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Abstract

The success of many image restoration algorithms is often due to their ability to sparsely describe

the original signal. Many sparse promoting transforms exist, including wavelets, the so called

‘lets’ family of transforms and more recent non-local learned transforms. The first part of this

thesis reviews sparse approximation theory, particularly in relation to 2-D piecewise polynomial

signals. We also show the connection between this theory and current state of the art algorithms

that cover the following image restoration and enhancement applications: denoising, deconvolution,

interpolation and multi-view super resolution.

In [63], Shukla et al. proposed a compression algorithm, based on a sparse quadtree decompo-

sition model, which could optimally represent piecewise polynomial images. In the second part of

this thesis we adapt this model to image restoration by changing the rate-distortion penalty to a

description-length penalty. Moreover, one of the major drawbacks of this type of approximation is

the computational complexity required to find a suitable subspace for each node of the quadtree. We

address this issue by searching for a suitable subspace much more e�ciently using the mathemat-

ics of updating matrix factorisations. Novel algorithms are developed to tackle the four problems

previously mentioned. Simulation results indicate that we beat state of the art results when the

original signal is in the model (e.g. depth images) and are competitive for natural images when the

degradation is high.
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Notation

In this thesis scalars are denoted by regular letters, vectors by lowercase bold letters and matrices

by uppercase bold. Subscripts and superscripts are used to provide additional naming; e.g., I
N

is

the N ×N identity. The only exception to this is superscripts on scalars, which are used for powers.

We also use the following notation:

[a, b] {x�a ≤ x and x ≤ b};
(a, b) {x�a < x and x < b};
[a, b) {x�a ≤ x and x < b};
(a, b] {x�a < x and x ≤ b};
AT The transpose of the matrix A;

A∗ The conjugate transpose of the matrix A;

�A�p The lp matrix norm, which for A ∈ Rm×n is given by max
x≠0
�Ax�p�x�p ;
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diag(x) The N ×N diagonal matrix with x ∈ RN on the diagonal;

E(A) The expected value of A;

F The DFT matrix;

I
n
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R The set of real numbers;

S
�,p

(⋅) A thresholding, defined from the proximal map of � ⋅ �p, applied to each
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(x)[i] = prox�(x[i]) where the prox is

for �x[i]�p;
xF x in the DFT domain; i.e., xF = F∗x;
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� The circular convolution operator;

∇n An n-th order partial derivatives: ∇nx = � @nx

@x[1]n ,
@nx

@x[2]n ,��
T

.



CHAPTER 1

Introduction

1.1. Background and motivation

In recent years, digital image acquisition devices have become part of our everyday lives: cameras

are embedded in smartphones, laptops and tablets; CCTV provides almost 100% coverage of major

cities; and more recently depth sensors have started to appear in game consoles and smart TVs.

These technologies continue to provide signal processing and computer vision challenges: for example

embedded image sensors in portable electronics must be cheap and small, limiting the potential for

optical processing. Depth sensors and multi-view images capture depth information, which allows

more robust object detection and tracking, and opens up, in theory, a full 3-D free viewpoint

experience. The acquisition of these depth images, and their joint processing with an illumination

image, is currently receiving much research interest.

In order to solve these problems we need to understand better the underlying structure of the

images and any acquisition process. The complexity of images, or in fact any real signal, makes

approximation a sensible first step that can provide knowledge of the signals fundamental compo-

nents and facilitate easier storage and processing. A sparse promoting transform converts a signal

into a sum of functions, such that most of the energy is contained in a relatively small number of

components. Sparse approximation theory can thus be described as designing transforms that, for

signals of interest, compress the energy into as few components as possible and, given a possibly
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overcomplete transform, select the best components to keep. Since many images are approximately

piecewise polynomial, the sparse approximation of this class of signals is an interesting problem

that is at the heart of this thesis.

It is well known that wavelets can be constructed to annihilate polynomials and thus sparsely

describe piecewise polynomial signals. This has been exploited in numerous image processing ap-

plications including the incorporation of wavelets in the JPEG2000 compression standard. The

success of the sparse approximation framework has motivated the quest for even sparser approxi-

mations of images. Much of this research has focused around wavelets’ lack of adaptability to the

2-D discontinuities that are seen in images. In order to better represent these complex edge struc-

tures, overcomplete and adaptive techniques have been developed that produce increased sparsity

and thus improved performance in practical image processing problems. However there is no free

lunch: calculating sparse approximations using these transforms is more complex than in a basis

and requires interesting new approaches.

In this thesis we will apply these approximations to image restoration and enhancement applica-

tions. More precisely we will investigate denoising, deconvolution, interpolation and super resolution

problems. Denoising, deconvolution and interpolation are well studied problems; however, improved

performance can be obtained using modern approximation techniques, and they are still relevant in

modern applications. For example, many depth sensors only obtain a depth value at certain loca-

tions so, in order to have a full depth map for further processing, interpolation is required. Since

depth maps have a highly constrained structure, there is great potential for accurate interpolation

by properly modelling this class of images. In addition, multi-view super resolution – the problem

of combining multiple images into one higher resolution image – can be decomposed into multi-

ple steps, which are mostly traditional restoration problems. As we are embedding image sensors

into smaller spaces and reaching the physical resolution limit of digital sensors, super resolution is

becoming an attractive alternative that allows greater image resolution.

1.2. Outline of thesis

This thesis has five additional chapters, which are briefly outlined below:

In the first part of Chapter 2 we introduce sparsity and sparse seeking algorithms by studying a

system of linear equations. In particular, we focus on a class of shrinkage or thresholding algorithms
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that have seen widespread use in image processing. The second part of the chapter summarises

existing transforms that sparsely represent piecewise polynomial signals. We first highlight the key

attributes of the wavelet transform that lead to its suitability for 1-D piecewise polynomial signals.

This is followed by an analysis of 2-D sparse promoting transforms. We outline a range of algorithms

that aim to improve on wavelets shortcomings, particularly their lack of directional selectivity.

The analysis of Chapter 2 is applied in Chapter 3 to perform image restoration and enhancement.

We discuss four problems, denoising, deconvolution, interpolation and super resolution, that will

be our main applications throughout this thesis. We will show how each problem can be modelled

as a degradation, following the same model, and an estimation of the original signal can be gen-

erated using the sparse seeking algorithms of Chapter 2. Existing state of the art algorithms are

presented for each problem and, although these algorithms are not our own work, we present our

own perspective of how these relate to Chapter 2 and will provide similar principles when, later in

the thesis, we adapt our approximation technique to restoration.

Chapter 4 contains the first main novel contribution of the thesis. Here we propose a novel

image approximation algorithm that is based on the earlier work of Shukla et al. [63] on image

compression. This approach uses a quadtree decomposition to adaptively partition the image and

approximates each adaptive region by a piecewise polynomial model with at most one discontinuity.

An additional ‘joining’ step is also applied that allows a more flexible image partitioning than the

pure quadtree structure. We make the following novel contributions that make this approach more

appropriate for restoration: we replace the rate-distortion penalty with a description-length penalty,

which is more appropriate for image restoration, and we propose a new way to quickly calculate a

discontinuity, for each region, that exploits the mathematics of updating matrix factorisations. We

take the reader through a detailed example that reveals how this vastly improves the computational

requirement, often a major shortcoming of this type of technique.

In Chapter 5 we apply similar principles to Chapter 3 to adapt our approximation algorithm to

restoration and enhancement. The resulting novel restoration algorithms are extensively compared

to the current state of the art, using as performance measures the peak signal-to-noise ratio (PSNR)1

and structural similarity (SSIM) index2.

1All PSNRs in this thesis are calculated as 10 log10 � 2552

1
N �x1−x2�22 �, where x1,x1 ∈ RN are the vectors of the two images

been compared, and N is the number of pixels.
2The SSIM index [73] attempts to measure the visual quality of an image by measuring its structural similarity to
the original image.
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Finally, Chapter 6 concludes this thesis, summarising its achievements and highlighting possible

directions for future study.

1.3. Original contribution

The main original contributions of this thesis are presented in Chapters 4 and 5. In Chapter 4 we

propose a novel approximation algorithm, based on the earlier work of Shukla et al. [63], with the

following novel contributions:

• The incorporation of a description length penalty that is more suitable to the restoration and

enhancement problem we consider.

• A new approach to calculate a suitable discontinuity over each adaptive region that vastly

reduces the computational complexity. Traditionally an exhaustive search is carried that tests

a large number of possible discontinuities independently. We maintain the exhaustive search,

and thus robust selection, but test new discontinuities very e↵ectively by using previous results.

In Chapter 3 we discuss current state of the art restoration and enhancement algorithms. We in-

troduce these algorithms using our own perspective that then naturally leads to our novel algorithms

presented in Chapter 5. Here we present the following novel contributions:

• A novel denoising algorithm that produces state of the art results for depth images and highly

degraded natural images.

• An iterative denoising approach to deconvolution that is an extension of iterative shrinkage

algorithms to our non-linear model.

• A deconvolution algorithm that combines our novel denoising algorithm with traditional reg-

ularised inverses.

• A novel interpolation algorithm that, for irregularly sampled data, produces state of the art

results for depth images and highly degraded natural images.

The work presented in this thesis has led to the following publications:

• A. Scholefield and P. L. Dragotti, “Quadtree structured image approximation for denoising

and interpolation,” submitted to IEEE Transactions on Image Processing, May 2013
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• A. Scholefield and P. L. Dragotti, “Image restoration using a sparse quadtree decomposition

representation,” in Image Processing, IEEE International Conference on, 2009, pp. 1473–1476

• A. Scholefield and P. L. Dragotti, “Quadtree structured restoration algorithms for piecewise

polynomial images,” in Acoustics, Speech and Signal Processing, IEEE International Confer-

ence on, IEEE, 2009, pp. 705–708

• A. Scholefield and P. L. Dragotti, Quadtree structured restoration algorithms for piecewise

polynomial images, at Inspire Workshop on Sparsity and its application to large inverse prob-

lems, Cambridge, Dec. 2008





CHAPTER 2

Sparse Representation of 1-D and 2-D Functions

2.1. Introduction

Sparsity – the ability to represent a signal using as few components as possible – has been a key tool

in many recent image processing algorithms. In this thesis we are interested in sparse approximations

of piecewise polynomial signals, particularly in 2-D. This chapter introduces the concept of sparsity

by studying systems of linear equations. Sparsity is introduced as a regularisation technique which

produces a minimisation problem of the form

argmin
✓

��y −B✓�22 + ��✓�pp� ,

where y ∈ Rm, B ∈ Rm×n and ✓ ∈ Rn produce the system of m equations y =B✓, with n unknowns.

This problem has been extensively studied in the literature over a wide range of disciplines. As is

common to problems of an interdisciplinary nature, there are a multitude of algorithms that have

been developed from di↵erent standpoints, some of which are equivalent. We will concentrate on a

class of algorithms that have had a recent flurry of research interest. These are iterative shrinkage

algorithms and can be thought of as an extension of gradient descent methods.

Later in the chapter we will see how solving minimisation problems of this form can find sparse

approximations of piecewise polynomial signals. The transform, B, will be of key importance,



30 SPARSE REPRESENTATION OF 1-D AND 2-D FUNCTIONS 2.2

particularly its ability to e�ciently represent the discontinuities. In 1-D these discontinuities can

only be points but in 2-D they are more complex edge structures. Many di↵erent transforms

have been proposed to deal with these higher dimensional edges and we will summarise the most

important. Some of these transforms extend the setting to a non-linear transform as we also do in

our novel quadtree decomposition algorithm presented in Chapter 4.

2.2. Sparse approximations via regularisation

2.2.1. Closed-form solutions

To introduce the concept of sparsity and algorithms that promote sparse solutions, consider a system

of linear equations

y =B✓,

where y ∈ Rm, B ∈ Rm×n and ✓ ∈ Rn. Clearly if B is invertible then ✓ =B−1y is the unique solution

but in many practical situations B is singular or very often not square and, thus, not invertible.

In these cases we wish to find a single ‘sensible’ solution. When n > m there are infinitely many

solutions but regularisation can be applied to select the most ‘appropriate’. Depending on the

application the minimum energy solution maybe the most appropriate and is given by

✓̂ = argmin
✓

�✓�22 s.t. y =B✓ where �✓�2 = � n�
i=1 �✓[i]�

2�
1
2

. (2.1)

This can be solved using Lagrange multipliers: we first construct the Lagrange function,

L(✓,�)T = �✓�22 +�T (y −B✓),

where � ∈ Rm is the vector of Lagrange multipliers for each equality constraint. The solution of

(2.1) occurs at a stationary point of L(✓,�); i.e., at a point where both ∇
✓

L = 0 and ∇
�

L = 0. The
partial derivatives are

∇
✓

L = 2✓ −BT� and ∇
�

L = y −B✓,

therefore

0 = 2✓̂ −BT �̂ ⇒ ✓̂ = BT �̂

2
, and
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✓[1]

✓[2] y =B✓

p = 2
p = 1

p = 1
2

Figure 2.1.: Graphical illustration of the points in the a�ne subspace, y = B✓, with minimum
regularisation norm. The norms are lp-norms, �✓�p, for p = 1

2 ,1,2.

0 = y −B✓̂ ⇒ B✓̂ = y.

Combining the two we have

y = BBT �̂

2
⇒ �̂ = 2 �BBT �−1 y,

and finally (2.1) is solved by

✓̂ =BT �BBT �−1 y.
As we have eluded to, we are often interested in the sparsest solution not the one with minimum

energy. We can get closer to this goal by generalising (2.1) to any lp-norm:

✓̂
p

= argmin
✓

�✓�pp s.t. y =B✓ where �✓�p = � n�
i=1 �✓[i]�

p�
1
p

. (2.2)

This family of lp-norms will be used extensively in the forthcoming discussion with values of p in the

range 0 ≤ p ≤ 2. Note that, it is the convention to call these norms although formally they do not
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1

�✓�p

✓
1 2−1−2

p = 1
10

p = 1
2p = 1p = 2

Figure 2.2.: The lp-norms in 1-D for various values of p.

meet the requirements of a norm for all 0 ≤ p ≤ 21. To gain an intuition for the solution of (2.2) for

di↵erent values of p consider the graphical illustration given in Fig. 2.1. The figure shows various

lp-balls (level sets of an lp-norm) touching the a�ne subspace of solutions to y =B✓. For each value

of p, the smallest lp-ball that touches the a�ne subspace has been plotted and this point of contact

is the solution to (2.2). For the l 1
2
and l1 balls, these intersections occur on an axis suggesting that

these norms promote sparse solutions.

To further examine the properties of these norms, Fig. 2.2 shows a plot of �✓�p in 1-D for various

values of p. It is clear that as p→ 0, �✓�p approaches the indicator function

1{R�{0}}(✓) =
�����������

1 if ✓ ≠ 0
0 if ✓ = 0 .

This natural extension leads to the l0-norm (again this is not strictly a norm), which is defined to

be the number of non-zero entries of ✓:

�✓�0 = �{i � ✓[i] ≠ 0}� ,
1A norm, � �, is a function from a vector space V to [0,∞) that satisfies the following three properties for all ✓ ∈ V :

1. �✓� = 0 i↵ ✓ = 0
2. �✓1 + ✓2� ≤ �✓1� + �✓2� (triangle inequality)

3. �k✓� = �k� �✓� ∀k ∈ C (scalability)



2.2 SPARSE APPROXIMATIONS VIA REGULARISATION 33

where � � is the cardinality of the set.

We have now introduced the three norms that will be used throughout this thesis, namely the l0,

l1 and l2-norm. The l0-norm provides the best measure of sparsity but it is non convex leading to

di�cult minimisation problems. The l1-norm promotes sparsity and is convex so can sometimes be

more appealing than l0. The l2-norm does not promote sparsity but, as we will see, its minimisation

problems have a closed-form solution. We will see these characteristics in more detail as we progress.

If the system of equations, y =B✓, has no solutions we must introduce a distance measure such

as

✓̂ = argmin
✓

�y −B✓�22
= �BTB�−1BTy, (2.3)

which is known as ordinary least squares. This assumes that all the errors are in the measured vari-

able y but if the errors occur in both B and y then total least squares is more appropriate. If BTB

is singular then (2.3) has an infinite number of solutions and we once again require regularisation:

✓̂ = argmin
✓

�y −B✓�22 s.t. �✓�pp < t (2.4)

or in the Lagrangian form

✓̂ = argmin
✓

��y −B✓�22 + ��✓�pp� . (2.5)

The minimisation problem (2.4), which finds the minimum squared error within the sub level set

�✓�pp < t, has received much less research interest than (2.5). This minimisation problem has, in

general, no closed-form solution, however there are some special cases:

i) when p = 2, there is a closed-form solution known as Tikhovnov regularisation.

ii) when p = 1, there is a closed-form solution if B is unitary (BTB = I
n

), and an iterative

algorithm that converges to the global minimum for general B.

iii) when p = 0, there is a closed-form solution if B is unitary, but because the problem is not

convex we can only design an iteration that converges to a local minimum.

First we will deal with the three closed-form solutions: the p = 2 case leads to Tikhovnov regulari-
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sation:

✓̂ = argmin
✓

��y −B✓�22 + ��✓�22�
= argmin

✓

�✓TBTB✓ − 2✓TBTy + �✓T✓� ,

where we have neglected terms that do not depend on ✓ because they do not a↵ect the minimisation.

The solution is found by setting the derivative to zero:

0 = 2BTB✓̂ − 2BTy + 2�✓̂
✓̂ = �BTB + �I

n

�−1BTy. (2.6)

It is clear that as �→ 0, (2.6) approaches (2.3); i.e., the case with no regularisation.

When B is unitary the problem separates:

✓̂ = argmin
✓

��y −B✓�22 + ��✓�pp�
= argmin

✓

�✓TBTB✓ − 2✓TBTy + ��✓�pp�
= argmin

✓

��BTy − ✓�22 + ��✓�pp�
= argmin

✓

m�
i=1

�������
(y

B

[i] − ✓[[i])2 +
�����������
��✓[i]�p if ✓[i] ≠ 0

0 if ✓[i] = 0
�������

where y
B

=BTy,

so that we can solve for each element independently,

✓̂[i] = argmin
✓[i]
�������
(y

B

[i] − ✓[[i])2 +
�����������
��✓[i]�p if ✓[i] ≠ 0

0 if ✓[i] = 0
�������
. (2.7)

When p = 0, (2.7) becomes

✓̂[i] = argmin
✓[i]
�������
(y

B

[i] − ✓[i])2 +
�����������
� if ✓[i] ≠ 0
0 if ✓[i] = 0

�������
,
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which, by inspection, is solved by hard thresholding:

✓̂[i] = S�,0 (yB

[i]) =
�����������

y
B

[i] if (y
B

[i])2 ≥ �
0 if (y

B

[i])2 < � ,

or extending the notation

✓̂ = S
�,0 (yB

) . (2.8)

Similarly, when p = 1, (2.7) becomes

✓̂[i] = argmin
✓[i] �(yB

[i] − ✓[i])2 + � �✓[i]�� ,

which, as proved in Appendix A.1, is solved by the soft thresholding operator:

✓̂[i] = S�,1 (yB

[i]) =
�������������������

y
B

[i] − �
2 if y

B

[i] ≥ �
2

0 if − �
2 < yB

[i] < �
2

y
B

[i] + �
2 if y

B

[i] ≤ −�
2

,

or extending the notation

✓̂ = S
�,1 (yB

) . (2.9)

These two thresholding operators will play a key role in the next subsection on iterative algorithms

and, as we will see, they are the proximal operator of their respective norms. The reader may also

note that, the above thresholding operators are often used in practise when B is not unitary and

satisfactory results obtained. As we will see in the next subsection, this is because this thresholding

is the first step of an iterative approach to solve (2.5) with more general B.

2.2.2. Iterative algorithms

We are interested in a class of algorithms, known as iterative shrinkage algorithms, that can be

used to tackle (2.5) for p = 0,1 and general B. There are many di↵erent ways to arrive at the

same algorithm but we will highlight two approaches: first we will formulate the problem using ma-

jorise minimise (MM) ideas, which is an extension of expectation maximisation (EM) (for a good

introduction to the MM algorithm see [41]). This approach is essentially equivalent to optimisation

transfer using surrogate functions which is the approach taken in the seminal work of Daubechies
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✓

Csur(✓ � ✓(k))

C(✓)

✓(k) ✓∗✓(k+1)
Figure 2.3.: The MM approach to minimise a function, C(✓), is to construct a maximiser, Csur(✓),

at the current estimate. This maximiser is constructed in such a way that it can be
minimised and the location of this minimum gives the next estimate.

et al. [22]. In this paper the authors show that iterative soft thresholding converges to the global

minimum of (2.5) for p = 1 and general B. We will also show this but using the well established

optimisation framework of proximal gradient descent, which is equivalent to Combettes and Wajs’

Forward-Backward Splitting [16]. As we will see, proximal gradient descent is in fact a special case

of an MM algorithm with more stringent conditions that allow stronger convergence proofs. This

framework also allows us to analyse acceleration techniques such as that used in the fast iterative

shrinkage-thresholding algorithm (FISTA) [4]. For the p = 0 case, iterative hard thresholding con-

verges to a local minimum of the non convex cost function, as proved in [7]. More information on

this topic can be found in the literature [6, 8, 16, 28, 31–34, 43, 55] and is nicely summarised by

Elad et al. [30].

As illustrated in Fig. 2.3, the basic idea of the MM approach is to transfer the minimisation of a

complicated function into the iterative minimisation of simpler functions that maximise the original

function. More precisely, if we have a function C(✓) that we wish to minimise, then we construct

a maximiser Csur(✓ � a) that by definition satisfies the following two properties:

Csur(✓ � a) ≥ C(✓) ∀✓ (2.10)
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Csur(a � a) = C(a). (2.11)

Then, the MM algorithm is defined as the sequence

✓(k+1) = argmin
✓

Csur(✓ � ✓(k)), (2.12)

and is guaranteed to be non increasing since

C(✓(k+1)) ≤ Csur(✓(k+1) � ✓(k)) ≤ Csur(✓(k) � ✓(k)) = C(✓(k)).

Here the first inequality comes from (2.10), the second from (2.12) and the equality from (2.11).

For example, to solve (2.5) we would set

C(✓) = �y −B✓�22 + ��✓�pp, (2.13)

and could use the maximiser

Csur(✓ � a) = C(✓) − �B✓ −Ba�22 + ↵�✓ − a�22. (2.14)

This is a maximiser of (2.13), since (2.11) is trivially satisfied and (2.10) is satisfied if ↵ ≥ �B�22.
This can be shown by substituting (2.14) into (2.10):

C(✓) − �B✓ −Ba�22 + ↵�✓ − a�22 ≥ C(✓) ∀✓,

which yields

↵�✓ − a�22 ≥ �B✓ −Ba�22 ∀✓
and

↵ ≥ �B�22.
Here the matrix norm is given by

�B� =max
✓≠0
�B✓�
�✓� .
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All that remains is to show that we can minimise this surrogate cost function. In fact,

argmin
✓

Csur(✓ � a) = argmin
✓

��y −B✓�22 − �B✓ −Ba�22 + ↵�✓ − a�22 + ��✓�pp�
= argmin

✓

�−2✓TBTy + 2✓TBTBa + ↵✓T✓ − 2↵✓Ta + ��✓�pp�
= argmin

✓

�✓T✓ − 2✓T �BTy

↵
− BTBa

↵
+ a� + �

↵
�✓�pp�

= argmin
✓

��������✓ − �a +
BT (y −Ba)

↵
��2

2

+ �
↵
�✓�pp
�������

= S
��↵,p

�a + BT (y −Ba)
↵

� for p = 0,1.

Therefore, the MM iteration (2.12), applied to (2.13), is an iterative thresholding:

✓(k+1) = S
��↵,p

�✓(k) + BT

↵
�y −B✓(k)�� . (2.15)

Using the MM construction, we have a very intuitive way to construct these iterative thresholding

algorithms and have a proof that the sequence is non increasing. Let us now consider the problem

from the perspective of proximal gradient descent. This class of algorithms can minimise cost

functions of the form

C(✓) = C1(✓) +C2(✓) (2.16)

where

i) C1(✓) is convex, di↵erentiable and ∇C1 is Lipschitz continuous with constant L; i.e., �∇C1(✓1)−
∇C1(✓2)�2 ≤ L�✓1 − ✓2�2 for all ✓1,✓2.

ii) C2(✓) is convex and the proximal map of C2 can be evaluated: the proximal map is given by

proxt(✓) = argmin
a

��✓ − a�22 + t C2(a)�.
To construct the algorithm using the MM framework, consider the following surrogate cost function:

Cprox(✓ � a) = C1(a) +∇C1(a)T (✓ − a) + 1

2t
�✓ − a�22 +C2(✓). (2.17)

Essentially this function has two parts: the first part (everything except the C2(✓) term) is a

quadratic approximation of C1 around a but with the ∇2C1 quadratic factor, of the Taylor expan-

sion, replaced with 1
t . If we iteratively minimised this first part we would obtain gradient descent
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for C1. The second part is simply the C2(✓) term, which is added to deal with this additional,

non-di↵erentiable, penalty. One can also view this cost function as the sum of three terms: a linear

approximation of C1 around a, a term promoting proximity between ✓ and a, and finally the C2(✓)
term.

In Appendix A.2 we prove that (2.17) is a maximiser of C if t ≤ 1
L ; therefore, using the MM

results, the following sequence is guaranteed to be non increasing if t ≤ 1
L :

✓(k+1) = argmin
✓

�C1 �✓(k)� +∇C1 �✓(k)�T �✓ − ✓(k)� + 1

2t
�✓ − ✓(k)�2

2
+C2(✓)�

= argmin
✓

�2t∇C1 �✓(k)�T ✓ + ✓T✓ − 2✓T✓(k) + 2tC2(✓)�
= argmin

✓

��✓ − �✓(k) − t∇C1 �✓(k)���2
2
+ 2tC2(✓)�

= prox2t �✓(k) − t∇C1 �✓(k)�� .

Furthermore, the above sequence satisfies the following error bound:

C �✓(k)� −C (✓∗) ≤ �✓(0) − ✓∗�
2

2

2tk
, (2.18)

where ✓∗ is the optimal solution (proof given in Appendix A.3). I.e., the iteration converges in C,

at a rate of O � 1k�.
To apply this theory to (2.5) we need to check the two requirements of proximal gradient descent:

the two norm is convex and di↵erentiable with Lipschitz gradient (L = 2) and the l1-norm is convex.

Therefore, (2.5) with p = 1 can be minimised by proximal gradient descent if t ≤ 1
2 . As a special

case of (2.9), the proximal map of the l1-norm is given by

proxt(✓) = argmin
a

��✓ − a�22 + t�a�1� = St,1(✓).

Therefore, the proximal gradient descent for this problem is

✓(k+1) = S2t�,1 �✓(k) + 2tBT �y −B✓(k)�� with t ≤ 1

2
.

This is the same as we had for the MM construction, but with ↵ replaced with 1
2t . This shows us

that for p = 1, iterative soft thresholding converges to the global minimum of (2.13) at a rate of
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O � 1k�.
Acceleration methods are well known in the field of gradient descent with Nesterov being a key

protagonist in this field [52]. In 2007 [53] he extended these ideas to the proximal gradient descent

algorithm and obtained a convergence rate of O � 1
k2
�. The proposed acceleration method requires

knowledge of all previous steps and two prox evaluations per iteration. In 2009 Beck and Teboulle [4]

independently published a slightly di↵erent acceleration method that obtained the same convergence

rate, but only required the two previous steps and one prox evaluation per iteration. This algorithm,

known as the fast iterative shrinkage-thresholding algorithm (FISTA) as opposed to the standard

iterative shrinkage-thresholding algorithm (ISTA), is an extension of Nesterov’s original work [52].

As we have seen, the standard proximal gradient descent is given by the sequence

✓(k+1) = prox2t �✓(k) − t∇C1 �✓(k)�� .

Instead of applying this update to the current point ✓(k), the FISTA first calculates a linear com-

bination of the current and previous points:

! = ✓(k) + k − 2
k + 1 �✓(k) − ✓(k−1)� ,

and then calculates the update using this linear combination:

✓(k+1) = prox2t (! − t∇C1(!)) 2.

The addition of this properly weighted memory term, ✓(k) − ✓(k−1), gives the proposed, O � 1
k2
�,

convergence rate. One downside of these acceleration techniques is that they are not decent methods;

i.e., the resulting iterations are no longer guaranteed to decrease at each step.

2.2.3. The non-convex problem and uniqueness of solutions

In the preceding subsection we saw that proximal gradient descent could exactly minimise (2.5) for

the convex, p = 1, case, but in the non-convex, p = 0, case this analysis breaks down. However, the

MM analysis is still valid so we know that iterative hard thresholding will produce a monotonically

decreasing sequence. Therefore, we intuitively expect the algorithm to converge to a local minimum

2Note that this formulation of FISTA is taken from [38] and is slightly di↵erent to the presentation given in [4].
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of this non-convex cost function and, as we have already stated, this was formally proved in [7].

Interestingly, if B is very sparse then the l0 constrained problem ((2.2) with p = 0) is equivalent
to the l1 constrained problem ((2.2) with p = 1); i.e., the solution of the non convex problem is the

same as the solution of the convex problem that we can solve. Therefore, in this case FISTA can

be used to find the sparsest solution at a rate of O � 1
k2
�.

There is also a large family of greedy algorithms that can be applied to the non convex problem.

In [69] Tropp shows that, like iterative soft thresholding, orthogonal matching pursuit (OMP) solves

the l1 constrained problem when B satisfies the same sparsity conditions. Recall that OMP is a

simple greedy algorithm that seeks sparse solutions as follows: first the current approximation is

initialised to zero (✓(0) ← 0); then at each iteration, the column from B that best approximates the

residual is selected and the current approximation is given by the projection of the signal onto the

space spanned by all columns that, up to this iteration, have been selected.

For more information on exact sparse recovery we refer the reader to the compressed sensing (or

compressive sampling) literature.

2.3. Sparse approximation of 1-D functions using wavelets

In the rest of this chapter we will show how the preceding approximation algorithms can be used

to find sparse approximations of signals. We will be particularly interested in piecewise polynomial

signals because this class of signals can be very e↵ective at approximating images and are central

to the work of this thesis. For simplicity we will first consider sparse approximations of 1-D signals

using well established wavelet theory [21, 48, 67, 71].

2.3.1. Introduction to wavelets

Wavelets can be constructed with desirable properties that lead to sparse approximations of piece-

wise polynomial signals: specifically they can be constructed to be smooth (bounded in frequency),

have compact support (bounded in time or space), and have vanishing moments (their inner product

with polynomials is zero). Unlike the traditional Fourier transform, they are well localised in both

time and frequency.

The continuous wavelet transform (CWT) is an infinite combination of shifts and dilations of a
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(a) Wavelets generated from dyadic shifts and dilations

time

frequency

(b) Dyadic time-frequency partitioning

Figure 2.4.: 1-D continuous time wavelets with the corresponding dyadic time-frequency partition-
ing.

mother wavelet,  (t):
fW(u, s) = 1√

s �
∞
−∞ f(x) ∗ �x − u

s
�dx, (2.19)

where the
1√
s
term ensures that all shifted and dilated versions have equal norm. If s = 2m and

u = n2m then (2.19) becomes the dyadic wavelet series:

fW[m,n] = 2−m�2� ∞
−∞ f(x) ∗ (2−mx − n)dx m,n ∈ Z.

Wavelets can be constructed, see [21], such that the functions, 2−m�2 ∗ (2−mx − n), form a basis of

L2(R), with the favourable time frequency partitioning shown in Fig. 2.4(b). Here the transform

has good frequency but poor time localisation at low frequencies and vice-versa at high frequencies

because of the dilation of the waveform: when the mother wavelet is stretched it contains a small

range of lower frequencies and covers a larger time window, whereas when it is compressed it contains

a larger range of higher frequencies but covers a smaller time interval. An example of a mother

wavelet and a shift and scale of the form s = 2m and u = n2m are shown in Fig. 2.4(a).

As well as producing this favourable time-frequency partitioning, wavelets can be constructed

with vanishing moments, which means that they annihilate polynomials up to a certain degree.
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Analysis Block Synthesis Block

f[n] f̂[n]
H0

H1

2

2

f0W[n]

f1W[n]

G0

G1

2

2

Figure 2.5.: A two channel filter bank.

More formally, a wavelet with n vanishing moments satisfies

� ∞
−∞  (x)xkdx = 0 0 ≤ k < n.

Importantly, this is also true for all shifts and dilations; therefore, the wavelet transform, for a

wavelet with n vanishing moments, satisfies

fW(u, s) = 1√
s �

∞
−∞ xk ∗ �x − u

s
�dx = 0 0 ≤ k < n. (2.20)

This can be seen by substituting x′ = x − u
s

into (2.20):

fW(u, s) = 1√
s �

∞
−∞ (sx′ + u)k ∗(x′)dx′,

and then taking the binomial expansion of (sx′ + u)k:

fW(u, s) = 1√
s �

∞
−∞

k�
i=0��

k

i
��sx′�i uk−i� ∗(x′)dx′

= 1√
s

k�
i=0 ��

k

i
�siuk−i� ∞

−∞ x′i ∗(x′)dx′� = 0 if 0 ≤ k < n.

Therefore if we take the wavelet transform of a piecewise polynomial signal using a compactly

supported wavelet with vanishing moments, the only non-zero samples will come from the regions

where the compactly supported wavelet intersects a discontinuity. Therefore if the piecewise poly-

nomial signal does not contain too many discontinuities, the transformed signal will have many

zeros and thus be sparse. This is shown in Fig. 2.7, using the discrete wavelet transform (DWT).

The DWT can be constructed by iterating the two channel filter bank, shown in Fig. 2.5, to
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H0

H1

2

Stage 1

f1W[n]
f[n]

H0

H1

Stage 2

f01W [n]

H0

H1

Stage j

f00�0W [n]
f00�1W [n]

2

2

2

2

2

Figure 2.6.: The analysis discrete wavelet transform, constructed from a dyadic tree-structured filter
bank.

produce the dyadic tree structured filter bank shown in Fig. 2.6. Figure 2.6 just shows the analysis,

forward transform; however, it is clear that each stage can be processed with a synthesis block

from the two channel case. In fact we can design the filters, H0, H1, G0 and G1, to produce

perfect reconstruction filter banks so that f̂ = f for any f ∈ l2(Z). This was understood by

the signal processing community well before the connection with continuous time wavelets was

suggested by Mallat [49, 50]. It was this unification of independent, and seemingly unrelated, results

in mathematics and signal processing (and in fact a number of other disciplines) that caused much

of the excitement around wavelets.

Just like the continuous time wavelet, a discrete time highpass filter with vanishing moments

annihilates polynomials. Therefore, as shown in Fig. 2.7, the highpass coe�cients of the DWT of a

piecewise polynomial signal are zero except for a few non zero coe�cients in the cone of influence of

the discontinuity. Of course, the width of this cone is determined by the support of the wavelet. In

this example a wavelet with at least two vanishing moments was required to annihilate polynomials

up to the linear degree. The piecewise linear signal is, then, decomposed into a sum of a few

non-zero samples, from the highpass coe�cients, and the low pass coe�cients, f00�0W [n], at the

coarsest scale. This sparsity is particularly desirable: for example, in Chapter 3 we will see how

it can be exploited to develop state of the art image restoration and enhancement algorithms. In

[27] an even sparser representation using wavelets was obtained by exploiting the fact that these

non-zero coe�cients in the discontinuity’s cone of influence are related to each other and are thus

predictable.

In reality, signals are not normally exactly piecewise polynomial but are often well approximated

by piecewise polynomials. For example Fig. 2.8 shows one line of the cameraman image along with

the highpass coe�cients of its wavelet transform.
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Figure 2.7.: A piecewise linear 1-D signal decomposed into highpass subbands using a wavelet with
two vanishing moments. From top to bottom is the time domain signal, followed by the
amplitude of the highpass coe�cients at decreasing scales.

Very few of these coe�cients are identically zero, but the majority of them has a very small

amplitude and almost all of the signal’s energy is contained in a small number of, larger, coe�cients.

Therefore, we can retain almost all of the signal’s information by using a sparse approximation.

In this case, since the transform is orthogonal, hard thresholding produces the sparsest solution.

However as we know from the previous analysis, if the transform was biorthogonal, hard thresholding

would not be the optimum sparsest solution in the least squares sense, but would just be the first

step of an iteration that would converge to a local minimum of this problem.
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Figure 2.8.: A scanline of the cameraman image decomposed into highpass subbands using a wavelet
with two vanishing moments. From top to bottom is the time domain signal, followed
by the amplitude of the highpass coe�cients at decreasing scales.

2.4. Sparse approximation of 2-D functions using wavelets and

beyond

The inclusion of the 2-D wavelet transform in the JPEG2000 image compression standard is a

testament to not only wavelet’s sparse promoting properties, but also their speed and stability.

However, they are far from perfect: they are shift variant3 and because of their separability in 2-D

they only e�ciently represent point singularities and struggle to capture the higher dimensional

discontinuities, such as the edges and contours, that are seen in images. This problem has been

3If y[m,n] is the response of a shift invariant system to x[m,n] then y[m − km, n − kn] is the response to x[m −
km, n − kn]. A shift variant system is a system that is not shift invariant.
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(a)  V (x, y) (b)  H(x, y) (c)  D(x, y)

(d)  V (x, y) dilated (e)  H(x, y) dilated (f)  D(x, y) dilated
Figure 2.9.: Plots of the Daubechies 2nd order 2-D continuous time wavelet to show the lack of

directional flexibility of the transform.

noted many times in the literature and many improved transforms have been suggested, including

Ridgelets [10], Curvelets [11], Contourlets [23], Wedgelets [26], Bandlets [44] and Directionlets [70].

In this section we will highlight these shortcomings and briefly summarise some of these improved

transforms.

2.4.1. Two dimensional wavelets

The 2-D DWT is constructed by applying the 1-D DWT to the rows followed by columns (or

vice-versa) producing three subbands per stage. Although there are more flexible ways to generate

the 2-D CWT, we will consider it in its analogous separable form, because this will highlight the

ine�ciencies that are present in the 2-D DWT. Given a 1-D mother wavelet  (x) and associated

scaling function �(x), the separable 2-D wavelet transform is given by

fW(ux, uy, s, k) = 1√
s �

∞
−∞ �

∞
−∞ f(x, y) k �x − ux

s
,
y − uy

s
�dxdy,

where  k(x, y) is one of three wavelets constructed, from separable products, to produce wavelets

orientated in the vertical, horizontal and diagonal directions:

 V (x, y) = �(x) (y),  H(x, y) =  (x)�(y),  D(x, y) =  (x) (y).

An example of these three functions is shown in Fig. 2.9, along with a dilation of each. It is clear

that dilating these waveforms is not enough to capture edges that occur at di↵erent orientations.
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(a) Cameraman image. (b) Wavelet decomposition of the Cameraman image.

Figure 2.10.: The original cameraman image and its wavelet decomposition. The wavelet decompo-
sition shows both its sparsity and also the large samples that occur around disconti-
nuities, at all levels.

This is further highlighted when, in Fig. 2.10, we take the 2-D DWT of the cameraman image.

There is a large number of large samples around edges that would not be present if the wavelets

were better orientated. The task of designing better oriented functions has been studied exten-

sively leading to a large number of overcomplete and sometimes adaptive transforms, which we will

summarise in the next subsection.

2.4.2. Beyond wavelets

As already stated, discrete time wavelets are shift variant and lack good directional adaptability in

2-D.

Shift variance is not so important for compression, where redundancy is detrimental, but in

restoration and enhancement problems not exploiting this variance leads to blocking artefacts and

poor performance. One solution to this problem is to introduce redundancy by removing the dec-

imation steps of the DWT. This produces the undecimated, stationary or à trous DWT which in

1-D can be calculated by removing the downsamplers from Fig. 2.6 and upsampling the filter co-

e�cients at the j-th stage by a factor of 2j−1. Since each subband is now the same length, this

introduces a redundancy of j+1 but, unlike the decimated transform, has the advantageous property

of shift-invariance.
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(a) Ridglet (b) Rotation

(c) Dilation (d) Shift

Figure 2.11.: A Ridgelet along with a rotation, dilation and shift.

The 2-D undecimated DWT (UDWT) is, like its decimated counterpart, obtained from 1-D

transforms of the rows followed by columns; therefore, since all subbands are the same size as the

input, it has a redundancy of 3j + 1.
The isotropic – meaning equal in all directions – undecimated DWT is a 2-D transform that

can be obtained by summing, at each stage, the three subbands of the 2-D undecimated DWT. Its

redundancy is thus reduced to j +1. This transform is particularly useful for astronomical data and

will also be used in the first generation Curvelet transform.

The second problem of directional adaptability can be solved by constructing better oriented

transforms. In 1999 Candes et al. [10] proposed the Ridgelet transform, which is an overcomplete

frame of L2(R):

fRidgelet(u, s, ✓) = 1√
s �

∞
−∞ �

∞
−∞ f(x, y) �x cos(✓) + y sin(✓) − u

s
�dxdy.

As shown in Fig. 2.11, the frame vectors or ridgelets are constant along lines parallel to x cos(✓) +
y sin(✓) = u and are wavelets perpendicular to these lines. Introducing this rotation parameter,

✓, obviously improves the directional sensitivity of the transform. The reader may observe the
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similarity between ridgelets and the Radon transform,

fRadon(u, ✓) = � ∞
−∞ �

∞
−∞ f(x, y)� (u − x cos(✓) − y sin(✓))dxdy.

In fact, the Ridgelet transform is nothing more than 1-D wavelet transforms calculated along rays

of the Radon transform. Recall that the Radon transform converts straight lines into points, which

the 1-D wavelet transform can e�ciently represent. The Radon transform provides a very e↵ective

strategy to calculate the continuous Ridgelet transform and similar approaches have been developed

for the discrete time case. We refer the interested reader to [65, 66].

Ridgelets, although optimal for global straight edges, still do not e�ciently capture the more

flexible edges seen in images. Locally curves are approximately straight, so a natural extension

is to apply the transform locally. This is exactly what Candes et al. [11] propose in their first

generation Curvelet transform. This transform first applies an isotropic undecimated DWT and

then, on each of the, j, highpass subbands, block Ridgelet transforms of di↵erent sizes are applied

locally. More precisely the j = 1 subband is partitioned into blocks at a minimum size and the

j = 2 and j = 3 subbands are partitioned into blocks that are twice this minimum size. For later

subbands the block size is doubled every two subbands (i.e. it is doubled when j is odd). The

coe�cients of the first generation Curvelet transform are given by the Ridgelet transform of each

of these blocks and the unchanged lowpass subband. Partitioning the subbands in this way makes

the curvelet frame vectors have a length proportional to 2j and width proportional to 22j as well

as the orientation ✓. This makes the transform particularly suited to C2 singularities. The second

generation Curvelet transform [12, 13] maintains the advantageous features of the first but is less

redundant and computationally cheaper to compute.

The sparse approximation that curvelets provide of C2 discontinuities is surprising for a non adap-

tive transform, however they still lack e�cient adaptability to other edge structures. So far, the only

way to e�ciently represent more flexible edge structures has been to use non adaptive transforms.

This is exactly what we will do in Chapter 4 when we develop our novel quadree decomposition

approximation algorithm. Other adaptive quadtree decomposition models include wedgelets and

bandlets. The Wedgelet transform [26] represents each adaptive region by two constant regions

separated by a straight edge. This was later extended, by Shukla et al. [63], to polynomial regions

and continuous boundaries. Furthermore, the authors added an additional joining step that allowed
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the adaptive regions to be much more flexible. It is this transform that we extend in Chapter 4.

Finally, the Bandlet transform, of Le Pennec and Mallat [44] and later refined by Peyré and

Mallat [54], are another non adaptive algorithm based on a quadtree decompostion. However

unlike our model, which uses a very low dimensional model on each region, Bandlets approximate

each adaptive region using a basis. Specifically, Bandlets exploit some of the redundancy that is

present in the wavelet transform of a 2-D signal. As can be seen from Fig. 2.10, the non-zero

coe�cients in the highpass subbands occur along the edge discontinuities at all levels. The Bandlet

transform computes a quadtree decomposition of each highpass subband and then on adaptive

regions computes an Alpert basis [2] oriented along the geometric flow of the region. Thresholding

these Alpert bases allows the edge discontinuities to be e�ciently represented.

2.5. Summary

In this chapter we have introduced the concept of sparsity as a regularisation technique and studied

the resulting optimisation problems. We have seen that an l1-norm constraint promotes sparsity and

produces convex optimisation problems that can be exactly solved using iterative soft thresholding.

Furthermore, an exact sparsity measure is given by an l0-norm constraint but this produces non

convex optimisation problems that, in general, can not be exactly solved. However, iterative hard

thresholding converges to a local minimum and if the desired solution is sparse enough the l1-norm

and l0-norm constrained problems become equivalent so that iterative soft thresholding can find

the global optimum solution. As a special case, when the transform B is unitary these iterations

simplify to exact closed-form solutions; i.e soft thresholding for l1 and hard thresholding for l0.

Later in the chapter we saw that, using a wavelet with enough vanishing moments, the wavelet

transform of a 1-D piecewise polynomial signal is sparse and, for many images, the 1-D wavelet

transform of a scanline compresses the signals energy into a relatively small number of coe�cients.

Despite the success of the 2-D wavelet transform, it fails to e�ciently represent the complex edge

structures present in images. Proposed solutions to this problem include over complete representa-

tions such as ridgelets, which give sparse representations of global straight edges; curvelets, which

give sparse representations of C2 discontinuities and adaptive techniques such as the Bandlet trans-

form, which is e↵ective at most edge structures.

However, the Bandlet transform uses a basis for each adaptive region, which can, in many applica-
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tions, provide too much flexibility. In Chapter 4 we will propose our novel approximation algorithm

that uses a very low dimensional model for each region of an adaptive partitioning. This model

provides very sparse approximations of piecewise polynomial images, which has many practical

applications in restoration and enhancement that we will explore.

In the next chapter we will see how the material developed in this chapter can be used to develop

state of the art image restoration and enhancement algorithms.



CHAPTER 3

State of the Art Image Restoration and Problem Setup

3.1. Introduction

In many practical scenarios one measures a degraded version of an image and restoration is required

to estimate the original. In this thesis we will consider four restoration problems, namely denoising,

deconvolution, interpolation and multi-view super resolution, which span a wide range of applica-

tions. For example noise is present in all applications and, interestingly, many algorithms related

to other problems often include a denoising step. For example, we will show that the deconvolution

problem can be solved by first applying a regularised inverse, to invert the convolution, and then

denoising, or, alternatively, by iterative denoising. Interpolation of even spaced samples allows res-

olution enhancement. We will consider the case of irregularly spaced samples, which has interesting

applications in depth image acquisition. Finally we will consider multi-view image super resolution,

which aims to combine multiple low resolution images of the same scene into one high resolution

image. This complex problem involves many stages including interpolation and deconvolution steps.

All these problems can, if H is properly constructed, be modelled by the linear degradation model

y =Hx + z. (3.1)

Here the vectors x,y,z ∈ RN are the desired, measured and noise images respectively (N is the
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number of pixels). The matrix H will be chosen according to the type of problem: for example if

H = I
N

, (3.1) models an additive noise process, and ifH ∈ RN×N is a circulant matrix corresponding

to a particular filtering, (3.1) models a noisy filtering process, with the filtering most commonly

creating blur.

Assuming that x is sparse in a proper domain, we can approximate x from y, given in (3.1),

by using the minimisation techniques of the previous chapter. In the following subsections we will

show this relationship for the four problems and show the analysis that leads to state of the art

algorithms.

3.2. Denoising

Noise is present in all practical restoration problems, therefore we must develop restoration algo-

rithms that are robust to noise. Furthermore, many other restoration problems can be constructed

such that they have a denoising step. In this subsection we will show how the denoising problem

can be solved using sparse optimisation theory. We will first consider the simplest case where the

noise is additive white and Gaussian and later extend this noise model to coloured noise. We will

show examples of results obtained using some of the transforms discussed in the previous chapter,

as well as one additional result that exploits non-local similarity of regions to obtain an even sparser

approximation.

The denoising problem can be defined as approximating x from y where

y = x + z,

with z the noise vector; i.e., (3.1) with H = I
N

.

Assuming x is sparse in a proper domain; i.e., x = B✓ with ✓ sparse and B ∈ RN×d, a possible

solution to (3.1) is given by

x̂ =B✓̂, (3.2)

where

✓̂ = argmin
✓

��y −B✓�22 + ��✓�pp� , (3.3)

and we have the usual choices for p to promote sparse solutions. In the previous chapter we

extensively studied this minimisation problem, which we will now use for restoration. Intuitively
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we are searching for a sparse solution that is close to the measured signal y. As we will show in

the next subsection, it can be interpreted as a maximum a posteriori (MAP) estimator for the case

when z is additive white Gaussian noise.

3.2.1. White noise

If z is white Gaussian, z ∼NN(0,�2zIN),

p(z = z̀) = 1

�Nz (2⇡)N�2 exp�−
z̀T z̀

2�2z
� ,

and

p(y � ✓) = p(z = y −B✓) = 1

�Nz (2⇡)N�2 exp �−
(y −B✓)T (y −B✓)

2�2z
� .

The inverse probability p(✓ � y) can be found using Bayesian’s theorem:

p(✓ � y) = p(y � ✓)p(✓)
p(y) = p(✓)

p(y)�Nz (2⇡)N�2 exp �−
(y −B✓)T (y −B✓)

2�2z
� .

Let

p(✓ = ✓̀) = Aexp �−⇣�✓̀�pp
2
� ,

so that the sparser the solution the greater the assigned probability. Here the constant, A, is set

such that

�
✓∈RN

Aexp �−⇣�✓�pp
2
� = 1.

Under these assumptions the MAP estimator is

✓̂ = argmax
✓

p(✓ � y) = argmax
✓

log(p(✓ � y))
= argmax

✓

�K − (y −B✓)T (y −B✓)
2�2z

− ⇣�✓�pp
2
�

= argmin
✓

��y −B✓�22 + ⇣�2z�✓�pp� , (3.4)

which is equivalent to (2.1) with � = ⇣�2z , proportional to the noise variance. Recall from the
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previous chapter that if B is unitary and p = 0, (3.4) is solved by hard thresholding each coe�cient:

✓̂[i] = S⇣�2
z ,0
(y

B

[i]) =
�����������

y
B

[i] if (y
B

[i])2 ≥ ⇣�2z
0 if (y

B

[i])2 < ⇣�2z
, (3.5)

where y
B

=BTy.

We can gain some intuition for the parameter ⇣ by considering the sparse promoting denoising

problem as a hypothesis test. Since z is white, y
B

has the following distribution:

y
B

=BTy =BT (x + z) ∼Nd �BTx,BT�2zINB�
∼Nd �BTx,BTB�2z� ,

and is, thus, independent and identically distributed (iid) when B is unitary:

y
B

∼Nd �BTx,I
d

�2z� ,

which, if b
i

is the i-th column of B, can be written individually for each component as follows:

y
B

[i] ∼N �b
i

Tx,�2z� .

To formulate this thresholding as a hypothesis test, let the null hypotheses, H0, be the expected

case where, since the transform is sparse, the original coe�cient is zero and the alternative hypoth-

esis, H1 be the contrary:

H0 ∶ b
i

Tx = 0,
H1 ∶ b

i

Tx ≠ 0.

Assuming the null hypothesis is true, the probability of observing a coe�cient at least as extreme

as b
i

Ty is

p = 2 − 2��biTy
�z
� , (3.6)

where � is the cumulative distribution function for the standard normal distribution. The p-value,

given in (3.6), is graphically depicted in Fig. 3.1(a). The smaller the value of p, the more evidence
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(a) Graphical illustration of the p-value.
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√
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�

(b) Graphical illustration of a type II error.

Figure 3.1.: Graphical illustrations of the p-value given in (3.6) and the probability of a type II error
given in (3.9).

there is to reject the null hypothesis. Therefore if we decide to reject the null hypothesis if p is less

than some small predetermined probability ↵, we will reject the null hypothesis if

p = 2 − 2��biTy
�z
� ≤ ↵.

Equivalently, there is su�cient evidence to reject H0 if

�b
i

Ty� ≥ �z�−1 �1 − ↵
2
� . (3.7)

When there is insu�cient evidence to suggest the original coe�cient was not zero we hard threshold

the coe�cient; therefore, comparing (3.5) with (3.7), we deduce that

⇣ = ��−1 �1 − ↵
2
��2 .

This result allows us to select ⇣ from an appropriate p-value threshold: for example if we choose to

reject the null hypothesis if p ≤ 5% then ⇣ = 3.84. Alternatively we can experimentally tune ⇣ and

then deduce the probability of type I and II errors: the probability of a type I error, i.e. a false

positive, is

p(Reject H0�H0 true) = ↵ = 2 − 2� ��⇣� , (3.8)

and, as shown graphically in Fig. 3.1(b), the probability of a type II error, i.e. a false negative, is

p(Do not reject H0�H0 false) = ���⇣ − b
i

Tx

�z
� −��−�⇣ − b

i

Tx

�z
� . (3.9)
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As depicted in Fig. 3.1(b), there is a large probability of a type II error, when b
i

Tx is small; however,

these small coe�cients carry little power and in most cases �b
i

Tx� >> ��z√⇣ � and the probability of

a type II error is small.

3.2.2. Beyond white noise

In the above analysis we made the assumption that the noise was additive white and Gaussian. In

this subsection we will slightly extend this noise model to coloured or filtered Gaussian noise, which

will be particularly relevant to the deconvolution problem. This coloured denoising problem can be

formulated as approximating x from y where

y = x +Wz,

W ∈ RN×N is a circulant matrix, since it models circular convolution, and z is once again white

Gaussian. The filtered noise vector Wz ∼NN(0,W�2zW
T ), therefore

p(Wz = z̀) = 1

�Nz (2⇡)N�2 exp
�
�−

z̀T �WW T �−1 z̀
2�2z

�
� .

By similar analysis to the white noise case, the resulting MAP estimator is given by

✓̂ = argmin
✓

�(y −B✓)T �WW T �−1 (y −B✓) + ⇣�2z�✓�pp� .

Even if B is unitary, hard thresholding is no longer optimal. This can also be seen by looking at

the distribution of y
B

:

y
B

=BTy =BT (x +Wz) ∼Nd �BTx,BTW�2zW
TB� .

Clearly the covariance matrix, BTW�2zW
TB, is no longer diagonal. Despite this, satisfactory

results can be obtained by assuming it is diagonal and hard thresholding each individual component

depending on its variance, e.g. [18]. Operating on each element individually yields

y
B

[i] = b
i

Ty = b
i

T (x +Wz) ∼N �b
i

Tx,b
i

TW�2zW
Tb

i

�
∼N �b

i

Tx,�2z�W Tb
i

�22� .
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Since W is circulant, it can be diagonalised by the DFT: W = Fdiag(wF)F∗, where F is the DFT

matrix. It is often more e�cient to exploit this and calculate the variance in the DFT domain:

�2z�W Tb
i

�22 = �2z�Fdiag(wF∗)F∗bi�22
= �2z�diag(wF∗)bFi

�22
= �2z (wF∗bFi

)2 ,

where bFi

= F∗b
i

.

The resulting hard thresholding has a di↵erent threshold for each element:

✓̂[i] = S�i,0 (yB

[i]) where �i = ⇣�2z�W Tb
i

�22,

which accounts for the di↵erent noise variances of the coe�cients.

3.2.3. Transforms

The preceding analysis shows that the minimisation algorithms presented in Chapter 2 can be used

to remove noise. In Chapter 2 we also discussed di↵erent transforms that could provide sparse

representations of images, including wavelets, curvelets and bandlets. A simple denoising strategy

is, thus, to hard threshold in the transform domain where the signal is sparse. For example, the

case of thresholding in the wavelet domain is shown in Fig. 3.3(c). The results of this approach,

however, su↵er from blocking artifacts, which are due to the shift variance of the transform. This

variance can be removed by using the UDWT, however this is an overcomplete transform so hard

thresholding is no longer optimal.

The alternative is to exploit the shift variance using cycle spinning [15]1. Figure 3.3(d) shows

the performance of cycle spinning the DWT, which, given enough shifts, creates the same shift

invariance as the UDWT. It is clear that this produces a large visual improvement, due to reduced

blocking, and also a significant PSNR improvement.

Figure 3.3(e) shows the results of hard thresholding the curvelet transform. Of course, with this

overcomplete frame, hard thresholding is only the first step of an iteration that converges to a local

minimum; however, this still produces satisfactory results. Note that Figs. 3.3(c) and 3.3(e) employ

1Cycle spinning is the process of averaging multiple approximations, each calculated from a di↵erent shift. It has
also been shown that improved results can be obtained by cycle spinning with weighted averaging [39].
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3-D array of
six regions
along an edge

3-D array of
four regions
from di↵erent
parts of the
image

Figure 3.2.: Examples of, similar, non local regions in an image stacked into 3-D arrays.

the same thresholding strategy but using two di↵erent transforms. One can see the significant

performance improvement that is obtained by using the curvelet transform, which provides sparser

representations of images.

As summarised in [42], there has recently been a trend towards non local approximations [9, 18,

47]. These transforms exploit the similarity between di↵erent regions of an image. For example the

Block Matching with 3-D Collaborative Filtering (BM3D) algorithm of Dabov et al. [17] combines

similar regions by stacking them into a 3-D array, computing a 3-D transform and thresholding the

result. This additional dimension of regularity provides an even sparser representation and very

impressive results. This idea is highlighted in Fig. 3.2: six similar regions along an edge and four

similar non local regions have been stacked into 3-D arrays on the left and right respectively. The

similarity of these regions will be captured by applying a transform, containing a constant basis

function, along this new dimension.

Another recent trend in image denoising is to adaptively select a basis. We have already seen this

with non-linear approximations such as bandlets, but this idea can be extended to learning the basis

from the image. For example the KSVD method [1] calculates a sparse dictionary from a training

set and has successfully been used for image denoising [29]. Furthermore, Dabov et al. [19] extended

their BM3D algorithm to adaptively choose a basis for each 3-D array using a principle component

analysis (PCA). An example of this algorithm, which is basically regarded as the leading denoising

algorithm on natural images, is shown in Fig. 3.3(f). The advantage of adaptive basis selection

algorithms is that they search for the basis that leads to the sparsest solution, for each individual

signal. This provides very good results over a wide range of images; however since the model can



(a) Lena image. (b) Noisy image. PSNR=20.18dB.

(c) Hard thresholding in an orthogonal wavelet basis.
PSNR=27.34dB.

(d) Cycle spinning using hard thresholding in an or-
thogonal wavelet basis. PSNR=30.25dB.

(e) Hard thresholding the curvelet transform.
PSNR=30.07dB.

(f) Restored using the BM3D-SAPCA algorithm.
PSNR=32.22dB.

Figure 3.3.: An example of the performance of various denoising algorithms on the Lena image with
a noise standard deviation of 25.
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only be generated from the measured degraded image, it may become unreliable if the degradation

is high. It is also possible that, for images that can be well approximated with a strong prior, some

of this prior knowledge will not be exploited. For example, depth images are piecewise smooth

and an algorithm that exploits this would be better suited to this class of images. Depth images

will be introduced in Section 3.4, which looks at interpolation, because there are some interesting

applications in this area.

3.3. Deconvolution

Blur is a common degradation that is normally due to motion, atmospheric e↵ects and camera

lenses. Deblurring is a deconvolution problem that, once again, can be modelled by

y =Hx + z, (3.10)

if H ∈ RN×N is the circular convolution matrix constructed from h, the impulse response of the

system. Under this construction (3.10) is equivalent to

y = h�x + z.

To consider the inversion of H, in the general case, let H = Udiag(s)V T be the singular value

decomposition (SVD) of H, where U ,V ∈ RN×N are orthogonal matrices and s ∈ RN is the vector

of singular values. Using this notation the pure inverse solution can be written as

H−1y = V diag(s)−1UTy

= x +V diag(s)−1UTz

= x + N�
i=1

v
i

u
i

Tz

s[i] , (3.11)

where u
i

and v
i

are the i-th columns of U and V respectively. It is clear from (3.11) that, if H

has small singular values, the pure inverse solution will be ine↵ective, since it will be dominated by

the noise term. Just like the rest of this thesis, we will use regularisation to obtain a good solution.

Assuming z is white and Gaussian, and the original signal is sparse in a proper domain, the same
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MAP analysis as the denoising case results in the estimate

x̂ =B✓̂,

where

✓̂ = argmin
✓

��y −HB✓�22 + ��✓�pp� . (3.12)

The minimisation problems (3.3) and (3.12) di↵er in just the presence of the matrix H, however

this simple di↵erence prevents closed-form solutions. This is because the product HB will almost

certainly not be unitary, even if B is. In the previous chapter we saw that iterative soft, and hard,

thresholding could be used to obtain sparse solutions in the generally, non-unitary, case. Also, recall

that FISTA is a fast iterative soft thresholding algorithm, with improved convergence rate. Figures

3.5(c) and 3.5(d) show the result of restoring a blurred noisy image with 100 iterations of FISTA

using the wavelet and curvelet transforms respectively.

We have seen how the SVD diagonalises H. In fact since H is a circular matrix, it is diagonalised

by the discrete Fourier transform (DFT) matrix, F :

H = Fdiag(hF)F∗, (3.13)

where hF = F∗h. Therefore, by choosing B = F , we no longer sparsely represent the signal (unless

the signal is sparse in the DFT domain) but we do diagonalise the filtering process. In this case,

instead of a sparsity promoting prior we would like a di↵erent prior that will allow us to obtain a

closed-form solution. Recall the minimum energy Tikhonov regularisation has the following closed-

form solution:

✓̂ = argmin
✓

��y −HF✓�22 + ⇣�2z�✓�22� ,
= �F∗H∗HF + ⇣�2zIN�−1F∗H∗y. (3.14)

Substituting (3.13) into (3.14) yields

✓̂ = �F∗Fdiag(hF)∗F∗Fdiag(hF)F∗F + ⇣�2zIN�−1F∗Fdiag(hF)∗F∗y
= �diag(hF)∗diag(hF) + ⇣�2zIN�−1 diag(hF)∗yF ,
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Figure 3.4.: The two-step deconvolution approach using a regularised inverse and a regularised
Wiener inverse.

so that each element can be calculated independently:

✓̂[i] = hF∗[i]�hF [i]�2 + ⇣�2z yF [i]. (3.15)

This regularised inverse is just the pure inverse, with the additional ⇣�2z term to prevent the denom-

inator becoming too small. Traditionally, ⇣ in (3.15) is set to optimise the PSNR of the solution

x̂ = F ✓̂, which heavily suppresses the noise. Consequently this solution is not as sharp as it could

be, which, in images, degrades a large amount of the visual information occurring around discontinu-

ities. More recently, (3.15) has been used with a smaller regularisation parameter, ⇣, that maintains

a sharper image and suppresses less noise. To obtain a satisfactory result a post processing denoising

is applied to remove the unsuppressed coloured noise term, which in the DFT domain is given by

hF∗[i]�hF [i]�2 + ⇣�2z zF [i].

Note that this noise fits the filtered noise model that we studied in the previous section.

Neelamani et al. [51] use this technique in their Fourier Wavelet Regularised Deconvolution

(ForWaRD) algorithm, which denoises by thresholding in the wavelet domain. They were able to

derive the optimum thresholding parameters in both the Fourier and wavelet domains and, with a

non-iterative algorithm, achieve much better results than the simple regularised filter.

This idea can be further extended to the two-step process shown in Fig. 3.4. Here the first step

is as previously described but the output is used to provide an estimate of the energy spectrum of



(a) Cameraman image. (b) Noisy blurred image. PSNR=21.37.

(c) FISTA in the wavelet domain. PSNR=26.82dB,
SSIM=0.7376.

(d) FISTA in the curvelet domain. PSNR=26.83dB,
SSIM=0.7656.

(e) Wiener filter with oracle energy spectrum.
PSNR=27.19, SSIM=0.7235.

(f) Two-step approach with BM3D denoising.
PSNR=28.59dB, SSIM=0.8598.

Figure 3.5.: An example of the performance of various deconvolution algorithms on the cameraman
image.
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the original signal. This energy spectrum is used to construct a more accurate regularised Wiener

inverse in the second step. Recall the Wiener filter is the optimum linear filter in terms of PSNR:

✓̂[i] = �xF [n]�2hF∗[i]�hF [i]�2 ⋅ �xF [n]�2 + �2z yF [i]. (3.16)

The Wiener filter produces the same over-smoothing e↵ect as the traditional application of (3.15),

so the two-step process tunes ⇣ in the regularised Wiener filter,

✓̂[i] = �x̂RIF [n]�2hF∗[i]�hF [i]�2 ⋅ �x̂RIF [n]�2 + ⇣�2z yF [i], (3.17)

to, once again, produce a sharper, and consequently noisier, result, which is then denoised. Note

that, since x is unknown, it has been replaced, in (3.17), by the approximation from the first step,

x̂.

Figures 3.5(e) and 3.5(f) show a deconvolution result for the Oracle Wiener filter and two-step

process with BM3D denoising. The Oracle Wiener filter, unrealistically, uses the ideal energy

spectrum of the original signal. A more realistic Wiener filter using a non ideal energy spectrum

would produce significantly poorer result; however, the two-step algorithm still out performs the

Oracle Wiener filter even though it operates without oracle knowledge.

3.4. Interpolation

In many digital imaging applications we have a set of samples and wish, to interpolate, to obtain

an estimate of the signal at a new unknown data point. For example the image upscale problem

can be viewed as interpolating between a regularly sampled grid of data points, some depth sensors

obtain samples at irregular locations, and, as we will see in the next section, the multi-view image

super resolution problem produces an irregularly sampled grid of blurred data.

Recently depth image problems have received a large amount of research interest due to their

increased use in applications. As shown in Fig. 3.6, each pixel of a depth image corresponds to the

distance from the camera image plane to the object, instead of the luminance value in a traditional

image. A depth image is thus inherently piecewise smooth and therefore ideally suited to algorithms

that can sparsely represent this class of images. The interpolation problem is particularly relevant

to these images because many depth sensors, e.g. the Kinect sensor, only calculate the depth at an
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(a) Luminance image. (b) Corresponding depth image.

Figure 3.6.: A luminance image and its corresponding depth image.

irregularly sampled grid of locations. Note that all depth images used in this thesis come from the

Middlebury stereo datasets [56–58].

We can model the interpolation problem as a degradation if we assume that x ∈ RN is the desired

image containing all N samples and y ∈ RNv is the measured signal containing Nv < N visible

samples. Let H ∈ RNv×N be the N × N identity with the N − Nv rows that correspond to an

unknown pixel removed, so that

y =Hx + z
models the degradation. Here z ∈ RNv can either be 0 or, in the case of noisy interpolation, an

additional white Gaussian noise vector.

Although the following algorithms are very general, they are designed for cases where the missing

pixels are randomly dispersed. In cases where the missing pixels occur in large blocks, such as

inpainting a damaged region of a photo, there are specific, more tailored, algorithms that rely on

copying regions of the image into the unknown regions. These algorithms will not be covered in this

thesis and we refer the interested reader to the image inpainting literature.

Traditional interpolation algorithms perform a linear filtering on the known samples. Figures

3.7(d) - 3.7(f) show examples of convolving the same 1-D regularly sampled signal with the constant,

linear and cubic interpolating functions shown in Figs. 3.7(a) - 3.7(c). Convolving the samples with

the constant interpolation spline is equivalent to nearest neighbour interpolation and connecting

the samples by straight lines is equivalent to convolving with the linear spline. The Catmull-Rom
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0.5−0.5

1

(a) A constant interpolation spline.

1

1−1
(b) A linear interpolation spline.

1

1−1
(c) A cubic interpolation spline.

(d) Interpolation of the discrete
points using the constant interpo-
lation spline.

(e) Interpolation of the discrete
points using the linear interpolation
spline.

(f) Interpolation of the discrete
points using the cubic interpolation
spline.

Figure 3.7.: Interpolation of the same data points by a linear convolution with three di↵erent splines.

cubic2, shown in Fig. 3.7(c), is one of many possible cubic splines, and is generally regarded as

the best for interpolation [24]. As shown in Fig. 3.7(f), it produces visually pleasing interpolation

through the samples (not all splines produce an interpolation that goes through the data points). It

is very easy to extend these interpolation techniques to 2-D, with bi-linear and bi-cubic interpolation

being the most commonly used techniques on images. Note that, although rarely used, it is possible

to construct quadratic splines that are suitable for interpolation [25].

Figure 3.8(c) shows the bilinear interpolation of an irregularly sampled depth image. For this

example, bilinear interpolation is significantly superior to nearest neighbour and slightly better than

bicubic.

Despite there prevalence, linear interpolation algorithms su↵er from their inability to adapt to the

signal, which causes inaccuracies around image features such as edges. Takeda et al. [68] developed

a data adaptive kernel regression technique that produces very e↵ective interpolation. Around each

desired point, kernel regression calculates an n-term Taylor expansion using local samples. The

e↵ect of each local sample is weighted with a kernel, such as a Gaussian function, so that nearby

samples have more e↵ect. Traditional kernel regression uses isotropic kernels across the whole

2The Catmull-Rom cubic is given by

 (x) =
���������

1.5�x�3 − 2.5�x�2 + 1 if �x� ≤ 1−0.5�x�3 + 2.5�x�2 − 4�x� + 2 if 1 < �x� ≤ 2
0 otherwise.



(a) Cameraman image. (b) Irregularly sampled image. 85% of the pixels ran-
domly removed.

(c) Bilinear. PSNR=33.03dB. (d) Adaptive kernel regression. PSNR=33.97dB.

(e) Close up of bilinear. (f) Close up of adaptive kernel regression.

Figure 3.8.: An example of interpolating the baby depth image after 85% of the pixels have been
randomly removed, using various interpolation algorithms.
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image, but the data adaptive kernels of Takeda et al. are elongated along smooth regions of the

image to enhance performance. This kernel regression algorithm can be used for many restoration

problems including interpolation. When interpolating, the kernel size is dependent not only on the

structure of the image but also on the density of visible samples. An example of the performance

of interpolating with adaptive kernel regression is shown in Fig. 3.8(d). Figures 3.8(e) and 3.8(f)

show closeups of the bilinear and adaptive kernel results. Along this edge, it is clear how adaptive

interpolation algorithms can better fit the data.

Since the problem has been modelled as a restoration problem, with the usual degradation model,

another way to obtain data adaptive interpolation is to use the same sparse promoting algorithms

that aim to solve

✓̂ = argmin
✓

��y −HB✓�22 + ��✓�pp� .
Later in this thesis we will construct an interpolation algorithm by employing this principle.

3.5. Super resolution

Multi-view image super resolution is the problem of combining multiple low resolution images of

the same scene into one high resolution image. It is currently receiving a large amount of research

interest as we reach the physical resolution limits of image sensors. In order to perform super

resolution we need to accurately model the image acquisition process. Figure 3.9 shows a possible

model that consists of a lens, that blurs the image, and an image sensor, that samples the blurred

image. The problem is to combine a number of these digital images, taken from di↵erent viewpoints,

into one high resolution image.

This problem has multiple steps, which are summarised in Fig. 3.10. The first step is to take

the set of low resolution images and register them onto a high resolution grid at sub-pixel accuracy.

Then the blurred irregularly sampled data can be interpolated to produce a noisy blurred high

resolution image. Finally this image is deconvolved to remove the blur generated by the camera

lens.

Multi-view image super resolution is thus a three step process: registration, interpolation and

deconvolution. Of these three problems, interpolation and deconvolution have already been covered

in detail and the following subsection will briefly summarise image registration.
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Acquisition Device Digital ImageReal World

f(x, y) g(x, y)
 �− x

Tx
,− y

Ty
� G[m,n]

Lens Sensor

Figure 3.9.: An image acquisition model consisting of a lens, which blurs the image, and an image
sensor, which samples the blurred image.

3.5.1. Image registration

Given a set of low resolution images we wish to calculate the transformations between each image and

one of the images, which we will take to be the reference. A simple registration strategy is to match

image key points, using for example a scale invariant feature transform (SIFT) detector, and average

the translations between these points. The key points can only be calculated at pixel accuracy,

however averaging many estimates produces a reasonable registration at sub-pixel accuracy. More

accurate registration techniques, using finite rate of innovation (FRI) principles [72], have been

presented by Baboulaz et al. [3]. Their techniques use the acquisition model depicted in Fig. 3.9

yielding

g(x, y) =f(x, y) � �− x

Tx
,− y

Ty
� ,

and

G[m,n] = g(m,n) = � � f(x, y) (x�Tx −m,y�Ty − n)dxdy
= �f(x, y), (x�Tx −m,y�Ty − n)� . (3.18)
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Set of low
resolution images

⋮

Registration
HR Grid

Deconvolution
Super resolved

image

Figure 3.10.: The steps necessary to perform image super resolution. First a set of low resolution
images are registered, revealing the location of each sample. Then, these samples
are interpolated to produce one blurred high resolution image. Finally, the blur is
suppressed with a deconvolution algorithm.

Here Tx and Ty are the sampling periods in the x and y directions, which for simplicity we will

assume to be one. They then calculate the continuous geometric moments M[p, q] of the signal

f(x, y) from the samples F [m,n], by modelling the sampling kernel as a B-spline,  (x, y) = �⇢(x, y).
This is possible because a B-spline, �⇢, of order ⇢, and its shifts, can reproduce polynomials up to

degree ⇢ − 1:
�
m
�
n

C
p,q

[m,n]�⇢(x −m,y − n) = xpyq, where p, q < ⇢, (3.19)

and C
p,q

[m,n] are the polynomial reproducing coe�cients. The continuous geometric moments are

defined as

M[p, q] = � � f(x, y)xpyqdxdy. (3.20)

Substituting (3.19) into (3.20) yields

M[p, q] = � � f(x, y)�
m
�
n

C
p,q

[m,n]�⇢(x −m,y − n)dxdy
=�

m
�
n

C
p,q

[m,n]� � f(x, y)�⇢(x −m,y − n)dxdy
=�

m
�
n

C
p,q

[m,n]G[m,n],
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where G[m,n] = ∫ ∫ f(x, y)�⇢(x−m,y−n)dxdy are the digital image samples given in (3.18), since

 (x, y) = �⇢(x, y).
To relate this result to image registration, suppose there are two signals, f1(x, y) and f2(x, y), that

are related by an a�ne transformation; i.e., a rotation ✓, scale [Xscale, Yscale]T , sheer [Xshear, Yshear]T
and translation [tx, ty]T :

�������
x̀

ỳ

�������
=
�������
cos ✓ − sin ✓
sin ✓ cos ✓

�������
�������
Xscale Xshear

Yscale Yshear

�������
�������
x

y

�������
+
�������
tx

ty

�������
,

where x and y are the arguments for the first signal, f1, and x̀ and ỳ are the arguments for the

second, f2. Baboulaz et al. [3] showed, using the results of Heikkilä [40] and Sprinzak et al. [64],

that the exact parameters of this a�ne transformation can be found from the continuous geometric

moments of f1 and f2. Therefore in theory, we can calculate the exact continuous geometric mo-

ments of each signal from its discrete samples and use these moments to calculate the exact a�ne

transformation between any of the signals. In practice this technique produces state of the art

registration, even when the sampling kernel and transformation are only approximately a B-spline

and a�ne respectively.

Figure 3.11 shows the various images that are obtained along the di↵erent stages of a super

resolution simulation. In this example the above FRI based registration, bicubic interpolation and

two-step deconvolution using BM3D denoising were used.

3.6. Summary

In this chapter we have seen how sparse promoting algorithms can be used to perform image restora-

tion. We have looked at a wide range of problems, from traditional denoising to the more complex

multi-step super resolution problem, and given a brief idea of the performance of various algorithms.

Throughout all the problems there have been two key ingredients to successful restoration:

1. The accurate modelling of the degradation.

2. The ability to sparsely represent the original signal with a shift invariant transform.

In the next chapter we will propose a new transform that can sparsely represent piecewise polynomial

signals and in the following chapter we will use this transform to develop state of the art restoration



(a) Tiger image. (b) One of 64 low resolution images (64 × 64).

(c) Bicubic interpolation of the irregularly sampled
image (512 × 512). PSNR=21.60dB.

(d) Final super resolved image after BM3D de-
convolution of the interpolated image (512 × 512).
PSNR=23.87dB.

(e) Close up of a low resolution image. (f) Close up of the super resolved image.

Figure 3.11.: An example of a super resolution simulation result. Here the registration has been
achieved using FRI principles, the interpolation with a bi-cubic spline and the decon-
volution using the two-step approach with BM3D denoising.
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algorithms. These algorithms will tackle the same problems presented in this chapter and will rely

on many of the principles. We will also present a more thorough analysis of the performance of

di↵erent algorithms.





CHAPTER 4

A Novel Algorithm to Approximate Piecewise Polynomial Images based on a

Quadtree Decomposition

4.1. Introduction

In Chapter 2 we saw numerous attempts to sparsely approximate 2-D piecewise polynomial im-

ages and in this chapter we will describe our novel approximation algorithm, which is particularly

suited to this class of functions. Our algorithm is based on the compression algorithm of Shukla

et al. [63], but we make the following novel contributions: we replace the bit rate constraint with

a description length penalty, which is more suitable for restoration. Furthermore, we vastly im-

prove the computational e�ciency of the algorithm by using the mathematics of updating matrix

factorisations.

We are interested in approximating 2-D signals, but in the aid of clarity we will begin by consid-

ering the simpler 1-D case.

4.2. 1-D piecewise polynomial approximation using a binary tree

Our aim is to sparsely describe a 1-D piecewise polynomial function. To do this we dyadically

partition the signal space using a binary tree, where each leaf represents a polynomial. Therefore,

to represent the 1-D piecewise linear signal shown in Fig. 4.1, we could use any of the trees shown
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(a) The binary tree at its deepest
depth.

(b) The pruned representation. (c) The prune-joined representation.

Figure 4.1.: Comparison between the prune and prune-join algorithms for a piecewise linear 1-D
signal.

in Figs. 4.1(a), 4.1(b) or 4.1(c). To calculate these representations we define a cost function that

has two terms: the first is a two-norm data fitting term and the second is a term to penalise the

description length. In 1-D we define the description length to be the sum of the degrees of the

polynomials in the approximation; therefore, the cost function is

�y −x�22 + ��
i∈T di, (4.1)

where y is the 1-D signal we are trying to approximate, T is the set of all leaves in the approximation

x, and di is the degree of the polynomial at node i. Here � is used to provide a tradeo↵ between the

two terms: it is set according to the quality of approximation that is required and in later chapters

will be set depending on the degradation of the restoration problem.

To obtain the deepest depth solution shown in Fig. 4.1(a) we visit each node at this deepest

depth and minimise (4.1) locally. Note that the approximation of a single node is a simple linear

approximation problem. The pruned representation shown in Fig. 4.1(b) is obtained using a bottom

up approach that starts from the deepest depth solution. The parent nodes of this deepest depth

solution are approximated using the same approach and then two sibling leaves are pruned if the

sum of their costs is greater than the cost of their parent. This process is repeated all the way up

the tree to produce the final pruned tree.

The pruned representation is suboptimal due to the limitations of the binary tree structure: for

example, because of the location of the discontinuity in Fig. 4.1(b), five regions are required to

represent a piecewise linear signal containing only one discontinuity. By allowing neighbouring

regions of the tree to jointly represent just one polynomial region we can overcome this limitation,

as shown in Fig. 4.1(c). This prune-join representation is calculated as follows: the leaves of the

pruned tree are visited, in a top-down left-right fashion, and tested to see if they can be joined to
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(a) A possible tile with an edge. (b) The pruned representation. (c) The prune-joined representa-
tion.

Figure 4.2.: Comparison between the prune and prune-join algorithms for a piecewise linear 2-D
signal.

neighbouring leaves which have already been checked (i.e. nodes that are at a higher depth, or the

same depth but further to the left in the tree). Two leaves are joined if their combined cost is less

than the sum of their individual costs. After two leaves have been joined, the joined representation

is used in place of the individual leaves for the rest of the joining algorithm.

4.3. 2-D piecewise polynomial approximation using a quadtree

Now let us move to the 2-D case: a quadtree is constructed where each leaf is either a global

polynomial or two polynomials separated by a continuous boundary. Figure 4.2(a) shows a possible

node which we will also call a tile. Prune and prune-join representations are generated in almost

the same way as the 1-D case and examples are shown in Figs. 4.2(b) and 4.2(c). In 2-D the penalty

for the description length, P x(x), is slightly more complex: it is defined to be separable across each

node so we can write

P x(x) =�
i∈LP

x
i (x), (4.2)

where x is the image vector, P x
i (x) is the penalty of tile i and L is the set of all leaves in the

approximation. In 1-D the description length of a tile is the degree of the polynomial; in 2-D it is

very similar: we penalise a polynomial region of degree d by 2d + 1 because this is the dimension

of the space of 2-D polynomials of degree d. For example 2-D polynomials of degree one span the

space which can be defined by a constant basis function and two linear basis functions, one per

direction. The total description length penalty also needs to deal with the description of the edge
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discontinuity. This can be done by defining the penalty for the i-th node to be

P x
i (x) =

�����������
2d + 1
2d1 + 2d2 + 2 + ln(Ni)

if a global tile,

if an edge tile,

where d1, d2 are the degrees of the polynomials either side of the edge and Ni is the number of

pixels in tile i. Finally ln(Ni) is present to penalise edges of larger tiles more harshly because there

are more possible discrete edges to choose from.

Just like the 1-D case we use a two-norm data fitting term producing the final cost function

�y −x�22 + �P x(x), (4.3)

which is separable over each tile. To find the best approximation for a particular tile we exhaustively

search a dictionary of possible edges (including the global ‘no edge’ case) and choose the edge with

the cheapest (4.3). This process is explained in detail in Section 4.4. The prune and prune-join

algorithms are identical to the 1-D case and their goal is to find

x̂ = argmin
x

��y −x�22 + �P x(x)� . (4.4)

Note that when joining in 1-D, each leaf can only have two neighbours: one left and one right.

In 2-D the situation is slightly more complex. However, since we only join two regions that have

already been checked, these regions must be either the same size or larger. Therefore, although there

could be multiple smaller neighbours at one side, each leaf will have a maximum of four joining

candidates: one up, one down, one left and one right.

Since the quadtree piecewise polynomial model is nonlinear, we will use the notation x = D(✓)
where ✓ is the parameter set which describes the tile structure, edge discontinuities and polynomial

coe�cients. We also use the notation that the penalty P x (D(✓)) = P ✓(✓) and therefore (4.4) is

equivalent to

✓̂ = argmin
✓

��y −D(✓)�22 + �P ✓(✓)� .
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× × × �× × × �× × � �× × � �
(a) First edge (e1).

× × × �× × × �× × × �× × � �
(b) Second edge (e2).

× × × �× × × �× × × �× × × �
(c) Third edge (e3).

× × � �× × × �× × × �× × × �
(d) Fourth edge (e4).

Figure 4.3.: Four edges that di↵er from the previous edge in only one pixel.

4.4. Finding the best approximation for a node

The prune and prune-join algorithms assume we can calculate an approximation for each node of

the tree. In 2-D this involves calculating a suitable edge discontinuity, which may be ‘no edge’, and

the polynomial coe�cients.

The tile approximation given a particular edge is a linear problem that is solved by projecting

onto the polynomial subspace and hard thresholding. Traditionally a suitable edge is found by

exhaustively searching a large number of possible edge discontinuities by approximating each one

using two linear projections, one either side of the edge. The edge leading to the minimum cost is

chosen. This approach is ine�cient and can become unfeasible for large tiles. In this case, due to

complexity, the search space is reduced so that only a small number of straight edges are tested.

To overcome this limitation, we present a fast method which allows us to exhaustively search edges

and also, if we wish, relax the constraint that the edge be straight. Our inspiration comes from the

mathematics of updating matrix factorisations: it is often more e�cient to update a factorisation

than recalculate it from scratch if the original matrix has only undergone a small change. We can

use this to quickly check di↵erent edges by changing just one pixel at a time. We will see that the

complexity of approximating a new edge is independent of the tile size and instead depends only on

the maximum degree of the polynomials.

In what follows we demonstrate the process by approximating a 4 × 4 tile using the edges shown

in Fig. 4.3. We will first approximate the tile using the edge shown in Fig. 4.3(a) by calculating the

QR decomposition from scratch and then update this factorisation to approximate the tile using

the edge shown in Fig. 4.3(b). Later in the chapter we will demonstrate rank deficiencies using the

edges shown in Figs. 4.3(c) and 4.3(d).

All the approximations will require a vector representation for the tile which is obtained by
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lexicographically stacking the tile into a vector t ∈ RNi (Ni = 16 in this example):

t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44

⇒ t =

��������������������������

t11

t21

⋮
t41

t12

⋮
t44

��������������������������

.

4.4.1. Approximating the tile by calculating QR decompositions

In this subsection we will approximate the tile using the edge of Fig. 4.3(a) by computing a QR

decomposition either side of the edge.

Let the maximum degree of the polynomials be one, resulting in polynomial subspaces of di-

mension three. We lexicographically stack the three biorthogonal linear polynomial basis functions

either side of the edge and use these vectors as the columns of two matrices Be1
1 and Be1

2 . We then

calculate the thin QR decomposition for these matrices:

1 1 1 �
1 1 1 �
1 1 � �
1 1 � �
1 2 3 �
1 2 3 �
1 2 � �
1 2 � �
1 1 1 �
2 2 2 �
3 3 � �
4 4 � �

⇒

��������������������������������������

1 1 1

1 1 2

1 1 3

1 1 4

1 2 1

1 2 2

1 2 3

1 2 4

1 3 1

1 3 2

�������������������������������������������������������������������������������������������������
Be1

1

=

��������������������������������������

√
10
10 −2

√
35

35 −23
√
2170

2170√
10
10 −2

√
35

35 −9
√
2170

2170√
10
10 −2

√
35

35
5
√
2170

2170√
10
10 −2

√
35

35
19
√
2170

2170√
10
10

√
35
70 −17

√
2170

2170√
10
10

√
35
70 −3

√
2170

2170√
10
10

√
35
70

11
√
2170

2170√
10
10

√
35
70

25
√
2170

2170√
10
10

3
√
35

35 −11
√
2170

2170√
10
10

3
√
35

35
3
√
2170

2170

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Qe1

1

�����������

√
10 9

√
10
5

23
√
10

10

0 2
√
35
5 −6

√
35

35

0 0
√
2170
14

�����������������������������������������������������������������������������������������������������������������������������������������������������������������
Re1

1
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� � � 1

� � � 1

� � 1 1

� � 1 1

� � � 4

� � � 4

� � 3 4

� � 3 4

� � � 1

� � � 2

� � 3 3

� � 4 4

⇒

�����������������������

1 3 3

1 3 4

1 4 1

1 4 2

1 4 3

1 4 4

����������������������������������������������������������������������������������
Be1

2

=

�����������������������

√
6
6 −√3

3 −√22
22√

6
6 −√3

3

√
22
22√

6
6

√
3
6 −3

√
22

22√
6
6

√
3
6 −√22

22√
6
6

√
3
6

√
22
22√

6
6

√
3
6

3
√
22

22

���������������������������������������������������������������������������������������������������������������������������������������������������������������
Qe1

2

�����������

√
6 11

√
6

3
17
√
6

6

0 2
√
3

3 −2
√
3

3

0 0
√
22
2

�������������������������������������������������������������������������������������������������������������������������������������������������
Re1

2

.

Having the orthogonal Q matrices makes approximating t using this edge easy. We first split t

into two corresponding vectors, te11 and te12 , either side of the edge. We will use the notation

te11 ∪ te12 = t to allow us to combine vectors from di↵erent regions of the image; similarly, we use

‘∩’ for the intersection of two image vectors. Since te11 ∩ te12 = �, the approximation can be found

independently for each side:

t̂e11 =Qe1
1 ✓̂

Q

e1
1

where ✓̂
Q

e1
1
=Qe1

1
T
te11 ,

and t̂e12 =Qe1
2 ✓̂

Q

e1
2

where ✓̂
Q

e1
2
=Qe1

2
T
te12 .

The error is

�t − t̂e1� = �te11 − t̂e11 �22 + �te12 − t̂e12 �22
= �t�22 − �✓̂

Q

e1
1
�22 − �✓̂

Q

e1
2
�22, (4.5)

which can be simplified by neglecting the �t�22 term when comparing the errors of di↵erent edges

for the same tile.
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4.4.2. Approximating the tile by adding and removing rows to and from QR

decompositions

Looking at the two edges in Figs. 4.3(a) and 4.3(b) and the two matrices, Be1
1 and Be1

2 , it is clear

that Be2
1 can be constructed by adding a row to Be1

1 and, similarly, Be2
2 can be constructed by

removing the same row from Be1
2 . In the 1970s e�cient algorithms were developed for applying

rank one updates to matrix factorisations, see for example Gill et al. [36], and the process is

now documented in many books including [5, 37]. In [20] Daniel et al. propose numerical stable

algorithms to update a QR factorisation which are particular relevant to our problem. In what

follows, we will show the technique of adding and removing rows, as proposed in [20], but in the

context of our problem. This will lead to our key insight that allows us to obtain the coe�cients

and error of the approximation without recalculating the Q matrix of the QR decomposition. This

vastly improves the e�ciency because we no longer have to operate at the dimension of the Q matrix

but can instead work at the much smaller dimension of the R matrix.

Adding a row

We will first consider the process of adding a row to the QR decomposition of Be1
1 to obtain the

QR decomposition for Be2
1 . The first step of this process is to construct Be2

1 as we did before

but we do not calculate the QR decomposition. Instead we proceed as follows: we first modify the

matrices Qe1
1 and Re1

1 so that the equality still holds after the new row is added (the new row of

scalar values has been shown in bold for emphasis; this goes against the convention of the rest of
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this thesis where lowercase bold is reserved for vectors):

1 1 1 �
1 1 1 �
1 1 1 �
1 1 � �
1 2 3 �
1 2 3 �
1 2 3 �
1 2 � �
1 1 1 �
2 2 2 �
3 3 3 �
4 4 � �

⇒

������������������������������������������

1 1 1

1 1 2

1 1 3

1 1 4

1 2 1

1 2 2

1 2 3

1 2 4

1 3 1

1 3 2

1 3 3

���������������������������������������������������������������������������������������������������������
Be2

1

=
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35
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2170 0√
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√
35
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2170 0√
10
10

√
35
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√
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2170 0√
10
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√
35
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√
2170

2170 0√
10
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3
√
35

35 −11
√
2170

2170 0√
10
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3
√
35

35
3
√
2170

2170 0

0 0 0 1

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Q̃e2

1

���������������

√
10 9

√
10
5

23
√
10

10

0 2
√
35
5 −6

√
35

35

0 0
√
2170
14

1 3 3

���������������������������������������������������������������������������������������������������������������������������������������������������������������������
R̃e2

1

(4.6)

Currently, Be2
1 is factored into an orthogonal matrix, Q̃e2

1 , multiplied by a matrix, R̃e2
1 , which

is not upper triangular. To get the factorisation into the desired thin QR form we introduce an

orthogonal matrix, G ∈ R4×4, which is the product of three Givens rotation matrices: G =G3G2G1.

Since GTG = I4, we can write

Be2
1 = Q̃e2

1 GTGR̃e2
1 .

The aim of G is to make GR̃e2
1 upper triangular. To do this the three Givens rotation matrices are

constructed to reflect � 1 3 3 � into the diagonal entries of Re1
1 . The first rotation matrix, G1,

reflects the first element of � 1 3 3 � into the top left element of Re1
1 :

���������������

√
110
11 0 0

√
11
11

0 1 0 0

0 0 1 0√
11
11 0 0 −√110

11

����������������������������������������������������������������������������������������������������������������������������������������������������������������������
G1

���������������

√
10 9

√
10
5

23
√
10

10

0 2
√
35
5 −6

√
35

35

0 0
√
2170
14

1 3 3

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Re1

1

�T

����������

=

���������������

√
11 21
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√
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0 −6
√
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55 −7

√
110

110

���������������

.
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Similarly G2 and G3 are constructed to reflect the second and third elements into the other two

diagonal elements of Re1
1 leading to

G3G2G1

���������������

√
10 9

√
10
5

23
√
10

10

0 2
√
35
5 −6

√
35

35

0 0
√
2170
14

1 3 3

���������������
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���������������
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√
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√
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���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Re2

1

0T

����������

.

We see that the Givens matrices have ‘zeroed’ the bottom row so that GR̃e2
1 is upper triangular.

The product Q̃e2
1 G

T = � Qe2
1 q � is orthogonal (since both G and Q̃e2

1 are orthogonal) so Be2
1

is now factored into an orthogonal matrix times an upper triangular matrix:

������������������������������������������

1 1 1

1 1 2

1 1 3

1 1 4

1 2 1

1 2 2

1 2 3

1 2 4

1 3 1
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Be2

1

=
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√
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√
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√
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√
35805
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11 −5

√
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√
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√
209
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8
√
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√
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9
√
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4
√
35805

11935√
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√
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209 −17
√
4389
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√
35805
23870√

11
11 −5

√
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209 −13
√
4389
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37
√
35805

71610√
11
11 −5

√
209

209
25
√
4389

8778
71
√
35805

71610√
11
11 −5

√
209

209
3
√
4389
418

√
35805
682√

11
11 −5

√
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209 −√4389
209

2
√
35805
1705√

11
11 −5

√
209

209 −2
√
4389

4389
59
√
35805

35805√
11
11 −5

√
209

209
17
√
4389

4389 −√35805
231

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
� Qe2

1 q �

���������������

√
11 21

√
11

11
26
√
11

11

0 2
√
209
11 −9

√
209

209

0 0
√
4389
19

0 0 0

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Re2

1

0T

����������

.

Since the bottom row of the upper triangular matrix is zero we can simplify to Be2
1 = Qe2

1 Re2
1 ,

which is the required thin QR decomposition.

One may be tempted to calculate the polynomial coe�cients by using the updated Qe2
1 to directly
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calculate Qe2
1

T
t; there is, however, a much more e�cient way. Since

� Qe2
1 q �T te21 =

����
�������
Qe1

1 0

0T 1

�������
GT
����
T �������

te11

t33

�������
,

we can calculate the coe�cients from

✓̂
Q

e2
1
=Qe2

1
T

te21 =G
�������
✓̂
Q

e1
1

t33

�������
, (4.7)

where G is G with the last row removed. This is the key result because it allows us to update the

coe�cients without calculatingQe2
1 . All that is needed is to construct the Givens matrices usingRe1

1

and then the updated coe�cients and upper triangular matrix are easily found. Once the coe�cients

have been calculated for both sides of the edge, the error can e�ciently be calculated from (4.5).

The computational cost of the update is independent of the tile size and instead dependent on the

degree of the polynomials used, which in our case is very small. This is because we require d Givens

matrices, constructed to reflect the new row into the diagonal elements of Re1
1 ∈ Rd×d, to update

the coe�cients.
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Removing a row

So far we have only told half the story: we now need to remove the same row from Be1
2 to obtain

Be2
2 . We recall that we have the following thin QR decomposition for Be1

2 :

� � � 1

� � � 1

� � 1 1

� � 1 1

� � � 4

� � � 4

� � 3 4

� � 3 4

� � � 1

� � � 2

� � 3 3

� � 4 4

⇒

�����������������������

1 3 3

1 3 4

1 4 1

1 4 2

1 4 3

1 4 4

����������������������������������������������������������������������������������
Be1

2 =
�������

�T

Be2
2

�������

=

�����������������������

√
6
6 −√3

3 −√22
22√

6
6 −√3

3

√
22
22√

6
6

√
3
6 −3

√
22

22√
6
6

√
3
6 −√22

22√
6
6

√
3
6

√
22
22√

6
6

√
3
6

3
√
22

22

���������������������������������������������������������������������������������������������������������������������������������������������������������������
Qe1

2 =
�������

⇢T

Q̃e2
2

�������

�����������

√
6 11

√
6

3
17
√
6

6

0 2
√
3

3 −2
√
3

3

0 0
√
22
2

�������������������������������������������������������������������������������������������������������������������������������������������������
Re1

2

We wish to remove the first row, �T , to obtain the QR decomposition for Be2
2 . The process of

removing a row can be thought of as the reverse of adding a row.

We first append a vector, q, to Qe1
2 such that � Qe1

2 q � is orthogonal and �[ ⇢T q[1] ]�
2
= 1;

i.e., this new matrix is orthogonal and its first row (the row to be removed) has unit norm.

These criterion allow us to use three Givens rotation matrices, G =G3G2G1, to reflect the three

elements of ⇢ into q[1] and, since Givens matrices preserve length, the resulting row, � ⇢T q[1] �GT

will be � 0T 1 �.
Furthermore, � Qe1

2 q �GT will be orthogonal and we have just seen that the first element of

the last column will be one therefore the rest of this column must be zeros. Thus if we operate

correctly, we will be in an analogous position to (4.6) with the Givens matrices, in e↵ect, playing

the reverse of the role they played in adding a row. This will become much clearer when, continuing

our example, we get to (4.8), which is in the desired form; i.e., it is in a form analogous to (4.6)

that allows the row to be removed whilst maintaining the equality.
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The vector, q, satisfying the above criterion can be constructed by using the Gram-Schmidt

process to orthonormalise a vector, v, that is all zeros except for a 1 in the row, which we wish to

remove:

q = 1

rdd

����������������������������
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0

0

0

0
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6
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√
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√
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√
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√
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6

√
3
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√
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6
6

√
3
6 −√22

22√
6
6

√
3
6

√
22
22√

6
6

√
3
6

3
√
22

22

�����������������������

T

���������������������������������������������������������������������������������������������������������������������������������������������������
Qe1

2
T

�����������������������

1

0

0

0

0

0

������������������������
v

����������������������������

= 1

rdd

��������������������������������������
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1

0

0

0

0

0
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v
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6
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3
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����������������������������������������������������������������������������������������������������������������������������������������������������������������������
⇢T

Q̃e2
2

�������

�����������

√
6
6

−√3
3

−√22
22

���������������������������������������������������
⇢

��������������������������������������

,

where rdd ensures that �q�2 = 1; i.e., rdd = �v −Qe1
2 ⇢� =�1 − ⇢T⇢. Therefore

q = 1�
1 − ⇢T⇢

�v −Qe1
2 ⇢�

= 1�
1 − ⇢T⇢

�������
1 − ⇢T⇢

−Q̃e2
2 ⇢

�������
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=
�������

rdd

− Q̃

e2
2

⇢

rdd

�������
.

Appending q to Qe1
2 yields

�����������������������

1 3 3

1 3 4

1 4 1

1 4 2

1 4 3

1 4 4
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√
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0 0
√
22
2

0 0 0
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Re1

2

0T

����������

,

and it is clear that the first row of � Qe1
2 q �, which is � ⇢T rdd �, has unit norm since rdd =�

1 − ⇢T⇢. We required this so that we could use three Givens rotation matrices to reflect the three

elements of ⇢ into rdd and obtain � 0T 1 �; i.e., we construct G = G3G2G1, so that G

�������
⇢

rdd

�������
=

�������
0

1

�������
. For our example, the Givens matrices are

���������������

√
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6 0 0 −√6
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0 1 0 0

0 0 1 0√
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√
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�����������������������������������������������������������������
⇢

rdd

����������

=

���������������

0

0

0

1

���������������

.

Notice that G1 operates on the last two elements of

�������
⇢

rdd

�������
, G2 the second and last, and G3 the

first and last. The elements are zeroed in this order so that G

�������
Re1

2

0T

�������
remains upper triangular.
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Therefore inserting GTG in between the two factors yields
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,
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√
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2

�T

����������

. (4.8)

Notice that the first row and last column of the left factor are all zeros except the one in the upper

right element. This was our goal when constructing q and G because it allows us to easily remove

the row. Also note that the bottom row of the right factor will always be �T or the equality would

not be valid. We have manipulated the matrices so that we are in an analogous position to (4.6).

We can obtain the required factorisation by simplifying to Be2
2 =Qe2

2 Re2
2 .

Again we can devise a very e�cient algorithm to calculate the coe�cients ✓e2
2 from the previous

coe�cients ✓e1
2 :

�������
0T 1

Qe2
2 0

�������

T

te12 = �� Qe1
2 q �GT�T te12

= ����
�������

⇢T rdd

Q̃e2
2 − Q̃

e2
2

⇢

rdd

�������
GT
����
T

te12
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=G
��������

⇢ Q̃e2
2

T

rdd −⇢

T
Q̃

e2
2

T

rdd

��������
te12

=G
��������

Qe1
2

T
te12

rddt33 − ⇢

T
Q̃

e2
2

T
t

e2
2

rdd

��������
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�������

Qe1
2

T
te12

r2ddt33−⇢T (Qe1
2

T
t

e1
2
−⇢t33)

rdd

�������
.

Consequently

✓e2
2 =Qe2

2
T
te22 =G

��������
✓e1
2

t33−⇢T
✓

e1
2�

1−⇢T
⇢

��������
. (4.9)

Again we do not need to calculate Qe2
2 and the update is independent of the tile size. In this case we

need knowledge of ⇢, both to construct G and for the update in (4.9). This can be found e�ciently

from

⇢ = �Re1
2
−1�T �,

because Re1
2 is upper triangular. Now that we have the coe�cients for both sides of the edge the

error can be calculated using (4.5).

We have developed e�cient algorithms to calculate the coe�cients and error after adding and

removing rows. If we constructed a dictionary of edges where each edge di↵ers from the previous

one in only one pixel, then we could exhaustively search this dictionary by adding a pixel to one

side of the edge and removing the same pixel from the other side. In most cases, this can be done

using the two updates given in (4.7) and (4.9); however, in some special cases rank deficiencies can

occur. In the next subsection we will address these issues and present the final algorithms to add

and remove a pixel from either side of the edge.

4.4.3. Handling rank deficiencies

Removing columns so that (4.9) is always well defined

It is clear that update (4.9) requires ⇢T⇢ ≠ 1. The case ⇢T⇢ = 1 occurs if removing the row, ⇢, makes

the system rank deficient. In our context this occurs if one of the linear basis functions becomes
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equivalent to the constant basis function.

For example, consider what would happen if we tried to obtain Be3
2 by removing the row �T =

� 1 3 4 � from Be2
2 :

� � � 1
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.

The constant and x basis functions would become linearly dependent and the system would

become rank deficient. As a consequence ⇢T⇢ would be one and update (4.9) would not be defined.

In order to be able to use (4.9), rank deficiencies can be prevented by removing the second column

before removing the row. As a first step, we remove the second column from Be2
2 and Re2

2 :
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Here we have used the rather unusual notation that −xBe2
2 is the B matrix for the second side of

the edge, e2, with the x column removed. Similarly −xQe2
2 and −xRe2

2 will be used for the thin QR

decomposition of this matrix.

If we had needed to remove the last column from Be2
2 things would be simpler because, in this

case, the last row of −xR̃e2
2 would be all zeros. This would allow us to remove this row of zeros

and the last column of Qe2
2 . In this more complex case we need to use a Givens matrix to zero

the element below the diagonal before we can remove this row and column. In general, to remove

the i-th column we would need to use d − i Givens matrices to remove the d − i elements below the

diagonal. For our example we have
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Now we can remove the first row from −xQe2
2 as before and maintain full rank. This would result in

� � � 1

� � � 1

� � � 1
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2 5

0
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−xRe3

2

.

Of course we do not actually want to calculate these decompositions we just want to update the

coe�cients like before. We can find the coe�cients after removing a column by using the fact that

−xQe2
2 =Qe2

2 GT , therefore

−x✓e2
2 = −xQe2

2
T
te22 =GQe2

2
T
te22 .

This can be used in conjunction with (4.9) to give the final coe�cients

−x✓e3
2 =
��������

−x✓e2
2

t14−⇢T �−x✓e2
2
��

1−⇢T
⇢

��������
,

where ⇢ = �−xRe2
2

T �−1
�������
1

1

�������
.

Adding a column so that the system spans the full space of linear polynomials

When adding a row the system will never become rank deficient; however, it is possible that adding

a row will allow a previously removed column to be added back to the system whilst maintaining

full rank. If this column was not added then the system would no longer span all the desired space.

For example, suppose we have the QR decomposition of −xBe3
2 and we wish to add a row to

obtain the QR decomposition for the edge, e4, shown in Fig. 4.3(d). We would first add the row
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� 1 1 � as usual to obtain
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2

.

Of course, in practice we would actually just calculate −x✓e4
2 and −xRe4

2 using the updates.

Visually, it is clear that in this example we can add the x column back to the system whilst

maintaining full rank and mathematically this is possible because �b�2 > ��−xQe4
2 �T b�

2
, where

b = � 3 4 4 4 4 �T is the column we are trying to add.

We could use the Gram Schmidt process to add the column to the right hand side of −xBe4
2 :

� −xBe4
2 b � = � −xQe4

2 q �
�������
−xRe4

2 r
x

0T rdd

�������
,

where q = b − �−xQe4
2 � �−xQe4

2 �T b

rdd
, r

x

= �−xQe4
2 �T b and rdd = �b − �−xQe4

2 � �−xQe4
2 �T b�

2
=��b�2 − �r

x

�2.

In fact, we would like to keep the coe�cients in the same order so we insert the x column back

into the middle location. This can be done by splitting −xRe4
2 into two matrices, R

L

and R
R

, either

side of this location. We can then insert b in between the two columns of −xBe4
2 by also inserting�������

r
x

rdd

�������
in between R

L

and R
R

(note that R
L

and R
R

are vectors in our 3 × 3 example but are
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uppercase because in general they are matrices):
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Currently the right hand factor is not upper triangular but this can be easily fixed with a Givens

rotation matrix:
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The final QR decomposition is then given by
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We can also generate the final coe�cient updating formula as we have done before:

✓e4
2 =Qe4

2
T
te42

= �� −xQe4
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2
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2
�T b

rdd
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��������
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2 �T te42

�b−�−xQe4
2
�r

x

rdd
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��������
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T
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2
−r

x

T �−x✓e4
2
���b�2−�r

x

�2

��������
.

For this update we need bT te42 , �b�22 and r
x

= �−xQe4
2 �T b which are computationally expensive to

calculate from scratch every time. This can be prevented by observing that these expressions can be

extracted from the QR decomposition very easily: let B =QR be a general thin QR decomposition,

then

BT t = (QR)T t =RT✓,

therefore b
i

T t = r
i

T✓ where b
i

and r
i

are the i-th columns of B and R respectively. Furthermore,
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using the same notation,

QTB =QTQR =R,

and we, thus, have QTb
i

= r
i

. Finally, B =QR implies that b
i

=Qr
i

, therefore �b
i

�22 = �ri�22.
When we are adding a column, the column we are trying to add is by definition not present, so

at first glance these results are useless. However, we can extract these expressions just before we

remove the column from the system and then keep them up to date while the column is not part

of the system. The column can then be added back to the system whenever it is needed. Updating

bT t and �b�22 is trivial and r
x

=QTx can be updated in the same way as the coe�cients (note that

QTx is in the same form as the coe�cients QT t).

In the next subsection we will construct a dictionary of edges that can be exhaustively searched

using this idea of adding and removing pixels.

4.4.4. Constructing a suitable dictionary of edges

We now describe a possible dictionary that can be exhaustively searched e�ciently using the previous

analysis.

There are many possible ways to construct a dictionary of edges that meet the above requirement.

Figure 4.4 shows part of a possible dictionary of 4×4 tiles. This dictionary is created by initialising

the tile so that all pixels are on the same side of the edge (the global ‘no edge’ case). Then, a straight

line is rotated clockwise around a particular point on the boundary and when the line crosses the

centre point of a pixel it is moved to the other side of the edge. When all pixels have been moved

to the other side of the edge, we are back to the global ‘no edge’ case. The point of rotation is then

moved one discrete step clockwise around the tile boundary and the process repeated. For example,

the first two rows of Fig. 4.4(a) correspond to rotating the line around the top left corner, (0,0),
and the next two rows correspond to rotating the edge around the point, (0,1), one step to the

right.

Note that it is possible to check all these edges in one continuous chain; however, resetting to

the ‘no edge’ case, when possible, reduces rounding errors. Additionally this strategy allows the

dictionary size to be reduced. As previously proposed, the dictionary has 4n3 edges for an n×n tile,

since there are 4n rotation points and n2 edges per point. This can be reduced to 2n3+n2�2 if we stop
rotating the edge when we reach a boundary point we have already used as a rotation point. The
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(a) The start of a possible 4 × 4 dictionary of edges.

(b) The end of a possible 4 × 4 dictionary of edges.

Figure 4.4.: Part of a possible dictionary of 4 × 4 edge tiles that can be searched with the proposed
strategy.

intuition is that, since we have already checked edges starting and ending from approximately these

locations, the vast majority of future edges will already have been checked. Figure 4.4(b) shows

the last few edges of the same dictionary, when this strategy is employed. Despite the reduced

size, the number of edges still has cubic growth, so we only exhaustively search tiles up to a size

of 32 × 32. Larger tiles are down sampled and then exhaustively searched. This produces a rough
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approximation of the edge discontinuity which is refined at the larger, original tile size.

As can be seen in Fig. 4.4, constructing a dictionary of edges such that each edge di↵ers from

the previous entry in only one pixel results in checking some edges more than once. The reduced

dictionary, just described, reduces this replication but it is still present. However, since the compu-

tational cost of moving a pixel from one side of the edge to the other is so cheap, we can tolerate

this replication.

In many cases, we can further reduce the computation by pre-computing and storing the Givens

matrices, for the whole dictionary of possible edges, o✏ine. This makes the computation required

to update the coe�cients from one edge to the next very small. In practise we precompute and

store these Givens matrices for square tiles up to 32× 32 used in the pruning algorithm, but not for

the more flexible regions that can be obtained when joining.

4.5. Example of the speed and sparsity capabilities of the

proposed method

To conclude this section we show an example of the speed improvement that is obtained by updating

the QR decomposition in the way that we have presented. We also use the example to demonstrate

the sparsity of our model. Figure 4.5 shows two approximations of the cameraman image that

have a PSNR of 30dB. The first approximation was calculated in 1.0 seconds using the prune only

model and the second was calculated in 8.3 seconds using the more complex prune-join model1; for

comparison these approximations would take around 100 and 10000 seconds if we calculated the QR

decomposition from scratch each time. In both cases d = 1; namely, the tiles are either piecewise

linear or a single linear polynomial.

For a rough comparison of sparsity, the prune and prune-join models use 3602 and 2753 poly-

nomial coe�cients respectively, whereas a Daubechies 4 tap wavelet decomposition would require

4712 coe�cients to achieve the same approximation error. This greater sparsity should aid us in

restoration, particularly in cases of high degradation where a strong prior is required.

1All calculations were made in MATLAB on a 2.2GHz Intel Core i7 Macbook Pro with 4GB of RAM (no multi-
threading).



102 NOVEL APPROXIMATION ALGORITHM 4.6

(a) Reconstruction using the prune model only. (b) Reconstruction using the prune-join model.

Figure 4.5.: Approximation of the cameraman image, with associated tilings, to a PSNR of 30dB
using the prune and prune-join models.

4.6. Summary

In this chapter we have proposed a novel approximation algorithm that generates very sparse ap-

proximations of piecewise polynomial images. The algorithm uses a quadtree decomposition with

an additional joining to adaptively partition the image. Each of these adaptive regions is approx-

imated by a very low dimensional model, namely a 2-D piecewise polynomial with at most one

continuous discontinuity. Traditionally it is very computationally expensive to search for a suitable

discontinuity for each region. We propose a fast exhaustive search that, given the previous approx-

imation, calculates the next approximation by very e�ciently moving one pixel to the other side of

the discontinuity. This vastly reduces the computation time, which, when we look at restoration,

will make cycle spinning feasible.

Since images are often well approximated by piecewise polynomial functions, our method can be

used over a wide range of images. In the next chapter, we will develop restoration and enhancement

algorithms that exploit the sparsity of our model and present results for a wide range of images.



CHAPTER 5

Image Restoration and Enhancement using a Quadtree Decomposition to

Sparsely Represent Piecewise Polynomial Functions

5.1. Introduction

In Chapters 2 and 3 we presented sparse approximation techniques for images and showed how

they could be used for restoration and enhancement. In Chapter 4 we proposed a novel algorithm

that provided very sparse approximations of piecewise polynomial images. In this chapter, using

a similar approach to Chapter 3, we will show how this new transform can be used to tackle the

same restoration and enhancement problems. Although our algorithms are particularly suited to

piecewise polynomial images, we will provide a thorough analysis for natural and depth images,

which have practical applications. Since depth images are approximately piecewise smooth, we

expect to perform well on these images. Furthermore, in cases of high degradation, where a strong

prior is required, a piecewise polynomial model will be more appropriate to a wider range of images.

5.2. Denoising

Recall that the denoising problem can be modelled by

y = x + z,
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where y,x,z ∈ RN are the measured, desired and noise images respectively (N is the number of

pixels). The approximation algorithm of the previous chapter solved the minimisation problem

x̂ = argmin
x

��y −x�22 + �P x(x)� . (5.1)

Equation (5.1), with � = ⇣�2z , can be interpreted as the MAP estimator of the denoising problem,

when z is white Gaussian, if

p(x) = Aexp �−⇣P x(x)
2

� ,
where P x(x) is the penalty given in (4.2) and A is a constant so that

�
x∈RN

Aexp �−⇣P x(x)
2

� = 1.

Therefore, using the ✓ notation of the previous chapter, our denoising algorithm aims to solve

✓̂ = argmin
✓

��y −D(✓)�22 + ⇣�2zP ✓(✓)� , (5.2)

using the same approximation described in Chapter 4.

Our quadtree decomposition approximation technique is shift variant, which can be exploited

with cycle spinning. We can reduce the complexity of computing an approximation for each new

shift by noticing that N ×N tiles only have N2 unique shifts. For example 2×2 tiles only have four

unique shifts. This means that only the first four shifts have to calculate 2 × 2 tiles and all future

shifts can simply look up these results from previous trees.

When measuring the performance of our estimators, we will mainly be concerned with the PSNR

and SSIM, but the bias and variance are also of interest. It is well known and easy to prove that the

sum of the squared bias and the variance is equal to the MSE. Figure 5.1 shows the MSE, squared

bias and variance plotted against ⇣ for di↵erent noise levels and images1. When ⇣ is small we use

a more precise model and thus have a low bias and a high variance and for larger ⇣ the opposite

is true. As ⇣ increases, the variance drops suddenly before slowly decreasing, and the squared bias

slowly increases. Consequently, the optimum MSE occurs when ⇣ is just above 3 but there is not a

huge performance di↵erence for 3 < ⇣ < 6. It is favourable that the optimum ⇣ is similar for the three

di↵erent scenarios, since this suggests that a fixed value can be used for all denoising problems. In

1These results were calculated with a Monte-Carlo simulation with 50 noise realisations.
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⇣

E �(x̂ −x)2�
(E(x̂) −x)2
V ar(x̂)

(a) Calculated over a 128×128 sec-
tion of the cameraman image with
�z = 75.
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⇣

E �(x̂ −x)2�
(E(x̂) −x)2
V ar(x̂)

1500

(b) Calculated over a 128×128 sec-
tion of the baby image with �z = 75.

E �(x̂ −x)2�
(E(x̂) −x)2
V ar(x̂)

1 2 3 4 5 6
⇣

200

100

(c) Calculated over a 128×128 sec-
tion of the cameraman image with
�z = 25.

Figure 5.1.: MSE, squared bias and variance for the proposed denoising estimator, plotted against
the regularisation parameter ⇣. Here 162 shifts of cycle spinning were used with the
prune only model.

the following denoising simulations we use ⇣ = 3.3, 162 shifts of cycle spinning and, for increased

speed, the prune only model.

Tables 5.1 and 5.2 show PSNR and SSIM comparisons of the proposed method with a number of

leading denoising algorithms for natural images. In terms of PSNR, our algorithm is competitive

for all images and state of the art when the degradation is high. The SSIM index favours our

algorithm even more, suggesting that our algorithm produces visually pleasing results. This can

be further verified in Figs. 5.2 - 5.5, which show examples of the denoising results. For low noise

the PCA of the BM3D-SAPCA algorithm performs very well. This is demonstrated, in Fig. 5.3,

by its improved reconstruction of the hair and nasolabial line in the man image. However, when

the noise degradation is increased the PCA fails to choose a suitable basis and, as shown in Fig.

5.5, the BM3D-SAPCA’s result is heavily distorted. In this case, the proposed method and BM3D

filter produce the best SSIM index and PSNR respectively. One can observe that the proposed

method maintains smooth regions with sharp discontinuities, which will be particularly appropriate

for depth images.

Tables 5.3 - 5.4 and Figs. 5.6 - 5.7 show similar analysis for depth images. Since this class

of images is closer to our model, state of the art results are obtained in almost all cases. The

performance improvement achieved by our algorithm is clearly visible in the figures, particularly at

high noise levels.
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(a) Original. (b) Noisy, PSNR = 10.63dB, SSIM = 0.3303 (�z = 25).

(c) Denoised as proposed. PSNR = 29.39dB, SSIM =
0.7961.

(d) Denoised with BM3D-SAPCA [19]. PSNR =
29.81dB, SSIM = 0.8111.

(e) Denoised with BM3D [17], PSNR = 29.62dB,
SSIM = 0.8047. (f) Denoised with PLOW [14]. PSNR = 29.33dB,

SSIM = 0.7967.
Figure 5.2.: Visual comparison of the four top performing denoising algorithms for the man image,

with �z = 25.



(a) Closeup of original. (b) Closeup of noisy (�z = 25).

(c) Closeup of proposed denoising. (d) Closeup of BM3D-SAPCA denoising.

(e) Closeup of BM3D denoising. (f) Closeup of PLOW denoising.

Figure 5.3.: Visual comparison of the four top performing denoising algorithms for the man image,
with �z = 25.



(a) Original. (b) Noisy, PSNR = 10.63dB, SSIM = 0.0600 (�z = 75).

(c) Denoised as proposed. PSNR = 27.11dB, SSIM =
0.7597.

(d) Denoised with BM3D-SAPCA [19]. PSNR =
26.83dB, SSIM = 0.7247.

(e) Denoised with BM3D [17], PSNR = 27.26dB,
SSIM = 0.7516. (f) Denoised with SADCT [35]. PSNR = 26.78dB,

SSIM = 0.7457.
Figure 5.4.: Visual comparison of the four top performing denoising algorithms for the Lena image,

with �z = 75.



(a) Closeup of original. (b) Closeup of noisy, (�z = 75).

(c) Closeup of proposed denoising. (d) Closeup of BM3D-SAPCA denoising.

(e) Closeup of BM3D denoising. (f) Closeup of SAPCA denoising.

Figure 5.5.: Visual comparison of the four top performing denoising algorithms for the Lena image,
with �z = 75.
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(a) Original (b) Noisy, PSNR = 20.18dB, SSIM = 0.1290 (�z = 25).

(c) Denoised as proposed, PSNR = 39.75dB, SSIM =
0.9858.

(d) Denoised with BM3D-SAPCA, PSNR = 38.07dB,
SSIM = 0.9777.

(e) Denoised with BM3D, PSNR = 36.47dB, SSIM =
0.9642.

(f) Denoised with KSVD, PSNR = 36.24dB, SSIM =
0.9558.

Figure 5.6.: Visual comparison of the four top performing denoising algorithms for the bowling ball
image, with �z = 25.



(a) Original (b) Noisy, PSNR = 10.63dB, SSIM = 0.0448 (�z = 75).

(c) Denoised as proposed, PSNR = 28.17dB, SSIM =
0.8947.

(d) Denoised with BM3D-SAPCA, PSNR = 27.03dB,
SSIM = 0.7985.

(e) Denoised as BM3D, PSNR = 27.48dB, SSIM =
0.8476.

(f) Denoised with SADCT, PSNR = 26.72dB, SSIM =
0.8450.

Figure 5.7.: Visual comparison of the four top performing denoising algorithms for the art image,
with �z = 27.
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5.3. Deconvolution

For the deconvolution linear inverse problem, y =Hx + z, the MAP estimator is given by

x̂ =D(✓̂),

where

✓̂ = argmin
✓

�y −HD(✓)�22 + ⇣�2zP ✓(✓). (5.3)

Here we have made the same assumptions as the denoising case; i.e., the noise is additive white

Gaussian and

p(x) = Aexp �−⇣P x(x)
2

� .
When calculating an approximation using the quadtree model we operate on each tile indepen-

dently. This is possible because, given a particular tile structure, the regions do not overlap. The

prune and join algorithms just provide an e�cient way to choose between the possible tile structures.

Unfortunetely, analogous to the non-unitary linear transform case, the presence of H in (5.3)

prevents us from solving for each tile independently. In the following subsections we will show that,

like the linear transform case, we can solve using regularised inverses followed by a denoising step,

or using an iterative approach.

5.3.1. Fourier regularised inverses

Chapter 3 introduced Fourier regularised inverses for deconvolution. It was shown that if the amount

of regularisation is reduced, a sharper but consequently noisier image is produced, which could be

denoised to produce a high quality deconvolution. We also saw the two-step process depicted in Fig.

3.4, which applied this process twice. The result of the first step is used to obtain an estimate of the

original signal’s energy spectrum. This energy spectrum is used, in the second step, to construct

an improved regularised Wiener filter. The output of this Wiener filter is denoised to give the final

deconvolution result.

In this subsection we will apply this two-step process using our denoising algorithm. We can cater

for the coloured noise by using a di↵erent � for each coe�cient:

�i = ⇣�2z�W Tb
i

�22.
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This essentially applies a weight, �W Tb
i

�22, to the usual � = ⇣�2z . These weights can be computa-

tionally expensive to compute due to the large number of possible edge orientations. If we restrict

ourselves to pruning we can compute these weights, for a particular W , o✏ine. In the case of joining

the number of possible, not necessarily square, tile sizes is too large to process o✏ine. Furthermore,

W corresponds to the regularised filter, so for the Wiener filter this is dependent on the measured

signal and can not be computed o✏ine. A compromise is to simply use the regularised Fourier

inverse weights for both steps and restrict ourselves to the prune-only model. This approach can

produce satisfactory results, however it is often su�cient to just assume the noise is white and

denoise as proposed in the previous section.

Figures 5.8 - 5.10 show some deconvolution results of the proposed method in comparison to some

state of the art algorithms. In the first experiment the point spread function (PSF) was a 9 × 9
Gaussian with standard deviation of 4 and the noise standard deviation was 0.5. For the second

experiment the PSF was a 51×51 uniform kernel and the noise standard deviation was, once again,

0.5.

The proposed results were calculated with the standard denoising algorithm; i.e. assuming the

noise is white. Unfortunately, applying the coloured noise weights rarely improves performance;

therefore, since they are also computationally expensive to calculate, we neglect this approach. The

coloured noise weights are not advantageous to our algorithm because of its low dimension. We

use polynomials up to degree one and do not decompose the signal into frequency bands as well as

other transforms that use a full basis. Consequently, it is di�cult to correctly threshold di↵erent

signal frequencies when tho noise is coloured. Despite this, we still obtain satisfactory results in

these examples.



(a) Original image. (b) Noisy blurred image. PSNR=21.37.

(c) Two-step deconvolution using proposed denois-
ing. PSNR=28.15dB, SSIM=0.8534.

(d) Two-step deconvolution using BM3D denoising.
PSNR=28.59dB, SSIM=0.8598.

(e) FISTA deconvolution in the curvelet domain.
PSNR=26.83dB, SSIM=0.7656.

(f) Wiener filter deconvolution using the oracle en-
ergy spectrum. PSNR=27.19, SSIM=0.7235.

Figure 5.8.: An example of the performance of various deconvolution algorithms on the cameraman
image.



(a) Close up of original image. (b) Close up of noisy blurred image.

(c) Close up of two-step deconvolution using pro-
posed denoising.

(d) Close up of two-step deconvolution using BM3D
denoising.

(e) Close up of FISTA deconvolution in the curvelet
domain.

(f) Close up of Wiener filter deconvolution using the
oracle energy spectrum.

Figure 5.9.: An example of the performance of various deconvolution algorithms on the cameraman
image.



(a) Original image. (b) Noisy blurred image. PSNR=27.76.

(c) Two-step deconvolution using proposed denois-
ing. PSNR=33.15dB, SSIM=0.9510.

(d) Two-step deconvolution using BM3D denoising.
PSNR=32.94dB, SSIM=0.8966.

(e) FISTA deconvolution in the curvelet domain.
PSNR=32.22dB, SSIM=0.9338.

(f) Wiener filter deconvolution using the oracle en-
ergy spectrum. PSNR=31.89, SSIM=0.8428.

Figure 5.10.: An example of the performance of various deconvolution algorithms on the cameraman
image.
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5.3.2. Iterative minimisation of surrogate functionals

In Chapter 2 we introduced MM algorithms and showed how iterative thresholding fits into this

framework. We will now use a surrogate function and MM ideas to develop an iterative algorithm

to minimise the nonlinear function

C(✓) = �y −HD(✓)�22 + ⇣�2zP ✓(✓). (5.4)

Recall that the MM strategy requires us to find a surrogate function, Csur(✓ � ✓(k)), that is a

maximiser of C(✓) at the current estimate ✓(k); i.e.,

Csur(✓ � ✓(k)) ≥ C(✓) ∀✓ and (5.5)

Csur(✓(k) � ✓(k)) = C(✓(k)). (5.6)

The MM iteration,

✓(k+1) = argmin
✓

Csur(✓ � ✓(k)), (5.7)

is then guaranteed to be decreasing, since

C(✓(k+1)) ≤ Csur(✓(k+1) � ✓(k)) ≤ Csur(✓(k) � ✓(k)) = C(✓(k)),

where the first inequality follows directly from (5.5), the second from the minimisation in (5.7) and

the equality from (5.6).

In order to use this framework we need to find a maximiser of C that we can minimise. Consider

the surrogate function

Csur(✓ � ✓(k)) = C(✓) − �HD(✓) −HD(✓(k))�2 + ↵�D(✓) −D(✓(k))�2, (5.8)

which is a maximiser of C provided that ↵ ≥ �H�22.
Substituting this surrogate function into (5.7), expanding and dropping all terms independent of

✓ yields

✓(k+1) =argmin
✓

��y −HD(✓)�22 + ⇣�2zP ✓(✓) − �HD(✓) −HD(✓(k))�2 + ↵�D(✓) −D(✓(k))�2�
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=argmin
✓

�−2D(✓)THTy + �HD(✓)�22 + ⇣�2zP ✓(✓)
− �HD(✓)�22 + 2D(✓)THTHD(✓(k)) + ↵�D(✓)�22 − 2↵D(✓)TD(✓(k))� .

The cancellation of the �HD(✓)�22 term is what makes the surrogate function easily minimisable.

By rearranging and comparing to (5.2), we see that the surrogate function is minimised by denoising:

✓(k+1) = argmin
✓

��D(✓)�22 − 2D(✓)T �HT

↵
(y −HD(✓(k))) +D(✓(k))� + ⇣�2z

↵
P ✓(✓)�

= argmin
✓

�������D(✓
(k)) + HT

↵
(y −HD(✓(k))) −D(✓)�2

2

+ ⇣�2z
↵

P ✓(✓)������
=Denoise�D(✓(k)) + HT

↵
�y −HD(✓(k))�� . (5.9)

Figure 5.11 shows an example of the iterative deconvolution algorithm for a piecewise polynomial

image. The PSF was a 7 × 7 quadratic spline and the standard deviation of the noise was 0.25.

In this case, we achieve almost perfect reconstruction, however the convergence is too slow to be

practical when the original signal is not so sparsely represented by the model. The algorithm used

for comparison is iterated hard thresholding in a wavelet basis which, in this case, is the more

e↵ective than the soft thresholding variants.



5.4 INTERPOLATION 123

(a) Original (b) Noisy blurred, PSNR = 16.47dB

(c) Deconvolved with proposed iterative algorithm.
PSNR = 50.22dB. (d) Deconvolved with iterative hard thresholding in

a wavelet basis, PSNR = 27.38dB.
Figure 5.11.: An example of deconvolving a piecewise linear image using iterative algorithms.

5.4. Interpolation

With very minor modifications, the previously described approximation algorithm can be used for

interpolation. We model the problem by setting

y =Hx + z,

where H ∈ RNv×N is the identity matrix but with the rows corresponding to the unknown pixels

removed. Here x ∈ RN is the desired image and y,z ∈ RNv are truncated vectors over just the, Nv,
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known or visible pixels, representing the measured and noise images respectively. We will assume

that z is zero-mean white Gaussian with a small standard deviation, and that we know H; i.e., we

know the locations of the available samples. The approximation problem in this framework can be

posed as follows:

✓̂ = argmin
✓

��y −HD(✓)�22 + �P̃ ✓(✓)�
= argmin

✓

��y −Dv(✓)�22 + �P̃ ✓(✓)� ,

where Dv is the corresponding truncated quadtree representation over just the visible pixels given

the parameters ✓. We use a modified penalty, P̃ ✓(✓), that is almost identical to the previous

described penalty, P ✓(✓). The only di↵erence is that the cost of a polynomial region is increased

by a factor of Ni

Nv
i
, where Ni and Nv

i are the number of pixels and the number of visible pixels in the

i-th region respectively. This modification increases the penalty on regions with fewer known pixels

resulting in a sparser model, and obviously when Ni = Nv
i the penalty is as previously defined.

Modifying the penalty in this way allows successful interpolation over a wide range of images

and sampling rates with a fixed �, chosen once experimentally. In the following simulations � = 50;
however, in some cases we could have obtained more accurate results by optimising � for the

particular experiment.

The truncated quadtree representation can be calculated by putting holes in the polynomial

subspace basis functions and we interpolate by reconstructing with the corresponding functions

with no holes. In order to generate the correct interpolation we have to modify the coe�cients

when we switch back to the full subspace functions.

To be more precise let B =QR be the thin QR decomposition for a polynomial region; i.e., B ∈
RN×d is the transform matrix with columns that span the subspace of 2-D polynomials; Q ∈ RN×d
and R ∈ Rd×d are the orthogonal and upper triangular matrices respectively.

We only measure Nv pixels, so we remove the columns from B that correspond to an unknown

pixel and calculate a new, truncated, QR decomposition:

B
T

=Q
T

R
T

,

where B
T

,Q
T

∈ RNv×d and R
T

∈ Rd×d. Note that, Q
T

and R
T

are not simply Q and R with
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columns removed. They are a new truncated QR decomposition, calculated from B
T

.

Let t
T

∈ RNV be the measured tile. The first stage of the interpolation is to calculate the

coe�cients

✓̂
Q

T

=Q
T

T t
T

.

Here we have used the notation ✓̂
Q

T

for the coe�cients generated from the matrix Q
T

.

We will convert these coe�cients into the coe�cients for B
T

. These coe�cients are given by

✓̂
B

T

= argmin
✓

�t
T

−B
T

✓�22.

The minimum can be found by setting the derivative, with respect to ✓, equal to zero:

0 = −2B
T

T t
T

+ 2B
T

TB
T

✓̂
B

T

✓̂
B

T

= �B
T

TB
T

�−1B
T

T t
T

.

Finally inserting B
T

=Q
T

R
T

and ✓̂
Q

T

=Q
T

T t
T

yields

✓̂
B

T

= (R
T

TQ
T

TQ
T

R
T

)−1R
T

TQ
T

T t
T

=R
T

−1(R
T

T )−1R
T

T ✓̂
Q

T

✓̂
Q

T

=R
T

✓̂
B

T

.

So we have a simple relationship that relates the coe�cients for Q
T

and B
T

. By similar analysis

we can show that

✓̂
Q

=R✓̂
B

.

In order to interpolate, we require that the reconstructions B✓̂
B

and B
T

✓̂
B

T

are the same at the

Nv known pixel values. Since B and B
T

are equal at these pixel locations, this can be achieved by

setting ✓̂
B

= ✓̂
B

T

. Therefore, the interpolated reconstruction is

B✓̂
B

=B✓̂
B

T

=B(R
T

)−1✓̂
Q

T

,



126 NOVEL IMAGE RESTORATION AND ENHANCEMENT 5.4

or, if we wish to use orthogonalised subspace functions, the reconstruction is

Q✓̂
Q

=QR✓̂
B

=QR(R
T

)−1✓̂
Q

T

;

i.e., the modified coe�cients are

✓̂
Q

=R(R
T

)−1✓̂
Q

T

.

Since the deconvolution iteration given in (5.9) is valid for the interpolation degradation model

(5.4), it can be used to perform interpolation. In this case, we can set ↵ = 1 and, due to the structure

of H, the update D(✓(k)) +HT �y −HD(✓(k))� is equivalent to inserting the known pixels back

into the approximation D(✓(k)). We will not interpolate using this approach, however this iteration

is employed by Li [45]. In this approach BM3D denoising is used with a regularisation parameter

that decreases at each iteration. The technique then provides a very e↵ective way to apply the

non-local approximation techniques to interpolation. In the following simulations we will compare

the proposed interpolation algorithm against this non-local approach, adaptive kernel regression

and traditional techniques.

Tables 5.5 - 5.6 and Figs. 5.12 - 5.17 show the interpolation results for natural and depth images.

The proposed method and non local interpolation algorithm are unsupervised, since we use a

fixed �. In order for a fair comparison we used the fixed parameters, given in the kernel regression

software, whenever possible. However, in order to produce competitive results in high degradation

cases, we tuned the kernel size when 95% of the pixels were removed.

Like denoising, the proposed method is state of the art for depth images and competitive for

natural images, particularly in high degradation cases. The piecewise polynomial model, once again,

produces smoother results that can lack texture but also prevents distortions in higher degradation

cases. In order to optimise the PSNR, all methods retain or insert the known samples into the

reconstruction. Since our algorithm produces larger smooth regions, these samples are more evident:

see for example the roof in Fig. 5.15(c). This e↵ect explains why the SSIM index performance is

not as positive as the denoising case.
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(a) Original. (b) 75% Missing Pixels.

(c) Interpolated as preposed. (d) Interpolated with [45].

(e) Interpolated with adaptive kernel regression. (f) Bi-cubic interpolation.

Figure 5.12.: Visual comparison of the four top performing interpolation algorithms for the hill
natural image with 75% missing pixels.



(a) Close up of original. (b) Close up of degraded with 75% Missing Pixels.

(c) Close up of proposed interpolation. (d) Close up of nonlinear interpolation [45].

(e) Close up of adaptive kernel regression interpola-
tion.

(f) Close up of bi-cubic interpolation.

Figure 5.13.: Visual comparison of the four top performing interpolation algorithms for the man
natural image with 75% missing pixels.



(a) Original. (b) 90% Missing Pixels.

(c) Interpolated as preposed. (d) Interpolated with [45].

(e) Interpolated with adaptive kernel regression. (f) Bi-linear interpolation.

Figure 5.14.: Visual comparison of the four top performing interpolation algorithms for the hill
natural image with 90% missing pixels.



(a) Close up of original. (b) Close up of degraded with 90% Missing Pixels.

(c) Close up of proposed interpolation. (d) Close up of nonlinear interpolation [45].

(e) Close up of adaptive kernel regression interpola-
tion.

(f) Close up of bi-linear interpolation.

Figure 5.15.: Visual comparison of the four top performing interpolation algorithms for the hill
natural image with 90% missing pixels.
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(a) Original. (b) 75% Missing Pixels.

(c) Interpolated as preposed. (d) Interpolated with [68].

(e) Interpolated with [45]. (f) Bi-linear interpolation.

Figure 5.16.: Visual comparison of the top four interpolation algorithms for the bowling ball depth
image with 75% missing pixels.



(a) Original. (b) 90% Missing Pixels.

(c) Interpolated as preposed. (d) Interpolated with [68].

(e) Interpolated with [45]. (f) Bi-linear interpolation.

Figure 5.17.: Visual comparison of the top four interpolation algorithms for the aloe depth image
with 90% missing pixels.
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5.5. Super resolution

In Chapter 3 we showed that the problem of multi-view super resolution could be decomposed

into three steps: registration, interpolation and deconvolution. We briefly outlined an algorithm,

[3], that used FRI theory to accurately register low resolution images. In the same chapter we

also introduced bi-cubic interpolation. In this section we will perform super resolution, registering

and interpolating using these two approaches. The deconvolution will be performed using our two-

step approach and, in order for comparison, other state of the art deconvolution methods. This

section can, thus, be thought of as an interesting application that provides further analysis of our

deconvolution algorithm. Note that the interpolation in the super resolution process is carried

out on blurred data. Since our model is designed for piecewise polynomial images with sharp

discontinuities it does not make sense to use our interpolation here. Furthermore, a weakness of

bi-cubic interpolation is its inability to deal with sharp edge contours, a problem that is reduced

when dealing with blurred data.

Figures 5.18 - 5.19 show a super resolution simulation experiment. The original image has been

artificially sampled from di↵erent viewpoints to create 64 low resolution images. The viewpoints

are assumed to be unknown and registration, interpolation and deconvolution performed as de-

scribed. The deconvolution algorithms used are CGLS, FoRWaRD and the two-step approach using

either BM3D or the proposed denoising. Interestingly, in this case our algorithm outperforms the

BM3D approach. In previous deconvolution experiments we were competitive but su↵ered from

not modelling the noise as well as the BM3D. However, in this situation, where the noise is due

to registration and interpolation errors, we perform better. This suggests that in practical applica-

tions, where the noise can be harder to model, our approach may be more competitive. The CGLS

reconstruction produces the best PSNR but su↵ers from heavy Gibbs ripples. One can easily argue,

using both visual inspection and the SSIM index, that, despite the CGLS’s higher PSNR, our result

is favourable.



(a) Original (512 × 512). (b) One of 64 low resolution images (64 × 64).

(c) Interpolated reconstruction before restoration.
(512 × 512) (d) Super resolved using proposed restoration (512×

512). PSNR=24.25, SSIM=0.8430

(e) Super resolved using BM3D restoration (512 ×
512). PSNR=23.87, SSIM=0.8280

(f) Super resolved using CGLS restoration (512 ×
512). PSNR=24.30, SSIM=0.8343

Figure 5.18.: Comparison of various deconvolution algorithms for the problem of image super reso-
lution.



(a) Close up of original (b) Close up of one of 64 low resolution images

(c) Close up of interpolated reconstruction before
restoration.

(d) Close up of super resolved using proposed restora-
tion.

(e) Close up of super resolved using BM3D restora-
tion.

(f) Close up of super resolved using CGLS restoration

Figure 5.19.: A closeup of the comparison of various deconvolution algorithms for the problem of
image super resolution.
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5.6. Summary

In this chapter we have adapted the previously presented approximation algorithm to restoration

and enhancement. Denoising was achieved by using cycle spinning, to exploit the shift variance,

and selecting a regularisation parameter proportional to the noise variance.

The same denoising algorithm was used to perform deconvolution in two ways. The first used

regularised inverses to sharpen the image, and the proposed denoising to remove the resulting noise.

The algorithm was competitive for natural images but was not as good as non-local approaches

which, due to the fact that they better distribute the noise into frequency band, can filter coloured

noise more e↵ectively. However, we applied the same algorithms to the deconvolution stage of image

super resolution and in this case, where the noise is due to registration and interpolation errors and

thus harder to model, initial results suggest the proposed method is even better.

Finally we proposed an algorithm that approximated the signal over just the known pixels. In-

terpolation could then be achieved by reconstructing the approximation using the full polynomial

subspace functions. Simulation results for both denoising and interpolation suggest that the pro-

posed algorithms are competitive for natural images, particularly when the degradation is high.

Furthermore, state of the art performance is achieved when the original signal is close to the model.

Depth images are a class of signals that fit this criterium and have recently being receiving increased

research interest. The proposed algorithm for interpolating irregularly sampled depth data could

be particularly applicable to depth image acquisition.



CHAPTER 6

Conclusions and Future Work

6.1. Thesis summary

In this thesis, we have seen that sparse promoting priors are a very useful tool for image restoration.

Consequently, the quest for sparser approximations of images is an attractive research topic, which

has been a key part of this thesis.

Sparse seeking optimisation problems and sparse promoting transforms were introduced in Chap-

ter 2. We saw that the well known and commonly used hard and soft thresholding operators

minimise l0 and l1 constrained problems when the dictionary is unitary. In the non-unitary case

these operators are only the first step of iterative algorithms that converge to local and global

minimums of the non-convex and convex problems respectively. These iterative thresholding or

shrinkage algorithms have had many applications in image processing and have been presented in

many di↵erent forms. In this thesis we presented them from the perspective of proximal gradi-

ent descent and MM algorithms, which provided both an intuitive understanding and a reasonable

formal analysis.

Later in the same chapter, an overview of sparse promoting transforms of 1-D and 2-D signals

was given. We saw that wavelets with compact support and vanishing moments sparsely decompose

piecewise polynomial signals, particularly in 1-D. In 2-D, wavelets’ lack of direction adaptability

produces ine�ciencies around complex edge structures. This can be improved by using overcom-
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plete and adaptive transforms, such as Ridgelets, Curvelets and Bandlets, with increased direction

adaptability. Shukla et al [63] proposed a compression algorithm that could optimally represent

piecewise polynomial signals, by using a quadtree decomposition and a more flexible joining to

adaptively partition the image. Each adaptive region is approximated by a piecewise polynomial

with at most one discontinuity. In Chapter 4, we modified this algorithm and made it more appro-

priate to restoration and enhancement problems. This included a novel fast way to search for the

optimum edge discontinuity for each adaptive region that eased the computational load significantly.

The thesis also presented applications in the following image restoration and enhancement prob-

lems: denoising, deconvolution, interpolation and multi-view super resolution. In Chapter 3 it was

shown that sparse approximation is a powerful prior that is at the heart of many of the state of the

art algorithms for these problems.

Chapter 5 proposed new algorithms using the proposed quadtree structured approximation. De-

noising was performed using the previously proposed approximation algorithm with a regularisation

parameter proportional to the noise variance. Cycle spinning was also used to exploit the shift vari-

ance of the transform. Simulation results suggest that the proposed algorithm is state of the art

when the signal is in the model (e.g. depth images) and competitive for natural images when the

degradation is high.

We also presented two deconvolution algorithms, one that applies a Fourier regularised inverse

followed by denoising and, the other, an iterative approach that extends the iterative shrinkage

algorithms to our non-linear model. Simulation results for natural and depth images were given

for the regularised inverse approach, with comparisons against the state of the art. Due to the

slow convergence of the iterative algorithm, only a result for a piecewise polynomial image was

given. A further application for the regularised filter approach was given in the form of multi-view

super resolution. In Chapter 3 it was shown that this problem could be solved using multiple steps,

including deconvolution. In Chapter 5 simulation results were provided to compare the proposed

deconvolution algorithm to the state of the art for this problem. In traditional simulations the

proposed deconvolution is not competitive for natural images. However, the super resolution result

suggests that the approach may have some merit in practical situations when the noise is harder to

model.

Finally, interpolation was achieved by approximating an image, with missing pixels, over just the

known pixels and reconstructing with the full polynomial subspace functions. Simulation results
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provided comparisons for the problem of interpolating from an irregularly sampled grid of data. Like

denoising, our algorithm is competitive for natural images and state of the art for depth images,

which could have interesting applications in depth image acquisition.

6.2. Future research

To conclude this thesis we discuss some possible directions for future research:

• Depth images provide an interesting class of images for the proposed framework. In many

depth sensing setups, a depth measurement is only obtained at certain locations and inter-

polation is required in order to obtain a full depth image. Additionally, a full colour image

is normally also captured, which, with additional research, could be exploited to further en-

hance any interpolation. Further investigation of the Microsoft Kinect sensor is also needed

in order to extract the pure depth sensor measurements, before Microsoft’s own interpola-

tion. This would provide a comparison between any proposed interpolation and the current

implementation.

• In the reported interpolation simulations, we used a fixed value of � for all experiments. In

many cases, improved performance could be obtained with a slightly di↵erent regularisation

parameter. This naturally raises the question if a more theoretical formulation for � can

be obtained. An alternative is to investigate the use of search strategies, such as the L-

curve method; however, these methods, unfortunately, require multiple approximations to

be calculated. This computation could potentially be reduced by combining a regularisation

search strategy with cycle spinning.

• The proposed two-step deconvolution algorithm has potential, however it is limited by the

need to select an appropriate regularisation parameter for each experiment. This could again

be addressed with a search strategy, such as the L-curve method; however, in this case, a more

suitable strategy may be to use an algorithm to estimate the standard deviation of the noise.

• Initial super resolution simulations suggest that the proposed deconvolution algorithm could

be an e↵ective algorithm for this problem. Further simulations are needed on both artificially

generated and real data in order to fully understand the merits of this approach.





APPENDIX A

Proofs

A.1. Proof that soft thresholding solves the 1-D l1 constrained

minimisation problem

We claim that

✓̂ = argmin
✓
�(y − ✓)2 + � �✓�� =

�������������������

y − �
2 if y > �

2

0 if − �
2 ≤ y ≤ �

2

y + �
2 if y < −�

2

.

Proof. Since ✓̂ is the minimum, there exists a subgradient of (y − ✓)2 + � �✓�, at ✓̂, that is zero:

0 ∈ 2✓̂ − 2y + �@ �✓̂� .

Thus, when ✓̂ > 0
0 = 2✓̂ − 2y + �,

and

✓̂ = y − �
2

if y > �
2
. (A.1)

Similarly, when ✓̂ < 0
0 = 2✓̂ − 2y − �
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and

✓̂ = y + �
2

if y < −�
2
. (A.2)

Finally, when ✓̂ = 0
0 ∈ −2y + �[−1,1],

and

✓̂ = 0 if y ∈ �−�
2
,
�

2
� . (A.3)

Combining (A.1), (A.2) and (A.3) completes the proof.

A.2. Proof that (2.17) is a maximiser of (2.16)

Let C(✓) = C1(✓)+C2(✓). We claim that if ∇C1 is Lipschitz continuous with constant L and t ≤ 1

L
then

Cprox(✓ � a) = C1(a) +∇C1(a)T (✓ − a) + 1

2t
�✓ − a�22 +C2(✓)

is a maximiser of C(✓); i.e.,

Cprox(✓ � a) ≥ C(✓) and

Cprox(a � a) = C(a).

Proof. By inspection, we can see that Cprox(a � a) = C(a). To prove the inequality note that, since

∇C1 is Lipschitz continuous with constant L, ∇2C1 � L; i.e., ✓T∇2C1✓ ≤ L for all ✓. Therefore

✓T (∇2C1 −LI)✓ ≤ 0 ∀✓
(✓ − a)T (∇2C1 −LI)(✓ − a) ≤ 0

(✓ − a)T∇2C1(✓ − a) ≤ L�✓ − a�22. (A.4)

Also C1 can be exactly represented by its quadratic Taylor expansion:

C1(✓) = C1(a) +∇C1(a)T (✓ − a) + 1

2
(✓ − a)T∇2C1(a)(✓ − a) (A.5)
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Combining (A.4) and (A.5) yields

C1(✓) ≤ C1(a) +∇C1(a)T (✓ − a) + L

2
�✓ − a�22,

and finally adding C2(✓) to both sides gives the desired inequality:

C(✓) ≤ C1(a) +∇C1(a)T (✓ − a) + L

2
�✓ − a�22 +C2(✓) (A.6)

≤ Cprox(✓ � a) if t ≤ 1

L
.

Therefore, Cprox is a maximiser of C if t ≤ 1
L .

A.3. Proof of the proximal gradient descent error bound, as given

in (2.18)

Let C(✓) = C1(✓) + C2(✓). We claim that if ∇C1 is Lipschitz continuous with constant L, C2 is

convex and t ≤ 1

L
then the sequence

✓(k+1) = argmin
✓

�C1 �✓(k)� +∇C1 �✓(k)�T �✓ − ✓(k)� + 1

2t
�✓ − ✓(k)�2

2
+C2(✓)� (A.7)

satisfies

C �✓(k)� −C (✓∗) ≤ �✓(0) − ✓∗�
2

2

2tk
, (A.8)

where ✓∗ is the minimum of C.

Proof. From the definition of convexity, any convex di↵erentiable function’s first order approxima-

tion is a global underestimater:

f(y) ≥ f(x) +∇f(x)T (y −x) ∀y
⇔f(x) ≤ f(y) +∇f(x)T (x − y) ∀y.

Therefore

C1 �✓(k)� ≤ C1 (✓) +∇C1 �✓(k)�T �✓(k) − ✓� ∀✓ (A.9)
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We would like a similar expression for the not necessarily di↵erentiable C2. Recall,

✓(k+1) = argmin
✓

�C1 �✓(k)� +∇C1 �✓(k)�T �✓ − ✓(k)� + 1

2t
�✓ − ✓(k)�2

2
+C2(✓)�

= argmin
✓

�2t∇C1 �✓(k)�T ✓ + ✓T✓ − 2✓T✓(k) + 2tC2(✓)� .

Therefore there exists a subgradient, with respect to ✓, at ✓(k+1) which is zero:

0 ∈ 2t∇C1 �✓(k)� + 2✓(k+1) − 2✓(k) + 2t@C2 �✓(k+1)� .

Rearranging gives a valid subgradient at the point ✓(k+1):

✓(k) − ✓(k+1)
t

−∇C1 �✓(k)� ∈ @C2 �✓(k+1)� .

The definition of a subgradient states that a vector g is a subgradient of a function f at the point

x, i.e. g ∈ @f(x), if

f(y) ≥ f(x) + gT (y −x) ∀y
⇔f(x) ≤ f(y) + gT (x − y) ∀y.

Therefore

C2 �✓(k+1)� ≤ C2(✓) + �✓(k) − ✓(k+1)
t

−∇C1 �✓(k)��
T �✓(k+1) − ✓� ∀✓. (A.10)

Equation (A.6), from the previous proof, can be written as

C �✓(k+1)� ≤ C1 �✓(k)� +∇C1 �✓(k)�T �✓(k+1) − ✓(k)� + L

2
�✓(k+1) − ✓(k)�2

2
+C2 �✓(k+1)� . (A.11)

Inserting (A.9) and (A.10) into the right hand side of (A.11), yields

C �✓(k+1)� ≤C1 (✓) +∇C1 �✓(k)�T �✓(k) − ✓� +∇C1 �✓(k)�T (✓(k+1) − ✓(k)) + L

2
�✓(k+1) − ✓(k)�2

2

+C2(✓) + �✓(k) − ✓(k+1)
t

−∇C1 �✓(k)��
T �✓(k+1) − ✓� ∀✓

=C (✓) + L

2
�✓(k+1) − ✓(k)�2

2
+ �✓(k) − ✓(k+1)

t
�T �✓(k+1) − ✓� ∀✓.
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The requirement t ≤ 1

L
implies that

L

2
≤ 1

2t
, therefore

C �✓(k+1)� −C (✓) ≤ 1
2t
��✓(k+1) − ✓(k)�2

2
+ 2�✓(k) − ✓(k+1)�T �✓(k+1) − ✓�� ∀✓

= 1
2t
�✓(k+1)T✓(k+1) − 2✓(k+1)T✓(k) + ✓(k)T✓(k) + 2✓(k)T✓(k+1)
−2✓(k)T✓ − 2✓(k+1)T✓(k+1) + 2✓(k+1)T✓� ∀✓
= 1
2t
�✓(k)T✓(k) − 2✓(k)T✓ − ✓(k+1)T✓(k+1) + 2✓(k+1)T✓� ∀✓

= 1
2t
��✓(k) − ✓�2

2
− �✓(k+1) − ✓�2

2
� ∀✓.

Let ✓ = ✓∗ so that

C �✓(k+1)� −C (✓∗) ≤ 1

2t
��✓(k) − ✓∗�2

2
− �✓(k+1) − ✓∗�2

2
� .

Then, summing both sides from the 0-th iteration up to the k-th yields

k−1�
i=0 �C �✓

(i+1)� −C (✓∗)� ≤ 1

2t

k−1�
i=0 ��✓

(i) − ✓∗�2
2
− �✓(i+1) − ✓∗�2

2
� . (A.12)

From the previous proof we know the sequence is monotonically decreasing. Therefore, the last

di↵erence in the sum on the left hand side of (A.12) is the smallest, so

k−1�
i=0 �C �✓

(i+1)� −C (✓∗)� ≥ k �C �✓(k)� −C (✓∗)� . (A.13)

Also most of the terms in the sum on the right hand side of (A.12) cancel:

k−1�
i=0 ��✓

(i) − ✓∗�2
2
− �✓(i+1) − ✓∗�2

2
� = �✓(0) − ✓∗�2

2
− �✓(k) − ✓∗�2

2

≤ �✓(0) − ✓∗�2
2
. (A.14)

Combining (A.12), (A.13) and (A.14) completes the proof:

C �✓(k)� −C (✓∗) ≤ �✓(0) − ✓∗�
2

2

2tk
.
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[54] G. Peyré and S. Mallat, “Orthogonal bandelet bases for geometric images approximation,”

Comm. Pure Appl. Math., vol. 61, no. 9, pp. 1173–1212, 2008.

[55] J. Portilla and L. Mancera, “L0-based sparse approximation: two alternative methods and

some applications,” in Proceedings of the SPIE, San Diego, CA, USA, Aug. 2007, pp. 6701–

6772.

[56] D. Scharstein and C. Pal, “Learning conditional random fields for stereo,” in Computer Vision

and Pattern Recognition, IEEE Conference on, 2007, pp. 1–8.

[57] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light,” in

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society

Conference on IS -, 2003, I–195I–202 vol.1–.

[58] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo corre-

spondence algorithms,” International journal of computer vision, vol. 47, no. 1-3, pp. 7–42,

2002.



154 Bibliography 6.3

[59] A. Scholefield and P. L. Dragotti, Quadtree structured restoration algorithms for piecewise

polynomial images, at Inspire Workshop on Sparsity and its application to large inverse prob-

lems, Cambridge, Dec. 2008.

[60] ——, “Image restoration using a sparse quadtree decomposition representation,” in Image

Processing, IEEE International Conference on, 2009, pp. 1473–1476.

[61] ——, “Quadtree structured restoration algorithms for piecewise polynomial images,” in Acous-

tics, Speech and Signal Processing, IEEE International Conference on, IEEE, 2009, pp. 705–

708.

[62] ——, “Quadtree structured image approximation for denoising and interpolation,” submitted

to IEEE Transactions on Image Processing, May 2013.

[63] R. Shukla, P. L. Dragotti, M. Do, and M. Vetterli, “Rate-distortion optimized tree-structured

compression algorithms for piecewise polynomial images,” Image Processing, IEEE Transac-

tions on, vol. 14, no. 3, pp. 343–359, 2005.

[64] J. Sprinzak and M. Werman, “A�ne point matching,” Pattern Recognition Letters, vol. 15,

no. 4, pp. 337–339,

[65] J. L. Starck, E. Candes, and D. Donoho, “The curvelet transform for image denoising,” Image

Processing, IEEE Transactions on, vol. 11, no. 6, pp. 670–684, 2002.

[66] J. L. Starck, F. Murtagh, and J. Fadili, Sparse Image and Signal Processing, ser. Wavelets,

Curvelets, Morphological Diversity. Cambridge University Press, May 2010.

[67] G. Strang and T. Nguyen, Wavelets and filter banks. Wellesley-Cambridge Press, 1997.

[68] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruc-

tion,” Image Processing, IEEE Transactions on, vol. 16, no. 2, pp. 349–366, 2007.

[69] J. Tropp, “Greed is good: algorithmic results for sparse approximation,” Information Theory,

IEEE Transactions on, vol. 50, no. 10, pp. 2231–2242, 2004.

[70] V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, and P. L. Dragotti, “Directionlets: anisotropic

multidirectional representation with separable filtering,” Image Processing, IEEE Transac-

tions on, vol. 15, no. 7, pp. 1916–1933, 2006.

[71] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Prentice Hall Signal Processing

Series, Jan. 1995.



6.3 Bibliography 155

[72] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of innovation,” Signal

Processing, IEEE Transactions on, vol. 50, no. 6, pp. 1417–1428, 2002.

[73] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error

visibility to structural similarity,” Image Processing, IEEE Transactions on, vol. 13, no. 4,

pp. 600–612, 2004.


