now assume



4.5 A constrained region competition method 79

we fix H⊥
1 and evolve H⊥

2 . The occlusion constraint says that

H⊥
1 = H1

H⊥
2 (τ) = H2(τ) ∩H⊥

1

H⊥
3 (τ) = D ∩ (H⊥

1 ∩H⊥
2 (τ)),

which shows that H⊥
1 does not depend on τ and hence will not contribute to the derivative

of E2
tot(τ). However the background H⊥

3 (τ) is changing and is therefore in competition

with H⊥
2 (τ). This condition can be translated into the energy minimization by posing

dout
n (~x, pout

n ) =







di(~x, pi) ∀~x ∈ H⊥
i and i > n

0 ∀~x ∈ H⊥
i and i < n.

This constraint together with (4.10) and (4.8) insure that the extracted plenoptic hyper-

volumes have a shape that is consistent with structure of the plenoptic function.

While it is preferable in most cases to use a competition-based active contour, it is

relevant to mention here that the approach presented in this section is compatible with a

threshold-based method. Indeed, choosing Dout
n (s, pout

n ) = ζ where ζ is a positive constant

parameter leads to the evolution equation

~vγn = [ζ −Dn(s, pn) − µκ(s)]~nγn . (4.12)

This evolution requires less computation since the competition term does not need to be

computed. The resulting active contour will incorporate points where Dn(s, pn) is smaller

than the preset threshold ζ. Points where Dn(s, pn) is larger than ζ will be rejected.

4.5.2 Estimation of the depth models given the contours

In the previous section, we derived a constrained curve evolution adapted to the structure

of the light field. The counterpart of the curve evolution in the minimization of (4.3) is
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Figure 4.5: Depth modeling under the EPI parameterization. The depth map for
each layer is modeled with a linear combination of bicubic splines. This enables one
to model a wide variety of smooth depth maps including (a) constant depth, (b)
slanted plane and (c) smooth surfaces. The left column illustrates the depth map and
the right column illustrates an example of an EPI with the respective depth map.

the estimation of the depth parameters pn. In this step, one has to solve

argmin
{p1,...,pN}

N∑

n=1

∫

H⊥
n

dn(~x, pn)d~x (4.13)
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which is a standard least squares problem. Inspired by the layer extraction method in [51],

we model the depth map for the layer n as a linear combination of bicubic splines β(x, y):

pn(x, y) =
∑

i,j

Pn(i, j)β(x − Txi, y − Tyj), (4.14)

where i and j are on a uniformly sampled grid and (Tx, Ty) define the grid size. The

weights Pn(i, j) are determined using non-linear optimization methods such as the ones

in Matlab’s optimization toolbox. There are several advantages to this particular depth

model. First, a variety of smooth depth maps can be modeled such as the one illustrated

in Figure 4.5(c). Second, only a limited amount of weights on control points need to be

estimated depending on the lattice size. Finally, the depth map can be forced to model

a simplified geometry if an accurate depth reconstruction is not necessary. For instance,

strictly fronto-parallel regions can be extracted by forcing all the weights to be the same

for a given layer as in Figure 4.5(a). Slanted planes also belong to the family of depth

maps that can be modeled using splines as shown in Figure 4.5(b).

4.6 Initializing the algorithm

Initialization plays an important role in active contour methods. There are two reasons

why this is the case. First, the evolution equations driving the deformable models are

based on partial differential equations. The steady state solution (i.e. in τ = ∞) is there-

fore dependent on the initial condition and the active contours might get ‘stuck’ in local

minima. Second, the initialization decides how many hypervolumes are used to represent

the light field data unless a specific layer merging and splitting step is added in the al-

gorithm. In our case, we take the number of hypervolumes as an input to the algorithm.

This enables the scheme to provide the user with a tradeoff in terms of computational

complexity and accuracy of segmentation (i.e. number of depth layers used).

In order to start the segmentation scheme, the algorithm needs initial estimates for

contours ~γn of the plenoptic hypervolumes and each of their depth models pn. Three main

steps are involved in this estimation: First, estimate a dense or sparse depth map for each
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or a subset of the images in the light field. One may use any of the following methods: (a)

a known depth map obtained for instance with range finding equipment, (b) two-view or

N-view stereo algorithms with a single-valued or multiple-valued depth map as output [59]

or (c) the slopes of the lines in the EPI of the light field [12, 31]. Second, classify points

in the light field that follow a particular depth model. In our implementation, regions

in the images that have a similar depth are merged into a single plenoptic hypervolume.

The number of bins in which to merge the regions with similar depth is defined by the

number of layers to represent the light field. Third, initialize the level set functions φn

for each in the evolving curves ~γn by projecting all the light field points onto the image

in vx = vy = 0. Note that since the level-set method is topology independent, it is not

necessary for the initial φn to have the right topology.

4.7 Overall optimization

We perform the overall energy minimization after initialization in three iterative steps:

First, estimate the depth parameters in each individual hypervolume H⊥
n using classical

non-linear optimization methods and the depth model in (4.14). Second, update the

occluded regions using the occlusion constraint in (4.10). Third, evolve each boundary ~γn

individually using the evolution equation in (4.11) and the level-set method. In this step,

one may use one or a few iterations of the evolution depending on how often the disparity

model needs to be adjusted. The algorithm is stopped when there is no significant decrease

in the total energy or after a predetermined number of iterations. Table 4.1 illustrates

how the shape and occlusion constraints are applied in the segmentation scheme by giving

an overview of the algorithm.

4.8 Summary and key results

In this chapter, we posed the problem of extracting coherent layers in a multi-dimensional

variational framework. We used the classical active contour methods in order to derive an

evolution equation for the deformable models. However, instead of applying these methods
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Step 1: Initialize a set of plenoptic hypervolumes H⊥
n characterized by their 2D contours

~γn and depth parameters pn

Step 2: Estimate depth parameters pn given the contours ~γn

Step 3: Update occlusion ordering and update hypervolumes with H⊥
n = Hn ∩ ∑n−1

i=1 H⊥
i

Step 4: For each ~γn

Fix the other ~γi for i 6= n

Compute speed function with competition terms
Dn(s, pn) =

∫ ∫
On(~x)dn(~x, pn)χ(s, vx, vy)dvxdvy

and
Dout

n (s, pout
n ) =

∫ ∫
On(~x)dout

n (~x, pout
n )χ(s, vx, vy)dvxdvy

with

dout
n (~x, pout

n ) =

{
di(~x, pi) ∀~x ∈ H⊥

i and i > n
0 ∀~x ∈ H⊥

i and i < n

Evolve contour ~γn with evolution equation
~vγn = [Dout

n (s, pout
n ) −Dn(s, pn) − µκn(s)]~nγn

Step 5: Go to Step 2 or stop when there is no significant decrease in energy

Table 4.1: Overview of the plenoptic hypervolume extraction algorithm.

in a straightforward manner, we proposed several modifications that take into account the

inherent nature of the plenoptic function. That is, points in space are mapped onto par-

ticular trajectories in the plenoptic domain (i.e. lines in light fields). This constraint can

be imposed on the evolution equation by parameterizing the hypersurfaces in a particular

way. Second, occlusions occur in a specific order. This leads to an occlusion ordering for

the plenoptic hypervolumes in which foreground regions compete with the regions they

occlude. The imposition of these constraints results in a novel multi-dimensional scheme.

Since the formulation is global, coherence and consistency is enforced on all the four dimen-

sions. Moreover, occlusions are naturally handled and all the images are treated equally

and jointly.

The important aspects of the method presented in this chapter are highlighted in

the following points:

• The shape of the plenoptic hypervolumes are constrained by the camera setup and

occlusions.
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• These constraints can be enforced on the evolution of the active hypersurfaces using

a semi-parametric approach.

• The resulting framework is global and efficiently handles occlusions.
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Chapter 5

Experimental results and image

based rendering applications

5.1 Introduction

There are many applications that stand to benefit from the extraction of plenoptic hyper-

volumes. Throughout the previous chapters, we have put particular emphasis on image

based rendering and the problem of interpolating new viewpoints for freeviewpoint televi-

sion and immersive technologies. However, the segmentation of the plenoptic function is a

useful step in other applications as well. In particular, occlusion removal and augmented

reality where objects are removed from or inserted in the scene. In this chapter, we present

results for all these applications.

Capturing light fields requires camera arrays. While it may be possible to create

light field data synthetically, a particular effort was made to use only natural images. To

this effect, a variety of data sets are analyzed with the plenoptic hypervolume extraction

algorithm described in Chapter 4. Most of the image sequences are simplified light fields

(i.e. EPI volumes). These are easier to capture and more practical to show the results while

still portraying the concepts well. The data sets include some taken from standardized

multiview image sequences. We also captured several multiview images using a camera

mounted on a rail. With these results, we show that the algorithm is practical and is able
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Name Number of cameras Image size Origin

Cones (1 by 9) (375 by 450) Middlebury stereo
Dwarves (1 by 7) (555 by 695) Middlebury stereo
EE lobby (1 by 5) (800 by 800) Self-acquired

Tank (1 by 15) (250 by 250) Self-acquired
Animal family (1 by 32) (235 by 625) Self-acquired

Desk (4 by 4) (500 by 500) Self-acquired

Table 5.1: Overview of the light fields.

to cope with images taken in a controlled laboratory environment as well as real-world

environments. Some scenes were chosen to demonstrate the quality of the interpolated

images using the proposed approach. Others were chosen to show the robustness of the

algorithm with respect to occlusions. Note that, due to the absence of a ground truth, we

will present mainly qualitative results however some quantitative measures may be applied

by performing leave-one-out tests for view interpolation applications.

The chapter is organized as follows: In Section 5.2 we present an overview of the

data sets and their origin. Section 5.3 illustrates light field segmentation results for differ-

ent data sets and numbers of layers chosen to represent the light field. Section 5.4 presents

a simple view interpolation algorithm based on the extraction of plenoptic hypervolumes

and shows some rendered images. Section 5.5 illustrates layer and scene manipulation

results. Finally, we conclude in Section 5.6.

5.2 Data sets

A number of light fields have been analyzed. In this section, we describe where and how

these data sets have been acquired. The Cones and the Dwarves images were obtained

from the Middlebury stereo vision website1 and are depicted in Figures 5.1 and 5.2 re-

spectively. These data sets are calibrated multi-baseline stereo images that were captured

in a controlled environment. The EE lobby and Tank data sets illustrated in Figures 5.3

and 5.4 were captured by translating a camera using a manually controlled rail. All the

equipment used to captured these light fields is available off-the-shelf. Note that the lobby

1http://vision.middlebury.edu/stereo/
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Figure 5.1: Cones data set. The first and the last images are depicted in (a) and (b)
respectively. The EPI at slice y = 200 is shown in (c).

sequence is a natural environment where lighting is not controlled. Finally, the Animal

family and Desk data sets depicted in Figures 5.5 and 2.6 were captured using a computer

controlled robotic gantry.2 We used a Nikon D50 camera to capture the images. In all the

acquisitions, we did not use the flash and switched off the auto-focus function. The zoom

was also kept constant and the white balance was fixed such that the gain remained con-

stant throughout the capturing process. Finally, the images were captured in jpeg format

with a resolution of 1504 x 1000. Note that the images were cropped. The camera was

calibrated using a calibration checkerboard and a freely available Matlab calibration soft-

ware3 which is loosely based on [87]. Note that the extrinsic parameters are not computed

in our case since the viewpoints are assumed to be uniformly sampled and placed along

a line or on a plane. The calibration was performed primarily to correct the distortions

caused by the lens. Table 5.1 shows an overview of the light fields along with their image

sizes, number of images and origin. All the light fields have a dynamic range from 0 to

255.

5.3 Segmentation results

In this section, we present light field segmentation results. All the image sequences were

converted to grayscale for processing. For all the data sets, the layers were initialized

2The author would like to acknowledge the Audiovisual Communications Laboratory at the Swiss
Federal Institute of Technology (EPFL) for providing the equipment to capture these data sets.

3http://www.vision.caltech.edu/bouguetj/
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Figure 5.2: Dwarves data set. The first and the last images are depicted in (a) and
(b) respectively. The EPI at slice y = 350 is shown in (c).
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Figure 5.3: EE lobby data set. The first and the last images are depicted in (a) and
(b) respectively. The EPI at slice y = 350 is shown in (c).
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Figure 5.4: Tank data set. The first and the last images are depicted in (a) and (b)
respectively. The EPI at slice y = 120 is shown in (c).

using a state-of-the-art two-frame stereo algorithm [57]. The evolution of the curves was

implemented using the level-set method. Finally, all the depth maps for the plenoptic

hypervolumes were forced to be constant. This is quite a limiting assumption. However,

it is a valid one as our primary goal is interpolation and fronto-parallel regions in light
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Figure 5.5: Animal family data set. The first and the last images are depicted in (a)
and (b) respectively. The EPI at slice y = 160 is shown in (c).

Parameter Value

µ 0.02
number of layers variable

depth model constant
total level set iterations 200

reinitialization to signed distance function every 50
estimation of depth parameters every 100

Table 5.2: Parameter values used in all the segmentation results.

fields can be rendered free of aliasing. Note that the algorithm is straightforwardly ca-

pable of dealing with more sophisticated depth maps, however, this would increase the

segmentation time since more parameters need to be estimated. Table 5.2 summarizes the

parameters of the segmentation scheme and quantifies how they were set for the results

presented in this chapter. The regularization factor µ in (4.11) was set to 0.02 and all

the speed functions for the evolving curves were normalized such that they are bounded

by [−1, 1]. In practice, we found that this value was sufficient to ensure that the contours

remain regular without smoothing the boundaries of the layers. In more noisy images, a

larger value of µ might be chosen. The depth maps were estimated every 100 iterations

of the level-set evolution and the level-set functions were reinitialized to a signed distance
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function every 50 iterations. This reinitialization was performed by running 100 iterations

of the evolution equation in (3.9). All these parameters were chosen to provide reason-

able results without running an excessive number of iterations. Note that in general the

number of iterations for the level-set method to converge depends on the images.

(a) (d)

(b) (e)

(c)
(f)

Figure 5.6: Comparison between the constrained and unconstrained volume evolutions
on the Animal family light field. For both cases the initialization is identical. (a-
c) Extracted volumes in the unconstrained case. (d-f) Extracted volumes in the
constrained case.
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Figure 5.7: Two-layer representation of the Dwarves light field.
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Figure 5.8: 12-layer representation of the Dwarves light field. (a) Layers 1-3, (b)
layers 4-6, (c) layers 7-9 and (d) layers 10-12.
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(c)

(a) (b)

Figure 5.9: 10-layer representation of the Cones light field. (a) Layers 1-4, (b) layers
4-6, (c) layers 7-10.

The Animal family light field depicted in Figure 5.5 was chosen to show the re-

silience of the algorithm to occlusions. The scene is made of three layers and a background

with images in which some of the layers are completely occluded. This is in particular

the case for the ‘owl’ layer and the ‘cat’ layer which is visible, then totally occluded for

a large number of frames and reappears. For this light field, we compare the results of

the unconstrained evolution in Section 4.3 with the constrained evolution presented in

Section 4.5. For both cases, the initialization and the number of iterations was identical.

From Figures 5.6(a-c), it is clear that the extracted volumes correspond rather well to

the scene. However, there are some errors in particular on areas that are barely visible

such as the ‘owl’ layer. The extracted regions and in particular the foreground layer in

Figure 5.6(a), are not consistent throughout the views. In the constrained case depicted

in Figures 5.6(d-f), the extracted volumes are coherent throughout all the views and oc-
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(a) (b)

(c) (d)

Figure 5.10: 4-layer representation of the EE lobby light field.

(b)(a)

Figure 5.11: Two-layer representation of the Tank light field.
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clusions are better captured. This comes from the fact that all the images are treated

jointly and the plenoptic constraints are applied. The Dwarves and Cones light fields

have many objects with textured and textureless regions as well as occlusions. Segmenta-

tion results for the Dwarves data set are illustrated in Figures 5.7 and 5.8 for the two-layer

and 12-layer representations respectively. Segmentation results for the Cones light field

are shown in Figure 5.9. In general, the volumes are consistent with the scene despite

the occlusions and disocclusions. The volumes also do not show the discontinuities across

scan lines that may occur when individual EPIs (i.e. slices of the volume) are analyzed

such as in [24]. All these aspects come from the fact that the data is analyzed in a global

manner and coherence is enforced in all the dimensions. We note, however, that some

errors occur in large textureless regions due to the absence of a colour-based term in the

energy minimization. These errors will not significantly hinder the rendering quality since

the interpolation will be applied to constant intensity regions. Segmentations of the EE

lobby and the Tank light fields are illustrated in Figures 5.10 and 5.11 respectively.

Table 5.3 shows the segmentation times for some of the light fields. The segmenta-

tion algorithm was programmed in a combination of Matlab and C using the mex compiler.

In this context, the segmentation scheme requires processing times ranging roughly from

100 to 1200 seconds on a 2.8 GHz Pentium-IV PC. The main factors influencing these times

are the images sizes, the number of images and the number of layers chosen to represent

the light fields. These times result from the fact the level-set method in its original form

has a high computational complexity. On top of that, no particular attempt was made to

use more efficient implementations. It is worth mentioning that faster methods exist and

improvements of several orders of magnitude could be expected [64]. Nevertheless, these

segmentation times remain reasonable.

5.4 Light field interpolation

In this section, we illustrate light field rendering results. All the interpolated images are

obtained through depth corrected linear interpolation as described in Section 2.3 using the

approximate depth estimated by the plenoptic hypervolume extraction algorithm. That
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Data set Num. Segmentation Rendering Rendering
of layers time time (10 frames) time per frame

Cones 10 438 3.5 0.35
Dwarves 2 141 5.9 0.59

” 5 401 5.9 0.59
” 12 1101 6.7 0.67

Animal family 4 540 6.2 0.62
Desk 5 1181 8.4 0.84

EE lobby 4 583 8.3 0.83

Table 5.3: Running times (in seconds) for different light fields.

is, the intensity to interpolate Ĩ(x, y, vx, vy) is linearly interpolated from the available

samples and the depth corrected kernel in (2.5). Particular attention is taken not to

take into account occluded pixels. That is, sample points I[i, j, k, l] that do not belong

to the same layer (i.e. occluded regions) are disregarded in the interpolation. In all our

results, we found that a binary alpha map for each of the layers produced good rendering

results. It may be worthwhile for some light fields to use a more sophisticated coherence

matting approach [69] to blend the layers. All the results are compared to conventional

light field rendering [18, 50]. That is, we used a single plane placed at the optimal depth

in (2.6). Rendering times for the light fields are given in Table 5.3. Note that here again no

particular effort was made to optimize the code for speed. Real-time light field rendering

using a similar layered representation has been reported [69].

The interpolation of the Dwarves light field is illustrated in Figures 5.12 and 5.13.

In Figure 5.12, we show the sampled EPI for a slice of the light field and its interpolated

version which has a ten-fold increase of viewpoints vx. Note that the interpolated EPI

in Figure 5.12(b) has a structure which is consistent with the structure expected in an

EPI. Indeed, both the geometry and the occlusion constraints of Chapter 2 are satisfied.

That is, the EPI is made of a collection of lines and the ones with larger slopes occlude

the ones with smaller slopes. Interpolated images are illustrated in Figure 5.13 along with

zoomed regions corresponding to a 150 by 170 region of interest. We show the interpolation

results using the optimal constant depth algorithm [18] presented in Chapter 2 and our

layer-based scheme where the number of layers is defined by the user in the initialization
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Figure 5.12: Interpolation of the Dwarves light field. In this example, (a) shows
the available sampled EPI at slice y = 375 and (b) illustrates the interpolated EPI
obtained with the 12-layer representation. Note that the interpolated EPI has a
structure which is consistent with the structure of the plenoptic function. That is, it
is made of a collection of lines and the ones with larger slopes occlude the ones with
smaller slopes.

of the segmentation. On the whole, we notice that aliasing is visible in Figures 5.13(a)

and 5.13(b). This blurring and ghosting is especially visible on the contour of the pot in

the foreground and the nozzle of the watering can on the right hand side of the image.

These effects are greatly reduced when using more layers as in Figure 5.13(c). For this

light field, we performed a leave-one-out test by removing one of the original images and

rendering it using the remaining ones. The difference between the ground truth image

and the interpolated ones is shown in Figures 5.13(g-i). From these images, we notice that

errors tend to occur on object boundaries and highly textured regions. However, the more

layers we use, the better the result. This is visible in Figure 5.13(i) were it is clear that the

errors are in general corrected with some more localized artifacts due to the segmentation

accuracy. Table 5.4 gives signal-to-noise ratios between the reconstructed and ground

truth images for different numbers of the layers chosen to represent the light field. The

SNRs using the unconstrained segmentation are also given. In general, we note that the

constrained evolution to extract the coherent regions produces a significant reduction in

the reconstruction error. We also note that in general, an increase in the number layers

to represent the light field produces the better results.

The interpolation of the Cones light field is shown in Figure 5.14. Here again,
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Figure 5.13: Interpolation of the Dwarves light field. (a) Interpolated viewpoint using
conventional light field rendering (i.e. a single constant depth plane at the optimal
depth). (b) Interpolated viewpoint using a two-layer representation. (c) Interpolated
viewpoint using a 12-layer representation. Images (d-f) illustrate a 150 by 170 pixel
region of interest and (g-i) show the difference with the ground truth image.

we notice that the interpolated viewpoint in Figure 5.14(a) obtained using conventional

light field rendering is blurred. This is because the sample images are too far apart and

the resulting light field is undersampled. The interpolated viewpoint using the 10-layer

representation illustrated in Figure 5.14(b) yields a good quality rendering. Differences

from the ground truth image are illustrated in Figures 5.14(e) and 5.14(f). More rendering

results of the EE lobby and Desk light fields are illustrated in Figures 5.15 and 5.16

respectively. Note that these scenes contain some shadows and light specular effects.

Nevertheless, the rendered images are of good quality. Note also that despite the fronto-

parallel depth model and small number of layers, the light fields are photorealistically
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Number of layers unconstr. evo. constr. evo.

1 16.51 16.51
2 17.49 20.26
5 20.22 22.41
12 23.18 27.08

Table 5.4: Leave-one-out test on the Dwarves light field. The table gives the SNR (in
dB) between the rendered image and the ground truth image for unconstrained and
constrained layer extraction schemes as well as different numbers of layers.

(c)(a)

(f)(d)(b)

(e)

Figure 5.14: Interpolation of the Cones light field. (a) Interpolated viewpoint using
conventional light field rendering (i.e. a single constant depth plane at the optimal
depth). (b) Interpolated viewpoint using a 10-layer representation. Images (c-d)
illustrate a 100 by 120 pixel region of interest and (e-f) show the difference with the
ground truth image.

rendered.

Finally, we tested the proposed method against a state-of-the art stereo algo-

rithm [57] and the EPI analysis method [24]. The interpolation method was identical

for all the methods. Table 5.5 shows the SNRs of the interpolated images with the ground

truth images. The numbers in bold represent the best method for the given light field.

In these cases, we note that the proposed method outperforms the other algorithms for

all the light fields expect the Cones data set. Examples of rendered images using the



5.4 Light field interpolation 99

(a) (b)

(d)(c)

Figure 5.15: Interpolation of the EE lobby light field. (a-b) Interpolated viewpoint
using conventional light field rendering. (c-d) Interpolated viewpoint using a 4-layer
representation.

(a) (b)

Figure 5.16: Interpolation of the Desk light field. (a) Interpolated viewpoint using
conventional light field rendering. (b) Interpolated viewpoint using a 5-layer repre-
sentation.
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Data set proposed method stereo [57] EPI analysis [24]

Cones 25.43 29.91 21.77
Dwarves 27.08 26.24 19.56
EE lobby 17.65 17.21 11.69

Animal family 23.04 17.47 19.02
Desk 25.57 25.46 19.79

Table 5.5: Leave-one-out test. The table gives the SNR (in dB) between the rendered
image and the ground truth image for the proposed method as well as a stereo method
and the EPI-tube extraction algorithm. The result in bold show the best method for
the given light field.

different algorithms are illustrated in Figure 5.17. From these examples, we notice that

object boarders are better defined and smoother renderings are achieved in the case of the

coherent extraction of plenoptic volumes.

5.5 Extrapolation of occluded regions and augmented real-

ity

In the previous section, we showed with experimental results that the decomposition of

light fields into plenoptic hypervolumes with approximately constant depth enables one

to render views from novel viewpoints. The extraction of plenoptic hypervolumes is also a

useful step in many other applications including the extrapolation of occluded areas. The

variational framework used takes into account all the images which makes it particularly

resilient to occlusions. Similarly to layer-based representations [65, 78], the segmentation

of light fields enables one to manipulate the data by recombining them in different ways.

Note that a layer-based representation (i.e alpha map, texture and plane or motion pa-

rameters) is not used as such. Rather, the new scenes are rendered using the full volumes.

This enables one to overcome some of the artifacts caused when over simplified depth

models are used. The first example depicted in Figure 5.18 illustrates how the available

volume H⊥
n as shown in Figure 5.18(a) can be extrapolated to obtain the full region Hn

shown in Figure 5.18(b). Linear extrapolation is performed using the available lines and

their intensities. That is, each EPI line is simply extended along its slope. The second



5.5 Extrapolation of occluded regions and augmented reality 101
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Figure 5.17: Comparison of rendered views using different depth estimation and seg-
mentation algorithms. (a-c) Interpolated viewpoints of the Desk light field for the
proposed method, the stereo algorithm in [57] and the EPI tube extraction method
in [24] respectively. (d-f) Illustrate interpolated images for the Dwarves light field in
the same order.

example is the Tank light field which is depicted in Figure 5.19. It has a foreground layer

(i.e. the wall) which strongly occludes the background layer (i.e. the tank). We compared

our algorithm with two other occlusion removal algorithms. First, we applied the syn-

thetic aperture method in [39,79] which produced the image in Figure 5.19(d). Note that

there are no holes and the full tank is visible. However, it is blurred since the synthetic

aperture is essentially averaging over the lines in the EPIs. The foreground layer is thus

contaminating the background one. The second result depicted in Figure 5.19(e) was ob-

tained by applying the stereo algorithm in [57] on all consecutive images. Regions with

the disparity corresponding to the wall layer are removed. Here, the absence of a model

for occlusions throughout multiple views and the lack of consistency drastically reduced

the quality of the disoccluded image. Finally, Figure 5.19(f) shows the result using the

plenoptic hypervolume segmentation algorithm.

Another useful application consists in reconstructing the scene by combining exist-

ing plenoptic volumes with external ones. These can be captured by other camera arrays
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(c)(b)

(a)

(d)

Figure 5.18: Image-based object removal. The extracted volume illustrated in (a) is
extrapolated along its EPI lines in order to reconstruct the occluded regions as shown
in (b). This enables one to reconstruct the scene, for example, by removing the region
carved out by the duck and using the extrapolated background volumes (c). Note
that there are some holes since some regions are never visible in the entire stack of
images. The images in (d) show the original data for comparison.

or synthetically generated in order to perform augmented reality. As an example, we use

a CAD software to generate the synthetic images of a teapot shown in Figure 5.20(a).

The visible parts of the volume are determined using equation (4.10) which leads to the

orthogonalized volume depicted in Figure 5.20(b). When combined with the original data,

all the occlusions are naturally handled. Some of the rendered images are illustrated in

Figure 5.20(c). Although the regions were extracted using fronto-parallel models, the ob-

jects still show their original shapes in the reconstructed images. This is noticeable, for

instance, in the duck’s beak and its shadow that are accurately rendered throughout the

views despite the fact the ‘duck’ layer was extracted using a constant depth model.

5.6 Summary and key results

In this chapter, we presented experimental results for the extraction of plenoptic hyper-

volumes in light fields. Many different data sets captured with various multiview imaging

systems and in controlled and uncontrolled environments have been analyzed. The seg-

mentation of these light fields is in general accurate and occlusions are correctly captured.

Moreover, the segmentation process is done in a reasonable time.

Image based rendering results were demonstrated and compared with conventional
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(a)

(f)(e)(d)

(c)(b)

Figure 5.19: Image-based disocclusion of the Tank light field. (a-c) Three of the
original 15 input images. (d) Disocclusion using synthetic aperture. (e) Disocclusion
using a state-of-the-art stereo algorithm. (f) Disocclusion using the plenoptic layer
extraction algorithm.

(c)

(a)

(b)

Figure 5.20: Image based object insertion. The synthetically generated volume carved
out by a teapot (a) is geometrically orthogonalized with the existing extracted volumes
(b). It is then straightforward to recombine the regions to recreate a scene where the
teapot is inserted (c).
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light field rendering. Since all the data sets have many objects and occlusions, the im-

ages are not sufficiently densely sampled and ghosting effects occur. In using plenoptic

hypervolumes, we showed that the artifacts caused by undersampled light fields are signif-

icantly reduced while keeping the natural aspect of the images. Finally, we showed other

applications that benefit from the segmentation of the plenoptic data. In particular, we

illustrated some object removal and insertion results with a particular emphasis on ob-

jects that are strongly occluded. Moreover, despite the simplified depth model used (i.e.

piecewise fronto-parallel), the reconstructed images still show their original geometry and

lighting changes. This comes from the fact that we use the full plenoptic volumes in the

reconstruction process.

The encouraging results reported in this chapter may be used for instance to create

walkthrough environments such as museums and tourist attractions. One may also use

these view interpolation schemes for marketing purposes such as showcasing hotel lob-

bies. Finally, occlusion removal may be used for military applications as well as removing

unwanted objects such as people from a scene.
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Chapter 6

Sampling piecewise sinusoidal

signals with an application to the

plenoptic function

6.1 Introduction

In this chapter, we study new methods to perfectly reconstruct certain classes of plenoptic

functions from their sampled versions.

The classical sampling theorem states that any bandlimited function x(t) such that

X(ω) = 0 ∀ |ω| > ωmax can be exactly recovered from its samples given that the rate 2π/T

is greater or equal to twice the highest frequency component [66]. The continuous-time (or

space) signal is recovered with x(t) =
∑

k∈Z
y[k]sinc(t/T − k) where sinc(t) = sin(πt)/πt

and y[k] = x(kT ). Consider a scene made of several planar objects with constant depth

and periodic bandlimited textures such as the one in Figure 6.1. This case is the example

taken in many works such as [83, 84] studying the spectral properties of the plenoptic

function. Then the projections of this scene under the light field parameterization are

piecewise sinusoidal.1 The resulting spectrum is therefore not bandlimited as it is made of

the convolution between Diracs and sinc functions and the classical reconstruction formula

1We assume Lambertian surfaces.
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Figure 6.1: A two-layer scene with sinusoids pasted as texture. (a) Two sensors
capture the scene from locations vx and v′x such that there are no occlusions. (b) The
samples observed from the sensors located in vx and v′x. We recover the perfectly the
two views using the piecewise sinusoidal reconstruction scheme. The full plenoptic
function can be recovered thereafter using standard back projection.

cannot be used. From a Shannon point of view, the discontinuities are seen as infinite

innovation processes and therefore require an infinite number of samples. Hence, events

concentrated in time or space are not precisely measurable and aliasing occurs in the

reconstructed data.

Recently, there has been a new trend in sampling theory that is not based solely

on the Fourier representation. Rather they are based on sparsity either in terms of their

representation in a basis [15,27] or in terms of their parametric representation [29,75]. In

particular, a sampling scheme has recently been developed by Vetterli et al. [75] where it

is made possible to sample and perfectly reconstruct signals that are not bandlimited but

are completely determined by a finite number of parameters. Such signals are said to have

a Finite Rate of Innovation (FRI). For instance, the authors derive a method to recover

some classes of FRI signals such as streams of Diracs, differentiated Diracs and piecewise

polynomials using sinc or Gaussian kernels. Later, in [28, 29], it was shown that these

signals can also be recovered using more realistic compact support sampling kernels such

as those satisfying the Strang-Fix conditions [73], exponential splines [74] and functions

with a rational Fourier transform. The reconstruction process for these schemes is based

on the annihilating filter, a tool widely used in spectral estimation [72], error correction

coding [9] and interpolation [76]. These results provide an answer for precise time (or



6.2 Sampling setup and signals of interest 107

space) localization (i.e. Diracs and polynomial signals) but in some sense lack frequency

localization capabilities.

In this chapter, we extend FRI theory to oscillating functions. In particular, we

investigate the case where the continuous-time signal is piecewise sinusoidal therefore

it contains both time and frequency components. We derive two methods to retrieve

exactly continuous-time piecewise sinusoidal signals from their sampled versions. Hence,

we will show that although the scene in Figure 6.1 is not bandlimited, it can be perfectly

reconstructed from a finite number of cameras having finite resolution. The problem of

computing the depth of the planes is then reduced to the standard back projection problem.

If the planes are different and the viewpoints are such that there are no occlusions, then

two sensors are sufficient to perfectly recover the textures and locations of the planes.

Furthermore, all the intermediate viewpoints [v′x, vx] can be exactly interpolated with

perspective projections.

The chapter is organized as follows: Section 6.2 describes the sampling setup and

the signals of interest. Sections 6.3 and 6.4 discuss the sampling kernels which can be

used in our scheme and recall some of the aspects of annihilating filter theory. Using these

kernels, Section 6.5 derives a global method for retrieving the parameters of a general

piecewise sinusoidal signal. Section 6.6 discusses local reconstruction methods that have

a lower complexity. In Section 6.7, we briefly discuss some extensions of the algorithm,

namely adding piecewise polynomials to piecewise sine waves. Section 6.8 illustrates ex-

amples and we conclude in Section 6.9.

6.2 Sampling setup and signals of interest

The acquisition device, be it a camera or another sensing device, can be modeled with a

smoothing kernel ϕ(t) and a uniform sampling period T > 0. Following this setup, the

observed discrete-time signal is given by

y[k] =

∫ ∞

−∞
ϕ(t− kT )x(t)dt = 〈ϕ(t − kT ), x(t)〉 (6.1)
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x(t) y[k]

T

Acquisition Device

ϕ(t)

Figure 6.2: Sampling setup. The continuous-time signal x(t) is filtered by the acquisi-
tion device and sampled with period T . The observed samples are y[k] = 〈ϕ(t−kT ), x(t)〉.

with k ∈ Z as shown in Figure 6.2. The fundamental problem of sampling is to recover

the original continuous-time waveform x(t) using the set of samples y[k]. The signals x(t)

under study in this context are piecewise sinusoidal. More precisely, we consider signals

of the type:

x(t) =
D∑

d=1

N∑

n=1

Ad,n cos(ωd,nt+ Φd,n)ξd,d+1(t), (6.2)

where ξd,d+1(t) = u(t−td)−u(t−td+1), u(t) is the Heaviside step function and td+1 > td for

all d; and study their reconstruction from the samples y[k] given in (6.1). Such signals are

notoriously difficult to reconstruct since they are concentrated both in time and frequency.

For this reason, the schemes in [28,29,75] as well as the Shannon type schemes would not

enable an exact recovery. However such signals have a finite rate of innovation and it is

possible to retrieve the parameters ωd,n, Ad,n and Φd,n of the sinusoids along with the

exact locations td given certain conditions on the sampling kernel ϕ(t).

6.3 Sampling kernels

Many sampling schemes such as the classical Shannon reconstruction [66] and some of the

original FRI schemes [75] rely on the ideal low-pass filter (i.e. the sinc function). This

filter is not realizable in practice since it is of infinite support. It is therefore an attractive

aspect to develop sampling schemes where the kernels are physically valid and realizable.

It was recently shown that FRI sampling schemes may be used with sampling kernels that

are of compact support [28,29]. In this section, we present these kernels.
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6.3.1 Polynomial reproducing kernels

A polynomial reproducing kernel ϕ(t) is a function that together with its shifted version

is able to reproduce polynomials. That is, we have

∑

k∈Z

cm,kϕ(t− k) = tm m = 0, 1, . . . ,M

given the right choice of weights cm,k. Perhaps the most basic and intuitive such kernels

are the classical B-splines that are of compact support. The B-spline of order zero is

a function β0(t) with Fourier transform β̂0(ω) = 1−e−jω

jω
. The higher order B-splines of

degree N are obtained through N successive convolutions of β0(t) and they are able to

reproduce polynomials of degrees zero to N .

6.3.2 Exponential reproducing kernels

An exponential reproducing kernel ϕ(t) is a function that together with its shifted version

is able to reproduce exponentials. That is, we have

∑

k∈Z

cm,kϕ(t− k) = eαmt with αm = α0 +mλ and m = 0, 1, . . . ,M (6.3)

given the right choice of weights cm,k. One important family of such kernels are the

exponential splines (E-splines) that appeared in early works such as [25, 54, 62, 82] and

were further studied in [74]. These functions are extensions of the classical B-splines

in that they are built with exponential segments instead of polynomial ones. The first

order E-spline is a function βαn(t) with Fourier transform β̂αn(ω) = 1−eαn−jω

jω−αn
. A series of

interesting properties are derived in [74]. In particular, it is shown that an E-spline has

compact support. The E-splines of order N are constructed by N successive convolutions

of first order ones:

β̂~α(ω) =

N∏

n=1

1 − eαn−jω

jω − αn
(6.4)
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where ~α = (α1, . . . , αN ). The higher order spline is also of compact support and it can

reproduce any exponential in the subspace spanned by {eα1t, . . . , eαN t} [74]. Furthermore,

since the exponential reproduction property is preserved through convolution [74], we have

that any kernel of the form ϕ(t) ∗ β~α(t) is also able to reproduce the same exponentials.

6.4 Annihilating filters and differential operators

The annihilating filter is at the heart of finite rate of innovation sampling schemes. In

this section, we recall the annihilating filter method and show how the filters in the case

of exponential signals are related to the exponential splines [74]. We also show how

an exponential signal may be converted into a stream of differentiated Diracs using an

appropriate differential operator.

6.4.1 The annihilating filter method

Assume that a discrete-time signal s[k] is made of weighted exponentials such that s[k] =

∑N
n=1 anu

k
n with un ∈ C and assume we wish to retrieve the exponentials un and the

weights an of s[k]. The filter h[k] with z-transform

H~u(z) =

N∏

n=1

(1 − unz
−1) (6.5)

and ~u = (u1, . . . , uN ) is called annihilating filter of s[k] since (h ∗ s)[k] = 0 ∀k ∈ Z. We

can therefore construct the following system of equations



















...
... . . .

...

s[0] s[−1] . . . s[−N ]

s[1] s[0] . . . s[−N + 1]

...
...

. . .
...

s[N ] s[N − 1] . . . s[0]

...
... . . .

...






























h[0]

h[1]

...

h[N ]












= ~0.
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Notice that N + 1 equations are sufficient to determine ~h therefore we write the system in

matrix form as

S~h = ~0, (6.6)

where S is the appropriate N + 1 by N + 1 submatrix involving 2N + 1 samples of s[k]. If

s admits an annihilating filter, we have Rank(S) = N hence the matrix is rank deficient.

The zeros of the filter H~u(z) uniquely define the uns since they are distinct and any filter

~h satisfying the Toeplitz system in (6.6) has un as its roots. Given the uns, the weights an

are obtained by solving a system of equations using N consecutive samples of s[k]. These

form a classic Vandermonde system which also has unique solution given that the uns

are distinct. A straightforward extension of the above annihilating filter is that a signal

s[k] =
∑N

n=1

∑R−1
r=0 k

ruk
n is annihilated by the filter

H~u(z) =
N∏

n=1

(1 − unz
−1)R (6.7)

which has multiple roots of order R. For a more detailed discussion of the annihilating

filter method we refer to [72].

Let us return to the sinusoidal case. Clearly, a filter of type H~u(z) will also anni-

hilate a discrete sinusoidal signal y[k] =
∑N

n=1An cos(ωnk + Φn) since it can be written

in the form of a linear combination of complex exponentials. In this case, the filter is

obtained by posing ~u = e~α and

~α = (jω1, . . . , jωN ,−jω1, . . . ,−jωN ). (6.8)

We simplify the notation by expressing He~α(z) as H~α(z). By comparing (6.5) with (6.4)

and using z = ejω, we see that the annihilating filter for a linear combination of exponen-

tials can be expressed with an E-spline as

H~α(ejω) = β̂~α(ω)
N∏

n=1

(jω − αn) (6.9)
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where the second term is a differential operator which is discussed in the following section.

6.4.2 Differential operators

Let L{x(t)} be a differential operator of order N :

L{x(t)} =
dNx(t)

dtN
+ aN−1

dN−1x(t)

dtN−1
+ . . . + a1x(t)

with constant coefficients an ∈ C. This operator can also be defined by the roots of its

characteristic polynomial

L(s) = sN + aN−1s
N−1 + . . .+ a1 =

N∏

n=1

(s− αn).

Using the same notation as in [74], we express the operator as L~α where ~α =

(α1, α2, . . . , αN ). Posing s = jω, we have in the frequency domain

L~α(jω) =

N∏

n=1

(jω − αn).

The null space of the operator, denoted N~α, contains all the solutions to the differential

equation L~α{x(t)} = 0. It is shown in [74] that N~α = span{eα1t, . . . , eαN t}. It is therefore

said that the operator has exponential annihilation properties. Moreover, the operator has

sinusoidal annihilation properties when ~α is defined as in (6.8). This follows naturally from

the fact that sinusoids are linear combinations of complex exponentials. Therefore, given

the right ~α, the operator L~α will produce a zero output for the corresponding sinusoidal

input. It is also relevant to mention here that the Green function gαn(t) of the operator

Lαn is a function such that Lαn{gαn(t)} = δ(t) where δ(t) is the Dirac distribution. In

this case, the Green function is given by gαn(t) = eαntu(t) [74] where u(t) is the Heaviside

step function. Consequently, we have that Lαn{eαntu(t− tn)} = δ(t − tn). Finally, using

the linearity property of the derivative, it is straightforward to show that

L~α{
N∑

n=1

eαntu(t− tn)} =
N∑

n=1

N−1∑

r=0

an,rδ
(r)(t− tn), (6.10)
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where δ(r)(t) is a differentiated Dirac of order r. Hence, the appropriate differential opera-

tor applied to a piecewise exponential signal will produce a stream of differentiated Diracs

in the discontinuities.

6.5 Reconstruction of piecewise sinusoidal signals using a

global approach

All the necessary tools to sample piecewise sinusoidal signals have now been laid down.

For mathematical convenience, we write the continuous-time signal as:

x(t) =

D∑

d=1

2N∑

n=1

Ad,ne
j(ωd,nt+Φd,n)ξd,d+1(t), (6.11)

which is made of D pieces containing a maximum of N sinusoids each. Assume now that

this signal is sampled with a kernel ϕ(t) which is able to reproduce exponentials eαmt with

αm = α0 + λm and m = 0, 1, . . . ,M . Following previous FRI methods [29], weighting the

samples with the appropriate coefficients cm,k gives

τ [m] =
∑

k∈Z

cm,ky[k] = 〈
∑

k∈Z

cm,kϕ(t− k), x(t)〉

=

∫ ∞

−∞
eαmtx(t)dt (6.12)

where we have used (6.3). Note that τ [m] is an exponential moment of the original

continuous-time waveform x(t). Plugging (6.11) into (6.12) gives the moments

τ [m] =
D∑

d=1

2N∑

n=1

Ãd,n
[etd+1(jωd,n+αm) − etd(jωd,n+αm)]

jωd,n + αm
(6.13)

where Ãd,n = Ad,ne
jΦd,n . These moments are a sufficient representation of the piecewise

sinusoidal signal since the frequencies of the sinusoids and the exact locations of the discon-

tinuities can be found using the annihilating filter method. Let us define the polynomial

Q(αm) =
∏D

d=1

∏2N
n=1(jωd,n + αm) of degree 2DN . Multiplying both sides of (6.13), we
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find the expression

Q(αm)τ [m] =
D∑

d=1

2N∑

n=1

Ãd,nPd,n(αm)[etd+1(jωd,n+αm) − etd(jωd,n+αm)] (6.14)

where Pd,n(αm) is a polynomial of maximum degree 2DN − 1. Recall that we impose

αm = α0 +λm which means that (6.14) is equivalent to
∑D+1

d=1

∑2ND−1
r=0 br,dm

reλtdm where

br,d are weights. Therefore a filter of the type:

H(z) =
D+1∏

d=1

(1 − eλtdz−1)2DN =
K∑

k=0

h[k]z−k

with K = (D+1)2DN = 2D2N +2DN will annihilate (6.14) as shown in (6.7). It follows

that
K∑

k=0

h[k]Q(αn−k)τ [n− k] = 0 (6.15)

with n = K,K + 1, . . . ,M . Recall that Q is a polynomial in αm and it can therefore be

written as

Q(αm) =
L∑

l=0

r[l]αl
m

where L = 2DN . Using this notation, the system in (6.15) becomes

K∑

k=0

L∑

l=0

h[k]r[l](αn−k)lτ [n− k] = 0

for n = K, . . . ,M . For clarity, we write the system in matrix form which gives












τ [K] . . . (αK)Lτ [K] . . . τ [0] . . . (α0)
Lτ [0]

τ [K + 1] . . . (αK+1)
Lτ [K + 1] . . . τ [1] . . . (α1)

Lτ [1]

...
. . .

...
. . .

...
. . .

...

τ [K + U ] . . . (αK+U)Lτ [K + U ] . . . τ [U ] . . . (αU )Lτ [U ]

































h[0]r[0]

...

h[0]r[L]

...

h[K]r[0]

...

h[K]r[L]






















= ~0,
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Figure 6.3: Overview of the algorithm for the global recovery of a piecewise sinusoidal
signal.

where U = M −K ≥ (K + 1)(L + 1) − 1. Solving the system with h[0] = 1 enables one

to find the r[l]s. Subsequently, we find the h[k]s. The roots of the filter H(z) and the

polynomial Q(αm) give the locations of the switching points and the frequencies of the

sine waves respectively. The number of exponential moments τ [m] required to build a

system with enough equations to find the parameters of the piecewise sinusoidal signal is

M = K + U = 4D3N2 + 4D2N2 + 4D2N + 6DN .

At this point, we have determined all the frequencies of the sinusoids and the loca-

tions of the discontinuities. However, the polynomial Q(αm) does not enable to distinguish

which frequencies are present in which pieces. This information, along with the amplitudes

and phases of the sinusoids are found by building a generalized Vandermonde system

τ [m] =
D+1∑

i=1

D∑

d=1

2N∑

n=1

Ãd,n
eti(jωd,n+αm)

jωd,n + αm
(6.16)

which requires 2ND(D + 1) moments τ [m] and enables to determine the Ãd,ns. This

system provides a unique solution since the exponents are distinct. The full algorithm is

depicted in Figure 6.3. We summarize the above derivation with the following theorem:

Theorem 1. Assume a sampling kernel ϕ(t) that can reproduce exponentials eα0+λm with

m = 0, 1, . . . ,M . A piecewise sinusoidal signal with D pieces having a maximum of N

sinusoids is uniquely determined by the samples y[k] = 〈ϕ(t− kT ), x(t)〉 if M ≥ 4D3N2 +

4D2N2 + 4D2N + 6DN .

For example, a sine wave truncated in t1 and t2 (i.e. D = 1 and N = 1) requires to

compute the exponential moments up to order 18. Note that the method is based on the
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Figure 6.4: Sampling a truncated sine wave. (a) The original continuous-time wave-
form. (b) The amplitude of the observed samples. (c) The reconstructed signal. Note
that the signal is not bandlimited and the frequency of the sine wave itself is higher
than the Nyquist rate for the given sampling period.

rate of innovation of the signal only. That is, there are no constraints for example on the

frequencies of the sine waves. In particular, we are not limited by the Nyquist frequency.

It also means that the locations of the discontinues t1 and t2 may be arbitrarily close.

Figure 6.4 illustrates the sampling and perfect reconstruction of a truncated sine wave.

6.6 Reconstruction of piecewise sinusoidal signals using a

local approach

In the previous section, we saw that is it possible to retrieve the parameters of a sampled

piecewise sinusoidal signal given that the sampling kernel is able to reproduce exponentials

of a certain degree. This degree however increases very rapidly with the number of sinu-

soids and pieces. In this section, we show that the complexity can be reduced by making
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assumptions on the signal. In the first case, we assume that the frequencies of the sine

waves are known and we retrieve the exact locations of the discontinuities. In the second

case, we assume that the discontinuities are sufficiently far apart such that a classical

spectral estimation method can be run in each piece in order to estimate the frequencies

independently of the discontinuities.2 We emphasize the fact that all the reconstruction

steps in this section are local therefore they are extendable to infinite length piecewise

sinusoidal signals.

6.6.1 Local reconstruction with known frequencies

Consider a piecewise sinusoidal signal x(t) as defined in (6.11) and assume the frequencies

ωd,n are known at the reconstruction. This can be the case, for instance, when information

is transmitted using the switching points (or the discontinuities) and we wish to retrieve

these locations exactly. The samples y[k] are again given by (6.1). Since the frequencies

of the sine waves are known, we can construct the annihilating filter

H~α(z) =

D∏

d=1

N∏

n=1

(1 − ejωd,nz−1)(1 − e−jωd,nz−1) (6.17)

with coefficients h~α[k]. Assume now that we apply this filter to the samples y[k]. The

expression for the annihilated signal yann[k] gives

yann[k] = h~α[k] ∗ 〈ϕ(t− k), x(t)〉
(a)
=

1

2π
〈e−jωkϕ̂(ω)H~α(ejω),X(ω)〉

(b)
=

1

2π

〈
e−jωkϕ̂(ω)β̂~α(ω)L~α(jω),X(ω)

〉

= 〈L~α{ϕ(t− k) ∗ β~α(t− k)}, x(t)〉
(c)
= 〈ϕ(t − k) ∗ β~α(t− k), L~α{x(t)}〉,

where (a) follows from Parseval’s identity, (b) from (6.9) and (c) from integration by parts

and the fact that ϕ ∗ β~α is of finite support. This means that the coefficients yann[k]

represent the samples given by the inner-product between a modified x(t) that we call

2This case was also presented in [4]
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xδ(t) = L~α{x(t)} and a new sampling kernel ϕequ(t) = ϕ(t) ∗ β~α(t). Now assume that

the sampling kernel ϕ(t) has compact support W . Then the equivalent kernel ϕequ(t) is

of compact support W + 2DN . Furthermore, according to (6.10), xδ(t) is made only of

differentiated Diracs of maximum order 2DN − 1 in the discontinuities. That is, we are

left with a signal of the type xδ(t) =
∑D+1

d=1

∑2DN−1
r=0 ad,rδ

(r)(t− td) for which a sampling

theorem exists [28] [29]. Hence given that the hypotheses of the theorem are met, we are

able to perfectly reconstruct xδ(t) and retrieve the exact locations td. The theorem states

that a signal made of differentiated Diracs can be sampled and perfectly reconstructed

using a sampling kernel that is able to reproduce exponentials or polynomials. Since, this

reproduction capability is preserved through convolution [74], the equivalent kernel ϕequ(t)

is able to reproduce the same exponentials or polynomials as ϕ(t). Hence the classes of

kernels used in [28] are also valid in our context.

Similarly to the previous method, the retrieval of the locations td and the weights

ad,r of xδ(t) is based on the annihilating filter method. As shown in [28] [29], these

parameters can be found using appropriate linear combinations of the samples yann[k].

Indeed, using an exponential reproducing kernel, we have the moments

τ [m] =
∑

k

cm,kyann[k] = 〈
∑

k

cm,kϕequ(t− k), xδ(t)〉 (6.18)

=

∫ ∞

−∞
eαmtxδ(t)dt =

D∑

d=1

2DN−1∑

r=0

br,dm
reλtdm (6.19)

which are made of weighted exponentials. Therefore a filter of the type H(z) =
∏D

d=1(1−

eλtdz−1)2DN will annihilate τ [m] and the problem of finding the locations td is reduced to

that of finding the multiple root of H(z). This filter can be determined using a system of

equations similar to the one in (6.6). A more detailed description of the location retrieval

can be found in [29]. The general result is summarized as follows:

Theorem 2. Assume a sampling kernel ϕ(t) that can reproduce exponentials eα0+λm or

polynomials tm with m = 0, 1, . . . ,M and of compact support W . An infinite-length piece-

wise sinusoidal signal with a maximum of N sinusoids in each piece is uniquely deter-

mined by the samples y[k] = 〈ϕ(t − kT ), x(t)〉 if the frequencies ωd,n are known, there
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Figure 6.5: Sequential recovery of a piecewise sinusoidal signal. The observed discrete
signal is illustrated in Figure 6.5(a). In this example, we have one sine wave per piece
and frequencies ω1,1, ω2,1 and ω3,1 in the first, second and third piece respectively.
The frequencies are determined using the annihilating filter method. The annihilated
signal yann

1 [k] = (y ∗ h~α1
∗ h~α2

)[k] where ~α1 = (jω1,1,−jω1,1) and ~α2 = (jω2,1,−jω2,1) is
shown in Figure 6.5(b). The non zero samples in the vicinity of the discontinuity
are sufficient to recover the first breakpoint. The second breakpoint can be found by
looking at yann

2 [k] = (y ∗ h~α2
∗ h~α3

)[k] where ~α2 = (jω2,1,−jω2,1) and ~α3 = (jω3,1,−jω3,1)
which is depicted in Figure 6.5(c). The recovered continuous-time signal is shown in
Figure 6.5(d).

are at most D sinusoidal discontinuities and in an interval of length 2D(W+2DN)T and

M ≥ 4DN(D + 1) − 1.

6.6.2 Local reconstruction with unknown frequencies

In the previous section, we saw that the exact locations of the switching points td of a

piecewise sinusoidal signal can be estimated from its sampled version. The number of

moments required in this case was less than in the global method presented in Section 6.5

since in essence the estimation of the breakpoints is separated from that of the sine waves.

In this section, we show how the local method presented above may be applied even if

the frequencies of the sine waves are unknown. The basic idea is to impose that the

discontinuities are sufficiently far apart such that a classical spectral estimation method

can be run in each piece.

Assume, for the moment, an original continuous-time signal that is purely sinusoidal

with a maximum of N sinusoids. The signal is sampled with a sampling kernel ϕ(t) and
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Figure 6.6: Determining the sinusoidal part of the pieces. Figure 6.6(a) illustrates
a truncated sinusoid. Assume, for example, a B-spline sampling kernel ϕ(t) = β3(t)
that is of compact support W = 4 as is depicted in Figure 6.6(b). Since the kernel
has a certain support, the samples in the vicinity of the discontinuities are not pure
discrete sinusoids. Therefore the rank of matrix S is full when S is constructed with
the samples in the dashed window depicted in Figure 6.6(c). However, S is rank
deficient when the window is chosen as shown Figure 6.6(d) since the samples are not
influenced by the discontinuities.

the samples are given by

y[k] =
N∑

n=1

Ãn

2

(

ej(ωnk+Φn)) + e−j(ωnk+Φn)
)

with Ãn = ϕ̂(ωn)An. From Section 6.4.1, we know that 4N + 1 samples are sufficient to

construct the matrix S in (6.6) and solve the system of equations in order to determine

the annihilating filter H~α(z). The ωns are found using the roots of the filter. Clearly, in

this case, the classical Nyquist condition ωn < π/T holds otherwise there is no distinction

between ωn and π/T − ωn. In order to find the amplitudes An and the phases Φn, we use

2N consecutive samples of y[k] in order to construct a Vandermonde system. For example,

in the case where N = 1, we have the following system:

1

2






ejω0k e−jω0k

ejω0(k+1) e−jω0(k+1)











Ã0e
jΦ0

Ã0e
−jΦ0




 =






y[k]

y[k + 1]






where the unicity of the solution is guaranteed since the exponents are distinct. Notice that

determining the parameters of the sinusoids is a classical spectral estimation problem [72].

In the piecewise sinusoidal case, the discontinuities influence the samples. Indeed,

if the kernel has support W , the samples in the interval [td − TW/2, td + TW/2] are not

pure discrete sinusoids. Hence, the sampling period T must be such that there are at least

4N+1 samples that are not influenced by the discontinuities in each interval [td, td+1]. This
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enables one to use classical spectral estimation methods. The only apparent difficulty lies

in finding the right samples in each piece that are not perturbed by the breakpoints. Recall

from Section 6.4.1 that the 2N + 1 by 2N + 1 matrix S admits an annihilating filter when

Rank(S) = 2N . However, the rank is full when S is constructed with samples that are

influenced by the discontinuities. It follows that the samples that contain only frequency

atoms can be found by running a window along the k-axis constructing successive matrices

and looking at the rank of S. Figure 6.6 illustrates the sliding window. In Figure 6.6(c),

the window contains samples that are influenced by the discontinuity and the rank of S

is full. However, in Figure 6.6(d), the matrix is rank deficient and the annihilating filter

method is run to retrieve the parameters of the sinusoids. Once the frequencies have

been estimated, the locations of the discontinuities may be found using the method in

Section 6.6. Note that in this case, we impose that the discontinuities are sufficiently far

apart to retrieve each td separately. We therefore have D = 1. The above derivation is

summarized with the following theorem:

Theorem 3. Assume a sampling kernel ϕ(t) of compact support W and that can reproduce

exponentials eα0+λm or polynomials tm with m = 0, 1, . . . ,M . An infinite-length piecewise

sinusoidal signal is uniquely determined by the samples y[k] = 〈ϕ(t − kT ), x(t)〉 if there

are at most N sinusoids with frequency ω < π/T in a piece of length T (4N +W + 1) and

M ≥ 8N − 1.

An overview of the algorithm for the local recovery of piecewise sinusoidal signals

is illustrated in Figure 6.7. A simulation recovering a piecewise sinusoidal signal with

three pieces containing one sinusoid each is illustrated in Figure 6.5. We use a classical

B-spline sampling kernel β7(t) as it is capable of reproducing polynomials of maximum

degree 8N − 1 = 7. The reconstructed signal is exact within machine precision.
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Figure 6.7: Overview of the algorithm for the local recovery of a piecewise sinusoidal
signal.

6.7 Joint recovery of piecewise sinusoidal and polynomial

signals

Sampling piecewise sinusoidal signals using the schemes presented above is not based on

the fact that the signals of interest are bandlimited but on the fact that they can be

represented with a finite number of parameters. It is worth mentioning that signals that

are a combination of piecewise sinusoidal and polynomials pieces are also defined by a

finite number of parameters and they can also be recovered from their sampled versions

using the same algorithms. These signals are of the type:

x(t) =

D∑

d=1

xd(t)ξd,d+1(t)

where x(t) = 0 for t < t1, ξd,d+1(t) is as previously defined and

xd(t) =

N∑

n=1

Ad,n cos(ωd,nt+ Φd,n) +

P−1∑

p=0

Bd,pt
p.

That is, we have a maximum of N sinusoids and polynomials of maximum degree P in each

piece. In the following, we will briefly discuss the basic steps to recover the parameters as

they are analogous to the piecewise sinusoidal cases presented in Sections 6.5 and 6.6.

Clearly, the P th order derivative of x(t) is

x(P )(t) =
D∑

d=1

N∑

n=1

dP

dtP
[Ad,n cos(ωd,nt+ Φd,n)]ξd,d+1(t) +

D+1∑

d=1

P−1∑

p=0

cd,pδ
(p)(t− td)
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Figure 6.8: Sampling a combination of piecewise polynomials and sinusoids. The
observed samples are depicted in Figure 6.8(a). In the first step, we annihilate the
polynomial part by applying the finite difference operator. As shown in Figure 6.8(b),
we are left only with a piecewise sinusoidal part. The parameters characterizing the
sinusoid are retrieved and the annihilating filter is applied. The samples depicted
in Figure 6.8(c) contain all the information necessary to find the discontinuity. The
recovered continuous-time signal is shown in Figure 6.8(d).

which is a piecewise sinusoidal signal with differentiated Diracs in the discontinuities.

Both the global and the local schemes presented above are able to cope with these signals.

Therefore if we are able to relate the observed samples y[k] with the samples y(P )[k]

that would have been obtained from x(P )(t), we will be able to recover x(P )(t). The

x(t) will then be obtained by integration which is uniquely defined since we assume that

x(t) = 0 for t < t1. The relation between the samples y[k] and y(M)[k] is related to

B-spline theory and was demonstrated in [29]. Assume we apply the finite difference

y(1)[k] = y[k + 1] − y[k] to the observed samples. The new set of samples y(1)[k] are

equivalent to 〈ϕ(t−k)∗β0(t−k), d
dt
x(t)〉 where β0(t) is the B-spline of order zero. Similarly,

the P th order finite differences lead to the samples

y(P )[k] = 〈ϕ(t − k) ∗ βP−1(t− k),
dP

dtP
x(t)〉

which means the obtained samples are equivalent to the ones that would have been ob-

served from sampling x(P )(t) with the kernel ϕ(t)∗βP−1(t). Moreover, since the polynomial

and exponential reproduction capability are preserved through convolution, the new kernel

is able to reproduce the polynomials or exponentials as well. Hence the sampling schemes

presented above are also valid for piecewise sinusoidal and polynomial signals. An example
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of the piecewise polynomial and sinusoidal case is depicted in Figure 6.8.

6.8 Examples

6.8.1 Parametric plenoptic functions

Consider slit or one-dimensional pinhole cameras that are placed along a line in known

locations. These cameras observe the scene in the direction perpendicular to the camera

location line. In effect, these cameras are setup in the EPI configuration. The observed

scene is made of several fronto-parallel planar objects with periodic bandlimited textures

as illustrated in Figure 6.1. Therefore the signals observed by each camera are piecewise

sinusoidal. Now assume that the point-spread function of the cameras are B-splines or

E-splines.3 That is, the sampling kernels belong to the family of kernels that can be used

in our sampling framework. Then, given that the hypotheses on the rate of innovation

of the scene are satisfied, we are able to perfectly reconstruct each view. Therefore, in

the absence of occlusions, it is straightforward to reconstruct the continuous EPI using

projective transformations.

6.8.2 Electronic circuits as acquisition devices

Following the previous work on sampling signals with finite rate of innovation [29], it is

possible to use sampling kernels that have a rational Fourier transform. These include

many electrical systems including the classical RC circuits. This is due to the fact that

the observed samples can be converted into those that would have been obtained using

an E-spline as sampling kernel. In this section, we show with a simple example how to

retrieve the exact jump location of a truncated sinusoidal signal.

Consider an electrical system with transfer function ϕ̂(ω) =
∏4

m=1
1

jω+νm
and νm =

mλ with λ ∈ C. Such a system would be, for instance, a fourth order RC circuit. The

samples observed at the output of the system are given by y[k] = 〈ϕ(t − k), x(t)〉 where

we assume for simplicity that the sampling period T is unity. In this example, the input

3These kernels approximate very well the usual Gaussian point-spread function.
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voltage is a truncated sine function u(t) = A1 cos(ω1t)u(t − t1) with known frequency ω1

and we wish to retrieve the exact switching time t1.

This first step consists in applying the digital filter with z-transform H~ν(z) =

∏4
m=1(1 − eνmz). The new set of samples are given by [29]

yE[k] = 〈β~ν(t− k), x(t)〉

which are equivalent to those that would have been observed using an E-spline sampling

kernel. Therefore the methods described in the previous sections may be applied. In this

particular example, we assume that the frequency of the sine wave is known and we are

interested only in the recovery of t1. We therefore use the algorithm presented in the

first part of Section 6.6. The next step consists in applying the digital filter H~α(z) =

(1 − ejω1z−1)(1 − e−jω1z−1) to the samples yE[k]. The resulting samples are

yann[k] = 〈β~ν(t− k) ∗ β~α(t− k), L~α{x(t)}〉

with L~α{x(t)} = −2A1ω1 sin(ω1t)δ(t − t1) + A1 cos(ω1t)δ
(1)(t − t1). The new kernel is

an E-spline that can reproduce exponentials including those in the subspace spanned

by {eν1t, eν2t, eν3t, eν4t}. Therefore by an appropriate linear combination of the samples

yann[k] as in (6.18), we have access to the continuous-time moments

τ [m] =

∫ ∞

−∞
eνmtxδ(t)dt = A1e

νmt1 [−3ω1 sin(ω1t1) + cos(ω1t1)νm]

from which we can retrieve t1. Indeed, the signal τ [m] is annihilated by the filter H(z) =

(1−eλt1z−1)2 since by hypothesis νm = λm. Posing h[0] = 1, we may write the annihilation

of the moments τ [m] as






τ [2] τ [1]

τ [3] τ [2]











h[1]

h[2]




 =






−τ [3]

−τ [4]






which will provide a solution for the filter taps of H(z). Therefore the exact location of the

switching point is given by t1 = ln(zr)/λ where zr is the multiple root of the annihilating
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Figure 6.9: Sampling of a truncated sine function using an electrical circuit. The
input is filtered and sampled with uniform sampling period T . The reconstruction
involves applying a digital filter and running the annihilating filter method in order
to retrieve the parameters of the original continuous-time signal x(t).

filter. Figure 6.9 illustrates the steps of the reconstruction.

6.9 Summary and key results

We have set out to show that piecewise sinusoids belong to the family of signals with

finite rate of innovation and can be sampled and perfectly reconstructed using sampling

kernels that reproduce exponentials or polynomials. These classes of kernels are physically

realizable and are of compact support. Moreover, combinations of piecewise sinusoids and

polynomials also have a finite rate of innovation and can be dealt with using similar

sampling schemes. This combination gives rise to a very general type of signal.

Since the sampling scheme is limited by the rate of innovation rather than the actual

frequency of the continuous-time signal, we are, in theory, capable of retrieving piecewise

sine waves with an arbitrarily high frequency along with the exact location of the switching

points. We are therefore able to sample and perfectly reconstruct scenes in which there

are several fronto-parallel planes with periodic bandlimited textures pasted onto them.

However, this case remains limited to synthetic scenes. Therefore, we believe that the

sampling scheme presented may find applications, for example, in spread spectrum and

wide band communications where the signals are of the type presented in this chapter and

precise time and frequency localization are of crucial importance.
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Finally, we assumed deterministic signals throughout the chapter. The noisy case

scenario is not in the scope of this work but will be tackled in the future.
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Chapter 7

Conclusions and future work

7.1 Summary of Thesis Achievements

Image based rendering is in essence the problem of sampling and interpolating the seven-

dimensional plenoptic function. For many applications, the four-dimensional light field

representation is sufficient. Many works have studied the structure of light fields and

showed that the band of the function is spread by occlusion and large depth variations.

However, an accurate geometry of the scene is often not necessary.

In this thesis, we looked into extracting regions in the light fields that are coher-

ent and can be rendered without aliasing. In doing so, we looked into the coherence of

multiview images from the plenoptic function point of view emphasizing that looking at

the problem from this angle provides a nice framework for studying the data in a global

manner and imposing a coherent segmentation. Using this representation, we looked into

the nature of the function and suggested in Chapter 2 that in extension to the object tun-

nels in videos and EPI-tubes in multi-baseline stereo data, layers carve multi-dimensional

hypervolumes in the plenoptic function. We called these regions plenoptic hypervolumes.

Just like in the three-dimensional cases, the hypervolumes contain highly regular informa-

tion since they are constructed with images of the same objects. There is therefore clearly

potential for robust analysis and efficient representation.

In Chapter 4, we proposed a novel multi-dimensional segmentation scheme based
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on a variational framework for the extraction of coherent regions in light fields. Since

the formulation is global, coherence and consistency is enforced on all the dimensions.

The method presented also takes fully advantage of the constraints namely that points

in space are mapped onto particular trajectories (i.e. lines in light fields) and occlusions

occur in a specific order. Therefore occlusions are naturally handled and all the images

are treated equally. The variational framework is flexible in terms of the number of

dimensions (i.e. depending on the camera setup), the depth estimation and the descriptors

used. This flexibility is important for several reasons. First, the same framework can be

used for different camera setups. Second, most applications in image based rendering do

not necessitate an accurate depth reconstruction. Third, possible extensions to take into

account large textureless regions and specular effects, for instance, may be incorporated

into the descriptors.

We illustrated in Chapter 5 some applications in image based rendering using the

extracted regions. View interpolation and scene manipulation as well as augmented re-

ality were demonstrated in order to illustrate the benefits of extracting these plenoptic

hypervolumes. Since the scene is not represented as layers in a traditional sense but as

a combination of coherent hypervolumes, accurate geometry is often not necessary and

fronto-parallel depth models were used to represent the regions.

In Chapter 6, we looked at sampling and interpolation in a more theoretical man-

ner and investigated sampling and perfectly reconstructing signals that follow piecewise

models. New finite rate of innovation sampling schemes are able to sample and perfectly

reconstruct Diracs and piecewise polynomials. In Chapter 6, we showed that piecewise

sinusoidal signals also belong to the family of signals that can be sampled and perfectly

reconstructed using FRI principles. Moreover, combinations of piecewise sinusoidal and

polynomial signals can be dealt with in the same way. Perhaps most interestingly, this

chapter showed that it is theoretically possible to sample and perfectly reconstruct piece-

wise sinusoidal signals with sine waves having an arbitrarily high frequency.
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7.2 Future research

In conclusion, we discuss some open questions and possible directions for future research.

The variational framework derived in this thesis analyzes a sparse light field for image

based rendering applications. Through experimental results, we have shown that it is

capable of rendering photorealistic images of complicated and cluttered scenes. There are,

however, some further developments that are possible:

• Extensions to higher dimensions The global analysis of light fields is power-

ful and enables one to take advantage of the coherence of the plenoptic function

throughout all the images. However, such an analysis inherently implies that the

cameras be well calibrated and structured in order for the plenoptic constraints to

be imposed. For example, in Chapter 4 we derived a four-dimensional variational

framework for the extraction of coherent regions in light fields. In future work, one

may explore more complicated and unstructured camera setups as well as dynamic

scenes and non rigid objects. For instance, an interesting direction for future work is

to explore the potential of the global formulation to automatically extract coherent

regions in dynamic light fields. This would imply using the constraints and imposing

coherence in the four spatial dimensions as well as the time dimension, effectively

leading to a five-dimensional framework.

• Adaptive layer-based representation Layer-based representations are powerful

but suffer form several disadvantages. It is, indeed, difficult for these representa-

tions to deal with complicated layers such as trees, branches and leaves. That is,

the rendered image might suffer from artifacts due to errors in segmenting these

complicated layers. Moreover, the algorithm assumes that each individual layer

can be individually rendered free of aliasing. That is, if the number of cameras is

not sufficient to render a layer, the resulting interpolated viewpoint will suffer from

aliasing regardless of the segmentation. In our current implementation, the choice

of the number of depth layers that represent the light field is given to the user or is

predetermined. This condition was imposed in order to offer the tradeoff between
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computational complexity and rendering quality. It would, however, be useful to

devise an algorithm capable of adaptively choosing the number of layers for a given

scene and application.

The sampling scheme presented in Chapter 6 is fundamental in nature and proposes

novel theoretical results in sampling and perfect reconstruction of piecewise sinusoidal and

polynomial signals. However, in practice there are some issues that affect the reconstruc-

tion accuracy. These issues are discussed in the following:

• Model mismatch The proposed reconstruction scheme is based on parameters and

models. That is, the input signals and sampling kernels such as exponential splines

have predefined characteristics. If one considers an input signal that is not an exact

piecewise sinusoidal signal or a sampling kernel that does not exactly reproduce

exponentials or polynomials then a range of model mismatch errors are possible.

Therefore, the reconstruction of the continuous-time signal will not be perfect. Note

that, the reconstruction error depends on the degree of model mismatch, and in

many cases, this error can be reduced by best-fit solutions.

• Noise The proposed reconstruction algorithms rely on continuous and noise-free

moments computed from the observed samples. In practice, these observed samples

will inevitably be corrupted by noise. Therefore the estimated signal moments will be

corrupted as well and the proposed algorithms will not achieve perfect reconstruction.

It would therefore be useful to study quantitatively the effects of noise on the sampled

piecewise sinusoidal signals. Several solutions such as over-sampling [29] and Cadzow

methods [11] have been proposed for the Dirac and polynomial cases. We believe

therefore that similar methods to deal with noise should be successful in the piecewise

sinusoidal case as well. Finally, it would be interesting to apply these methods

to wideband communications where precise time and frequency localization are of

crucial importance.
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Appendix A

Proof of (4.10)

Theorem 1. Assume a four-dimensional hypersurface parameterized by

~Γ(s, vx, vy, τ) =











x(s, τ) − vxp(s, τ)

y(s, τ) − vyp(s, τ)

vx

vy











,

where ~γ(s, τ) = [x(s, τ), y(s, τ)] is the contour of the surface in vx = vy = 0. The τ is the

evolution parameter and ~vΓ = ∂~Γ/∂τ and ~vγ = ∂~γ/∂τ are the velocities. Then the normal

speed ~vΓ ·~nΓ of ~Γ projected onto the subspace in vx = vy = 0 is related to the normal speed

~vγ · ~nγ of ~γ by the relation ~vΓ · ~nΓ = χ(s, vx, vy, τ)(~vγ · ~nγ) with

χ(s, vx, vy, τ) =
(1 + ∂p

∂x
vx + ∂p

∂y
vy)

√

(∂x
∂s

)2 + (∂y
∂s

)2
√

(∂x
∂s

+ ( ∂p
∂x

∂x
∂s

+ ∂p
∂y

∂y
∂s

)vx)2 + (∂y
∂s

+ ( ∂p
∂x

∂x
∂s

+ ∂p
∂y

∂y
∂s

)vy)2
.

Proof. Let ~Γ(s, vx, vy, τ) be a 4D hypersurface parameterized by

~Γ(s, vx, vy, τ) =











x(s, τ) + p(s, τ)vx

y(s, τ) + p(s, τ)vy

vx

vy











,

where ~γ(s, τ) = [x(s, τ), y(s, τ)] is the curve defined by the intersection of ~Γ and the plane
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in vx = vy = 0. The outward unit normal ~nΓ = ~̂nΓ/|~̂nΓ| to the hypersurface must be

orthogonal to its tangent vectors ∂~Γ
∂s

, ∂~Γ
∂vx

and ∂~Γ
∂vy

. Therefore, it must satisfy








∂~Γ
∂s

tr

∂~Γ
∂vx

tr

∂~Γ
∂vy

tr







~̂nΓ =








∂x
∂s

+ ∂p
∂s
vx

∂y
∂s

+ ∂p
∂s
vy 0 0

p(s, τ) 0 1 0

0 p(s, τ) 0 1







~̂nΓ =








0

0

0







, (A.1)

where the superscript tr denotes the transpose. The solution to this system of equations

can be seen as a four-dimensional extension of the cross product as shown in [10] and gives

~̂nΓ =











−∂y
∂s

− ∂p
∂s
vy

∂x
∂s

+ ∂p
∂s
vx

p(∂y
∂s

+ ∂p
∂s
vy)

p(∂x
∂s

+ ∂p
∂s
vx)











. (A.2)

The orthogonality of ~̂nΓ with each of the gradient vectors may easily be verified by sub-

stituting (A.2) in (A.1). The speed of ~Γ is given by

~vΓ =
∂~Γ

∂τ
=











∂x
∂τ

+ ∂p
∂τ
vx

∂y
∂τ

+ ∂p
∂τ
vy

0

0











. (A.3)

Consider now the outward normal ~̂nγ and speed function ~vγ of the 2D contour ~γ(s, τ).

Clearly, we have

~̂nγ =




−∂y

∂s

∂x
∂s



 ~vγ =





∂x
∂τ

∂y
∂τ



 .

We may now explicitly derive ~̂nΓ · ~vΓ using (A.2) and (A.3). After expansion, the normal

speed gives

~̂nΓ · ~vΓ = (1 +
∂p

∂x
vx +

∂p

∂y
vy)~̂nγ · ~vγ ,

where we have used ∂p
∂s

= ∂p
∂x

∂x
∂s

+ ∂p
∂y

∂y
∂s

and ∂p
∂τ

= ∂p
∂x

∂x
∂τ

+ ∂p
∂y

∂y
∂τ

. Finally, using the unit
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norm vectors ~̂nΓ = ~nΓ|~̂nΓ| and ~̂nγ = ~nγ |~̂nγ | gives:

~nΓ · ~vΓ =
(1 + ∂p

∂x
vx + ∂p

∂y
vy)|~̂nγ |

|~̂nΓ|
(~nγ · ~vγ)

which shows that

χ(s, vx, vy, τ) =
(1 + ∂p

∂x
vx + ∂p

∂y
vy)

√

(∂x
∂s

)2 + (∂y
∂s

)2
√

(∂x
∂s

+ ( ∂p
∂x

∂x
∂s

+ ∂p
∂y

∂y
∂s

)vx)2 + (∂y
∂s

+ ( ∂p
∂x

∂x
∂s

+ ∂p
∂y

∂y
∂s

)vy)2
.

Note that since we consider the projection on the subspace in vx = vy = 0, we take only

the (x, y) components of the normal ~̂nΓ.
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