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Abstract

To understand how networks of neurons process information, it is essential to monitor

their activity in living tissue. Information is transmitted between neurons by elec-

trochemical impulses called action potentials or spikes. Calcium-sensitive fluorescent

probes, which emit a characteristic pulse of fluorescence in response to a spike, are

used to visualise spiking activity. Combined with two-photon microscopy, they enable

the spiking activity of thousands of neurons to be monitored simultaneously at single-

cell and single-spike resolution. In this thesis, we develop signal processing tools for

detecting cells and cellular activity from two-photon calcium imaging data.

Firstly, we present a method to detect the locations of cells within a video. In our

framework, an active contour evolves guided by a model-based cost function to identify

a cell boundary. We demonstrate that this method, which includes no assumptions

about typical cell shape or temporal activity, is able to detect cells with varied prop-

erties from real imaging data.

Once the location of a cell has been identified, its spiking activity must be inferred

from the fluorescence signal. We present a metric that quantifies the similarity between

inferred spikes and the ground truth. The proposed metric assesses the similarity of

pulse trains obtained from convolution of the spike trains with a smoothing pulse,

whose width is derived from the statistics of the data. We demonstrate that the pro-

posed metric is more sensitive than existing metrics to the temporal and rate precision

of inferred spike trains.

Finally, we extend an existing framework for spike inference to accommodate a wider

class of fluorescence signals. Our method, which is based on finite rate of innovation

theory, exploits the known parametric structure of the signal to infer the unknown

spike times. On in vitro imaging data, we demonstrate that the updated algorithm

outperforms a state of the art approach.
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Chapter 1.

Introduction

The human brain is a remarkably complex organ responsible for a vast array of tasks.

It is believed to consist of approximately 100 billion neurons, whose activity is organ-

ised in hierarchical networks. Information is sent between neurons by electrochemical

impulses called action potentials (APs) or spikes. Coordinated spiking activity across

multiple spatial scales allows the brain to, for example, process incoming sensory in-

formation, encode memories and initiate motor activities.

To understand how networks of neurons process information, it is essential to observe

brain activity in living tissue. Crucially, this can provide insight into the difference

between healthy and unhealthy brains. For example, functional magnetic resonance

imaging (fMRI) and electroencephalography (EEG) have been successfully used to

identify impairment in connectivity in patients with brain disorders [17]. Such findings

can have clinical relevance both as a diagnostic tool and as a focus for new treatments.

While fMRI and EEG are effective for assessing larger-scale connectivity, the study of

microcircuit activity has been limited by the challenges of recording at cellular resolu-

tion in living tissue. Traditionally, electrophysiological approaches have been used to

monitor a cell’s spiking activity. These approaches are, however, limited to sampling

from a small number of unidentifiable cells. As an alternative, fluorescent sensors can

be used to visualise cellular activity via changes in their fluorescence intensity. One

such approach is calcium imaging, whereby calcium-sensitive probes monitor the levels

of intracellular calcium, which, in turn, reflects a cell’s spiking activity.

To perform calcium imaging, a light source is required that excites fluorescence from

the probes. In lightsheet microscopy (LSM), for example, fluorescence is excited from
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Chapter 1. Introduction

all neurons in a thin sheet of tissue simultaneously [1, 12]. This technology can be

used to monitor neuronal activity at high speeds in transparent organisms, such as the

larval zebrafish. When imaging through light scattering media, however, the spatial

resolution of LSM suffers. In contrast, two-photon microscopy overcomes light scatter-

ing through the usage of a highly localised focal spot that is scanned across the tissue

to generate an image. Due to its relatively high spatial resolution, this technology is

unrivalled in its ability to image hundreds of microns deep in living tissue. State of the

art two photon calcium imaging is able to monitor the activity of thousands of cells

simultaneously in living animals [124, 100]. The prospects for this technology are thus

vast; it has already been used, for example, to study Alzheimer’s disease in animal

models [112] and to determine the spatial organisation of receptive fields [86, 10].

Before neuronal activity from two-photon calcium imaging (2PCI) videos can be anal-

ysed, two challenging signal processing problems must be tackled. Firstly, the locations

of cells within the video must be identified. This task is complicated by heterogene-

ity in cellular properties, such as their shape and typical temporal activity, and the

frequency of cellular overlap. Secondly, one must recover a cell’s spiking activity from

its fluorescence signal. This problem, which we refer to as spike inference, is an in-

verse problem that can be solved by considering the known parametric structure of

the fluorescence signal. In this thesis, we focus on these problems and outline our

contributions below.

1.1 Original contribution and outline of thesis

The remainder of the thesis proceeds as follows.

In Chapter 2, we provide relevant background information on 2PCI data. We discuss

how the data is generated and outline the sources of noise.

In Chapter 3, we present a novel segmentation algorithm for detecting the location

of cells from 2PCI data. In our framework, multiple coupled active contours evolve,

guided by a model based cost function, to identify cell boundaries. On in vivo imag-

ing data, we demonstrate the versatility of the algorithm, which includes no priors on

a cell’s stereotypical morphology or temporal activity. We also demonstrate the ro-

bustness of the algorithm on challenging datasets exhibiting highly correlated cellular

activity and overlapping cells, respectively.
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In Chapter 4, we consider the metrics that are used to compare the locations of inferred

spikes with ground truth spiking activity. We highlight the limitations of existing

metrics and propose an alternative. Rather than operating on the true and estimated

spike trains directly, the proposed metric assesses the similarity of the pulse trains

obtained from convolution of the spike trains with a smoothing pulse, whose width

is derived from the statistics of the imaging data. On real and simulated data, we

demonstrate the sensitivity of the proposed metric to the temporal and rate precision

of inferred spike trains.

In previous work, it was established that the neuronal fluorescence signals that are

induced by 2PCI belong to the class of signals with finite rate of innovation (FRI).

Using FRI theory and a simplified model of the fluorescence signal, an algorithm was

developed that inferred the locations of spikes with high accuracy [87]. In Chapter 5, we

extend this framework to encompass a broader class of fluorescence signals, which are

not well-matched by the original framework. We also introduce procedures to improve

the algorithm’s robustness to noise. Using the spike inference metric presented in

Chapter 4, we demonstrate that the proposed algorithm outperforms a state of the art

approach on in vitro imaging data.

Finally, in Chapter 6 we summarise the contributions of the thesis and discuss some

possible directions for future research.

1.2 Publications

The materials presented in this thesis have led to the following publications:

Peer-reviewed journals

S. Reynolds, T. Abrahamsson, P. J. Sjöström, S. R. Schultz, and P. L. Dragotti.

CosMIC: A consistent metric for spike inference from calcium imaging, Neural Com-

putation, in press.

S. Reynolds, T. Abrahamsson, R. Schuck, P. J. Sjöström, S. R. Schultz, and P. L.

Dragotti. ABLE: An activity-based level set segmentation algorithm for two-photon

calcium imaging data, eNeuro, 4(5):ENEURO.0012-17.2017, 2017.
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R. Schuck, M. A. Go, S. Garasto, S. Reynolds, P. L. Dragotti, and S. R. Schultz.

Multiphoton minimal inertia scanning for fast acquisition of neural activity signals,

Journal of Neural Engineering , 15(2):025003, 2018.

Peer-reviewed conferences

S. Reynolds, C. S. Copeland, S. R. Schultz, and P. L. Dragotti. An extension of the

FRI framework for calcium transient detection. In 13th International Symposium on

Biomedical Imaging (ISBI), pages 676 – 679, 2016. IEEE.

S. Reynolds, J. Oñativia, C. S. Copeland, S. R. Schultz, and P. L. Dragotti. Spike

detection using FRI methods and protein calcium sensors: performance analysis and

comparisons. In 11th international conference on Sampling Theory and Applications

(SampTA), pages 533 – 537, 2015. IEEE.
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Chapter 2.

Background

To understand function and dysfunction in the mammalian brain it is crucial to ob-

serve its components in action. In particular, long-term studies of brain activity in

living animals (‘in vivo’) could be key to identifying how the brain encodes stimuli

or orchestrates behaviours. Whilst there are many viable techniques for observing

brain activity at larger spatial scales, two-photon calcium imaging is unparalleled in

its ability to monitor cellular activity, deep in living tissue, at single-cell resolution.

To emphasise the importance of this technology, in Section 2.1, we discuss some ba-

sic aspects of neuroscience. In Section 2.2, we discuss the relative merits of existing

techniques to monitor neuronal activity at single-cell resolution. Finally, in Sections

2.3 and 2.4, we provide further detail on calcium imaging and two-photon microscopy,

respectively.

2.1 Neuronal information processing

The mammalian cortex is responsible for a wide array of tasks, such as motor control,

integration of sensory inputs and decision making [151]. It is believed that commu-

nication occurs across multiple spatial scales, with local networks of interconnecting

neurons constituting microcircuits whose activity is aggregated in larger macrocircuits

spread across multiple brain areas. Microcircuits, which consist of 1000 - 10,000 neu-

rons, are hypothesised to be computational units that undertake specific information

processing tasks [81]. For example, one ‘canonical’ microcircuit has been observed

to repeat throughout the cortex and is presumed to be responsible for fundamental
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computations [37]. Despite this apparent hierarchical organisation, local networks are

heavily interconnected with other brain areas.

To understand information processing it is, therefore, necessary to monitor network

activity at multiple spatial scales. At the macroscopic scale, technologies such as

fMRI can be used to study coordinated activity across brain areas. At the microscopic

scale, cellular resolution functional imaging has the potential to elucidate the dynamics

of microcircuits. The action potential (AP), an electro-chemical impulse propagated

between connected neurons, is the core method of information transmission between

neurons [70]. It is not yet fully understood how neuronal networks encode information

through coordinated spiking activity. Accordingly, many technologies are aimed at

monitoring neuronal population activity at single-cell and single-spike resolution.

2.1.1 The action potential

Inputs from other neurons or sensory organs can excite a neuron and cause it to fire

an electro-chemical impulse called an action potential. The resting potential of a neu-

ron, which reflects the difference in ion concentrations inside and outside the cell, is

approximately -70mV. Inputs from other neurons arrive in the form of inward current

injections, causing the neuron’s membrane potential to become less negative. This

is referred to as depolarisation. If the stimulus is sufficiently large to depolarise the

neuron above a (neuron-dependent) threshold, an AP is fired. Over a period of ap-

proximately 1ms, the membrane potential rapidly rises to +30mV, subsequently falling

back to the resting potential. This rapid rise in membrane potential is referred to as

an AP, or spike. An AP is thought to be an all-or-nothing event: sub-threshold inputs

do not illicit an AP and all supra-threshold inputs illicit APs of the same amplitude.

So, although sub-threshold inputs can be important in identifying connections between

neurons, it is thought that APs are key to neural computation. A neuron’s activity

can therefore be characterised by the set of times at which that neuron fired a spike:

{tk}Kk=1 with all tk ∈ R. This activity can be represented as a spike train

x(t) =

K∑
k=1

δ(t− tk), (2.1)

where δ(·) is the Dirac delta function.

Individual neurons encode information through the rate and timing of the spikes they
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2.2. Monitoring neuronal activity at cellular resolution

Figure 2.1: Example of a whole-cell patch-clamp recording. This recording,

from an online dataset [132, 26], was sampled at 10kHz. Action potentials are visible

as peaks in the membrane potential.

fire [70]. For example, the firing rate of motor neurons is related to the force of

contraction of associated muscle fibres. In contrast, visual cortex neurons encode

information about visual stimuli using precise timing of individual spikes [66]. In the

cat visual system, temporal coding has been observed on the millisecond time-scale. To

decipher the neural code, it is therefore necessary to record from the brain at sufficient

temporal resolution to detect individual spikes.

2.2 Monitoring neuronal activity at cellular resolution

To enable analysis of neuronal microcircuit activity, recording techniques aim to max-

imise the number of neurons that can be monitored at single-cell and single-spike

resolution. The patch-clamp technique is the current gold standard for monitoring

the voltage of a single cell [50, 115] and is commonly used as a benchmark for new

technologies. To obtain a patch-clamp recording, an electrode is inserted into brain

tissue and attached to a cell membrane. This configuration allows the cell’s voltage

to be recorded at a sampling rate on the order of 10kHz, which is sufficient to resolve

single APs (Fig. 2.1). As one electrode is required per cell, the patch-clamp technique

is limited by the number of neurons that can be monitored simultaneously. Although

state of the art implementations can record from up to 8 neurons at the same time

[16, 150], this is not sufficient for analyses of population activity.

In contrast to the patch-clamp technique, which monitors the intracellular voltage

signal, extracellular approaches take advantage of the fact that an AP can be detected

from voltage fluctuations outside of the cell body. Instead of pairing one electrode
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with one cell, these techniques insert electrodes with multiple recording sites into

brain tissue [18]. Each recording site detects transmembrane potentials, which are

indicative of APs, from several cells. Activity must then be assigned to the cell from

which it originated by a process known as spike sorting. At each site, spikes may stem

from neurons as far as 150-200µm away (a neuron’s cell body has diameter 10µm),

although typically only activity from cells within 50µm will have sufficient amplitude

to be detected [51]. Despite their relatively high temporal resolution and signal-to-

noise ratio (SNR), extracellular electrophysiological approaches are not well-suited to

long-term studies, which are necessary to understand learning, memory and plasticity

in the living brain. This limitation is due to the instability in the monitored neuronal

populations. In one study, statistical analysis of spike waveforms and distribution was

used to show that the number of units recording consistently from the same neuronal

populations fell to 57% over one week [33]. In contrast, fluorescence imaging, which

can provide both functional and anatomical information, can be used to monitor the

same neuronal populations over weeks and months [98].

Whereas an electrode must be in contact with the tissue that it monitors, fluorescence

imaging can be performed non-invasively to monitor cellular activity in vivo. In par-

ticular, functional imaging utilises sensors in the brain whose fluorescence intensity

varies in response to cellular activity. One option is to use voltage-sensitive fluorescent

indicators [101], which visualise changes in a cell’s membrane potential. Due to the

fast time scale of APs (on the order of 1ms), to visualise cellular activity with a volt-

age sensor it is necessary to have sub-millisecond temporal resolution, which, in turn,

limits the signal-to-noise ratio of the acquired signals. This limitation means that,

in practice, voltage imaging is mostly used to perform widefield imaging of cellular

aggregates [71]. Alternatively, a secondary variable can be imaged, from which spiking

activity can be inferred. In this thesis, we focus on calcium imaging data, which uses

fluorescent sensors to visualise a cell’s intracellular calcium concentration (ICC). An

AP causes the ICC to rise to levels that are 10 to 100 times the levels at baseline [9],

this high dynamic range makes the ICC a favourable signal to monitor. The duration

of the ICC elevation after an AP is an order of magnitude slower than the duration

of an AP. As a consequence, cells can be monitored with calcium imaging at lower

sampling rates whilst still capturing high-frequency spiking activity.

Fluorescence imaging approaches require a light source, with which to excite fluores-

cence from the sample (the biological tissue), and a detector, with which to collect the

fluorescence. Approaches that excite fluorescence from a large volume simultaneously,
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such as confocal [97] and lightsheet [1] microscopy, treat excited photons differently

depending on how they arrive at the detector. Confocal microscopes reject all photons

outside of a detection pinhole, thereby ideally only collecting photons from a localised

region. In contrast, lightsheet microscopes use detector arrays, such as CMOS cam-

eras. Each detector represents a pixel in the output image and, in theory, collects

excited photons from a localised region of the sample. While appropriate for trans-

parent specimens or superficial layers of tissue, these approaches are not well-suited

to imaging through light-scattering media. Changes in the refractive index, which can

occur every nanometre in the mammalian brain [151], divert light from its path. This

phenomenon is referred to as scattering (see Section 2.4.2). It is hard to determine the

source in the sample from which scattered photons originate, which complicates the

use of detection pinholes and camera arrays. Two-photon microscopy, on the other

hand, uses a highly localised laser to excite fluorescence [31]. This allows all photons

emitted from the sample to be collected by a single detector, regardless of the angle

at which they arrive at the detector, as they reliably stem from a small volume.

2.3 Calcium imaging

Calcium ions are a crucial component in many aspects of cellular function [9]. For

example, they trigger the contraction of heart muscle cells and regulate both cell death

and proliferation. In neurons, the ICC is tightly linked to spiking activity. When an

AP is fired in a neuron, the depolarisation causes voltage-gated calcium ion channels

to open. As a consequence, there is a brief influx and a subsequent slower efflux of

calcium ions. This transient elevation in the ICC is referred to as a calcium transient.

Compared to the rapid timescale of an AP, a calcium transient is relatively slow; the

calcium ion influx lasts approximately 1ms [11] and the efflux resembles an exponential

decay with time constant 0.5s - 1s [46].

The development of calcium-sensitive fluorescent indicators (‘calcium indicators’) has

enabled the visualisation of the ICC and, indirectly, neuronal spiking activity. The

indicators consist of a fluorophore and a domain to which calcium ions can bind. Cal-

cium binding alters the properties of the indicator and, in turn, elicits a stereotypical

change in the fluorescence, the nature of which varies depending on the indicator used

[14]. Calcium indicators can be categorised into two groups: synthetic indicators and

genetically encoded indicators (GECIs). The former group, which has been in devel-
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Figure 2.2: Model of the neuronal fluorescence signal. The fluorescence

emitted from a neuron can be modelled as that neuron’s spike train convolved with a

characteristic pulse. The rise and decay rate of the pulse varies with the fluorescent

indicator used to generate the imaging data (F). We display simulated fluorescence

traces generated from the spiking activity in A and the characteristic pulse shapes of

the indicators GCaMP6s (B), GCaMP6f (C), OGB-1 (D) and Cal-520 (E).

opment since the early 1980s [138], can be used to label large cell populations in intact

tissue through bolus injection [130]. They are, however, limited to acute imaging ex-

periments (on the order of hours) [71]. GECIs, on the other hand, can be encoded into

the DNA of transgenic animals [80, 2, 26]. In that case, they are naturally expressed in

neurons and can be targeted to specific cell types and subcellular compartments. This

makes GECIs ideal for chronic imaging experiments over multiple weeks and months

[55]. Moreover, recent advances have produced GECIs whose sensitivity and signal

quality surpasses those of synthetic indicators [26], which was not the case as recently

as 2009 [136].

In the following, we introduce a mathematical model relating the fluorescence intensity

of somatic calcium indicators to spiking activity. The mathematical model introduced

below is prevalent in the literature, in particular it is commonly used by algorithms

that infer spike timing from calcium imaging data [148, 147, 30, 73, 87, 109, 105]. For a

more comprehensive coverage of the biophysical processes underlying the mathematical

model, the reader is referred to [14].
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2.3.1 Signal model

When an AP is fired from a neuron, there is a rapid influx and subsequent slower efflux

of calcium ions, which is referred to as a calcium transient. This calcium response is

modelled with a rapid rise and an exponential decay. A corresponding fluorescence

pulse is emitted from the calcium-sensitive fluorescent indicators in the neuron. The

pulse emitted as a result of an AP at time t = 0 is proportional to

p(t) = c
(

1− e−t/τon

)
e−t/τoff 1t>0, (2.2)

where τon and τoff are parameters which define the rate of the rise and decay, respec-

tively, and c is a normalisation constant that ensures that p(t) has peak value equal to

1.

The rise time is predominantly influenced by the rate at which ions bind to the fluores-

cent indicator (the association rate). The rate at which the fluorescence pulse decays

is affected by cellular properties, such as the extrusion rate of calcium channels, and

properties of the indicator, including the association and disassociation rates. In Table

2.1, we indicate values of τon and τoff obtained from the literature for the following

indicators: Cal-520 AM [133], OGB-1 AM [73], GCaMP6f and GCaMP6s [26]. On

new data generated by those indicators, these values can be used as a guideline. The

corresponding characteristic pulses are plotted in Fig. 2.2F.

Each time a neuron fires an AP, a stereotypical pulse of fluorescence is emitted. Writ-

ing ak as the amplitude of the pulse emitted in response to an AP at time tk, the

fluorescence signal, f : R→ R, is

f(t) = b(t) +

(
K∑
k=1

akδ(t− tk)

)
∗ p(t) (2.3)

= b(t) + c

K∑
k=1

ak

(
1− e−(t−tk)/τon

)
e−(t−tk)/τoff 1t>tk , (2.4)

where b(t) reflects the baseline fluorescence. The baseline component is typically mod-

elled as either a low-frequency drift [30, 106] or a piecewise constant function [44, 104].

This can reflect ICC changes in response to other cellular processes [48] or a steady

decline in baseline fluorescence due to bleaching of the fluorescent indicator.

The amplitude of calcium transients varies with the local spike rate of neurons. The
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Fluorescent indicator τon (ms) τoff (ms)

GCaMP6f 18 205
GCaMP6s 72 794
OGB-1 10 667
Cal-520 32 314

Table 2.1: Time constants of four commonly used calcium indicators. The

pulse shape is defined by two parameters, τon and τoff, which represent the characteristic

delays. These values can be used as a guideline for each calcium indicator; in practice,

they will vary with the indicator expression level as well as the cell type.

co-operative calcium binding of some GECIs [14] results in increasing amplitudes as

the spike rate increases [2, 26]. In contrast, synthetic indicators are known to saturate

at high spike rates [64], producing spikes of decreasing amplitude. The amplitude of

spikes can also steadily decrease as a result of indicator bleaching. In Fig. 2.2, we

display simulated fluorescence signals generated by the same spiking activity for four

common calcium indicators.

2.4 Two-photon microscopy

Two-photon microscopy is a powerful technique for imaging deep in light-scattering

media. A beam of light is used to excite fluorescence from a concentrated focal spot in

the sample, this process is discussed in Section 2.4.1. The effectiveness of the excitation

of fluorescence in biological tissues is affected by scattering and absorption, which is

discussed in Section 2.4.2. Finally, in Section 2.4.3, the acquisition process of a two-

photon microscope image is described and sources of noise are discussed in Sections

2.4.4 and 2.4.5.

2.4.1 Fluorescence excitation

Fluorescence microscopy relies on the use of fluorophores (fluorescent molecules) that

can be excited by the absorption of photons. When a fluorophore absorbs a photon of

sufficient energy, it transitions from a ground state to an excited state. The fluorophore

subsequently relaxes to the ground state by either a radiative or non-radiative process.

In the latter case, light energy is absorbed as thermal energy. In the former, a photon
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A B

Figure 2.3: Procedure of fluorescence excitation by a two-photon micro-

scope. A beam of light is focused through the microscope objective such that

fluorescence is only excited in the vicinity of the focal spot (A). The focal spot is

scanned sequentially through the field of view to generate one frame of an image (B).

The beam moves discretely along the scan path with increment ∆x, spending a fixed

time at each point.

is emitted by the fluorophore. This process, which occurs on the nanosecond timescale,

is known as fluorescence.

In standard fluorescence microscopy, a single photon is absorbed by the fluorophore,

some energy is transformed into thermal energy and a lower-energy photon is subse-

quently emitted. In two-photon microscopy, excitation only occurs when two photons

have been absorbed essentially simultaneously. With the combined energies of the two

absorbed photons, the fluorophore transitions into an excited state. To relax from

this state, some energy is absorbed as thermal energy and a higher-energy photon is

emitted. Typically, the excitation beam has wavelength in the near-infrared range and

the light emitted from the fluorophore is in the visible spectral range [151].

A two-photon excitation event can only occur when two photons arrive at the same

molecule within approximately 0.5 femtoseconds of each other [52]. To enable this

event, the photons in the excitation light beam must be highly concentrated both

spatially and temporally. To concentrate photons temporally, the excitation light

beams consist of ultrashort pulses (less than a picosecond in length) with high peak

intensities [52]. Spatial density is achieved by focusing the excitation light through a

microscope objective with high numerical aperture. As a result, fluorescence is only

excited in a highly localised focal spot (Fig. 2.3A). Indeed, the probability of excitation

scales with the square of the light intensity, meaning that the excitation decays sharply

both axially and laterally.

35



Chapter 2. Background

2.4.2 Scattering and absorption in biological tissue

The scattering and absorption of light in biological tissue have a large impact on the

signal generated in fluorescence microscopy. Biological tissues contain numerous en-

dogenous molecules that absorb light of different wavelengths [151]. Before photons

can reach the focal spot, they may be absorbed by these molecules. Although this

absorption does attenuate the light at the focal spot, the greater impact stems from

the associated tissue damage. This damage, which limits the viability of confocal

microscopy for long-term imaging of biological tissue, is mitigated in two-photon mi-

croscopy [128]. In the latter case, the localised focal spot spares the majority of the

tissue from high-intensity light. Moreover, the excitation beam uses near-infrared light,

which is absorbed by few endogenous molecules [131].

A greater obstacle is presented by the scattering of light by biological tissue. Light

is deflected from its original path as the refractive index of a medium changes. This

phenomenon is referred to as scattering. Before light reaches its focal spot, it passes

through multiple components, such as cells and blood vessels, each of which has a

different refractive index. Even within these components, the refractive index may

change on the nanometer scale [151]. Consequently, the intensity of non-scattered

light decreases exponentially with penetration depth [52]. This, in turn, reduces the

intensity of fluorescence excited at the focal spot, with greater effect as the imaging

depth increases. In vivo fluorescence microscopy is thus fundamentally limited by

scattering. As longer wavelength light is affected less in this regard, the near-infrared

beam used in two-photon microscopy mitigates some of this effect. The maximum

imaging depth, which depends on the sparseness and brightness of fluorophores, is

hard to quantify. Two-photon microscopy is, however, sufficiently robust to scattering

that it is routinely used to image hundreds of microns deep in tissue [59].

2.4.3 Fluorescence collection

As the spatial density of scattered photons is generally low, it can be assumed that

they do not excite significant fluorescence. The majority of emitted photons, therefore,

can be assumed to originate from the vicinity of the focal spot. Consequently, a two-

photon microscope collects all emitted photons, regardless of the angle from which

they appear to originate [52].

To generate an image, the focal spot is typically scanned in a raster pattern across
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Figure 2.4: Example of in-vivo two-photon calcium imaging data. The

excitation laser scans the field of view once to produce a single frame of the video

(A). In the mean image, which displays the mean of each pixel’s activity, bright spots

correspond to cells with high baseline fluorescence (B). In C, we display the correlation

image, which, at each pixel, is computed as the mean of the correlation coefficients

between that pixel’s temporal activity and the activity of neighbouring pixels. Bright

spots in the correlation image correspond to active cells. In D, E and F, we focus on

the three regions highlighted in the mean and correlation images. The regions visible

in D, E and F correspond to a cell, blood vessel and background region, respectively.

In each subfigure, we display the zoomed in mean and correlation images. We also

plot the average temporal activity from all pixels in the interior of the object and the

activity from a single pixel within the object. The data presented in this figure was

collected by Svoboda et al. [99].

the field of view (Fig. 2.3B). The scanning is performed discretely; after dwelling ∆t

seconds in one location, the laser either moves ∆x microns in the x-direction or starts

a new row. Generally the field of view is square; the between-row spacing is equal to

the within-row (column) spacing and there are the same number of rows as columns.

A single image is generated by completing the scan path once. A video of N frames is
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generated by completing the scan path N times, each completed scan path generates

the data for one frame of the video (Fig. 2.4A).

The spatial increment, ∆x, must be sufficiently small that single cells can be resolved.

Meanwhile, the area covered — (M∆x)2 with M the number of rows/columns — must

be sufficiently large to contain enough cells for a meaningful analysis. To maximise

the number of monitored cells, therefore, one would wish to maximise M . Similarly,

the dwell-time at each spatial location, ∆t, must be long enough to obtain a usable

SNR (see Section 2.4.4). However, the sampling period (the temporal spacing between

samples at the same spatial location), which is approximately equal to M2∆t, must

be sufficiently small that individual APs can be observed. To minimise the sampling

period, therefore, the dwell-time or number of monitored cells must be compromised.

Typically, ∆x and ∆t are in the range 1-5µm and 10-100ms, respectively.

The trade-off between temporal resolution and other factors is lessened by the use

of calcium-sensitive fluorescent probes, as calcium transients are significantly slower

than the APs that induce them. To further loosen the constraints on the data, signal

processing methods are required that are robust in low-noise settings. This will reduce

the necessary dwell-time and further increase the number of cells that can be monitored

at single-cell and single-spike resolution.

2.4.4 Shot noise

In the following, we introduce a mathematical model for the noise introduced during

the acquisition process. This model relates to the statistical fluctuations in photon

count and electron emission and is standard in the literature [97, 43, 27]. The photons

emitted from the sample are detected by a photomultiplier tube, which is extremely

sensitive to low levels of light. On detecting photons, a photocathode emits electrons,

whose number is subsequently multiplied by a sequence of dynodes [97]. The pixel

intensity value is obtained by analogue-to-digital conversion of current emitted from

the final dynode.

As photons arrive independently at the photocathode, the number arriving during the

acquisition period is modelled as a Poisson random variable. The number of electrons

emitted in response to these photons, E0, can be shown to be Poisson distributed [27]

with mean dependent on the quantum efficiency of the photocathode and the rate of

photon arrival. At each subsequent dynode, the number of electrons is multiplied by
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an amount dependent on an amplification factor, δ. The emission processes instigated

by different incident electrons are physically independent [27]. As such, the number

of electrons emitted from the ith dynode, Ei, is a sum of Ei−1 independent random

variables, which model the output in response to the electrons emitted by the previous

dynode. Given ND dynodes in total, we have

Ei =

Ei−1∑
m=1

ηi,m, (2.5)

for i ∈ {1, ..., ND} and ηi,m ∼ Poisson(δ).

It has been shown empirically that, when the rate of photon influx is not too low,

the distribution of END can be approximated by a Gaussian, whose parameters are

dependent upon the rate of photon influx, the amplification factor of the dynodes and

the quantum efficiency of the photocathode. As the rate of photon influx varies at each

pixel depending on the level of activity at the source, the statistics of the noise are not

constant spatially. Rather, the noise is approximated as a heteroskedastic Gaussian.

The signal at a pixel x is written

Ĩ(x) = I(x) + σ(I(x))ξ, (2.6)

where I(x) is the underlying, deterministic signal and ξ ∼ N (0, 1). Assuming that the

analogue-to-digital conversion process is linear, we have [27]

σ(I(x)) = aI(x) + b, (2.7)

i.e. the noise level at a pixel increases linearly with the level of activity at that pixel.

In practice, this model is simplified by assuming that σ is constant at each pixel

[147, 105, 106, 44, 127].

2.4.5 Neuropil contamination

As discussed in Section 2.4.3, in two-photon microscopy, fluorescence is excited from

a localised focal spot within the sample. Photons collected at one point on the scan

path stem from a small volume centred around this focal spot. The size and shape

of this volume are characterised by the point spread function of the microscope [52].

Particularly when imaging at depth, as scattering of light becomes an increasing prob-

lem, the resolution of this focal spot suffers. At best, in-plane (lateral) resolution is
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Figure 2.5: Illustration of neuropil contamination of cellular signal. The

average temporal signal from pixels inside the cell delineated by the dark orange con-

tour in A are plotted in C. The neighbouring pixels that do not belong to another cell

(highlighted in B) exhibit neuropil activity (D), which originates from densely packed

cellular processes. Due to the relatively low axial resolution of the focal volume, this

activity is present in the cellular signal. Subtracting the weighted neuropil signal from

the raw cellular signal removes this artefact (E). The data presented in this figure was

collected by Svoboda et al. [99].

sub-micron and axial (perpendicular to the imaging plane) resolution is on the order

of several microns [51].

The effect of the relatively low axial resolution is that cellular signals are contaminated

with signals from neighbouring objects. In the cortex, where cells are relatively sparsely

distributed, the main confounding factor is neuropil contamination [46]. Neuropil

signal, which corresponds to the average activity of densely packed cellular processes

[46], is present in ‘background’ pixels that do not contain cell bodies. It has been

found to correlate strongly with the electrocortigram [64] and be tuned to behavioural

activity [100]. Pixels in cell somata are often contaminated with neuropil activity (Fig.

2.5). To decontaminate cellular signals, it is common to subtract the weighted local

neuropil signal from the cellular signal. The value of the weight parameter chosen

varies depending on the imaging set-up [100, 26, 63].

2.5 Outlook

Two-photon microscopy is a powerful tool for imaging with cellular resolution several

hundred microns deep in living tissue. New generations of calcium indicators have
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sufficient dynamic range to visualise single APs. Moreover, genetically encoded in-

dicators can be expressed chronically, through non-invasive methods, in specific cell

populations. Paired together, these technologies allow the same neuronal populations

to be monitored at single-cell and single-spike resolution over periods of weeks and

months [98]. They have been used to study the spatial organisation of receptive fields

[86, 10] and to monitor changes in neural activity during learning [55, 100].

At present, cellular resolution imaging tends to occur over areas less than 1mm2 on a

single plane; even state of the art microscopes are limited to imaging thousands of cells

simultaneously [124]. To allow more complex behaviours to be studied, the expansion

of a microscope’s field of view is the focus of constant development [59]. The trade-off

between SNR and cell number is a limiting factor in this regard — a larger field of

view necessitates a compromise on dwell-time and, therefore, noise level at each pixel.

To further push the boundary of this technology, robust signal processing methods are

required, which can maximise the information gleaned from noisy data and, in turn,

relax the constraints on the imaging systems.
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ABLE: an activity-based level set seg-

mentation algorithm

A state of the art two-photon calcium imaging video may contain activity from thou-

sands of neurons. Before neuronal activity can be analysed, the location of each cell

within the video must be identified. This task is complicated by the heterogeneity

in cellular properties, both spatial and temporal. For example, the calcium indicator

used to generate a video affects a cell’s stereotypical temporal activity and its apparent

shape — some genetically encoded indicators are excluded from the nucleus and there-

fore produce fluorescent ‘doughnuts’. Segmentation algorithms are further impeded by

the frequency of cellular overlap, which occurs due to the relatively low axial resolu-

tion of the two-photon microscope. These challenges necessitate flexible segmentation

algorithms with minimal assumptions on the properties of regions of interest (ROIs).

In this chapter, we present an algorithm for detecting the location of cells from two-

photon calcium imaging data. In our framework, multiple coupled active contours

evolve, guided by a model-based cost function, to identify cell boundaries. An active

contour seeks to partition a local region into two subregions, a cell interior and ex-

terior, in which all pixels have maximally ‘similar’ time courses. This simple, local

model allows contours to be evolved predominantly independently. When contours are

sufficiently close, their evolution is coupled, in a manner that permits overlap. We

illustrate the ability of the proposed method to identify the boundaries of overlapping

cells. We also demonstrate the versatility of our framework, which includes no priors

on a cell’s morphology or stereotypical temporal activity, on mouse in vivo imaging

The work presented in this chapter led to the following publication [107].
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data.

3.1 Introduction

A broad spectrum of methods have been proposed to overcome the challenges inherent

in segmenting calcium imaging data. One confounding factor in the development of

such algorithms is the heterogeneity in neuroscientists’ selection criteria for ROIs.

While some are only interested in somata [86], others also require the detection of

dendrites [120]. While some require only active cells [78], others analyse the proportion

of cells that are active [100]. A set of such selection criteria, which can be hard to define

mathematically, can instead be implicitly incorporated through the use of supervised

learning from manually labelled data [143, 4, 65]. Whereas an earlier approach used

a non-binary decision tree on pixel features, such as mean, variance and covariance

[143], later approaches have utilised convolutional neural networks (CNNs) [4, 65]. One

CNN has been found to outperform most state of the art unsupervised methods on a

benchmark dataset [65]. However, an obstacle for all supervised approaches is that the

statistics of imaging videos vary significantly with factors such as the brain area, the

microscope zoom and objective. In this case, the benchmark test dataset contained no

‘unseen’ data — all test samples had a corresponding training sample acquired under

the same imaging conditions. It is, therefore, not yet clear how well supervised learning

approaches generalise to new data from different imaging conditions.

A second subset of approaches bypass the (2+1)-D imaging video, utilising instead

a 2-D summary image [122, 92, 60, 65]. This approach is practical; by significantly

reducing the dimension of the input data, it allows videos to be processed that cannot

be stored in the RAM of a typical laboratory workstation. Typically, one of two

summary images is used: the mean image [92], which displays the mean of each pixel’s

activity, and the correlation image [122, 60, 65], which displays the average correlation

between the activity of a pixel and that of its neighbours. While efficient, the usage

of a 2D summary image limits the types of cells that can be detected. Only active

cells are visible in the correlation image, whereas sparsely firing cells have low visibility

in the mean image. Indeed, when a CNN was trained on manually labelled (2+1)-D

imaging videos rather than the corresponding mean images, it was found to detect

more transiently active neurons [4]. A further impediment to such approaches is the

prevalence of cells in 2D summary images that appear to overlap. To identify the true
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boundaries of overlapping cells it is necessary to consider the (2+1)-D imaging data.

The (2+1)-D imaging video, which consists of two spatial dimensions and one temporal

dimension, is often prohibitively large to work on directly. One family of approaches

therefore reshapes the (2+1)-D imaging video into a 2-D matrix. The resulting matrix

admits a decomposition, derived from a generative model of the imaging video, into two

matrices, each encoding spatial and temporal information. Early approaches applied

independent component analysis to find the spatial components that have maximally

statistically independent temporal activity [118, 82]. The constraint of temporal inde-

pendence, however, causes algorithm performance to deteriorate in the case of overlap-

ping cells [105, 154]. By instead including a constraint on non-negativity of the matrix

entries, Maruyama et al. estimated the component matrices using non-negative ma-

trix factorization (NMF) [76]. Pnevmatikakis et al. further developed this approach

into a widely-used constrained NMF (CNMF) algorithm [105, 45]. The additional

constraints on neuronal temporal activity, which is assumed to be an auto-regressive

process derived from calcium dynamics, and sparsity constraints on the size of spa-

tial components, have been shown to improve the performance of CNMF over plain

NMF [105]. Related methods suggest performance gains can be achieved by including

a more accurate model of the background activity [94, 56] or learning a dictionary of

cellular features from the data [34]. By expressing the (2+1)-D imaging video as a 2-D

matrix, this type of approach can achieve relatively high processing speeds. This does,

however, come at the cost of discarded spatial information, which occurs when the two

spatial dimensions are reduced to one. To mitigate this, either morphological filters

[82, 94, 105, 45] or manual curation [118, 76] are required in post-processing steps.

In this chapter, we present a segmentation method in which cell boundaries are detected

by multiple coupled active contours. To evolve an active contour we use the level set

method, which is a popular tool in bioimaging due to its topological flexibility [28]. To

each active contour, we associate a higher-dimensional function, referred to as a level

set function, whose zero level set encodes the contour location. We implicitly evolve

an active contour via the level set function, whose evolution is driven by a local model

of the imaging data temporal activity. The model includes no assumptions on a cell’s

morphology or stereotypical temporal activity. We demonstrate that this versatility

allows us to segment a variety of cell types and shapes and both active and inactive

cells. For convenience, we refer to our method as ABLE (an Activity-Based LEvel set

method). In Sections 3.2 and 3.3, we discuss relevant background on active contours

and the level set method, respectively. Then, in Section 3.4, we present the proposed

45



Chapter 3. ABLE: an activity-based level set segmentation algorithm

segmentation algorithm. Finally, in Sections 3.5 and 3.6, we describe the data on which

we evaluate ABLE and assess ABLE’s segmentation performance, respectively.

3.2 Active contours

The goal of image segmentation is to partition the domain of an image, Ω, into multiple

subregions. When the boundary of a single object is sought, the domain is partitioned

into two disjoint subregions: Ωin, the interior, and Ωout, the background. The object

boundary, δΩin, is then obtained from the closed curve delineating the border of Ωin

(Fig. 3.1A). Although in our application the video has three dimensions, we only wish

to partition the spatial domain of the video, which is two-dimensional. This is due to

the assumption that the objects are static during an imaging experiment. Otherwise,

it would be necessary to partition the whole spatiotemporal domain [79, 110]. The

image is denoted with a function, I : Ω → Rm, that associates a vector of length m

with every pixel, x, in the image domain, Ω ⊂ R2. When m = 1, we have a single-frame

image, when m > 1, we have a video consisting of m frames.

An active contour is a commonly-used tool for identifying an object’s boundary. Start-

ing from a seed location, the contour evolves towards the object boundary, see Fig. 3.1.

Its evolution is guided by a cost function that is designed to be minimised when the

contour is located at the true boundary. We denote the active contour, which evolves

in artificial time, τ ∈ R, with Γ(τ). At each timestep, Γ(τ) represents the most recent

estimate of δΩin. Active contours are versatile; they can accommodate a broad range of

cost functions and evolution frameworks (for a review of the bioimaging literature see

[28]). Consequently, since their conception in 1988 [61], they have found widespread

usage in image processing, both in segmentation and, for example, in motion detection

[58] and multi-view scene modelling [8].

There are two main approaches to modelling an active contour: parametric and im-

plicit. In the former approach, a curve is represented by a continuous parameter, a

discrete set of coefficients and a method of interpolation from the discrete coefficients

to the continuous curve [61, 57]. For example, curves can efficiently be constructed

as linear combinations of B-spline basis functions1 [42, 15]. While effective for objects

that have stereotypical shapes, this approach is not ideal for irregularly-shaped objects

1A B-spline is a type of piecewise polynomial function (a ‘spline’) with minimal support for a given
degree of smoothness.
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3.2. Active contours

Figure 3.1: Example of an active contour segmenting a piecewise smooth

image. The image consists of an object, Ωin, and a background, Ωout (A). An active

contour, Γ, evolves guided by a cost function that is minimised when it is located at

the true object boundary, δΩin (B - D). After Nmax iterations, the contour converges

at the true object boundary.

whose shape cannot easily be represented by a combination of basis functions.

The second class of approaches evolves the contour implicitly via a higher-dimensional

function [21, 90]. In this framework, the active contour is defined as the zero level set

of a manifold, φ : Ω× R→ R, that also evolves in time, such that

Γ(τ) = {x ∈ Ω : φ(x, τ) = 0}. (3.1)

Unless shape constraints are explicitly included in the cost function, this class of ap-

proaches allows a greater degree of topological flexibility than parametric active con-

tours. A further advantage of this framework is that it can easily be extended to images

with more than two spatial dimensions. This is fitting for calcium imaging data, which

is starting to be collected in three spatial dimensions [1]. This is the framework we

adopt for our segmentation algorithm, which we introduce in more detail in Section

3.3.

The evolution of an active contour is guided by a cost function, which is designed

to be minimised when the contour is located at the true object boundary. The cost

function is typically formed of two components: one relating to the image, which is

referred to as the external energy, and another relating to the properties of the contour

itself, which we refer to as the regulariser. Both components are weighted by scalar

parameters, µ, λ ∈ R, to form the cost function:

E(Γ) = λ Eext(Γ) + µ Ereg(Γ), (3.2)
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where Eext is the external energy and Ereg is the regulariser. The external energy, which

we discuss in the following section, incorporates assumptions about the properties of

the object to be detected. The regulariser, which we discuss in Section 3.3.2, encourages

the object boundary to conform to a set of pre-defined conditions. For example, jagged

edges or excessively long boundaries may be penalised.

3.2.1 External energy

To construct the external energy, quantitative image features are computed. The

features are typically one of two types: boundary-based and region-based features.

As objects in calcium imaging videos tend not to possess sharp edges (due to the

blurring induced by the point spread function), we focus on the latter approach. Two

features f in ∈ Rm and fout ∈ Rm are derived from values of the image in the interior

and exterior of Γ, respectively. These features, which are re-computed each time the

contour is updated, are then used to classify pixels into the interior or exterior regions.

Using a function, D : Rm × Rm → R≥0, that computes the discrepancy between the

image at pixel x and a feature, we have

Eext(Γ) = λin

∫
inside Γ

D
(
I(x), f in

)
dx + λout

∫
outside Γ

D
(
I(x), fout

)
dx, (3.3)

where λin and λout are real-valued weight parameters. The external energy thus pe-

nalises discrepancies between the value of an image at pixel x and the feature of the

subregion to which it belongs. The relative impact of discrepancies in the interior and

exterior is controlled by the weights, λin and λout.

Chan and Vese proposed a region-based active contours approach for piecewise smooth,

single-frame images containing a single object and a background [22, 24]. The external

energy, which is inspired by the Mumford-Shah functional for the segmentation of

piecewise smooth images [83], is equal to

Eext(Γ) = λin

∫
inside Γ

‖I(x)− f in‖2dx + λout

∫
outside Γ

‖I(x)− fout‖2dx, (3.4)

where f in and fout are the average intensity of pixels in the interior and exterior,

respectively. This energy penalises discrepancies between a pixel’s intensity and the

average intensity of the subregion to which it belongs. The initial formulation was

designed for single-frame images, where I(x), f in, fout ∈ R, and later extended to vector-

valued images [23] and images of more than two pieces [25].
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3.3. Level set method

Figure 3.2: The level set function (LSF). The active contour (A) is encoded

as the zero level set of the LSF (B). The LSF is positive inside the contour, negative

outside and zero on the contour.

3.3 Level set method

To update the active contour we use the level set method of Osher and Sethian [91].

This method was first introduced to image processing by [20] and [74]; it has since

found widespread use in the field. We represent the active contour by a function φ,

which is positive for all x inside the contour, negative for x outside the contour and

equal to zero for x on the boundary (see Fig. 3.2). We refer to φ as the level set

function (LSF), as its zero level set encodes the contour of interest. We note that we

have reversed the convention of negative φ inside the contour and positive φ outside

in order to improve the clarity of figures representing the LSF.

We aim to find the active contour that minimises the energy in Eq. (3.2). We thus

seek the LSF that minimises the analogous cost function:

E(φ) = λ Eext(φ) + µ Ereg(φ), (3.5)

where we have replaced Γ with φ. As it is in general not possible to minimise this cost

function directly, a standard way to obtain the LSF that minimises Eq. (3.5) is to find

the steady-state solution to the gradient flow equation [5]:

∂φ

∂τ
= −∂E

∂φ
. (3.6)

As artificial time, denoted by τ , advances, the LSF is thus evolved in the image plane

in a manner that yields the sharpest decrease in the cost function. From Eq. (3.5),
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this partial differential equation (PDE) becomes

∂φ

∂τ
= −

(
λ
∂Eext

∂φ
+ µ

∂Ereg

∂φ

)
. (3.7)

The evolution of the LSF is thus driven by two components: the former provides

the impetus from the image data, and is referred to as the external velocity, and the

latter the impetus from the regulariser. In Sections 3.3.1 and 3.3.2, we discuss the

computation of each component.

To solve the PDE numerically, it is necessary to discretise Eq. (3.7). We approximate

φ by storing and updating its value on the uniformly-spaced image grid. The evolution

parameter τ is also discretised, such that

φ(τ + ∆τ) = φ(τ)−∆τ

(
λ
∂Eext

∂φ
+ µ

∂Ereg

∂φ

)
. (3.8)

At every timestep τ , the LSF is updated until a maximum number of iterations, Nmax,

has been reached or the active contour has converged. Using one or both of these

conditions is common in the active contour literature, see, for example, [29, 69]. We

retain µ∆τ < 0.25 in order to satisfy the Courant-Friedrichs-Lewy condition [69] — a

necessary condition for the convergence of a numerically-solved PDE. This condition

requires that the numerical waves propagate at least as fast as the physical waves [89].

3.3.1 External velocity

To compute the external velocity, we rewrite the external energy from Eq. (3.3) in

terms of the Heaviside function, such that

Eext(φ) =

∫
Ω
Ain(x)H(φ(x)) +Aout(x)(1−H(φ(x)))dx, (3.9)

where Ain(x) = λinD(I(x), f in) and Aout(x) = λoutD(I(x), fout). Here, we are im-

plicitly using H(φ) and (1−H(φ)) as indicator functions of the subregions inside and

outside the active contour, respectively. To calculate the derivative with respect to

φ, we use the standard variational formulation [23, 90, 5]. The Heaviside function is
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approximated by a smooth function, Hε(x), where

Hε(x) =


1 x > ε

1
2

(
1 + x

ε + 1
π sin

(
πx
ε

))
|x| ≤ ε

0 x < −ε.

(3.10)

The derivative of the Heaviside function, the delta function, is approximated by δε(x),

where

δε(x) =


1
2ε

(
1 + cos

(
πx
ε

))
|x| ≤ ε

0 |x| > ε.
(3.11)

We note that δε(x) = d
dxHε(x). Replacing the Heaviside function in Eq. (3.9) with its

approximation and computing the derivative, the external velocity at x ∈ Ω is

∂Eext

∂φ
(x) = δε(φ(x))

(
Ain(x)−Aout(x)

)
(3.12)

= δε(φ(x))
(
λinD

(
I(x), f in

)
− λoutD

(
I(x), fout

))
. (3.13)

The term δε(φ(x)), which is only non-zero at pixels on or near the active contour,

acts as a localization operator, ensuring that the velocity only impacts the LSF in the

vicinity of the active contour. The parameter ε determines the radius of the non-zero

band.

An example of the external velocity for the single-image Chan-Vese active contour

model is shown in Fig. 3.3. From Eq. (3.4), setting λin = λout = 1, we have

∂Eext

∂φ
(x) = δε(φ(x))

(
‖I(x)− f in‖2 − ‖I(x)− fout‖2

)
, (3.14)

where, in this case, f in and fout are the average intensity values within each subregion.

The contour is thus moved towards the pixels whose values are more similar to f in

than fout, and repelled by other pixels.

3.3.2 Regularisation

The external velocity updates the LSF only in the vicinity of the zero level set. As the

LSF is updated, the position of the zero level set is altered and the LSF is subsequently

updated at new locations. Consequently, it is beneficial to maintain an LSF that is
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Figure 3.3: The Chan-Vese active contours model. In A, we display the initial

estimate of the object boundary, Γ(0). The external velocity at each pixel is equal to

a data-based term, Ain(x) − Aout(x), multiplied by a localisation operator. In B, we

display the former, which is negative at pixels that are more similar to the interior than

the exterior of the active contour, and positive otherwise. The localisation operator

suppresses the contribution of the data-based term at pixels distant from the active

contour (C). In D, we plot the updated active contour, whose evolution is driven by

the external velocity in C.

smoothly varying in that region. We use the regulariser of Li et al. [69], which has been

implemented in numerous medical imaging applications [68, 72, 146]. The goal of the

regulariser is to ensure that φ approximates a signed distance function in the vicinity

of the contour and is flat elsewhere. In this context, a distance function satisfies:

d(x) = min
xc∈Γ
‖x− xc‖, (3.15)

i.e. the value of d(x) is the distance from x to the closest point on the contour. It

follows that, for all x on the contour, the distance is equal to 0. A signed distance

function encodes both distance to the contour and the subregion that a point belongs

to; it is equal to d(x) for pixels in the curve interior and −d(x) for those in the exterior,

see Fig. 3.2B. A signed distance function, therefore, satisfies the properties of an LSF

and is sufficiently smoothly varying. The regularisation energy is

Ereg(φ) =

∫
Ω
p (‖∇φ‖) dx, (3.16)

where

p(s) =


1

(2π)2 (1− cos(2πs)) if s ≤ 1,

1
2 (s− 1)2 otherwise.

(3.17)
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The partial derivative is then [69]

∂Ereg

∂φ
= div

(
∇φp

′(‖∇φ‖)
‖∇φ‖

)
, (3.18)

where div(·) is the divergence operator.

3.4 Proposed method

In the approaches presented thus far, an active contour partitions the whole image

domain into two distinct subregions: the object and the background. In the case of

calcium imaging data, the objects to be detected (cells or cellular components) are

multiple orders of magnitude smaller than the spatial domain. We therefore adopt

a more local approach to the segmentation problem. In the following, we start by

considering the problem of detecting the boundary of a single, isolated cell.

In our framework, an active contour seeks to partition a local region of the video into

a cell interior and exterior. At each iteration, the cell exterior is defined as the set

of pixels exterior to the contour within a fixed distance, see Fig. 3.4B. The default

distance is taken to be two times the expected radius of a cell. We refer to this exterior

region as the narrowband to emphasise its proximity to the contour of interest. As an

active contour is updated, so is the corresponding narrowband (Fig. 3.4F). The region

of the video for which the optimal partition is sought is therefore not static; rather, it

evolves as an active contour evolves.

Given an instance of the active contour, Γ(τ), the corresponding LSF is defined on the

contour interior and narrowband (see Fig. 3.4C). We compute f in ∈ Rm and fout ∈ Rm

as the average cell interior and narrowband time courses, respectively, where m is the

number of frames in the video. As before, the external energy is

Eext(φ) =

∫
φ>0

D
(
I(x), f in

)
dx +

∫
φ≤0

D
(
I(x), fout

)
dx. (3.19)

where we take λout = λin = 1.

In the following section, we introduce the dissimilarity metrics used. Then, in Section

3.4.2, we extend the framework to multiple active contours.
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Figure 3.4: Flow diagram of the proposed segmentation algorithm. The

three stages are: initialization (A-C), iterative updates of the estimate (D-G) and

convergence (H-J). When cells are sufficiently far apart we can segment them inde-

pendently — in this example we focus on the isolated cell in the dashed box on the

maximum intensity image in A. We make an initial estimate of the cell interior, from

which we form the corresponding narrowband (B) and level set function φ (C). Based

on the discrepancy between a pixel’s time course and the time courses of the interior

and narrowband regions (D), we calculate the velocity of φ at each pixel (E). φ evolves

according to this velocity (G), which updates the location of the interior and narrow-

band (F). Final results for: one cell (H), the average signals from the corresponding

interior and narrowband (I) and segmentation of all four cells (J).
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3.4.1 Dissimilarity metrics

Due to the heterogeneity of calcium imaging data, we do not use a universal dissimi-

larity metric. When both the pattern and magnitude of a pixel’s temporal activity are

informative, as is typically the case for synthetic dyes, we use

DE
(
I(x), f

)
=

1

m
‖I(x)− f‖2, (3.20)

for f ∈ Rm. When we have an image not a video (i.e. I(x) and f are one-dimensional)

this dissimilarity metric reduces to the fitting term introduced by Chan and Vese [24].

For datasets in which the fluorescence expression level varies throughout cells and, as

a consequence, pixels in the same cell exhibit the same pattern of activity at different

magnitudes, we use a metric based on the correlation, such that

DC
(
I(x), f

)
= 1− corr(I(x), f), (3.21)

where corr represents the Pearson correlation coefficient.

3.4.2 Neighbouring cells

We now extend the cost function presented in Eq. (3.19) to one suitable for parti-

tioning a region into multiple cell interiors and a global exterior, which encompasses

the narrowbands of all the cells. We denote with φm the LSF that corresponds to

the mth cell and f in,m the corresponding interior time course. Due to the relatively

low axial resolution of a two-photon microscope, fluorescence intensity at one pixel

can originate from multiple cells in neighbouring z-planes. Therefore, in contrast to

previous approaches to coupling active contours [156, 40], we do not penalise overlap

of contour interiors. Instead, we allow them to overlap when this best fits the data. In

particular, we assume that a pixel in multiple cells would have a time course well fit

by the sum of the interior time courses for each cell. The external energy in the case

of M > 0 cells is thus

Eext(φ1, φ2, ..., φM ) =

∫
outside

D
(
I(x), fout

)
dx +

∫
inside

D
(
I(x),

∑
m∈C(x)

f in,m
)
dx (3.22)

where ‘outside’ denotes the global exterior, the union of the narrowbands excluding

any cell interior, and ‘inside’ denotes the union of the contour interiors. The function
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C(x) identifies all cells whose interior contains x ∈ Ω. We denote the local spatial

domain, which incorporates the global exterior and the union of contour interiors,

with Ω̄. When the region to be partitioned contains only one cell, the external energy

in Eq. (3.22) reduces to that in Eq. (3.19).

We can rewrite the RHS of Eq. (3.22) in terms of the LSFs using the Heaviside function

implicitly as an indicator function, such that

Eext(φ1, φ2, ..., φM ) =

∫
Ω̄

A(x)
∏

k∈C(x)

H(φk(x))
∏

n6∈C(x)

(1−H(φn(x))) dx, (3.23)

where we simplify the integrand by writing

A(x) =


D
(
I(x),

∑
m∈C(x)

f in,m
)

if C(x) 6= ∅,

D
(
I(x), fout

)
otherwise.

(3.24)

To obtain the external velocity of the mth active contour we compute the derivative of

Eq. (3.23) with respect to φm. We state the result here and provide the derivation in

Appendix A.1. As in Eq. (3.12), the velocity is the product of a data-based term and

a localisation operator, such that

∂Eext

∂φm
(x) = δε(φm(x))

(
D
(
I(x), f in,m

)
−D

(
I(x), fout

))
, (3.25)

if x is not in a neighbouring cell, i.e. H(φk(x)) = 0 for all k 6= m. Otherwise

∂Eext

∂φm
(x) = δε(φm(x))

(
D
(
I(x), f in,m +

∑
j∈C(x)
j 6=m

f in,j
)
−D

(
I(x),

∑
j∈C(x)
j 6=m

f in,j
))

. (3.26)

The external velocity can be interpreted as follows: if a pixel, not in another cell, has

time course more similar to that of the contour interior than the narrowband, then

the contour moves to incorporate that pixel. If a pixel in another cell has time course

better matched by the sum of the interior time courses of cells containing that pixel

plus the interior time course of the evolving active contour, then the contour moves to

incorporate it. Otherwise, the contour is repelled from that pixel.

Although the external velocity contains contributions from all cells in the video, the

localisation operator, δε, ensures that the problem remains local. We only evaluate the

image-based terms in Eq. (3.25) and (3.26) at pixels where the localisation operator is
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Figure 3.5: Evolution of multiple active contours. Each active contour seeks

to partition its local region into a cell interior and exterior. When contours become

sufficiently close, their evolution is coupled.

non-zero. As noted in Section 3.3.1, this is a band of pixels around the active contour,

with width on the order of a single pixel. Consequently, many active contours can be

evolved independently. Mathematically, fout is the average time course corresponding

to the global exterior, which is the union of all contours’ narrowbands. In practice,

when we compute the velocity of each active contour we utilise a local fout, which is

computed from pixels in that contour’s narrowband.

The active contours are evolved in parallel, so that, at each time step, τ , we compute

φm(τ + ∆τ) = φm(τ)−∆τ

(
λ
∂Eext

∂φm
+ µ

∂Ereg

∂φm

)
. (3.27)

for all m ∈ {1, ...,M}, where the regulariser is the same as in Section 3.3.2. Then, the

features, f in,m and fout, are updated and each contour is evolved again. This process

is repeated until a maximum number of iterations has been reached or the contours

have converged. In the next section, we discuss details of the implementation, such as

the conditions for convergence and the initialisation procedure.

3.4.3 Implementation

Initialisation

We devised an automatic initialization algorithm which selects connected areas of peak

local correlation and/or peak mean intensity as initial ROI estimates. The correlation
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Num. cells
25 125 225

Num. frames (m)
100 1.1 6.5 11.2
1000 1.3 6.5 12.7

Table 3.1: Runtime of the segmentation algorithm (minutes) on synthetic

data. On data with dimensions 512 × 512 × m, the runtime of ABLE (minutes)

increases linearly with the number of cells and is not significantly affected by increasing

number of frames, m. Runtime was measured on a PC with 3.4GHz Intel Core i7 CPU.

image displays, at each pixel, the average correlation between that pixel’s time course

and those of neighbouring pixels. Local peaks in this image and the mean intensity

image are identified (by a built-in MATLAB function, ‘imextendedmax’) as candidate

ROIs. The selectivity of the initialization is set by a tuning parameter, which defines

the relative height with respect to neighbouring pixels (in units of standard deviation

of the input image) of the peaks that are suppressed. The higher the value of this

parameter, the more conservative the initialization. Empirically, we have found values

in the range 0.2 - 0.8 to be suitable. This typically overestimates the number of

ROIs; redundant estimates are automatically pruned during the update phase of the

algorithm.

Convergence

We stop updating a contour estimate when a maximum number of iterations, Nmax,

has been reached or the active contour has converged — using one or both of these

conditions is common in the active contour literature, see, for example, [29, 69]. A

contour is deemed to have converged if, in Ncon consecutive iterations, the number of

pixels that are added to or removed from the interior is less than ρ. As default, we

take Nmax = 100, Ncon = 40 and ρ = 2.

The complexity of the level set method is intrinsically related to the dimensionality of

the active contour; the number of frames of the video is only relevant to the evaluation

of the external velocity, which accounts for a small fraction of the computational cost.

In Table 3.1, we demonstrate that increasing video length by a factor of 10 has only

a minor impact on processing time. Updating an active contour is generally a local

problem — consequently, we observe that algorithm runtime increases linearly with

the total number of cells, see Table 3.1. Due to the independence of spatially separate
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ROIs in our framework, further performance speed-ups are achievable by parallelising

the computation.

Merging and pruning regions

ABLE automatically merges two cells if they are sufficiently close and their interiors

sufficiently correlated — a strategy previously employed in the CNMF algorithm of

Pnevmatikakis et al. [105]. When two contours are merged, their respective level set

functions are replaced with a single level set function, initialized as a signed distance

function, with a zero level set that represents the union of the contour interiors. The

required proximity for two cells to be merged is one cell radius (the expected cell radius

is one of two required user input parameters) and the default correlation threshold is

0.8. A contour is automatically removed (‘pruned’) at the end of the update phase if

its area is smaller or greater than adjustable minimum or maximum size thresholds,

which, as default, are set at 3 and 3πr2 pixels, respectively, where r is the expected

radius of a cell.

3.5 Experimental methods

In Section 3.6, ABLE’s performance is assessed on a range of real and simulated data.

In the following, we describe the experimental methods used to obtain this data and

the performance metrics used.

3.5.1 Simulations

Cellular spike trains are generated from mutually independent Poisson processes. A

cell’s temporal activity is the sum of a stationary baseline component, the value of

which is selected from a uniform distribution, and a spike train convolved with a

stereotypical calcium transient pulse shape. Cells are ‘doughnut’ (annulus) shaped to

mimic videos generated by genetically encoded calcium indicators, which are excluded

from the nucleus. To achieve this, the temporal activity of a pixel in a cell is generated

by multiplying the cellular temporal activity vector by a factor in [0, 1] that decreases

as pixels are further from the cell boundary. When two cells overlap in one pixel,
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we sum the contributions of both cells at that pixel. Spatially and temporally vary-

ing background activity, generated independently from the cellular spiking activity, is

present in pixels that do not belong to a cell.

3.5.2 Two-photon calcium imaging of hippocampal slices

This dataset was collected by Dr Renaud Schuck, our collaborator in Imperial College

London’s Department of Bioengineering. Here, we provide an overview of the pro-

cedures used. For further details, we refer the reader to [117]. All procedures were

performed in accordance with national and institutional guidelines and were approved

by the UK Home Office under Project License 70/7355 to Simon R Schultz. Juvenile

wild-type mice of either sex (C57Bl6, P13-P21) were anaesthetised using isoflurane

prior to decapitation procedure. Brain slices (400 µm thick) were horizontally cut in

1-4◦C ventilated (95% O2, 5% CO2) slicing Artificial Cerebro-Spinal Fluid (sACSF:

0.5 mM CaCl2, 3.0 mM KCl, 26 mM NaHCO3, 1 mM NaH2PO4, 3.5 mM MgSO4,

123 mM Sucrose, 10 mM D-Glucose). Hippocampal slices containing Dentate Gyrus,

CA3 and CA1 were taken and resting in ventilated recovery ACSF (rACSF: 2 mM

CaCl2, 123 mM NaCl, 3.0 mM KCl, 26 mM NaHCO3, 1mM NaH2PO4, 2mM MgSO4,

10mM D-Glucose) for 30min at 37◦C. After this the slices were placed in an incuba-

tion chamber containing 2.5 mL of ventilated rACSF and ‘painted’ with 10 µL of the

following solution: 50 µg of Cal-520 AM (AAT Bioquest), 2 µL of Pluronic-F127 20%

in DMSO (Life Technologies) and 48 µL of DMSO (Sigma Aldrich) where they were

left for 30 min at 37◦C in the dark. Slices were then washed in rACSF at room tem-

perature for 30 min before imaging. Dentate Gyrus granular cells were identified using

oblique illumination prior to being imaged using a standard commercial galvanometric

scanner based two-photon microscope (Scientifica Ltd) coupled to a mode-locked Mai

Tai HP Ti Sapphire (Spectra-Physics) laser system operating at 810 nm. Functional

calcium images of granular cells were acquired with a 40X objective (Olympus) by

raster scanning a 180× 180 µm2 square Field of View at 10 Hz. Electrical stimulation

was accomplished with a tungsten bipolar concentric microelectrode (WPI) where the

tip of the electrode was placed into the molecular layer of the Dentate Gyrus (20 pulses

with a pulse-width of 400µs and a 60µA amplitude were delivered into the tissue with

a pulse repetition rate of 10 Hz, repeated every 40 sec).
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3.5.3 In vivo imaging datasets

We demonstrate algorithm performance on two imaging videos made freely available

in online datasets [99, 85]. In the former dataset, the vibrissal cortex was imaged at

various depths, from layer 1 to deep layer 3, whilst the mouse performed a pole local-

ization task [100, 49]. Imaging was performed using the genetically-encoded indicator

GCaMP6s. Fluorescence was collected through raster scans of a 600×600µm2 region

at 7Hz. The latter dataset was recorded from the vibrissal primary somatosensory

cortex of an awake head-fixed mouse in a virtual reality setup [123]. Images were ob-

tained using indicator GCaMP6s. Fluorescence was collected through raster scans of

a 600×600µm2 region at 8Hz.

3.5.4 Performance metrics

To quantify segmentation accuracy we use two sets of metrics. On simulated data,

we compute the success rate of algorithm output compared to the ground truth cell

locations. For each cell in the ground truth dataset, we identify the corresponding

cell in the algorithm output. We then compute the precision, which is the percentage

of pixels in an estimated cell that are also in the corresponding ground truth cell.

Similarly, we compute the recall, which is the percentage of pixels in the ground truth

cell that are in the estimated cell. The success rate (%) is the harmonic mean of the

precision and recall, such that

success rate = 2
precision ∗ recall

precision + recall
. (3.28)

For each simulated imaging video, the output of the metric is a single score, which is

the average of the success rates over all cells in the video.

On real data with ground truth stemming from manually labelled cells, we use a

different approach. In this case, the ground truth cell locations are not likely to

be accurate on the order of single pixels. Therefore, we identify an estimated cell

as matching a ground truth cell if their centres are within 5 pixels of one another.

We compute the recall as the proportion of ground truth cells that are matched by

a detected cell. We also compute the fall-out-rate, which is the complement of the

precision. This is the proportion of detected cells that do not match a ground truth

cell.
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Figure 3.6: Segmentation results on in vivo imaging data. ABLE detects

cells with varying size and shape from mouse in vivo imaging data. The detected cell

boundaries are superimposed on the correlation image of the imaging video (A). Ex-

tracted neuropil-corrected time series and corresponding cell boundaries are displayed

for a subset of the detected regions: both cell bodies (B, C and D) and cross-sections

of dendrites (E, F and G) are detected .

3.6 Results

3.6.1 Robustness to heterogeneity in cell properties

ABLE detected region of interest (ROIs) with diverse properties from the publicly

available mouse in vivo imaging dataset of [99], see Fig. 3.6. A video demonstration

of segmentation on this data along with the code to generate the results is available at

github.com/StephanieRey.

To maintain a versatile framework we included no priors on cellular morphology in the

cost function that drives the evolution of an active contour. This allowed ABLE to

detect irregularly-shaped ROIs, such as cell bodies with dendrites attached (Fig. 3.6B,

C and D). No prior information on stereotypical neuronal temporal activity is included

in our framework. As such, ABLE detected cross-sections of dendrites, which do not

display stereotypical calcium transient activity (Fig. 3.6E, F and G). Activity from

dendritic cross-sections is an essential indicator of neuronal activity in lower cortical

layers, at depths where imaging is not possible [98]. We note that, due to ABLE’s

treatment of overlapping cells, it was possible to identify the overlapping dendrites

belonging to the cells in Fig. 3.6F and G.
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Figure 3.7: Segmentation results on simulated data containing overlapping

cells. ABLE detected the true boundaries of overlapping cells from noisy simulated

data. The detected contours for one realization of noise with standard deviation (σ)

equal to 60 are plotted on the correlation image in A. Given an initialisation on a

fixed grid, the true cell boundaries are detected with success rate of at least 99% for

σ < 90 (B). The central marker and box edges in B indicate the median and the 25th

and 75th percentiles, respectively. For noise level reference, we plot the average time

course from inside the green contour in A at various levels (C). In D, we plot the

initialisation, which was on a fixed grid, on the mean image of the video.

3.6.2 Demixing overlapping cells

When imaging through scattering tissue, a two-photon microscope can have relatively

low axial resolution (on the order of ten microns) in comparison to its excellent lateral

resolution. As a consequence, the photons collected at one pixel can in some cases

originate from multiple cells in a range of z-planes. For this reason, cells can appear to

overlap in an imaging video. It is crucial that segmentation algorithms can delineate

the true boundary of apparently overlapping cells, so that the functional activity of

each cell can be correctly extracted and analysed.

On synthetic data containing 25 cells, 17 of which had some overlap with another

cell, we measured the success rate of ABLE’s segmentation compared to the ground

truth cell locations (Fig. 3.7). For more detail on the performance metric, see Section

3.5.4. Cells were simulated with uneven brightness to mimic the ‘doughnut’ cells

generated by some genetically encoded indicators that are excluded from the nucleus.

Consequently, pixels within the same cell had the same pattern of temporal activity
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Figure 3.8: Segmentation results on in vitro imaging data containing syn-

chronously spiking cells. The boundaries of the detected ROIs are superimposed

on the thresholded maximum intensity image (A). Panel B displays the time courses

of the detected ROIs (each plotted as a row of the matrix) along with the video mean

raw activity and the electrical stimulations. In B, the time courses are median filtered

for visual clarity. ABLE detected both active (C, D and E) and inactive ROIs (F, G

and H). We display the contours of the two detected ROIs on the correlation image

(C and F), the mean image (D and G) and the cellular time courses (E and H).

but vastly different baseline fluorescence, as is apparent in the mean image in Fig.

3.7D. To segment the data, therefore, we applied ABLE with the correlation-based

dissimilarity metric. As can be seen in the example in Fig. 3.7A, despite uneven

fluorescence and the prevalence of cellular overlap, pixels were reliably incorporated

into the correct cell. We tested segmentation performance as the noise level of the

data varied, measuring performance over 10 realisations of noise at each noise level. To

eliminate variability due to the quality of the initialisation, we initialised cell estimates

on a fixed grid (see Fig. 3.7D). On average, ABLE achieved success rate greater than

99% when the noise standard deviation was less than 90 (Fig. 3.7B). Segmentation

performance deteriorated as the noise standard deviation increased; ABLE achieved

an average success rate of 79% when the noise standard deviation was equal to 200.
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3.6.3 Results on hippocampal brain slices

ABLE detected synchronously spiking, densely-packed cells from mouse in vitro imag-

ing data (Fig. 3.8). As the brain slice was electrically stimulated (at rate 10Hz for

2s every 40s) during imaging, cellular activity in this dataset is highly correlated with

that of other cells and the background. To segment the dataset, therefore, we applied

ABLE with the Euclidean dissimilarity metric. When the cell interior and narrow-

band time courses are highly correlated, the external velocity of an active contour in

this version of the algorithm is predominantly driven by the discrepancy in baseline

intensities. For the mathematical reasoning behind this statement, see Appendix A.2.

As a consequence, the algorithm was able to segment cells whose activity was highly

correlated with the background activity (Fig. 3.8B). Furthermore, inactive cells were

detected when their baseline fluorescence allowed them to be identified from the back-

ground (Fig. 3.8 F-H). In Fig. 3.8C-E, we display an example of an active cell that

was detected. We note that each of the four visible activity peaks in this figure corre-

sponds to twenty calcium transients that were induced by the electrical stimulations.

The relatively low amplitude of these peaks reflects the low SNR of this data. As a

result, only a small amount of spontaneous activity is visible in the activity plot of

Fig. 3.8B.

3.6.4 Algorithm comparison on manually labelled dataset

We compared the performance of ABLE with two state of the art calcium imaging seg-

mentation algorithms, CNMF [105] and Suite2p [94], on a manually labelled dataset,

see Fig. 3.9. We apply ABLE with the correlation-based dissimilarity metric, Eq.

(3.21), which is well suited to neurons with low baseline fluorescence and uneven

brightness. As the dataset is large enough (512x512x8000 pixels) to present mem-

ory issues on a standard laptop, we ran the patch-based implementation of CNMF,

which processes spatially-overlapping patches of the dataset in parallel. We optimised

the performance of each algorithm by selecting a range of values for each of a set of

tuning parameters and generating segmentation results for all combinations of the pa-

rameter set. The results were visualised on the correlation image and the parameter

set that presented the best match to the correlation image was selected. This process

is representative of what a user may do in practise when applying an algorithm to a

new dataset.
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Figure 3.9: Algorithm comparison on a manually labelled dataset. We

compare the segmentation results of ABLE, CNMF and Suite2p on a manually labelled

dataset. On the correlation image we plot the boundaries of the manually labelled cells

colour-coded by the combination of algorithms that detected them (A), undetected

cells are indicated by a white contour. Suite2p detected the highest proportion of

manually labelled cells (B), whereas ABLE had the lowest fall-out rate (C), which is

the percentage of detected regions not present in the manual labels. Some algorithm-

detected ROIs that were not present in the manual labels are detected by multiple

algorithms (D) and have time courses which exhibit stereotypical calcium transient

activity (E). The correlation image in D is thresholded to enhance visibility of local

peaks in correlation. In E, we plot the extracted time courses of the ROIs in D.

ABLE achieved the highest success rate (67.5%) when compared to the manual labels,

see Table 3.2. For a definition of the success rate and other performance metrics

used, see Section 3.5.4. ABLE achieved a lower fall-out rate than Suite2p and CNMF

(Fig. 3.9C) — 67.5% of the ROIs it detected matched with the manually labelled

cells. Some of the ‘false detections’ were consistent among algorithms (Fig. 3.9C)

and corresponded to local peaks in the correlation image (Fig. 3.9D), whose extracted

time courses displayed stereotypical calcium transient activity (Fig. 3.9E). A subset of

these ROIs may thus correspond to cells omitted by the manual operator. The highest

proportion of the manually labelled cells were detected by Suite2p, which detected the

greatest number of cells not detected by any other algorithm (Fig. 3.9B). A small

proportion (13.2%) of cells were detected by none of the algorithms. As can be seen

from Fig. 3.9A, these do not correspond to peaks in the correlation image, and may

reflect inactive cells detected by the manual operator.
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Success rate (%) Precision (%) Recall (%)

ABLE 67.5 67.5 67.5
CNMF 63.4 60.7 66.5
Suite2p 63.7 56.5 73.1

Table 3.2: Algorithm success rate on a manually labelled dataset. We

compare the performance of three segmentation algorithms: ABLE, CNMF [105] and

Suite2p [94], using the manual labels as ground truth.

3.7 Summary

In this chapter, we presented a novel approach to the problem of detecting cells from

calcium imaging data. Our approach uses multiple coupled active contours to identify

cell boundaries. The core assumption is that the local region around a single cell can

be well-approximated by two subregions, the cell interior and exterior. The average

time course of the respective subregions is used as a feature with which to classify

pixels into either subregion. We assume that pixels in which multiple cells overlap

have time courses that are well-approximated by the sum of each cell’s time course.

We form a cost function based on these assumptions that is minimised when the active

contours are located at the true cell boundaries.

ABLE is a flexible method: we include no priors on a region’s morphology or stereo-

typical temporal activity. Due to this versatility, ABLE segmented cells with varying

size and shape from a mouse in vivo dataset (Fig. 3.6) and both active and inactive

cells from brain slices (Fig. 3.8). Furthermore, we demonstrated its ability to detect

the true boundaries of overlapping cells on both real and simulated data.
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Chapter 4.

CosMIC: A consistent metric for spike

inference from calcium imaging

Two-photon calcium imaging does not directly read out a neuron’s spiking activity.

Rather, it reads out a secondary variable — the intracellular calcium concentration

— from which spiking activity must be inferred. After an experiment, neural coding

hypotheses are investigated by comparing the rate and timing of inferred spike trains

to properties of stimuli and behavioural variables. To justify such analysis, the ability

of spike inference algorithms to generate accurate spike train estimates must first be

verified.

Inferred spikes are compared to the electrophysiological ground truth (see Section 2.2)

in order to assess their accuracy. Whilst there are a rich collection of ground truth

datasets [7], the metrics currently used to compare ground truth and estimated spike

trains are not ideal. In this chapter, we highlight the limitations of the two most

commonly used spike inference metrics, the spike train correlation and success rate,

and propose an alternative, which we refer to as CosMIC. In the following, we introduce

CosMIC and demonstrate its application to real and simulated spike trains.

4.1 Introduction

Although the development of spike inference algorithms has received a lot of recent

attention, few researchers have examined the metrics used to assess an algorithm’s

The work presented in this chapter led to the following publication [108].
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Figure 4.1: Inconsistency in usage of spike inference metrics. This chart

illustrates the number of papers, of the 16 presenting a spike inference algorithm, that

use each metric to assess their algorithm. Of the surveyed papers, 44% use a metric

unique to that paper and 57% use more than one metric. Under the umbrella of the

success rate, we include the true and false positive rates, from which the success rate

is computed, and the error rate — the complement of the success rate.

performance. At present, there is no consensus regarding the best choice of metric.

In fact, 44% of papers presenting a new method assess its performance using a metric

unique to that paper (Fig. 4.1). This inconsistency impedes progress in the field

— algorithms are not directly comparable and, consequently, data collectors cannot

easily select the optimal algorithm for a new dataset. In light of this problem, a recent

benchmarking study tested a range of algorithms on a wide array of imaging data [7].

Although informative, the study, which relied heavily on the spike train correlation

(STC) to assess algorithm performance, may not provide the full picture.

Despite being the most commonly used metric, the STC is not well-suited to the task.

It is invariant under linear transformations of the inputs and is therefore unable to

evaluate the similarity of the rates of two spike trains [95]. The second most commonly

used metric, the success rate, does not reward increasing temporal precision above

a given threshold. Consequently, it is not an appropriate metric for evaluating an

algorithm’s performance when the end goal is, for example, to investigate the synchrony

of activations within a network.

Due to limiting factors, such as noise and model mismatch, it is improbable that an es-

timate will match a true spike with infinite temporal precision. In order to incorporate

an implicit temporal tolerance, metrics manipulate the sets of spikes before compar-

ing their similarity. One such technique is to discretise the temporal interval into a

finite number of ‘bins’ and to compare the corresponding vectors of spike counts. This

method, which is employed by the STC, has its limitations. In particular, estimates
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the same absolute distance from a true spike can fall into different bins and thus receive

different scores. Furthermore, estimates in the same bin are treated equally and, as a

consequence, temporal precision above the bin width is not rewarded. An alternative

strategy is to convolve spike trains with a smoothing pulse and to assess the similarity

of the resulting pulse trains. This type of continuous approach is preferred by metrics

assessing the relationship between spike trains from different neurons [144, 116].

In the following, we propose a metric that we refer to as CosMIC (a Consistent Metric

for spike Inference from Calcium imaging). CosMIC first convolves the spike trains

with a smoothing pulse whose width reflects the temporal precision that an estimate

is able to achieve given the limitations of the data. To set this width, we calculate a

lower bound on the temporal precision of the estimate of one spike, the Cramér-Rao

bound (CRB). In the context of calcium imaging, this bound has been previously used

to evaluate detectability of spikes under different imaging modalities [117]. We use

the CRB as a performance benchmark; an estimator that achieves the CRB should be

awarded a relatively high score.

We formalise the comparison of the resulting pulse trains by leveraging results from

fuzzy set theory. In contrast to classical sets, to which an element either belongs or

does not belong, fuzzy sets contain elements with a level of certainty represented by

a membership function — the higher the value of the membership function, the more

certain the membership. We view the pulse trains as the membership functions of

the fuzzy sets of true and estimated spikes. These sets represent the original sets of

spikes with a level of temporal tolerance set by the pulse width. CosMIC computes

the similarity of the original sets of spikes from the size of the intersection of the fuzzy

sets as a fraction of their average size. In this context, CosMIC resembles a continuous

Sørensen-Dice coefficient — an index commonly used to assess the similarity of discrete,

presence/absence data [32, 125].

In Section 4.2, we give a brief introduction to fuzzy set theory. Then, in Section 4.3, we

detail the computation of CosMIC. The relationship between the pulse width and the

CRB is explained in Section 4.4. In Section 4.6, we demonstrate CosMIC’s ability to

discriminate spike train similarity on real and simulated data. CosMIC’s discriminative

performance is compared to that of the success rate and the STC, whose definitions

we provide for completeness in Section 4.5.
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4.2 Fuzzy set theory

Fuzzy set theory was introduced by Zadeh in 1965 to extend classical set-theoretic

concepts to areas in which abrupt set boundaries are hard to define [155]. As an illus-

trative example, Zadeh considered a universe consisting of all men and a set containing

all tall men. As with many semantic definitions, it is hard to identify where the set

of tall men ends and the set of ‘not tall’ men begins. Instead of forcing elements to

either belong or not belong to a set, as in classical set theory, it was proposed that

sets should have graded membership. Accordingly, a non-negative value is associated

with each element of the universe, representing the degree of certainty to which that

element belongs to a set. Here, we provide a brief introduction to fuzzy sets. We

refer the interested reader to [39] for an extensive theoretical overview and to [157] for

more recent developments. To differentiate between classical sets and fuzzy sets, we

use plain font for the former (S) and script-like font for the latter (S).

In classical set theory, membership of a set, S, is defined for all elements of a universe,

X, using a characteristic function:

1S(x) =

1 if and only if x ∈ S,

0 if and only if x 6∈ S.
(4.1)

In fuzzy set theory, the range of the analogous function, µS(x), which we refer to as

a membership function, is the non-negative, real numbers. The value of µS increases

as the certainty of membership does. A fuzzy set is characterised by a set of ordered

pairs:

S = {(x, µS(x)) : x ∈ X}, (4.2)

each representing an element of the universe and the certainty with which that element

belongs to the set. It is not the absolute value of a membership function that is of

importance. Rather, it is the implicit ordering induced by a membership function that

we are interested in. For example, we may want to compare the values of µS(x) and

µS(y) or, alternatively, µS1(x) and µS2(x). We note that the characteristic function

of a classical set is a special case of a membership function that only takes the values

{0, 1}.

The operations of intersection and union were introduced to fuzzy sets by Zadeh [155]

and, at a later date, justified axiomatically by Bellman and Giertz [6]. The membership
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BA

Figure 4.2: Membership functions of the union and intersection of fuzzy

sets. In A, the membership functions are continuous-valued. In B, they are binary

and are therefore analogous to the characteristic functions of classical sets.

function of an intersection of fuzzy sets is computed as

µS1∩S2(x) = min (µS1(x), µS2(x)) , ∀x ∈ X. (4.3)

Similarly, the membership function of the union is

µS1∪S2(x) = max (µS1(x), µS2(x)) , ∀x ∈ X. (4.4)

These definitions coincide with the classical operations of intersection and union in the

special case in which the membership functions are characteristic functions. We show

an illustrative example of the above operations in Fig. 4.2.

When the universe is a finite set, the cardinality of a fuzzy set, |S|c, is [39]

|S|c =
∑
x∈X

µS(x). (4.5)

When the universe is infinite, the cardinality of a set may not exist. In the case that

X is a measurable set and P is a measure on X [113], then

|S|c =

∫
X
µS(x) dP(x). (4.6)

In particular, when the universe is the real line, we have

|S|c =

∫
R
µS(x) dx. (4.7)
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Finally, the support of S is: supp(S) = {x ∈ X : µS(x) > 0}.

4.2.1 Sørensen-Dice coefficient

The Sørensen-Dice coefficient (SDC) was designed to quantify similarity between sam-

ples of discrete, presence/absence data [125, 32]. This metric, which is also known as

the F1-score, is widely used in many fields, including ecology [102] and image segmen-

tation [159]. Although its initial justification was empirical rather than theoretical, it

can be interpreted as a similarity metric for fuzzy sets with binary membership func-

tions belonging to a finite universe [96, 137]. This connection was made after the SDC

had become established in numerous fields. For example, an ecologist, Roberts, used

fuzzy sets as a theoretical basis for a popular technique for environmental analyses

[111]. In the following, we detail the computation of the SDC from the perspective of

fuzzy set theory.

Let S1 and S2 be two fuzzy sets defined on a finite universe, X = {x1, x2, ..., xm},
represented by the membership functions µS1 and µS2 , respectively. We assume the

membership functions take values in the range {0, 1}. Then, the SDC is

SDC(S1,S2) =
|S1 ∩ S2|c

(|S1|c + |S2|c) /2
(4.8)

=

∑m
i=1 min(µS1(xi), µS2(xi))

(
∑m

i=1 µS1(xi) + µS2(xi)) /2
, (4.9)

where Eq. (4.9) follows from Eq. (4.3) and Eq. (4.5).

When S1 and S2 represent a set of ground truth items and a set of estimates, respec-

tively, the coefficient has two alternative formulations in terms of the types of errors.

It is perhaps the intuitive appeal of these expressions that has led to the SDC’s pop-

ularity. To illustrate these alternative formulations, we consider the example of image

segmentation, where we want to quantify the proportion of pixels shared by a ground

truth mask and an estimate. The binary formulation of the SDC is well-suited to this

situation; if the ground truth mask contains the ith pixel, then µS1(xi) = 1, otherwise

µS1(xi) = 0. Similarly, if the ith pixel is in the estimated mask then µS2(xi) = 1,

otherwise µS2(xi) = 0. We write the sets of true positives (TP), false positives (FP)
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and false negatives (FN) as:

TP = {xi : µS1(xi) = 1 ∩ µS2(xi) = 1}, (4.10)

FP = {xi : µS1(xi) = 0 ∩ µS2(xi) = 1}, (4.11)

FN = {xi : µS1(xi) = 1 ∩ µS2(xi) = 0}. (4.12)

The number of pixels in the ground truth mask can be calculated from the number of

true positives and false negatives, such that

m∑
i=1

µS1(xi) = |{xi : µS1(xi) = 1}|c (4.13)

= |{xi : µS1(xi) = 1 ∩ µS2(xi) = 1} ∪ {xi : µS1(xi) = 1 ∩ µS2(xi) = 0}|c (4.14)

= |TP|c + |FN|c. (4.15)

Eq. (4.15) follows from the fact that the cardinality of the union of disjoint sets is the

sum of the cardinalities. By analogous logic, it follows that

m∑
i=1

µS2(xi) = |TP|c + |FP|c, (4.16)

and
m∑
i=1

min(µS1(xi), µS2(xi)) = |TP|c. (4.17)

Then, substituting these identities into Eq. (4.9), the SDC can be expressed in equiv-

alent form:

SDC(S1,S2) =
2 |TP|c

2 |TP|c + |FP|c + |FN|c
. (4.18)

Alternatively, defining the precision as the proportion of pixels (or, more generally,

items) in the estimated mask that are true positives and the recall as the proportion

of ground truth pixels that are true positives, the SDC is, equivalently, the harmonic

mean of the precision and recall:

precision ∗ recall

(precision + recall) /2
=

|TP|c
|TP|c+|FP|c ∗

|TP|c
|TP|c+|FN|c(

|TP|c
|TP|c+|FP|c + |TP|c

|TP|c+|FN|c

)
/2

(4.19)

=
2|TP|c

2|TP|c + |FP|c + |FN|c
(4.20)

= SDC(S1,S2). (4.21)
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A generalised SDC that quantifies common abundance is used to assess similarity of

non-binary data [13]. The only difference in the calculation of this coefficient from

Eq. (4.8) is that the entries of µS1 and µS2 can assume any non-negative value. It

is common that the ith entries of µS1 and µS2 represent counts of the corresponding

objects at the ith location. Interpreting these frequency counts as probabilities of

object occurrence is consistent with an empirical approach to probability. In the fuzzy

set literature, this coefficient has been further generalised to compare non-quantitative

data [137].

4.3 Constructing the metric

A spike inference metric compares the similarity between two sets of spikes: a ground

truth set, S = {tk}Kk=1, and a set of estimates, Ŝ = {t̂k}K̂k=1. In the following, we

define two fuzzy sets, Sε and Ŝε, which represent the original sets of spikes, S and Ŝ,

with a level of temporal tolerance defined by a parameter ε. We set ε to reflect the

temporal precision that an estimate is able to achieve given the statistics of a dataset

(see Section 4.4.4). The corresponding membership functions are defined on the real

line and are denoted µ(t) and µ̂(t). The membership functions are obtained through

convolution of the spike trains,

x(t) =

K∑
k=1

δ(t− tk) and x̂(t) =

K̂∑
k=1

δ(t− t̂k), (4.22)

with a triangular pulse. The resulting functions have local maxima at the locations

of the respective sets of spikes (Fig. 4.3A). As x(t) and x̂(t) are analogous to the

membership functions of the classical sets of spikes, we can think of the convolution

as a temporal smoothing of the membership. The pulse that we employ is a triangular

B-spline (Fig. 4.3B),

qε(t) =


ε−|t|
ε |t| ≤ ε,

0 otherwise.
(4.23)

Using this triangular pulse means that, the further a time point is from a spike, the

less weight the membership function receives at that point. Past a certain distance,

ε, the membership function receives no weight. Many pulse shapes could be chosen

to introduce this grading of temporal precision, we select a triangular pulse as it is
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Figure 4.3: Flow diagram of the proposed metric. The ground truth spike

train and estimated spike train are convolved with a triangular pulse (B), whose width

is determined by the statistics of the data. The metric compares the difference between

the resulting pulse trains (A). Metric scores are in the range [0,1] — a perfect estimate

achieves score 1 and an empty spike train is scored 0 (C).

straightforward to examine analytically and implement computationally.

We design the proposed metric to quantify the size of the intersection of the fuzzy sets

of true and estimated spikes with respect to the average size of the sets, such that

M
(

S, Ŝ
)

=
|Sε ∩ Ŝε|c(

|Sε|c + |Ŝε|c
)
/2
. (4.24)

From Eq. (4.8), the analogy between this metric and the SDC is clear. Whereas

the SDC operates on binary membership function defined on finite universes, CosMIC

operates on smooth membership functions defined on the real line. From the definitions

of intersection, Eq. (4.3), and cardinality, Eq. (4.7), we have

M
(

S, Ŝ
)

= 2

∫
R

min(µ(t), µ̂(t)) dt∫
R
µ(t) dt+

∫
R
µ̂(t) dt

= 2
‖min(µ, µ̂)‖1
‖µ‖1 + ‖µ̂‖1

, (4.25)
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Figure 4.4: Proposed metric example. The proposed metric quantifies the

commonalities of the sets of true and estimated spikes as a proportion of the average

size of those sets. Commonalities are found by taking the minimum of the pulse trains

— as such, spikes that appear in only one pulse train are excluded (A) and estimates

with lower temporal precision receive a lower score (B and C).

where we denote the continuous L1-norm with ‖f‖1 :=
∫
R |f(t)| dt. We note that

the absolute value is not necessary in the integrand of Eq. (4.25) as the membership

functions are non-negative. Taking the minimum of the membership functions produces

a conservative representation of the intersection of two sets; in our context, spikes that

appear in one spike train and not in the other are removed (Fig. 4.4A) and spikes

that are detected with poor temporal precision are assigned less weight (Fig. 4.4B and

4.4C).

Defining D+ = {t ∈ R : µ(t) > µ̂(t)} and D− = {t ∈ R : µ(t) ≤ µ̂(t)}, we have

‖µ− µ̂‖1 =

∫
R
|µ(t)− µ̂(t)| dt =

∫
D+

µ(t)− µ̂(t) dt+

∫
D−

µ̂(t)− µ(t) dt, (4.26)

and

‖µ‖1 + ‖µ̂‖1 − ‖µ− µ̂‖1 = 2

(∫
D+

µ̂(t) dt+

∫
D−

µ(t) dt

)
(4.27)

= 2

∫
R

min(µ(t), µ̂(t)) dt (4.28)

= 2‖min(µ, µ̂)‖1. (4.29)
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It follows that an alternative expression for the metric is

M(S, Ŝ) =
2‖min (µ, µ̂)‖1
‖µ‖1 + ‖µ̂‖1

(4.30)

=
‖µ‖1 + ‖µ̂‖1 − ‖µ− µ̂‖1

‖µ‖1 + ‖µ̂‖1
(4.31)

= 1− ‖µ− µ̂‖1
‖µ‖1 + ‖µ̂‖1

. (4.32)

From Eq. (4.32), it is clear that the maximal score of 1 is achieved when the mem-

bership functions, and therefore the sets of true and estimated spikes, are equivalent.

The minimal score of 0 is achieved when the support of the membership functions do

not overlap, i.e. no estimates are within the tolerance of the metric.

4.3.1 Ancestor metrics

Like the SDC, CosMIC can alternatively be derived from a pair of metrics, which we

refer to as ancestor metrics. The first of these metrics measures the proportion of

ground truth spikes that were detected within the precision of the pulse width, such

that

RCosMIC =
|Sε ∩ Ŝε|c
|Sε|c

=
‖min(µ, µ̂)‖1
‖µ‖1

. (4.33)

This score is analogous to the recall of a spike train estimate, one of the ancestor

metrics from which the SDC is formed. The second of CosMIC’s ancestor metrics

measures the proportion of estimated spikes that detect a ground truth spike within

the precision of the pulse width, such that

PCosMIC =
|Sε ∩ Ŝε|c
|Ŝε|c

=
‖min(µ, µ̂)‖1
‖µ̂‖1

. (4.34)

This is analogous to the precision, the second metric used to compute the SDC. Finally,

computing the harmonic mean of the two ancestor metrics and rearranging, we obtain

CosMIC:

2
RCosMIC ∗ PCosMIC

RCosMIC + PCosMIC
= 2

|Sε ∩ Ŝε|c
|Sε|c

|Sε ∩ Ŝε|c
|Ŝε|c

|Sε ∩ Ŝε|c
|Sε|c

+
|Sε ∩ Ŝε|c
|Ŝε|c

= 2
|Sε ∩ Ŝε|c
|Sε|c + |Ŝε|c

= M(S, Ŝ). (4.35)
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4.4 Temporal error tolerance

The width of the triangular pulse with which the spike trains are convolved reflects

the accepted tolerance of an estimated spike’s position with respect to the ground

truth. To set this width, we calculate a lower bound on the temporal precision of the

estimate of one spike — the Cramér-Rao bound (CRB) — from the statistics of the

data. The CRB is a lower bound on the mean square error of any unbiased estimator.

It is therefore useful as a benchmark; an estimator that achieves the CRB should be

awarded a relatively high metric score. In the following, we discuss the mean square

error of a parameter estimator (Section 4.4.1), introduce the CRB (Section 4.4.2) and

calculate this bound in the context of calcium imaging (Section 4.4.3). We relate this

bound to CosMIC’s pulse width in Section 4.4.4.

4.4.1 Parameter estimation

Let g(t, θ) be a signal evolving in time, t, which is dependent on a univariate, determin-

istic parameter, θ ∈ R. We consider the situation where the parameter θ is unknown

and the goal is to infer its value from noisy samples of g(t, θ). We have

g̃[n] = g[n, θ] + ξ[n] for n ∈ {0, ..., N − 1}, (4.36)

where g[n, θ] = g(nT, θ) are deterministic samples of g(·, θ) at time resolution T and

ξ[n] are samples of the noise.

Denoting the vector of data samples with g̃ = (g̃[0], g̃[1], ..., g̃[N − 1]) , we now consider

the error of the estimator, θ̂(g̃), constructed to infer the value of θ. The average

accuracy of the estimator can be represented by the mean square error (MSE):

MSE(θ̂) = E
[
(θ̂ − θ)2

]
. (4.37)

The MSE can be decomposed into two distinct types of error, in what is known as the

bias-variance tradeoff [62], such that

MSE(θ̂) =
(
E[θ̂]− θ

)2
+ var

(
θ̂
)
. (4.38)

The bias, E[θ̂] − θ, is a systematic error in the estimator’s output compared to the

true value. The variance, var(θ̂), represents the degree of variability in the estimator’s

80



4.4. Temporal error tolerance

output. We restrict our attention to unbiased estimators, which are those that, on

average, attain the correct value for all values of θ:

E
[
θ̂
]

= θ. (4.39)

Within this class of estimators, the one that achieves the minimum MSE is the one

that has the smallest variance. One approach to identifying an optimal estimator is,

therefore, to identify within the class of unbiased estimators the one with the smallest

variance. To do this, one can compute a lower bound on the variance of an unbiased

estimator. This bound can subsequently be used as a benchmark; the quality of an

estimator is judged by how close it is to attaining the bound.

4.4.2 Cramér-Rao bound

Each sample, g̃[n], is the sum of a deterministic signal component whose value is

dependent on the parameter θ and a stochastic noise component, see Eq. (4.36). The

vector of samples, g̃, can thus be modelled by a PDF parametrised by θ: p(g̃; θ). From

these components, a lower bound on the variability of an unbiased estimator, θ̂, can be

calculated. There are many lower bounds on the variance of unbiased estimators, for

example [158, 77]. Of all the bounds, the CRB is the most straightforward to compute

and is accompanied by a set of conditions under which it is satisfied [62]. In Theorem

4.1, we present, without proof, the CRB for a scalar, deterministic parameter, θ ∈ R.

For a more detailed exposition of the theory, including the result for vector-valued

parameters and a proof, we refer the reader to [62].

Theorem 4.1. The variance of an unbiased estimator satisfies

var
(
θ̂
)
≥ 1

−E
[
∂2 ln p(g̃; θ)

∂θ2

] , (4.40)

if the following regularity condition holds:

E
[
∂ ln p(g̃; θ)

∂θ

]
= 0, ∀θ. (4.41)

Here, the expectation is taken with respect to g̃ and the derivatives are evaluated at the

true value of θ.

We now derive the specific form of the CRB when the samples are independent and
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identically distributed (i.i.d.) and are corrupted by white Gaussian noise. In the case

of independence, we have

p(g̃; θ) =

N−1∏
i=0

pi(g̃[i]; θ), (4.42)

where pi is the PDF of g̃[i]. When the samples are identically distributed, we have

pi = q for all i ∈ {0, 1, ..., N − 1} and some PDF q. In particular, when ξ[n] are i.i.d.

samples of white Gaussian noise with variance σ2, we have

ln p(g̃; θ) = ln

(
N−1∏
i=0

1√
2πσ2

exp

(
−(g̃[i]− g[i; θ])2

2σ2

))
(4.43)

= −N
2

ln
(
2πσ2

)
− 1

2σ2

N−1∑
i=0

(g̃[i]− g[i; θ])2 . (4.44)

It follows that

∂ ln p(g̃; θ)

∂θ
=

1

σ2

N−1∑
i=0

(g̃[i]− g[i; θ])
∂g [i ; θ]

∂θ
. (4.45)

As E [g̃[i]− g[i; θ]] = 0, it is clear from Eq. (4.41) and the linearity of the expectation

that the regularity condition is satisfied when the derivative, ∂g[i ;θ]
∂θ , exists. Differenti-

ating again, we have

∂2 ln p(g̃; θ)

∂θ2
=

1

σ2

N−1∑
i=0

(g̃[i]− g[i; θ])
∂2g[i; θ]

∂θ2
−
(
∂g [i ; θ]

∂θ

)2

. (4.46)

Taking the expectation removes the first term of the above formula, which has expec-

tation equal to 0. As a result, the variance of an unbiased estimator in this setting

satisfies:

var
(
θ̂
)
≥ σ2

N−1∑
i=0

(
∂g[i ;θ]
∂θ

)2
, (4.47)

as long as the regularity condition in Eq. (4.41) is satisfied.

4.4.3 Bound for spike inference

We consider the problem of estimating the location of one spike, t1, from noisy calcium

imaging data. We assume that we have access to noisy samples, f̃ [n] = f [n] + ξ[n], for

n ∈ {0, 1, ..., N − 1}. Here, f [n] = f(nT ) are samples of the fluorescence signal with

time resolution T and ξ[n] are i.i.d samples of white Gaussian noise with variance σ2.
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The fluorescence signal is modelled as

f(t) =

Ae
−(t−t1)/τoff

(
1− e−(t−t1)/τon

)
for t > t1

0 otherwise,
(4.48)

where τon and τoff define the speed of the rise and decay of the fluorescence pulse,

respectively, and A is the amplitude.

From Eq. (4.47), the CRB of the parameter estimator, t̂1, is

var(t̂1) ≥ σ2

N−1∑
i=0

(
∂f [n]
∂t1

)2
. (4.49)

To compute the CRB, we must therefore evaluate the partial derivative of f(t) with

respect to t1 at t ∈ {0, T, 2T, ..., (N − 1)T}. For t > t1, we have

∂f

∂t1
= Ae−(t−t1)/τoff

(
1
τoff
−
(

1
τoff

+ 1
τon

)
e−(t−t1)/τon

)
. (4.50)

For t < 0, the derivative is equal to 0. To evaluate the derivative at t = t1, we consider

the left and right derivatives [134], starting with the former:

lim
t→t−1

f(t1)− f(t)

t1 − t
= lim

t→t−1

0− 0

t1 − t
= 0. (4.51)

The right derivative is

lim
t→t+1

f(t)− f(t1)

t− t1
= lim

h→0+

f(t1 + h)− f(t1)

h
(4.52)

= lim
h→0+

Ae−h/τoff
(
1− e−h/τon

)
h

(4.53)

= A lim
h→0+

(
1− h

τoff
+O(h2)

)(
h
τon

+O(h2)
)

h
(4.54)

= A lim
h→0+

h
τon

+O(h2)

h
(4.55)

=
A

τon
. (4.56)

As the left and right derivatives of f(t) are not equal at t = t1, the derivative does not

exist at that point. When we compute the CRB, therefore, we ensure that no samples

are taken at nT = t1.
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Figure 4.5: Metric pulse width. The pulse width is set to reflect the temporal

precision achievable given the statistics of the dataset. We calculate the Cramér-Rao

bound (CRB), σ2
CRB, a lower bound on the mean square error of the estimated location

of one spike from calcium imaging data (A). This bound decreases as the scan rate

(Hz) and peak signal-to-noise ratio (squared calcium transient peak amplitude/noise

variance) increase. We set the pulse width to ensure that an estimate of one spike at

the temporal precision of the CRB achieves, on average, a score of 0.8. This results in

a pulse width of approximately 7.3 σCRB (B).

Substituting the value of the derivative into Eq. (4.49), we have

var(t̂1) ≥

A2

σ2

N−1∑
n=dt1/T e

e−2(t−t1)/τoff

(
1
τoff
−
(

1
τoff

+ 1
τon

)
e−(t−t1)/τon

)2

−1

. (4.57)

In order that the CRB holds for an arbitrarily placed spike, we remove the dependency

on the true spike time by averaging the result over several values of t1. Denoting

CRB(t1) as the right hand side of Eq. (4.57), we compute σ2
CRB = 1

M

∑M
m=1 CRB(tm1 ),

where tm1 are evenly placed in the interval (nT, (n+ 1)T ) for a fixed n.

In Fig. 4.5, we plot σCRB as the sampling rate and peak signal-to-noise ratio (PSNR) of

the data vary. The PSNR is computed as A2
peak/σ

2, where Apeak is the peak amplitude

of the fluorescence signal (the maximum) and σ is the standard deviation of the noise.

For this example, we use τon = 32ms and τoff = 314ms; the parameters for a Cal-520

pulse [133]. We see that the CRB decreases as either the scan rate or the PSNR of the

data increases.
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4.4.4 Pulse width

The CRB can be used as a benchmark for temporal precision of any unbiased estimator.

As such, we set the pulse width to ensure that, on average, an estimate at the precision

of the CRB achieves a relatively high score. We set the benchmark metric score at

0.8, as this represents a relatively high value in the range of the metric, which is

between 0 and 1. The importance of this score is not the particular benchmark value

— there are a range of values that give similar performance — but rather that it is

a reproducible number with a clear interpretation. In this chapter, we characterise

the discrimination performance of CosMIC with a benchmark value of 0.8, so that its

scores can be interpreted when applied to spike inference algorithms on real data. The

benchmark value was set lower than the metric’s maximum value, 1, so that the score

does not saturate when the model assumptions are not ideally satisfied. On real data,

the noise may not be stationary (σ may vary), and so it may be possible for algorithms

to exceed the theoretical CRB. A benchmark score of 0.8 allows leeway to be exceeded

in this scenario.

We consider a true spike at t1 and an estimate, U , normally distributed around it at

the precision of the CRB, such that U ∼ N (t1, σ
2
CRB). Then, we fix the pulse width

so that, on average, E [M(t1, U)] = 0.8. In Appendix B, we show that this condition

is satisfied when

0.4 = (Φ(1/β)− 0.5)
(
β2 + 1

)
+

β√
2π

(
exp(−1/2β2)− 2

)
, (4.58)

where β = σCRB/w, w is the pulse width and Φ denotes the cumulative distribution

function of the standard normal distribution. We observe empirically that the pulse

width that solves this equation is approximately equal to 7.3σCRB (Fig. 4.5B).

4.5 Experimental methods

In Section 4.6, we compare CosMIC with the two most commonly used metrics in

the spike inference literature, the success rate and STC, which we define in Sections

4.5.1 and 4.5.2, respectively. We fix the parameters of both metrics with respect to

CosMIC’s pulse width, to ensure that the scores are comparable (Fig. 4.6). The

metrics are assessed on both simulated and real data. The latter dataset, which was
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Figure 4.6: Illustration of common metrics. In this chapter, we compare the

scores of three metrics: CosMIC, the spike train correlation (STC) and the success

rate (SR). None of the metrics compute scores directly from the true and estimated

spike trains, x(t) and x̂(t), shown in A. Rather, CosMIC initially convolves the spike

trains with a triangular pulse (B). The STC first discretises the temporal interval and

utilises the counts of spikes in each time bin, the bin edges and counts are plotted in

C. The SR uses a bin centered around each true spike — an estimate in that bin is

deemed a true detection (D). In order that the metric scores are comparable, we fix

the STC and SR bin widths to be equal to CosMIC’s pulse width.

collected by Dr T. Abrahamsson and Dr P. J. Sjöström, our collaborators at McGill

University, is described in Section 4.5.3.

4.5.1 Success rate

The success rate, which is defined as a function of the true and false positive rates

or, alternatively, as a function of precision and recall, appears in various forms in the

literature. Spike inference performance has been assessed using true and false positive

rates [106], precision and recall analysis [107] and using the complement of the success

rate, the error rate [30]. We study this class of metrics under the umbrella of the

success rate, which we define here.

A ground truth spike is deemed to have been ‘detected’ if there is an estimate within

δ1/2 (s) of that spike, where δ1 is a free parameter. Only one estimate can be deemed

to detect one ground truth spike. The recall is the percentage of ground truth spikes

that were detected. The precision is the percentage of estimates that detect a ground
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truth spike. Then, the success rate is the harmonic mean of the precision and recall,

such that

success rate = 2
precision ∗ recall

precision + recall
. (4.59)

From this formula and Eq. (4.19), the relationship between the success rate and the

SDC is apparent. A binary true detection region centred around each ground truth

spike is analogous to an implementation of CosMIC with a box function pulse. To

ensure that the success rate ‘pulse’ has the same width as CosMIC’s pulse, we set

δ1 = w, where w is CosMIC’s pulse width.

4.5.2 Spike train correlation

The first step in the calculation of the STC is the discretisation of the temporal in-

terval into bins of width δ2. Two vectors of spike counts, c and ĉ, are subsequently

produced, whose ith elements equal the number of spikes in the ith time bin for the

true and estimated spike trains, respectively. The STC is the Pearson product-moment

correlation coefficient of the resulting vectors, i.e.

STC =
〈c−m(c), ĉ−m(ĉ)〉√

v(c)
√
v(ĉ)

, (4.60)

where 〈·, ·〉, m(·) and v(·), represent the inner product, sample mean and sample vari-

ance, respectively. To remain consistent with the success rate, in all numerical exper-

iments, we take δ2 = δ1 = w.

The STC takes values in the range [-1, 1]. In practice, however, it is rare for a

spike inference algorithm to produce an estimate that is negatively correlated with the

ground truth [7]. Moreover, an estimate with maximal negative correlation is equally

as informative as one with maximal positive correlation. We utilise the normalised

STC, the absolute value of the STC. This ensures that the range of each metric that

we analyse is equivalent (and equal to [0,1]) and that, as a consequence, the distribution

of metric values are comparable.

4.5.3 Two-photon calcium imaging of cortical slices

This data was collected by Dr T. Abrahamsson and Dr P. J. Sjöström, our collaborators

at McGill University. P11-P15 mice were anesthetized with isoflurane, decapitated, and
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the brain was rapidly dissected in 4◦C external solution consisting of 125 mM NaCl,

2.5 mM KCl, 1 mM MgCl2, 1.25 mM NaH2PO4, 2 mM CaCl2, 26 mM NaHCO3, and

25 mM dextrose, bubbled with 95% O2/5% CO2 for oxygenation and pH. Quadruple

whole-cell recordings in acute visual cortex slices were carried out at 32◦C-34◦C with

internal solution consisting of 5 mM KCl, 115 mM K-gluconate, 10 mM K-HEPES, 4

mM MgATP, 0.3 mM NaGTP, 10 mM Na-phosphocreatine, and 0.1% w/v biocytin,

adjusted with KOH to pH 7.2-7.4. On the day of the experiment, 20 µM Alexa Fluor

594 and 180 µM Fluo-5F pentapotassium salt (Invitrogen) were added to the internal

solution. Electrophysiology amplifier (Dagan Corporation BVC-700A) signals were

recorded with a National Instruments PCI-6229 board, using in-house software running

in Igor Pro 6 (WaveMetrics). The two-photon imaging workstation was custom built

as previously described [16]. Briefly, two-photon excitation was achieved by raster-

scanning a Spectraphysics MaiTai BB Ti:Sa laser tuned to 820 nm across the sample

using an Olympus 40x objective and galvanometric mirrors (Cambridge Technologies

6215H, 3 mm, 1 ms/line, 256 lines). Substage photomultiplier tube signals (R3896,

Hamatsu) were acquired with a National Instruments PCI-6110 board using ScanImage

3.7 running in MATLAB (MathWorks). Layer-5 pyramidal cells were identified by their

prominent apical dendrites using infrared video Dodt contrast.

4.6 Results

To investigate metric properties, we simulated estimated and ground truth spike trains

and analysed the metric scores. To mimic the temporal error in spike time estimation,

unless otherwise stated, estimates were normally distributed about the true spike times.

In the following, we refer to the standard deviation of the normal distribution as the

jitter of the estimates.

4.6.1 CosMIC penalises overestimation

As opposed to the STC, CosMIC and the success rate penalised overestimation of

spikes (Fig. 4.7). We simulated spike train estimates that were normally distributed

about the true spike times. When the number of detected spikes (K̂) was less than the

number of true spikes (K), the locations about which the estimates were distributed

were chosen without replacement. When K̂ > K, the set of locations included all

the true spikes plus a subset of extras chosen with replacement. The overestimation
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Figure 4.7: Results on spike trains with varying overestimation ratio. In

contrast to the spike train correlation, CosMIC and the success rate were maximised

when the correct number of spikes were detected. We display the distribution of metric

scores as the number of estimated spikes (K̂) varies with respect to the number of true

spikes (K). The true spike train, which was identical throughout, consisted of 200

spikes simulated from a Poisson process with spike rate 1Hz. Estimated spikes were

normally distributed about the true spikes, with jitter σCRB (A), 2 σCRB (B) and

3 σCRB (C), respectively, where σCRB = 20ms. When the number of estimated spikes

was greater than the number of true spikes, estimates were distributed around a set of

locations including all true spikes plus an extra subset chosen with replacement. For

each metric we plot the mean (darker central line) and standard deviation (edges of

shaded region) of metric scores on a set of 100 spike train estimates generated at each

overestimation and jitter combination.

ratio (K̂/K) reflects the degree of accuracy to which an estimate matches the rate of

a ground truth spike train. We observed that, rather than penalising overestimation,

the STC increased with the overestimation ratio. In contrast, CosMIC and the success

rate were maximised when the correct number of spikes were detected. This behaviour

was consistent as the jitter of the estimated spikes varied; in this example, the jitter

was σCRB (Fig. 4.7A), 2 σCRB (Fig. 4.7B) and 3 σCRB (Fig. 4.7C), respectively.

It is the type of normalisation used by the STC that causes it to be insensitive to

overestimation. Scaling factors present in the spike count vectors cancel out in the

numerator and denominator, see Eq. (4.60), rendering the STC invariant under scalar

transformations of the inputs. Even when the STC was adapted to the continuous-time
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assessment of spike train similarity, by first convolving spike trains with a smoothing

pulse, this flaw persisted [95].

4.6.2 CosMIC rewards high temporal precision

CosMIC is more sensitive to temporal precision than the STC or success rate (Fig.

4.8). First, we investigated this characteristic at the level of estimates of a single

spike, t1. CosMIC depends only on the absolute difference between the estimate, t̂1,

and the true spike — the further the distance, the smaller the score. The relationship

between CosMIC and the temporal error, δ = t1 − t̂1, is

M({t1}, {t̂1}) =


(
|δ|
w − 1

)2
if |δ| < w

0 otherwise,
(4.61)

where w is the width of the pulse. The derivation of this result is given in Appendix

B. The success rate, on the other hand, does not reward increasing temporal precision

above the bin width; an estimate is assigned a score of 1 or 0, when its precision is

above or below the bin width, respectively. Moreover, the STC is asymmetric in the

temporal error; estimates the same distance from the true spike are not guaranteed to

be awarded the same score, see Fig. 4.8A. This asymmetry stems from the correlation’s

temporal discretisation. The temporal interval is first discretised into time bins and

the number of spikes in each bin are counted (Fig. 4.6). It follows that estimated

spikes that are the same absolute distance from a true spike can fall into different time

bins, thus achieving a different score.

On simulated data, we investigated the effect of these properties when spike train

estimates, rather than single spikes, were evaluated. In particular, we analysed the

metric scores when spike train estimates contained the correct number of spikes but

their temporal precision varied. We simulated the ground truth spike train as a Poisson

process with rate 1Hz over 200s. The corresponding calcium transient signal was

generated assuming a Cal-520 pulse shape (see Table 2.1) and a sampling rate of 30

Hz. White Gaussian noise was added to the calcium transient signal to generate two

fluorescence signals, one with low and the other with relatively high noise (Fig. 4.8B).

The corresponding metric pulse widths, as calculated from the CRB, were 33ms and

78ms, or 1 and 2.3 sample widths, respectively. Spike train estimates were normally

distributed about the true spikes with varying jitter. The metric scores were then
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Figure 4.8: Results on spike train estimates with varying temporal preci-

sion. CosMIC was more sensitive to the temporal precision of estimates than the

spike train correlation (STC) or success rate (SR). Unlike the STC, CosMIC awards

estimated spikes (t̂1) with the same proximity to the true spike (t1) the same score (A).

In contrast to both the STC and SR, CosMIC rewards increasing precision above the

pulse width (2ε) with strictly increasing scores. In (C) and (D), we plot the distribu-

tion of scores awarded to estimates that detect the correct number of spikes at varying

temporal precision, in a low and high noise setting, respectively. In (B), a sample of

each of the following signals are plotted: the ground truth spike train, simulated as

a Poisson process at rate 1Hz over 200s; the corresponding calcium transient signal,

sampled with interval T =1/30s; the low and high noise fluorescence signal and the

corresponding pulse widths. At each noise and jitter level, 100 realisations of spike

train estimates normally distributed about the true spike times were generated. In

both the low (C) and high noise (D) settings, the STC exhibited a relatively large

variation in the scores awarded to estimates of the same jitter. CosMIC and the SR

were roughly linearly related (E). CosMIC was boosted with respect to the success rate

when temporal error, represented by the root mean square error (RMSE) of estimates

as a fraction of the pulse width, was low (F). Conversely, CosMIC was relatively low

with respect to the SR when temporal error was relatively high. The colour map in (E)

and (F) is thresholded at the 1st and 99th percentiles of the RMSE for visual clarity.
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calculated for 100 realisations of spike train estimates at each jitter level in both the

low and high noise settings (Fig. 4.8C and D, respectively).

As the correct number of spikes were always estimated, the level of jitter represented

the quality of a spike train estimate in this setting. Ideally, a metric would reliably

reward spike train estimates of the same quality with the same score. The STC,

however, took a relatively large range of values for estimates of the same jitter (Fig.

4.8C and D), despite having the same range as CosMIC and the success rate. This

inconsistency is a consequence of the edge effects introduced by binning. Here, we use

the term consistency in line with its semantic rather than mathematical definition.

We observed a roughly linear trend in the scores of CosMIC and the success rate (Fig.

4.8E). As expected, CosMIC was boosted with respect to the success rate when the

root mean square error (RMSE) of detected spikes was relatively low when measured as

a fraction of the pulse width. In each case, the RMSE was computed empirically from

the estimated spikes within the precision of the pulse width. Conversely, CosMIC was

relatively low with respect to the success rate when the RMSE was relatively high. This

trend is visible in the Bland-Altman plot [3], in which the mean of the two methods is

plotted against the difference (Fig. 4.8F). We conclude that CosMIC is more sensitive

to the temporal precision of detected spikes, as, unlike the success rate, it discriminates

precision above the bin width.

4.6.3 Application to real imaging data

On imaging data of the mouse visual cortex at a frame rate of 13 Hz, CosMIC was

more sensitive than the success rate to the temporal precision of detected spikes. For a

detailed description of the imaging data, see Section 4.5.3. As detailed in Section 4.4,

the metric’s pulse width was set with respect to the CRB. On this dataset, the pulse

widths were concentrated between 1 and 3 sample widths — this range encompassed

92% of the data, see (Fig. 4.9F). As the noise level of the data increases, so does the

pulse width. Consequently, the tolerance of the metric with regards to the temporal

precision of estimates also increases. As a result, estimates on noisier data (Fig. 4.9B)

were scored with more lenience than those on less noisy data (Fig. 4.9A). Spikes

were detected from this data using the version of the FRI spike inference algorithm

presented in Chapter 5 of this thesis.

As was found on simulated data in Section 4.6.2, there was a linear trend between
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Figure 4.9: Results on real imaging data. On mouse in vitro imaging data,

CosMIC was more sensitive than the success rate (SR) to the temporal precision of

detected spikes. Spikes were detected using the FRI algorithm from 83 traces sampled

from visual cortex slices at 13Hz. In A and B, we display from top to bottom: an

example fluorescence trace (∆F/F ), ground truth and detected spike trains, and the

corresponding pulse trains. There was an approximately linear relationship between

CosMIC and the SR (C). CosMIC was relatively high with respect to the SR when

temporal error, represented by root mean square error (RMSE) as a fraction of the pulse

width, was relatively low. Conversely, CosMIC was low with respect to the SR when

temporal error was relatively high. This pattern was conserved in the relationship

between the precision and CosMIC’s analogous ancestor metric, PCosMIC, (D) and

between the recall and RCosMIC (E). The range of pulse widths as computed from the

Cramér-Rao bound (F) and the range of spike train correlation (STC) scores (G) are

also shown.
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the scores of CosMIC and the success rate (Fig. 4.9C). CosMIC was relatively high

with respect to the success rate when the temporal error represented by RMSE as

a fraction of the pulse width, was relatively low. Conversely, CosMIC was low with

respect to the success rate when the temporal error was relatively high. The RMSE

was computed empirically from the estimated spikes within the precision of the pulse

width. This pattern was conserved when CosMIC’s ancestor metrics, PCosMIC and

RCosMIC (Section 4.3.1), were compared to the precision and recall (Fig. 4.9D and E).

The average RMSE over all traces was 27ms, or 0.37 sample widths. As CosMIC is

able to discriminate precision above the pulse width, it is more able to reward this

super-resolution performance than the success rate or STC.

4.6.4 CosMIC discriminates precision and fall-out rate of spike trains

By construction, CosMIC bears a strong resemblance to the Sørensen-Dice coefficient

and, consequently, the success rate. Both metrics can be written as the harmonic

mean of the precision and recall, two intuitive metrics which represent the proportion

of estimates that detect a ground truth spike and the proportion of true spikes detected,

respectively. In this section, we demonstrate that CosMIC can accurately discriminate

both the precision and recall of spike train estimates.

When a spike train estimate detects exactly a subset of the true spikes, plus no re-

mainders, CosMIC and the success rate depend only on the percentage of true spikes

detected (the recall) and not the location of that subset, see Fig. 4.10A and 4.10D.

Denoting the size of the subset of true detections as K − R, with K the number of

true spikes and 0 < R ≤ K, we have

M
(

S, Ŝ
)

= 1− 1

2K/R− 1
, (4.62)

see Appendix B for a proof. Thus, CosMIC depends only on the proportion of ‘missing’

spikes, R/K, not their location. In contrast, the STC exhibits significant variation at

each level of recall. This is illustrated in Fig. 4.10A, in which we plot the distribution

of CosMIC, success rate and correlation scores over 100 realizations of spike train

estimates at each level of recall. It can be seen that, in this setting, CosMIC and the

success rate are fixed with the recall of the spike train estimates.

When all the true spikes were exactly detected together with R > 0 surplus spikes,

CosMIC and the success rate depend only on the level of precision not the location of
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the surplus spikes, see Fig. 4.10B and 4.10E. We have

M(S, Ŝ) =
1

1 +R/2K
, (4.63)

where K is the number of true spikes, see Appendix B for a proof. The fall-out rate,

which is the complement of the precision, is the proportion of estimates that were not

deemed to have detected a ground truth spike. It is apparent from Eq. (4.63) that,

in this setting, CosMIC depends only on the fall-out rate, R/K. The correlation, on

the other hand, varied with the location of the surplus spikes. In Fig. 4.10E, we plot

the distribution of the correlation scores for 100 realizations of spike train estimates

at each level of precision. CosMIC and the success rate, which were constant (and

identical) at a given precision, in this scenario, are also shown.

4.7 Summary

In this chapter, we presented a new metric, CosMIC, with which to assess the similarity

of spikes inferred from calcium imaging data to the ground truth spiking activity.

Rather than operating on the true and estimated spike trains directly, the proposed

metric assesses the similarity of the pulse trains obtained from convolution of the spike

trains with a smoothing pulse. The pulse width is derived from the Cramér-Rao bound,

which, in turn, is computed from the statistics of the imaging data. As a result, the

metric quantifies the accuracy of the inferred spikes with respect to the limitations of

the data. The final metric score is the size of the commonalities of the pulse trains as

a fraction of their average size.

We demonstrated the advantage of CosMIC over the two most commonly used metrics,

the STC and the success rate. Unlike the STC, which appears to reward overestima-

tion, CosMIC is maximised when the correct number of spikes have been detected.

Moreover, CosMIC is more sensitive to the temporal precision of estimated spikes

than the success rate. We consider a single summary score to be practical for users

who do not have the time or desire to analyse multi-dimensional trade-offs. Alterna-

tively, CosMIC’s ancestor metrics, RCosMIC and PCosMIC, can be used to determine the

extent to which errors stem from undetected or falsely-detected spikes.
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Figure 4.10: Results on spike train estimates with varying precision and

fall-out rate. CosMIC scored estimated spike trains of the same recall and fall-out

rate consistently, unlike the spike train correlation (STC). When a spike train estimate

detected precisely the location of a subset of spikes from a true spike train, the scores

of CosMIC and the success rate depended only on the percentage of spikes detected

(the recall), not the location of the detected spikes (A, D). In contrast, the STC varied

with the subset of spikes that were detected. When a spike train estimate detected

all the true spikes precisely plus a number of surplus spikes, the STC varied with

the placement of the surplus spikes (B, E). In contrast, the success rate and CosMIC

depended only on the percentage of estimated spikes that did not correspond to ground

truth spikes (the fall-out rate, also known as the false positive rate). The distribution

of correlation scores plotted in D and E stem from 100 realizations of estimated spike

trains at each recall and fall-out rate. In C, we plot an example of a true spike train.

In D and E, we plot estimated spike trains, with a recall and fall-out rate of 50% and

33%, respectively, along with the corresponding metric scores. The spikes with a black

‘x’ marker in E indicate the surplus spikes.
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Chapter 5.

Spike inference using FRI theory

In two-photon calcium imaging, when a neuron fires a spike, it also emits a character-

istic pulse of fluorescence. The fluorescence signal from one neuron over time is thus

modelled as a stream of pulses, each initiated by a spike. Neuronal network activity

is analysed using spike times inferred from the imaging data. Due to the challenges

inherent in imaging through living tissue, this data is typically noisy. Furthermore,

sampling rates are relatively low (on the order of 10Hz) with respect to the temporal

precision required for network connectivity analysis. Robust signal processing meth-

ods that are able to infer spike times from noisy data with precision above the sample

width are thus required.

In previous work, it was identified that a neuron’s fluorescence signal belongs to the

class of signals with finite rate of innovation (FRI). Using FRI theory and a simplified

model of the pulse shape, spike times were inferred with high accuracy and temporal

precision. The simplified pulse model is, however, not ideal for a subset of fluorescent

indicators, including some of the most promising, genetically-encoded indicators. In

this chapter, we extend the FRI framework to encompass a wider class of pulse shapes.

We also introduce strategies to increase the robustness of the algorithm, including

a procedure to whiten the statistics of the noise and an updated approach to the

estimation of the number of spikes in a window. We demonstrate on simulated data

that the updated signal model eliminates estimation bias due to model mismatch.

Additionally, we compare the performance of the updated FRI algorithm and a state

of the art deconvolution algorithm on mouse in vitro imaging data.

The work presented in this chapter led to the following publication [109].
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5.1 Introduction

The goal of spike inference is to recover a neuron’s spiking activity from its fluorescence

signal (Fig. 5.1). To this end, several authors proposed supervised learning algorithms

that were trained on datasets with ground truth spiking activity [114, 135, 127]. De-

spite promising results on familiar data, it has been shown that state of the art su-

pervised learning approaches impose spurious auto-correlation patterns onto test data

[93]. This type of error, which occurs when patterns of spiking activity in the training

data are implicitly learned by an algorithm, could precipitate misleading conclusions

about neuronal activity. Until the nature of errors of supervised learning algorithms

are fully characterised, it is likely that model-based algorithms will be predominately

used.

In contrast to supervised learning approaches, model-based algorithms take advan-

tage of the known structure of the fluorescence signal to perform spike inference

[153, 148, 47, 87, 103, 30, 106, 93]. These algorithms can be divided into two groups,

according to whether their model is in discrete or continuous time. The former group

model the signal as an auto-regressive process, whereby fluorescence intensity at a given

sample depends on past fluorescence values and the (unknown) number of spikes that

occurred in that sample [148, 147, 103, 105, 44]. With the exception of a Bayesian

algorithm [103], these approaches do not infer the locations of spikes in continuous

time. Rather, the output is a vector of equal length to the fluorescence signal, where

each entry reflects the number of spikes fired in that sample. Vogelstein et al. argued

that identification of the most likely vector of spiking activity is intractable when its

entries are integer-valued [147]. Instead, they relaxed their problem to infer a vector

with non-negative, real entries, whereby each entry loosely represents the probability

that a spike is fired in that sample. The work of Vogelstein et al. inspired a family of

non-negative deconvolution methods that infer vectors of spiking probabilities under

certain sparsity constraints [105, 44]. When the SNR of traces is low and, consequently,

temporal precision is not likely to surpass the sample width, non-negative deconvolu-

tion approaches can perform well. They are computationally relatively efficient and

convey uncertainty in the spike time estimates. However, as temporal resolution is

implicitly limited in this framework, they are not ideal when the end goal of an ex-

periment is, for example, to analyse temporal coding hypotheses and causal network

activity.
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Figure 5.1: Example of a slow-rise fluorescence signal. The signal from one

neuron is modelled as a stream of pulses, each initiated by a spike. This figure shows

data sampled at 60Hz generated using the genetically encoded indicator GCaMP6s

[132, 26]. In B, we plot a single calcium transient from the signal in A. The rise of this

indicator’s pulse is relatively slow — the time from baseline to peak is approximately

300ms.

Continuous-time models used for spike inference vary in the degree of detail with which

they model calcium dynamics. Rahmati et al. formulated a detailed biophysical model

relating the fluorescence signal to neuronal membrane potential, considering properties

of ion channels and sub-threshold voltage fluctuations [106]. This approach, while

potentially cumbersome for bulk image analysis, allows inference of a cell’s biophysical

properties as well as spiking activity. As such, it could be fruitful when used in

combination with pharmacological interventions, in which the aim is to alter those

properties [114]. Typically, continuous-time models use a simpler framework, in which

the fluorescence signal is a convolution of a spike train with a characteristic pulse

[47, 87, 30]. A variety of methods have been used to infer spike times in this setting,

including template matching [47] and maximum likelihood estimation [30]. Of these

two, the latter was found to have the highest accuracy on a wide array of real data

with electrophysiological ground truth [30].

Oñativia et al. inferred the timing of spikes by exploiting the fact that the fluorescence

signal belongs to the class of signals with finite rate of innovation [87]. A signal

belongs to this class if it admits a parametric representation with a finite number of

free parameters per unit of time [145]. In the case of neuronal fluorescence signals,

the free parameters are the unknown spike times and amplitudes. By mapping the

problem of spike inference to the FRI problem of reconstructing a stream of Diracs,

Oñativia et al. were able to utilise well-established methods to detect spike locations.

The mapping incorporated assumptions about the fluorescence pulse, which Oñativia

et al. modelled with an instantaneous rise and exponential decay. This simplification
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is common [147, 30] and well-suited to situations in which the pulse rise time is not

significantly longer than the sampling period. However, scan rates are consistently

increasing [117] and some of the most promising fluorescent indicators have relatively

slow rise times [26]. For example, the genetically-encoded indicator GCaMP6s, which

has a high dynamic range and brightness, rises over a period of 200-300ms (Fig. 5.1).

In these cases, there is a risk of estimation bias due to model mismatch.

In this chapter, we extend the FRI framework for spike inference from calcium imaging

data to encompass a slow-rise pulse shape. In the FRI framework, the sampling process

of the continuous-time spike train is modelled explicitly, so we start by introducing

relevant aspects of sampling theory in Section 5.2. In order to increase the algorithm’s

robustness to noise, we introduce a pre-whitening step [141], so that the statistics of

the noise are suited to the parameter estimation techniques used. Furthermore, we

include a model-based procedure to estimate the number of spikes in a window. We

present these contributions in Section 5.3. Finally, we assess the performance of the

updated algorithm on real and simulated data.

5.2 Sampling theory

Let x(t) be a continuous-time signal, which is sampled by a generic acquisition device.

The modifications that occur to the signal during the acquisition process are modelled

by convolution of x(t) with a filter, h(t). In digital cameras, for example, this represents

the blurring of the original image by a low-quality lens. The actual signal from which

samples are obtained is thus

y(t) = x(t) ∗ h(t) =

∫
R
x(τ)h(t− τ) dτ. (5.1)

Discrete samples, which are obtained with uniform time resolution, T , are denoted

y[n] = y(t)|t=nT =

∫
R
x(τ)h(nT − τ) dτ, (5.2)

for n ∈ {0, 1, ..., N − 1}. Defining h(t) = ϕ(− t
T ) and using the inner product notation,

the samples are expressed as

y[n] =

∫
R
x(τ)ϕ( τT − n) dτ =

〈
x(t), ϕ

(
t
T − n

)〉
, (5.3)
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where we refer to ϕ as the sampling kernel.

Whereas in some applications, such as standard digital photography, it can be suffi-

cient to retain the digital samples, it is typically desirable to use the samples to recover

aspects of the original, continuous-time signal, x(t). Indeed, under certain conditions

on the signal and filter, it is possible to perfectly reconstruct the original signal from

digital samples. In the mid 20th century, it was established that a bandlimited sig-

nal can be completely determined by sufficiently finely-spaced samples [119, 152, 67].

Whilst an important development, the corresponding reconstruction formula is only

approximately applicable to real-world signals, which are limited in time and thus

not truly bandlimited [121]. In 2002, Vetterli et al. established conditions for per-

fect reconstruction of a wider class of signals [145]. In the following, we introduce

this framework, which will later be used to infer the locations of spikes from calcium

imaging data.

5.2.1 Signals with finite rate of innovation

We consider a class of signals that can be represented as a linear combination of shifts

of known functions, {gr(t)}Rr=0, such that

x(t) =
∑
k∈Z

R∑
r=1

ar,kgr(t− tk), (5.4)

where tk and ar,k are free parameters for r ∈ {1, ..., R} and k ∈ Z. In this case, the

problem of reconstructing x(t) is equivalent to that of retrieving the unknown param-

eters. When the parameters are known, x(t) is defined everywhere. The complexity of

the reconstruction problem is thus reflected by the number of free parameters per unit

of time. To formalise this concept, a counting function Cx(ta, tb) is used that counts

the number of free parameters in x(t) over the temporal interval [ta, tb]. Then, the rate

of innovation of x(t) is defined as

ρ = lim
τ→∞

1

τ
Cx(− τ

2 ,
τ
2 ). (5.5)

A signal has finite rate of innovation if it admits a parametric representation as in

Eq. (5.4) with a finite ρ. This class of signals, which includes bandlimited signals,

encompasses a wide range of physical processes [139, 35, 84]. FRI methods exploit

the knowledge of these signals’ parametric structure in order to retrieve the unknown
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Figure 5.2: Example of signals with finite rate of innovation. Both signals

are linear combinations of a function with varying shifts and amplitudes. In A, the

constructive function is smoothly varying whereas in B it is a point impulse.

parameters and, hence, reconstruct the signal.

An example of an FRI signal, which is a linear combination of shifts of a single function,

g(t), is illustrated in Figure 5.2A. In this case, x(t) consists of a finite number, K, of

shifts of g(t) and can be written

x(t) =
K∑
k=1

akg(t− tk). (5.6)

A further example, which is used to model neuronal spike trains, is a stream of point

impulses (Fig. 5.2B). A point impulse is expressed mathematically using the Dirac

Delta function, δ(t), which is zero at all locations on the real line except at t = 0. The

Delta function is defined with respect to its effect on the integral of any continuous

function, s(t), such that [75] ∫
R
s(t)δ(t) dt = s(0). (5.7)

A stream of Diracs at locations {tk}Kk=1 with amplitudes {ak}Kk=1 is written

x(t) =

K∑
k=1

akδ(t− tk). (5.8)

Due to its connection with our neuroscience problem, in the following, we focus on

how FRI theory can be used to sample and reconstruct streams of Diracs.

5.2.2 Sampling kernels

The reconstruction scheme is tailored to the sampling kernel used in the acquisition

process. Among others, reconstruction schemes have been proposed for sinc and Gaus-

sian kernels [145], kernels with rational Fourier transform [38] and polynomial and
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Figure 5.3: Exponential reproduction with an E-spline of order 2. In A,

we plot the E-spline in the time domain. In B and C, the exponentials eα0t and eα1t

are reproduced, respectively, over the interval [1, 10].

exponential reproducing kernels [38]. Here, we focus on the latter class of kernels.

An exponential reproducing kernel is a function that, when linearly combined with its

uniformly shifted versions, can reproduce exponentials. More formally, it is a function,

ϕ(t), for which there exists a set of coefficients, cm,n ∈ C, and exponents, αm ∈ C,

such that ∑
n∈Z

cm,nϕ(t− n) = eαmt for m ∈ {0, ..., P}, (5.9)

almost everywhere. A function reproduces exponentials if and only if it satisfies the

generalised Strang-Fix conditions [149]:

L{ϕ} (αm) 6= 0 and L{ϕ} (αm + 2πil) = 0, (5.10)

for m ∈ {0, ..., P} and l ∈ Z \ 0, where L{ϕ} represents the double-sided Laplace

transform of ϕ(t).

A family of functions that satisfy the exponential reproduction property are the ex-

ponential B-splines [140], otherwise known as E-splines, whose name refers to their

relation to polynomial-reproducing B-splines. A zero order E-spline is defined as fol-

lows:

βα(t) =

eαt 0 ≤ t ≤ 1,

0 otherwise,

F−→ β̂α(ω) =
1− eα−iω

iω − α
. (5.11)

In the case of the zero-order E-spline, the parameter α indicates the exponent of the

103



Chapter 5. Spike inference using Finite Rate of Innovation theory

exponential that can be reproduced. More generally, an E-spline of order P ≥ 0 is

associated with a vector of exponents α = {α0, α1, ..., αP } and is obtained through

convolution of zero order E-splines, such that

βα(t) = βα0(t) ∗ βα1(t) ∗ ... ∗ βαP (t)
F−→ β̂α(ω) =

P∏
m=0

1− eαm−iω

iω − αm
. (5.12)

This E-spline can reproduce functions in the subspace spanned by {eα0t, eα1t, ..., eαP t},
as long as no two exponents are separated by a multiple of 2πi, which would violate the

Strang-Fix conditions. In Fig. 5.3, we illustrate the exponential reproduction property

for an E-spline of order two. To reproduce the exponentials for all t ∈ R would require

the sum in Eq. (5.9) to be evaluated over all n ∈ Z. In this example, we truncate the

sum and reproduce the exponentials over the interval [1, 10].

5.2.3 Reconstruction of a stream of Diracs

We now consider the situation in which a stream of Diracs, x(t), has been sampled

with an exponential reproducing kernel, h(t) = ϕ(− t
T ), at time resolution T to produce

samples {y[n]}N−1
n=0 . To retrieve the unknown spike times and amplitudes, the samples

are linearly combined using the exponential reproduction coefficients of the sampling

kernel, cm,n, such that

s[m] =
∑
n∈Z

cm,ny[n] =
∑
n∈Z

cm,n
〈
x(t), ϕ

(
t
T − n

) 〉
=
〈
x(t),

∑
n∈Z

cm,nϕ
(
t
T − n

) 〉
, (5.13)

for m ∈ {0, 1, ..., P}, where the last step follows from the linearity of the inner product.

We refer to s[m] as the sample moments. Due to the exponential reproduction property,

see Eq. (5.9), it follows that

s[m] =
〈
x(t), eαmt/T

〉
=

∫
R
x(t)eαmt/T dt =

K∑
k=1

ake
αmtk/T , (5.14)

where the last step follows from Eq. (5.7). When the exponents are evenly spaced,

that is αm = α0 + λm, the sample moments can be written in power-sum form, such

that

s[m] =

K∑
k=1

bku
m
k , (5.15)

with bk = ake
α0tk/T and uk = eλtk/T .
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5.2. Sampling theory

Figure 5.4: Example of sampling and reconstruction of a stream of Diracs.

A stream of 3 Diracs, x(t), is filtered with an exponential reproducing kernel, h(t) =

ϕ(−t/T ), to produce y(t) = x(t) ∗ h(t). Samples y[n] are obtained at time resolution

T . The spike times and amplitudes are recovered from the samples y[n].

The formation of the sample moments can also be written in matrix vector form, such

that s = Cy, where y and s represent the vectors of samples and sample moments, re-

spectively, and the (i, j)th entry of C is ci,j . We select αm to ensure that the coefficient

matrix C is well-conditioned. Urigüen et al. demonstrated that E-splines with

αm = π
P+1 (2m− P ) i and cm,n = eαmn (ϕ̂(αm))−1 , (5.16)

enabled relatively stable reconstruction of streams of Diracs [141]. This is the formu-

lation we use in the rest of this chapter. In Fig. 5.4, we display an example of such

an E-spline. We note that the kernel itself is real, as the exponents occur in complex

conjugate pairs.

In order to retrieve the spike times and amplitudes, one needs to recover {bk}Kk=1 and

{uk}Kk=1 from the sample moments. This is a common problem in spectral estimation

theory, for which there are many methods [129]. For example, Prony’s method can be

used to identify the filter h[m] that annihilates s[m], such that

h[m] ∗ s[m] =

K∑
l=0

h[l]s[m− l] = 0. (5.17)

One can show that the filter h[m] that satisfies Eq. (5.17) has roots that correspond

to the parameters uk [38]. Thus, the parameters uk are obtained as the roots of the

annihilating filter. Using Prony’s method it is possible to perfectly retrieve uk, and

thus tk, using the minimum number of measurements, P + 1 = 2K, see Fig. 5.4.

In practice, the samples and, consequently, the sample moments are corrupted by
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noise. In this case, it is preferable to use P ≥ 2K moments in order to increase the

robustness of the parameter estimation procedure. One can also use Prony’s method

with denoising strategies, such as Cadzow denoising [19]. In this thesis, we use the

robustified matrix pencil method [53, 54], which is as effective as Cadzow denoising

with Prony’s method but has the advantage that it is not iterative.

Matrix pencil method

The matrix pencil method identifies uk using the Toeplitz matrix of sample moments:

S =


s[M ] s[M − 1] ... s[0]

s[M + 1] s[M ] ... s[1]
...

...
. . .

...

s[P ] s[P − 1] ... s[P −M ]

 , (5.18)

where M = bP/2c. First, the singular value decomposition of this matrix is computed,

such that S = UΣVH . Here, Σ is diagonal and U and V contain the left and right

singular vectors of S, respectively. A truncated matrix UK is subsequently formed

from the left singular vectors corresponding to the K largest singular values. When

the noise level is sufficiently low, these singular vectors form a basis of the signal

subspace. Defining S0 and S1 as the matrix UK with the first and last row removed,

respectively, the parameters {uk}Kk=1 are identified as the eigenvalues that solve the

following generalised eigenvalue problem

(
S†1S0 − µI

)
v = 0, (5.19)

where S†1 denotes the Moore-Penrose psuedoinverse of S1.

5.3 Spike inference from calcium imaging data

In the following, we outline how the problem of spike inference from calcium imaging

data is mapped to the FRI problem of reconstructing a stream of Diracs. We start by

re-introducing the mathematical model of a neuronal fluorescence signal. For a more

detailed discussion on the origins of the signal model, we refer the reader to Section

2.3.
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5.3. Spike inference from calcium imaging data

When a spike is fired from a neuron, a characteristic pulse of fluorescence is emitted,

such that

p(t) = c
(

1− e−t/τon

)
e−t/τoff1t>0, (5.20)

where c is a normalisation constant that ensures that max {p(t)} = 1 and τon, τoff are

parameters defining the speed of the rise and decay, respectively. The parameters τon

and τoff are largely determined by the calcium indicator that was used to generate the

data (see Section 2.3) and are straightforward to estimate [148, 103, 105, 30]. In the

following, therefore, we consider these to be known parameters. A neuron’s fluorescence

signal is modelled as a stream of pulses at spike times {tk}Kk=1 with amplitudes {ak}Kk=1,

such that

f(t) =
K∑
k=1

akp(t− tk), (5.21)

where we assume the baseline fluorescence has been subtracted. There are many

procedures for removing the baseline component, typically a parametric model is fit to

the signal and subsequently subtracted [30, 106, 44, 104].

For the moment, we consider the number of spikes (the model order) to be known. We

discuss the estimation of this value in Section 5.4.2. The fluorescence signal, therefore,

has 2K unknown parameters — the spike times and amplitudes — and also belongs

to the class of FRI signals. Denoting x(t) =
∑K

k=1 akδ(t− tk), we have

f(t) =

K∑
k=1

akp(t− tk) = p(t) ∗
K∑
k=1

akδ(t− tk) = p(t) ∗ x(t). (5.22)

We assume that the fluorescence signal has been filtered with an exponential repro-

ducing kernel, h(t) = ϕ(− t
T ) and sampled with time resolution T , such that we have

samples

y[n] =
〈
f(t), ϕ

(
t
T − n

)〉
=
〈
x(t) ∗ p(t), ϕ

(
t
T − n

)〉
, (5.23)
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for n ∈ {0, ..., N}. Then, expanding the integrals,

y[n] =

∫
R

[∫
R
x(τ) p(t− τ) dτ

]
ϕ( tT − n) dt (5.24)

=

∫
R

[∫
R
ϕ( tT − n) p(t− τ) dt

]
x(τ) dτ (5.25)

=

∫
R
x(τ)

(
p(−τ) ∗ ϕ( τT − n)

)
dτ (5.26)

=
〈
x(t), p(−t) ∗ ϕ

(
t
T − n

)〉
, (5.27)

where, in Eq. (5.25), we are able to exchange the order of integration as y[n] is finite

(the integrand is bounded and has compact support).

Practical implementation

So far, we have assumed that the fluorescence signal was sampled with an exponential

reproducing kernel. While not impossible, two-photon microscopes do not currently

implement such a sampling kernel. In practice, we have access to f [n] = f(nT )|t=nT .

We compute the samples y[n] through discrete convolution of f [n] and discretised

sampling kernel, such that

y[n] =
∑
m∈Z

f [n]h[n−m]. (5.28)

To enable the theoretical analysis, in the following we use the continuous-time for-

mulation. The discrete implementation of the sampling kernel has been shown to be

effective in a range of setups [88], and has been tested on real data from a range of

indicators with sampling rate ranging from 8Hz [87] to 60Hz [109].

5.3.1 Mapping samples to the FRI setting

In the following proposition, we establish the filtering operations that transform sam-

ples of slow-rise calcium transients into samples of the underlying spike train filtered

with an exponential reproducing kernel. We define a discrete filter, g[n], such that,

when convolved with y[n], we obtain

w[n] = y[n] ∗ g[n] =
〈
x(t), ψ( tT − n)

〉
. (5.29)
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Figure 5.5: Example of spike inference with the FRI algorithm. A fluo-

rescence signal, f(t), is sampled with kernel ϕ(−t/T ) to produce samples y[n]. The

samples are subsequently convolved with a discrete-time filter to produce w[n], from

which the unknown spike times can be retrieved.

The analogous filter was identified under the assumption of pulses with an instanta-

neous rise and exponential decay in [87]. In that case, g[n] had two non-zero coefficients

whose value depended on the decay parameter of the pulse. The resulting kernel, ψ(t),

was a convolution of the original sampling kernel, ϕ(t), and a zero order E-spline.

In our setting, assuming the samples are as in Eq. (5.27), g[n] has three non-zero

coefficients and

ψ(t) = βατ (− t
T ) ∗ ϕ(t), (5.30)

where ατ = {−T/τoff, −T/τoff − T/τon}. The coefficients of both the filter and the

E-spline depend on the pulse parameters, τon and τoff. As the exponential reproduction

property is conserved through convolution [140], ψ(t) is also an exponential reproducing

kernel and, in particular, reproduces the exponentials that are reproduced by ϕ(t).

Although the exponents are conserved, the reproduction coefficients are, in general,

different. We compute the sample moments using the reproduction coefficients of ψ(t),

such that

s[m] =
∑
n∈Z

dm,nw[n]. (5.31)

Then, the methods of Section 5.2.3 can be used to reconstruct the unknown spike times

and amplitudes (see Fig. 5.5).

Proposition 5.1. Samples y[n] are convolved with filter g[n] = τon
T g1[n]∗g2[n], where

g1[n] =δ[n]− exp
(
− T
τoff

)
δ[n− 1], (5.32)

g2[n] =δ[n]− exp
(
− T
τoff
− T

τon

)
δ[n− 1], (5.33)
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and δ[n] indicates the discrete delta function. This produces

w[n] = y[n] ∗ g[n] =
〈
x(t), βατ (−t/T ) ∗ ϕ( tT − n)

〉
, (5.34)

with ατ = {−T/τoff, −T/τoff − T/τon}.

Proof. From the definition of w[n], we have

w[n] =
∑
m∈Z

g[m]y[n−m]. (5.35)

Substituting the value of y[n] from Eq. (5.27) and using the linearity of the inner

product and convolution, w[n] becomes

w[n] =

〈
x(t), p(−t) ∗

∑
m∈Z

g[m]ϕ
(
t
T − (n−m)

)〉
. (5.36)

Representing the filter coefficients in continuous time with g(t) =
∑

m∈Z g[m]δ(t−mT ),

we have

g(−t) ∗ ϕ( tT − n) =

∫
R
g(−τ)ϕ( t−τT − n) dt (5.37)

=

∫
R

∑
m∈Z

g[m]δ(−τ −mT ) ϕ( t−τT − n) dt (5.38)

=
∑
m∈Z

g[m]ϕ( tT − (n−m)). (5.39)

It follows that

w[n] =
〈
x(t), p(−t) ∗ g(−t) ∗ ϕ( tT − n)

〉
. (5.40)

Decomposing the continuous-time Fourier transform of g(−t) into the discrete-time

Fourier transforms of filters g1[n] and g2[n], we have

F {g(−t)} (ω) =
∑
m∈Z

g[m]eiωmT =
τon

T
G1(e−iωT )G2(e−iωT ). (5.41)
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Writing c1 = − 1
τoff

and c2 = − 1
τoff
− 1

τon
, this becomes

F {g(−t)} =
1

T (c1 − c2)

(
1− ec1T eiωT

) (
1− ec2T eiωT

)
(5.42)

=
1

T (c1 − c2)

(
1− ec1T+iωT

) (
1− ec2T+iωT

)
. (5.43)

Noting that

F {p(−t)} (ω) =
c1 − c2

(c1 + iω)(c2 + iω)
, (5.44)

and denoting ατ = {α1, α2} = {c1T, c2T}, we have

F {p(−t) ∗ g(t)} = F {p(−t)}F {g(t)} (5.45)

=
1

T

2∏
m=1

1− ecmT+iωT

cm + iω
(5.46)

= T

2∏
m=1

1− eαm+iωT

−αm − iωT
(5.47)

= F {βατ (−t/T )} . (5.48)

Finally, it follows that

w[n] =
〈
x(t), βατ (− t

T ) ∗ ϕ( tT − n)
〉
. (5.49)

5.3.2 Amplitude estimation

The fluorescence signal has 2K unknown parameters: K spikes times and K ampli-

tudes. Accurate computation of the amplitudes, which are of limited practical interest,

is essential for the procedure that we use to estimate the model order (Section 5.4.2).

To estimate the amplitudes, we use the following matrix-vector formulation of the

fluorescence signal model:
f [0]

f [1]
...

f [N − 1]

 =


p1[0] p2[0] . . . pK [0]

p1[1] p2[1] . . . pK [1]
...

...
. . .

...

p1[N − 1] p2[N − 1] . . . pK [N − 1]




a1

a2

...

aK

 , (5.50)
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where pj [n] = p(t − tj)|t=nT . Writing Eq. (5.50) more compactly as f = Pa, we

estimate the amplitude vector as

â = min
a

∥∥Pa− f
∥∥2

where 1
2A ≤ â ≤ 3

2A. (5.51)

Here, we constrain the entries of â to be within a certain range of physiologically

plausible amplitudes, where A is the expected amplitude of a calcium transient.

5.4 Spike inference from noisy data

In practice, sampling a signal with any acquisition device generates measurement noise.

We model the samples as corrupted by additive noise, such that

ỹ[n] = y[n] + εy[n], (5.52)

where εy[n] are i.i.d. noise samples with distribution N (0, σ2). As discussed in Section

2.4.4, noise generated in fluorescence microscopy is predominantly photon shot noise,

which is typically modelled in this way [147, 105, 106, 44, 127]. As noted earlier, in

practice, we obtain ỹ[n] from the raw signal samples by applying the convolution with

an exponential reproducing kernel in post-processing. The model of the noise in Eq.

(5.52), therefore, only approximately holds.

The filtering operations that are used to map the 2PCI spike inference problem to that

of reconstructing a stream of Diracs cause the noise to become correlated. We have

w̃[n] =
∑
m∈Z

g[m]ỹ[n−m] (5.53)

=
∑
m∈Z

g[m]y[n−m] +
∑
m∈Z

g[m]εy[n−m] (5.54)

= w[n] + εw[n], (5.55)

where the noise samples, εw[n], are still Gaussian but are no longer independent. When

we compute the sample moments, the noise distribution is further altered, such that

s̃[m] =
∑
n∈Z

dm,nw̃[n] =
∑
n∈Z

dm,nw[n] +
∑
n∈Z

dm,nεw[n] = sm + εs[m], (5.56)
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where

εs[m] =
∑
n∈Z

∑
k∈Z

dm,ng[k]εy[n− k]. (5.57)

Finally, the Toeplitz matrix of noisy sample moments, which is analogous to Eq. (5.18),

is denoted S̃ = S + B, where B contains the contributions from the noise.

When the data is not corrupted by noise, the sample moment matrix has rank K.

Determining the number of innovations is therefore straightforward. In the noisy

setting, S̃ is no longer rank-deficient and the estimation of the number of innovations

is more challenging. In Section 5.4.2, we outline the method we use to estimate this

parameter. Additionally, the performance of the methods that infer spike times from

the noisy sample moment matrix are negatively affected by correlated noise. In Section

5.4.1, we discuss a method to whiten the statistics of the noise.

5.4.1 Pre-whitening

The matrix pencil method, which we use to estimate the spike times from the sample

moment matrix, aims to separate the signal subspace from the noise subspace. To do

so, it assumes that the singular vectors corresponding to the largest K singular values

characterise the signal subspace. When the noise is correlated, however, it is likely

that some of the dominant singular vectors characterise trends in the noise rather than

the signal. In this case, some singular vectors corresponding to the signal subspace

will be discarded and the unknown parameters will not all be retrieved correctly.

To mitigate this problem, a pre-whitening transform can be applied to S̃ [141], such

that

S̃′ = S̃W = (S + B) W = SW + BW, (5.58)

where W is designed to ensure that BW contains white noise. Specifically, we require

that

E
[
(BW)H (BW)

]
= I, (5.59)

where I is the identity matrix. This whitening condition is satisfied by W = R
†/2
B ,

where RB = E
[
BHB

]
[41, 142] and the superscript †/2 denotes the square root of the

pseudo inverse. When W is full-rank, the rank of SW is equal to K. It can be shown

that the same parameters that satisfy the generalised eigenvalue problem in Eq. (5.19)
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Figure 5.6: Model order estimation procedure. For a range of prospective

model orders, the unknown spike times and amplitudes are estimated and the estima-

tion error is computed between the data samples and the resynthesised fluorescence

signal. The selected model order, Ksharp, is the one that causes the sharpest decrease

in estimation error and is in the vicinity of Kmin, the order that achieves minimum

error. In A, these values are indicated on the estimation error curve along with the

true model order, K. In B, we plot the raw data and the resynthesised fluorescence

signals for the estimates with Kmin and Ksharp spikes.

for S also do so for SW [142]. The pre-whitened matrix, S̃′, can therefore be used to

retrieve the unknown parameters.

To calculate W, we note that εs = DGεy, with

εs =


d0,0 d0,1 ... d0,N−3

d1,0 d1,1 ... d1,N−3

...
...

. . .
...

dP,0 dP,1 ... dP,N−3




g[0] g[1] g[2] ... 0

0 g[0] g[1] ... 0
...

...
...

. . .
...

0 0 0 ... g[2]




εy[0]

εy[1]

...

εy[N − 1]

 . (5.60)

Writing A = DG, the (k, l)th entry of RB is [142]

[RB]k,l = σ2
〈
A[M−k:P−k,:], A[M−l:P−l,:],

〉
F
, (5.61)

where A[a:b,:] denotes the submatrix of A consisting of rows a to b and 〈·, ·〉F denotes

the Frobenius inner product.
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5.4.2 Model order estimation

To estimate the model order, K, we adapt the method of Doğan et al. [36] to our

setting. For a range of prospective model orders, J ∈ {1, ..., Jmax}, we estimate the

unknown parameters of the spike train, {t̂k, âk}Jk=1. We set Jmax = min
(

3
2 λNT,

P
2

)
,

where λ(Hz) is the expected neuronal firing rate. We then compute the estimation

error between the fluorescence signal samples, f [n], and the samples resynthesised

from the parameter estimates, f̂J [n] = f̂J(t)|t=nT where

fJ(t) =

J∑
k=1

âkp(t− t̂k). (5.62)

The estimation error is computed as

ET (J) =
∥∥f̂J [n]− f [n]

∥∥2
. (5.63)

The estimation error exhibits a U-curve shape, which indicates the transition from

underfitting (too few spikes) to overfitting (too many), see Fig. 5.6A. The optimal

fitting region lies between these two regions. The fitting level is subsequently defined

as the minimum estimation error,

σ̂2 = min
J
ET (J). (5.64)

Prospective estimates of the model order are narrowed down to those in the vicinity

of the model order that minimises the estimation error, such that

N(σ̂2) =
{
J : 1

2 σ̂
2 ≤ ET (J) ≤ 3

2 σ̂
2
}
. (5.65)

Ideally, this region encompasses those in between the underfitting and overfitting re-

gions. Finally, the estimate of the model order, K̂, is the order in N(σ̂2) that causes

the largest drop in the estimation error. This is a more conservative estimate since

the model order that yields the minimum estimation error tends to overfit the data,

adding spikes to compensate for noise (Fig. 5.6B).

Whereas Doğan et al. compute the estimation error from the sample moments, we

use the raw signal samples. This is because we prefer to perform the model fitting in

the native domain of the spike inference problem, rather than in the FRI domain. We

note that the amplitude fitting procedure (Section 5.3.2) includes an upper and lower
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Algorithm 1: Procedure by which spike times and amplitudes are estimated
from a noisy fluorescence signal.

Input: ỹ[n] for n ∈ {0, 1, ..., N − 1}
Output: t̂k and âk for k ∈ {1, 2, ..., K̂}

1 Apply discrete filter to samples: w̃[n] = ỹ[n] ∗ g[n].
2 Compute sample moments: s̃[m] =

∑
n dm,nw̃[n].

3 Compute matrix S̃ from sample moments.

4 Perform pre-whitening: S̃′ = S̃W.
5 for J ∈ {1, ..., Jmax} do

6 Use matrix pencil method to estimate {t̂j}Jj=1 from S̃′.

7 Estimate {âj}Jj=1 by least squares from samples and signal model.

8 Compute estimation error.

9 end

10 Select model order, K̂ from {1, ..., Jmax}, by assessing estimation error.

11 Retrieve corresponding estimates, {t̂k, âk}K̂k=1, from Steps 6 and 7 with J = K̂.

bound on the amplitudes that are obtained from the calcium transient model. Without

a lower bound, the estimation error would be likely to be minimised by overfitting with

a large number of spikes with relatively small amplitudes. The amplitude lower bound

implicitly acts as a penalty on the number of spikes, meaning that spikes are not

typically inserted where there is a high degree of noise or fluctuations in the baseline

fluorescence.

5.4.3 Spike inference algorithm

In Algorithm 1, we summarise the procedure with which spikes are detected from

calcium imaging data. When we detect spikes from long streams of data, we use the

sliding window approach of Oñativia et al. [87], which we describe briefly here. In this

approach, the fluorescence signal has length N samples but only Nwin < N consecutive

samples are analysed at one time. Firstly, the unknown parameters are estimated in

the stretch of fluorescence signal defined by samples {y[0], y[1], ..., y[Nwin]}. Then, the

sliding window is advanced one sample, so that the parameters are estimated for the

stretch corresponding to {y[1], y[N ], ..., y[Nwin + 1]}. This process is repeated until

the sliding window reaches the end of the data. A histogram is then computed of the

estimates from all the sliding windows. Typically, estimates that correspond to true

spikes are detected consistently in numerous sliding windows. The final spike locations

are then estimated from the peaks of the histogram.

116



5.5. Experimental methods

Figure 5.7: Example of simulated data. We simulate calcium transients with

pulse shape corresponding to the calcium indicator Cal-520 (A). In B, we plot examples

of fluorescence signals produced from the same underlying spike train at SNRs equal

to 5 (dB), 10 (dB) and 15 (dB).

5.5 Experimental methods

In Section 5.6, we demonstrate the performance of the spike inference algorithm on real

and simulated data. The real data, which was described in detail in Section 4.5.3, was

collected by Dr T. Abrahamsson and Dr P. J. Sjöström. In the following, we present

the procedures used to generate the simulated data.

5.5.1 Simulated data

The spike trains are generated from a Poisson distribution with varying rate. We

generate the fluorescence pulse with parameters corresponding to the commonly-used

synthetic indicator Cal-520 [133], see Fig. 5.7. As is typical for synthetic indicators,

the amplitude of Cal-520 pulses decrease as the local spike rate increases. In the

simulated data, we compute the amplitude of a spike based on the number of spikes in

the previous 250ms time bin, see Table 5.1. This procedure was derived from trends

observed in real data by Tada et al. [133]. After the spike train has been convolved

with the pulse to generate the fluorescence signal, white Gaussian noise is added to

the discrete samples, such that f̃ [n] = f [n] + ε[n], where f [n] is the fluorescence signal

sampled at rate 16Hz and ε[n] are samples of white Gaussian noise.

We vary the SNR of the fluorescence signals in order to fully characterise algorithm

performance. We use the decibel format of SNR, where SNR = 10 log10 Psig/Pnoise

and Psig and Pnoise are the powers of the noiseless fluorescence signal samples, f [n],
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Number of spikes 0 1 2 3 4

Amplitude 0.27 0.18 0.18 0.14 0.1

Table 5.1: Amplitude of simulated calcium transients. The amplitude of

simulated spikes varies with the local spike rate. On real data, it has been observed

that amplitudes of calcium transients generated by synthetic indicators decrease as

the local spike rate increases [133]. In our simulations, we compute the amplitude of

a spike based on the number of spikes in the previous 250ms time bin.

and the noise samples, ε[n], respectively. We calibrate the standard deviation of the

noise that attains a given SNR on a fluorescence signal containing one spike at t1 = 0

observed over the range [0, 1]s (as in Fig. 5.7A). This standard deviation is then used

to attain that SNR in all simulations. This prevents noise power at a given SNR from

varying with the spike rate. In Fig. 5.7B, we show an example of fluorescence signals

at different noise levels.

5.6 Results

5.6.1 Comparison with instantaneous-rise algorithm

On simulated data, we examined the temporal error between the true spike times

and spike times inferred by the FRI algorithm. The fluorescence signals, which lasted

10s and contained 7 spikes, were generated at three noise levels: 5 dB, 10 dB and

15 dB. Fluorescence signals were generated over 1000 realisations of noise at each

SNR. Spikes were detected using the FRI algorithm with both the instantaneous-

rise and slow-rise models. The only difference between our implementation of these

versions of the algorithm is that the coefficients of the filter, g[n], and the entries of the

pre-whitening matrix, W, differ in the slow-rise and instantaneous-rise case. As the

simulated fluorescence signals stem from a slow-rise pulse model, the instantaneous-rise

version of the algorithm suffers from model mismatch in this setting. In this example,

as the model order estimation procedure of both implementations are identical, we

assume that K is known. This allows us to restrict the comparison to the temporal

error of each implementation of the algorithm.

In Fig. 5.8, we plot the distribution of the temporal error between estimates and true

spikes as a fraction of the sampling period, which is T = 1/16. The instantaneous-
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Figure 5.8: Comparison of the temporal error of the FRI algorithm with

instantaneous-rise and slow-rise models. The fluorescence signals, which are

simulated over 10s and contain 7 spikes, were generated at three noise levels: 5 dB,

10 dB and 15 dB. We plot the temporal error between estimates and true spikes (each

estimate is paired with only one true spike) as a fraction of the sample width, T .

The distribution of temporal error is plotted over 1000 realisations of noise at each

SNR. The instantaneous-rise model exhibits an average bias of 0.33 samples, due to

the mismatch between the algorithm model and the data.

rise algorithm exhibits estimation bias due to mismatch between the algorithm model

and the data. For data with SNR equal to 15 dB, 10 dB and 5 dB, the average

estimation bias is 14s, 21ms and 22ms, respectively. In contrast, using the correct pulse

model enables average estimation bias of 1ms in all cases. Using the slow-rise model,

99.3%, 89.2% and 62.7% of estimates, respectively, have super-resolution precision, i.e.

precision above the sample width. While using the correct pulse model seems to have

rectified the estimation bias, it does not seem to have affected the variability in the

estimates. The standard deviations of the temporal error are 10ms, 20ms, and 40ms,

respectively, for both the slow and instantaneous-rise algorithm. We conclude that,

using the slow-rise pulse model, which is a more accurate representation of a calcium

transient, enables detection of spikes with higher temporal precision.

5.6.2 Model order estimation

We tested the accuracy of the model order estimation procedure on simulated data.

Specifically, we simulated fluorescence signals over 8s with varying numbers of spikes

and SNRs. We used the procedure presented in Section 5.4.2 to estimate the number of

spikes in the trace. In Fig. 5.9, we display the distribution of the discrepancy between

the true number of spikes, K, and the estimated number, K̂. At each noise level and
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Figure 5.9: Accuracy of the model order estimation procedure on simulated

data. A fluorescence signal was simulated over 8s with varying numbers of spikes,

K, and SNRs. At each combination of K and SNR, 100 realisations of fluorescence

signals were generated. In A, B and C, we display the distribution of the model order

estimation error, K̂ − K, under each set of conditions. In D, E and F, we plot an

example true spike train, x(t), and estimated spike train, x̂(t), at SNR equal to 10

(dB) for each value of K.

number of true spikes, the procedure is repeated over 100 realisations of noise and

spike trains.

The estimated model order is selected as the one that causes the sharpest decrease in

the estimation error, whilst being in the vicinity of the model order that minimises

the estimation error. The estimated value is largely accurate; when SNR is sufficiently

high, the estimated model order is predominantly equal to or one less than the true

value. However, the estimate is generally overly conservative — the number of spikes

is more commonly underestimated than overestimated. Furthermore, as the number of

spikes in the time period increases, the accuracy decreases. This can be attributed to

two factors. Firstly, as spike rates increase, the amplitudes of spikes decrease. These

lower amplitude spikes are harder to detect above the noise. Secondly, as the spike

rate increases, it is more likely to have closely neighbouring spikes. As is illustrated in

Fig. 5.9, these are sometimes identified by the algorithm as a single, higher-amplitude

spike.
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5.6.3 Comparison with state of the art

On imaging data of the mouse visual cortex acquired at a frame rate of 13 Hz, we

compare the performance of the FRI algorithm and a state of the art, non-negative

deconvolution algorithm [44]. Whereas the FRI algorithm uses a continuous time

formulation of the fluorescence signal, the deconvolution algorithm models the signal

as an auto-regressive process. At each sample, the fluorescence intensity is assumed

to depend upon previous intensity values and the (unknown) number of spikes fired in

that sample. From the data and signal model, a spiking activity vector is inferred, in

which each entry represents the probability that a spike was fired in a given sample.

Spike inference is performed by solving an isotonic regression problem under sparsity

constraints on the spiking activity vector. By subsequently applying a threshold, the

spiking probability is converted into the number of spikes per sample.

The dataset contains fluorescence signals from 8 cells with ground truth spiking activ-

ity, some of which is plotted in Fig. 4.9. We used one training example per cell with

which to fit the parameters for each algorithm. In the case of the FRI algorithm, we

fitted the expected amplitude, A, and rise and decay parameters, τon and τoff. For the

deconvolution algorithm, we identified the most suitable threshold, which is related

to the calcium transient amplitude, and the optimal lag of the estimates, which is

related to the rise-time. Then, we applied the algorithms to the remaining 75 traces

in the dataset, see Fig. 5.10. We observed that, on average, the FRI algorithm out-

performed the deconvolution algorithm; the algorithms achieved mean CosMIC scores

of 0.53 and 0.47, respectively. We also investigated the source of errors by computing

CosMIC’s ancestor metrics, PCosMIC and RCosMIC, which are analogous to the preci-

sion and recall. On average, the FRI algorithm was awarded higher scores by both of

these metrics (Fig. 5.10B). The lower scores of the deconvolution algorithm are likely

due to its quantisation of the temporal interval. As spikes are estimated per sample,

the temporal precision of the algorithm is limited by the bin width. Deconvolution

algorithms may perform relatively better on higher sampling rate or noisier data, on

which precision above the bin width is unlikely.
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Figure 5.10: Algorithm comparison on real data. On a mouse in vitro imaging

dataset with ground truth spiking activity, we compare the performance of the FRI

algorithm and a state of the art non-negative deconvolution algorithm. In A, we display

the distribution of each algorithm’s respective CosMIC scores over all 75 traces. In B,

we display the distribution of CosMIC’s ancestor metric scores (PCosMIC and RCosMIC)

over all 75 traces.

5.7 Summary

We have presented an extension to the FRI framework for spike inference from calcium

imaging data. In the original framework, calcium transients were modelled with an

instantaneous-rise and exponential decay. While this is suitable for calcium indicators

with fast rises and low sampling rate data, in other cases it can lead to estimation

bias due to model mismatch. We have extended the framework to encompass calcium

indicators that produce slow-rise pulses of fluorescence. On simulated data, we demon-

strated that this increases the temporal precision with which spikes are detected. To

map the fluorescence signal to the FRI setting, we apply a discrete filter to the samples.

This, in turn, alters the statistics of the noise. As the parameter estimation methods

we use are better suited to white noise, in the modified algorithm, we implement a

procedure to whiten the statistics of the noise. On real data from slices of the mouse

visual cortex, we demonstrate that the updated algorithm outperforms a state of the

art deconvolution algorithm.
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Conclusion

6.1 Summary

In this thesis, we considered the problem of detecting cells and cellular activity from

two-photon calcium imaging data. Firstly, we presented an algorithm for detecting the

locations of cells within a video. Next, we considered the problem of spike inference,

in which the timing of spikes are inferred from a cell’s fluorescence signal. Our first

contribution in this area was to develop a spike inference metric, which compares the

similarity between inferred and ground truth spike trains. Finally, we presented a spike

inference algorithm, whose accuracy we assessed with the aforementioned metric.

In Chapter 3, we presented an algorithm, which we refer to as ABLE, for detecting the

location of cells within an imaging video. In our framework, multiple coupled active

contours evolve, guided by a model-based cost function, to identify cell boundaries.

An active contour seeks to partition a local region into two subregions, a cell interior

and exterior, in which all pixels have maximally ‘similar’ time courses. This simple,

local model allows contours to be evolved predominantly independently. ABLE is

a flexible method: we include no priors on a region’s morphology or stereotypical

temporal activity. Due to this versatility, ABLE segmented cells with varying size and

shape from a mouse in vivo dataset and both active and inactive cells from brain slices.

Furthermore, we demonstrated its ability to detect the true boundaries of overlapping

cells on both real and simulated data.

In Chapter 4, we presented a metric, referred to as CosMIC, for comparing the similar-

ity between inferred spikes and ground truth spiking activity. Rather than operating
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on the true and estimated spike trains directly, the proposed metric assesses the simi-

larity of the pulse trains obtained from convolution of the spike trains with a smoothing

pulse. The pulse width is derived from the Cramér-Rao bound (CRB), a lower bound

on the variance of any unbiased estimator, which, in turn, is computed from the statis-

tics of the imaging data. As such, spike trains receive a score that is implicitly adjusted

for the difficulty of the spike inference problem. The final metric score is the size of the

commonalities of the pulse trains as a fraction of their average size. Viewed through

the lens of fuzzy set theory, CosMIC resembles a continuous Sørensen-Dice coefficient

– an index commonly used to assess the similarity of discrete, presence/absence data.

Unlike the spike train correlation, which appears to reward overfitting, the proposed

metric score is maximised when the correct number of spikes have been detected. Fur-

thermore, we show that CosMIC is more sensitive to the temporal precision of estimates

than either the success rate or the spike train correlation.

The problem of spike inference can be considered to be one of recovering a finite num-

ber of unknown parameters from a noisy signal with known parametric structure. This

is because neuronal fluorescence signals belong to the class of signals with finite rate

of innovation (FRI). In Chapter 5, we extended the FRI framework for spike infer-

ence from calcium imaging data. In the original framework, calcium transients were

modelled with an instantaneous-rise and exponential decay. While this is suitable for

calcium indicators with fast rises and low sampling rate data, in other cases it can lead

to estimation bias due to model mismatch. We extended the framework to encompass

calcium indicators that produce slow-rise pulses of fluorescence. On simulated data,

we demonstrated that this increases the temporal precision with which spikes are de-

tected. We also introduced procedures to improve the robustness of the algorithm to

noise. On real data from slices of the mouse visual cortex, we demonstrated that the

updated algorithm outperforms a state of the art deconvolution algorithm.

6.2 Future research

We conclude this chapter with a discussion of potential directions for future research.

� In our proposed segmentation algorithm, an active contour moves toward a pixel

if that pixel’s time course is more similar to the average time course of the

cell interior than the narrowband. As techniques for in vivo imaging advance
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(for a review, see [98]), the length of imaging videos, and thus the length of

the corresponding activity vectors, are consistently increasing. While we have

demonstrated that ABLE’s runtime is virtually unaffected by video length, this

does not hold when a video is too large to load into the workstation. It may

therefore become necessary to consider techniques by which the temporal dimen-

sion of the video can be reduced prior to segmentation. For example, Pachitariu

et al. perform a singular value decomposition (SVD) [94] and Spaen et al. [126]

represent each pixel in ‘correlation space’ by a vector of correlation coefficients.

Rather than using a generic dimensionality reduction technique such as the SVD,

it may be beneficial to develop a bespoke technique, which considers both the

known parametric structure of the data and the manner in which temporal activ-

ity vectors are compared in our segmentation algorithm. This could both extend

the range of videos to which ABLE can be applied and, potentially, increase the

segmentation accuracy.

� An active contour in our proposed segmentation algorithm is advanced using the

level set method. One of the virtues of the level set method is that it is relatively

straightforward to extend to higher spatial dimensions. For example, Dufour et

al. developed a segmentation algorithm for biological imaging data with three

spatial dimensions and one temporal dimension [40], which is closely related to

Chan and Vese’s active contours without edges [24]. With the advent of widefield

methods such as lightsheet microscopy [1], it is now possible to collect (3+1)-D

calcium imaging data. Accordingly, future work may focus on the extension of

ABLE to higher spatial dimensions. When extending the framework, it may

be useful to consider the impact of photon scattering, which affects widefield

microscopy to a greater extent than two-photon microscopy, due to the less-

localised excitation of fluorescence.

� Due to the manner in which calcium ions interact with calcium indicators, the

amplitude of calcium transients from one neuron are not constant. Rather, they

vary with the local spike rate of the neuron. At high spike rates, calcium transient

amplitudes can change substantially (see, for example [26]), which can negatively

affect spike detection performance. In future, it could thus be beneficial to incor-

porate a model of the variation in spike amplitudes into the FRI spike detection

algorithm. In the FRI algorithm, locations of spikes are inferred sequentially

using a sliding window that advances through the data. It may therefore be

beneficial to use the knowledge of the number of spikes estimated in previous
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windows, to obtain a better estimate of calcium transient amplitudes and, con-

sequently, the number and location of spikes.
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Appendix A.

ABLE: supplemental analytical results

A.1 External velocity

In Section 3.4.2, we presented the external energy for M ≥ 1 cells. In the following,

we compute the external velocity of the mth cell. We recall that Ω̄ represents the

local spatial domain, which is equal to the union of all contour interiors and their

narrowbands. Given two sets A ⊂ Ω̄ and B ⊂ Ω̄, we can decompose this as

Ω̄ = (A ∩B) ∪ (Ac ∩B) ∪ (A ∩Bc) ∪ (Ac ∩Bc) , (A.1)

where Ac denotes the complement of A with respect to Ω̄. In particular, when A

represents the interior of the mth cell, A = Ωin,m, and B represents the union of the

interiors of all other cells, B =
⋃
j 6=m Ωin,j , we have

Ω̄ =

Ωin,m ∩
⋃
j 6=m

Ωin,j

 ∪
(Ωin,m

)c ∩ ⋃
j 6=m

Ωin,j

 (A.2)

∪

Ωin,m ∩
⋂
j 6=m

(Ωin,j)c

 ∪
(Ωin,m

)c ∩ ⋂
j 6=m

(Ωin,j)c

 (A.3)

= S1 ∪ S2 ∪ S3 ∪ S4, (A.4)

where we use De Morgan’s laws to convert the complement of the union of sets into

the intersection of complements and, in the final line, we introduce a compact notation

for the sets. Writing Cm(x) as the function which reports the cell interiors that are

present at x ∈ Ω excluding the mth cell, we can decompose the integral in the external
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energy over the four disjoint sets, such that

Eext(φ1, φ2, ..., φM ) =

∫
outside

D
(
I(x), fout

)
dx +

∫
inside

D
(
I(x),

∑
m∈C(x)

f in,m
)
dx (A.5)

=

∫
S1

D
(
I(x), f in,m +

∑
j∈Cm(x)

f in,j
)
dx (A.6)

+

∫
S2

D
(
I(x),

∑
j∈Cm(x)

f in,j
)
dx (A.7)

+

∫
S3

D
(
I(x), f in,m

)
dx +

∫
S4

D
(
I(x), fout

)
dx (A.8)

=

∫
S1

c1(x)dx +

∫
S2

c2(x)dx +

∫
S3

c3(x)dx +

∫
S4

c4(x)dx, (A.9)

where, in the final step, we introduce a compact notation for the integrands. Using

the Heaviside function of the LSFs as an implicit indicator function, we have

Eext(φ1, φ2, ..., φM ) =

∫
Ω̄

c1(x)H(φm)
∏

j∈Cm(x)

H(φj)
∏

k 6∈Cm(x)

(1−H(φk)) (A.10)

+c2(x)(1−H(φm))
∏

j∈Cm(x)

H(φj)
∏

k 6∈Cm(x)

(1−H(φk)) (A.11)

+c3(x)H(φm)
∏
j 6=m

(1−H(φj)) (A.12)

+c4(x)(1−H(φm))
∏
j 6=m

(1−H(φj))dx. (A.13)

As in Section 3.3.1, to obtain the derivative we substitute the regularised version of the

Heaviside function and differentiate with respect to φm. Then, the external velocity is

∂Eext

∂φm
(x) =δε(φm(x)) (c1(x)− c2(x)))

∏
j∈Cm(x)

H(φj)
∏

k 6∈Cm(x)

(1−H(φk)) (A.14)

+δε(φm(x)) (c3(x)− c4(x)))
∏
j 6=m

(1−H(φj)). (A.15)

Substituting back in the values of ci(x), the external velocity is equal to

∂Eext

∂φm
(x) = δε(φm(x))

(
D
(
I(x), f in,m

)
−D

(
I(x), fout

))
, (A.16)
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when x is not in another cell and

∂Eext

∂φm
(x) = δε(φm(x))

D(I(x), f in,m +
∑

j∈Cm(x)

f in,j
)
−D

(
I(x),

∑
j∈Cm(x)

f in,j
)
(A.17)

otherwise.

A.2 Euclidean dissimilarity metric

In this section, we consider the external velocity of an active contour driven by the

Euclidean dissimilarity metric. From Eq. (3.12), we have

∂Eext

∂φ
(x) =

δε(φ(x))

m

(
‖I(x)− f in‖2 − ‖I(x)− fout‖2

)
, (A.18)

where I(x) is the time course of pixel x, and f in and fout are the average time courses

from the contour interior and exterior, respectively. We model the time courses as the

sum of a stationary baseline component, the resting fluorescence, and a time-varying

activity component, which is zero in the absence of activity, such that

fout = bout + aout, f in = bin + ain and I(x) = b + a. (A.19)

We have

‖I(x)− f in‖2 = ‖b + a−
(
bin + ain

)
‖2 (A.20)

= ‖
(
b− bin

)
+
(
a− ain

)
‖2 (A.21)

= ‖b− bin‖2 − 2〈b− bin, a− ain〉+ ‖a− ain‖2. (A.22)

Similarly, we have

‖I(x)− fout‖2 = ‖b− bout‖2 − 2〈b− bout,a− aout〉+ ‖a− aout‖2. (A.23)

When cellular activity is correlated with the background and the cell’s baseline fluo-

rescence is distinguishable above the background, the elements of a− ain and a− aout

are small compared to b−bin and b−bout. Then, we can approximate the Euclidean
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distance as

‖I(x)− f in‖2 ≈ ‖b− bin‖2 and ‖I(x)− fout‖2 ≈ ‖b− bout‖2. (A.24)

In this case, the Euclidean distance in Eq. (A.18) is driven by the discrepancies in

baseline intensity rather than the time-varying activity, such that

∂Eext

∂φ
(x) ≈ δε(φ(x))

m

(
‖b− bin‖2 − ‖b− bout‖2

)
. (A.25)
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CosMIC: proof of analytical results

In this section we provide proofs of some analytical results presented in Section 4.

Proposition B.1 presents a closed-form expression for the score of an estimate of a

single spike. We see that, for estimates within the precision of the pulse width, CosMIC

monotonically decreases as estimates are further from the true spike. The result of B.1

is then used to establish the pulse width that, on average, awards a score of 0.8 to an

estimate at the precision of the CRB. This result and the corresponding derivation are

presented in Proposition B.2. To improve the readability of the formulae, we denote

the metric score of sets of single spikes S = {t1} and Ŝ = {t̂1} as m(t1, t̂1) := M(S, Ŝ).

Finally, in Propositions B.3 and B.4, we derive an alternative expression for the metric

score when estimates exactly detect the location of true spikes, but the correct number

of spikes is not detected.

Proposition B.1. Let there be a single ground truth spike at t1 and an estimate,

t̂1 = t1 + u. The metric score is

m (t1, t1 + u) =


(
|u|
2ε − 1

)2
if |u| < 2ε

0 otherwise,
(B.1)

where ε is half the width of the pulse.

Proof. Without loss of generality, we let the true spike location be at t1 = 0, as the

metric score depends on the relative rather than absolute locations of the estimated
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and ground truth spikes. From Eq. (4.25), we have

m(0, u) = 2
‖min(qε(t), qε(t− u))‖1
‖qε(t)‖1 + ‖qε(t− u)‖1

. (B.2)

When |u| > 2ε, the pulses do not overlap and, consequently, the numerator is equal to

0. Therefore, the metric score is zero for all |u| > 2ε. For |u| ≤ 2ε, we write

m(0, u) =
1

ε

(∫
A
qε(t) dt+

∫
B
qε(t− u) dt

)
, (B.3)

which follows from ‖qε‖ = ε, A = {t ∈ R : qε(t) < qε(t− u)} and B = {t ∈ R : qε(t) ≥
qε(t − u)}. From the change of variables v = t + u, we see that m(0, u) = m(0,−u).

As M is even in the second argument, we must only evaluate m(0, u) for 0 < u < 2ε.

To identify the support of A and B, we must identify the value of t at which qε(t) =

qε(t− u). We have

qε(t) = qε(t− u)⇔ 1− |t|
ε

= 1− |t− u|
ε
⇔ |t| = |t− u|. (B.4)

For 0 < u < 2ε, the relevant intersection point is at t = u/2. Omitting the range of

integration at which the integrand is zero, Eq. (B.3) becomes

m(0, u) =
1

ε

(∫ ε

u/2
qε(t) dt+

∫ u/2

u−ε
qε(t− u) dt

)
(B.5)

=
1

ε

(∫ ε

u/2
qε(t) dt+

∫ −u/2
−ε

qε(v) dv

)
(B.6)

=
2

ε

∫ ε

u/2
qε(t) dt, (B.7)

which follows from the change of variables v = t+ u and the symmetry of qε(t) about

0. Evaluating the integral, we obtain m(0, u) = (|u|/2ε− 1)2 for |u| < 2ε.

Proposition B.2. Let t1 denote the location of the true spike. The spike estimate,

modelled with the random variable U ∼ N
(
t1, σ

2
CRB

)
, is normally distributed about

the true spike at the precision of the CRB. We denote β = σCRB/w, where w = 2ε is

the pulse width. Then, the expectation of the metric score is 0.8 if β satisfies

0.4 = (Φ(1/β)− 0.5)
(
β2 + 1

)
+

β√
2π

(
exp(−1/2β2)− 2

)
, (B.8)
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where Φ denotes the cumulative distribution function of the standard normal distribu-

tion.

Proof. Without loss of generality, we consider the case where t1 = 0. Denoting fU (u)

as the PDF of U , we have

EU [m(0, U)] =

∫
R
m(0, u)fU (u)du (B.9)

= 2

∫ w

0

( u
w
− 1
)2
fU (u)du (B.10)

=
2

w2

∫ w

0
u2fU (u)du− 4

w

∫ w

0
ufU (u)du+ 2

∫ w

0
fU (u)du (B.11)

=
2

w2
I1 −

4

w
I2 + 2I3, (B.12)

where Eq. (B.10) follows from Proposition B.1. Applying integration by parts to I1,

we obtain

I1 = σ2
CRBP (U ∈ [0, w))− σ2

CRBfU (w)w. (B.13)

The remaining integrals are I2 = −σ2
CRB(fU (w) − fU (0)) and I3 = P (U ∈ [0, w)),

respectively. Putting the integrals together yields

E [m(0, U)] = 2

[
P (U ∈ [0, w))

(
σ2

CRB

w2
+ 1

)
+
σ2

CRB

w
(fU (w)− 2fU (0))

]
. (B.14)

Writing β = σCRB/w and expanding the distribution function of U , we have

EU [m(0, U)] = 2

(
(Φ(1/β)− 0.5)

(
β2 + 1

)
+

β√
2π

(
exp(−1/2β2)− 2

))
. (B.15)

Proposition B.3. Let S be a set of K true spikes and Ŝ a set of K̂ estimates. If

Ŝ contains a subset of the ground truth spike times with the exception of R missing

spikes and no extras, such that K̂ = K −R with 0 < R ≤ K, then

M(S, Ŝ) = 1− 1

2K/R− 1
. (B.16)

Proof. We denote with xr(t) and r(t) the spike train and pulse train, respectively, of

the spikes present in S but missing from Ŝ. Due to the distributivity of the convolution
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operation, we have

µ̂(t) = x̂(t) ∗ qε(t) = (x(t)− xr(t)) ∗ qε(t) = µ(t)− r(t).

From the metric expression in Eq. (4.32), the metric score becomes

M(S, Ŝ) = 1− ‖µ− µ̂‖1
‖µ‖1 + ‖µ̂‖1

(B.17)

= 1− ‖µ− (µ− r)‖1
‖µ‖1 + ‖µ− r‖1

(B.18)

= 1− R‖qε‖1
K‖qε‖1 + (K −R) ‖qε‖1

(B.19)

= 1− 1

2K/R− 1
. (B.20)

Proposition B.4. Let S be set of K spikes and Ŝ a set of K̂ estimates containing all

the ground truth spikes together with R > 0 extras, such that K̂ = K +R. Then

M(S, Ŝ) =
1

1 +R/2K
. (B.21)

Proof. We denote with xr(t) and r(t) the spike train and pulse train, respectively, of

the spikes present in Ŝ but missing from S. Due to the distributivity of the convolution

operator, the estimated pulse train can be written

µ̂(t) = x̂(t) ∗ qε(t) = (x(t) + xr(t)) ∗ qε(t) = µ(t) + r(t).

The metric score is

M(S, Ŝ) =
2‖min(µ, µ̂)‖1
‖µ‖1 + ‖µ̂‖1

(B.22)

=
2‖min(µ, µ+ r)‖1
‖µ‖1 + ‖µ+ r‖1

(B.23)

=
2‖µ‖1

2‖µ‖1 + ‖r‖1
(B.24)

=
1

1 + ‖r‖1/2‖µ‖1
, (B.25)

where the penultimate line follows from the non-negativity of µ and r. As ‖µ‖1 =
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K‖qε‖1 and ‖r‖1 = R‖qε‖1, it follows that

M(S, Ŝ) =
1

1 +R/2K
. (B.26)
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[73] H. Lütcke, F. Gerhard, F. Zenke, W. Gerstner, and F. Helmchen. Inference

of neuronal network spike dynamics and topology from calcium imaging data.

Frontiers in Neural Circuits, 7:201, 2013.

[74] R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape modeling with front propaga-

tion: a level set approach. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 17(2):158–175, 1995.

[75] S. Mallat. A wavelet tour of signal processing: the sparse way. Academic press,

third edition, 2009.

[76] R. Maruyama, K. Maeda, H. Moroda, I. Kato, M. Inoue, H. Miyakawa, and

T. Aonishi. Detecting cells using non-negative matrix factorization on calcium

imaging data. Neural Networks, 55:11 –19, 2014.

[77] R. McAulay and E. Hofstetter. Barankin bounds on parameter estimation. IEEE

Transactions on Information Theory, 17(6):669–676, 1971.

[78] A. Miri, K. Daie, R. D. Burdine, E. Aksay, and D. W. Tank. Regression-based

identification of behavior-encoding neurons during large-scale optical imaging of

neural activity at cellular resolution. Journal of Neurophysiology, 105(2):964–

980, 2011.

[79] A. Mitchie, R. Feghali, and A. Mansouri. Motion tracking as a spatio-temporal

motion boundary detection. Robotics and autonomous systems, 43:39–50, 2003.

[80] A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and

R. Y. Tsien. Fluorescent indicators for Ca2+ based on green fluorescent proteins

and calmodulin. Nature, 388:882–887, 1997.

[81] V. B. Mountcastle. An organizing principle for cerebral function: The unit model

and the distributed system. In G. M. Edelman and V. V. Mountcastle, editors,

The Mindful Brain, pages 7–50. MIT Press, Cambridge, MA, 1978.

[82] E. A. Mukamel, A. Nimmerjahn, and M. J. Schnitzer. Automated analysis of

cellular signals from large-scale calcium imaging data. Neuron, 63(6):747–760,

2009.

144



Bibliography

[83] D. Mumford and J. Shah. Optimal approximations by piecewise smooth func-

tions and associated variational problems. Communications on Pure and Applied

Mathematics, 42(5):577–685, 1989.

[84] J. Murray-Bruce and P. L. Dragotti. Estimating localized sources of diffusion

fields using spatiotemporal sensor measurements. IEEE Transactions on Signal

Processing, 63(12):3018–3031, 2015.

[85] http://neurofinder.codeneuro.org/. Accessed: 2018-01-04.

[86] K. Ohki, S. Chung, P. Kara, M. H ubener, T. Bonhoeffer, and R. C. Reid. Highly

ordered arrangement of single neurons in orientation pinwheels. Nature, 442:925–

928, 2006.
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