
Imperial College London
Department of Electrical and Electronic Engineering

Extensions of the Theory of Sampling Signals

with Finite Rate of Innovation, Performance

Analysis and an Application to Single Image

Super-Resolution

Xiaoyao Wei

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy of Imperial College London, 2016





Declaration of Originality

I declare that the intellectual content of this thesis is the product of my own work under

the guidance of my supervisor Prof. Pier Luigi Dragotti. Any ideas or quotations from

the work of other people, published or otherwise, are fully acknowledged in accordance

with the standard referencing practices of the discipline. The material of this thesis has

not been submitted for any degree at any other academic or professional institution.

3





Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to

copy, distribute or transmit the thesis on the condition that they attribute it, that they

do not use it for commercial purposes and that they do not alter, transform or build upon

it. For any reuse or redistribution, researchers must make clear to others the licence terms

of this work.

5





Abstract

Sampling is the reduction of a continuous-time signal to a discrete sequence. The classical

sampling theorem limits the signals that can be perfectly reconstructed to bandlimited

signals. In 2002, the theory of finite rate of innovations (FRI) emerged and broadened

classical sampling paradigm to classes of signals with finite number of parameters per unit

of time, which includes certain classes of non-bandlimited signals. In this thesis we analyse

the performance of the FRI reconstruction algorithm and present extensions of the FRI

theory. We also extend the FRI theory for the application of image upsampling.

First, we explain the breakdown phenomenon in FRI reconstruction by subspace swap and

work out at which noise level FRI reconstruction algorithm is guaranteed to achieve the

optimal performance given by the Cramér-Rao bound. Our prediction of the breakdown

PSNR is directly related to the distance between adjacent Diracs, sampling rate and the

order of the sampling kernel and its accuracy is verified by simulations.

Next, we propose an algorithm that can estimate the rate of innovation of the input signals

and this extends the current FRI framework to a universal one that works with arbitrarily

unknown rate of innovation.

Moreover, we improve the current identification scheme of “parametrically sparse” sys-

tems, i.e. systems that are fully specified by small number of parameters. Inspired by

the denoising technique used for FRI signals, we propose the modified Cadzow denoising

algorithm which leads to robust system identification. We also show the possibility of

perfectly identifying the input signal and the system simultaneously and we also propose

reliable algorithm for simultaneous identification of both in the presence of noise.

Lastly, by noting that lines of images can be modelled as piecewise smooth signals, we pro-

pose a novel image upsampling scheme based on our proposed method for reconstructing

piecewise smooth signals which fuses the FRI method with the classical linear reconstruc-

tion method. We further improve our upsampled image by learning from the errors of

our upsampled results at lower resolution levels. The proposed algorithm outperforms the

state-of-the-art algorithms.
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Abbreviations

1-D one dimensional

2-D two dimensional

A-to-D analogue to digital

B-spline polynomial spline

CRB Cramér-Rao bound

dB Decibel

eMOMS exponential spline with maximum order and minimum support

E-spline exponential spline

FRESH FRI-based single-image super-resolution algorithm

FRI finite rate of innovation

MSE mean square error

PSNR peak signal-to-noise ratio

SNR signal-to-noise ratio

SSIM Structural SIMilarity index

SVD singular value decomposition

TLS total least square

UWB ultra-wideband
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Notations

continuous-time signals

f(t) continuous-time signal

f (r)(t) rth derivative of f(t). The zero order derivative is the function itself
f (0)(t) = f(t).

F (jω) Fourier transform of f(t):
∫∞
−∞ f(t) e−jωt dt

F (s) bilateral Laplace transform of f(t):
∫∞
−∞ f(t) e−st dt

f(t) ∗ g(t) continuous-time convolution:∫∞
−∞ f(τ)g(t− τ)dτ =

∫∞
−∞ f(t− τ)g(τ)dτ

〈f(t), g(t)〉 inner product:
∫∞
−∞ f(t)g∗(t)dt, where g∗(t) is the complex conjugate

of g(t)

sinc(t) sinc(t) = sin(πt)
πt

δ(t) delta Dirac function

discrete-time signals and vectors

f [n] or fn discrete-time signal
f [n] ∗ g[n] discrete-time convolution:∑∞

m=−∞ f [m]g[n−m] =
∑∞

m=−∞ f [n−m]g[m]
F (z) z-transform of f [n]:

∑∞
−∞ f [n]z−n

A> transpose of matrix A

A−1 inverse of matrix A

A† pseudo-inverse of matrix A

AH conjugate transpose or Hermitian transpose of matrix A

Tr(A) trace of matrix A

‖a‖ Euclidean norm of vector a: ‖a‖ =
√∑m

i=1 |ai|2
‖A‖Fro Frobenius norm operator: ‖A‖Fro =

√∑m
i=1

∑n
j=1 |ai,j |2 = Tr(AAH)

I identity matrix

others

E{X} expected value of a random variable X
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Chapter 1

Introduction

We live in an analogue world. For example, speech signals are continuous-time signals

because they are continuous waves of acoustic pressure. In order to store or process the

signals digitally, it is necessary to convert them into digital sequences (i.e. recording

only values of the signal at certain points in time/space). This conversion process is

called sampling. The sampling process by definition is a process of discarding information.

However, there are situations where all the information of classes of continuous-time signals

can be perfectly recovered from the discrete sequences. This is interesting because it means

that specific classes of continuous-time signals can be represented in a very compact form.

The most celebrated and widely applied sampling theorem, which is often attributed

to Shannon [2], Whittaker [3], Kotelnikov [4], to name a few, established a sufficient

condition for exact sampling and reconstruction for bandlimited signals. It is based on the

interpretation that signals are sums of sinusoids of different frequencies and it requires a

sampling rate that is at least twice the highest frequency of the input signal for perfect

reconstruction. However, real-world signals usually contain quick variations, i.e. possess

very high frequency components. In order to recover these signals, the classical sampling

theory requires an extremely high sampling rate and this results in power consuming A-to-

D systems. For example, UWB (ultra-wideband) communications use ultra-short pulses

that are nanoseconds in duration to transmit data. A-to-D converters in UWB receivers

usually operate at several gigahertz for accurate channel estimation.

1.1 Motivation and objectives

During the past few years, the theory of sampling signals with finite rate of innovations has

emerged. This theory characterises the signals in terms of innovation parameters of their
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parametric forms instead of their frequency contents. This theory allows sampling and per-

fect reconstruction of classes of non-bandlimited parametric signals at a rate characterised

by how sparse they are per unit of time rather than the highest frequency component of

the signals. This provides new insights into sampling methods for those high-frequency

real-life signals that can be accurately described by small number of parameters. It has

been shown that FRI theory allows the sampling of specific classes of signals at a low rate,

much lower than the Nyquist rate. Successful applications can be found in signal and im-

age processing [5–7], communication systems [8, 9] and biological systems [10–13]. Using

the previous example, a UWB signal can be modelled as a sparse parametric expression

and channel estimation problem can be regarded as finding the locations and amplitudes

of a stream of pulses of known shape. Then the sampling rate can be greatly reduced to

the number of degrees of freedom of the received UWB signal.

The FRI sampling theory is a very powerful result which breaks our long-existing under-

standing of the necessary connection between the sampling rate and the signal bandwidth.

It is worth analysing its reconstruction performance and also investigating possible exten-

sions of the FRI sampling theory for other applications. In this thesis, we study the

limitations of the FRI reconstruction algorithm in the presence of noise. Moreover, we

extend the FRI theory to a universal one that works with unknown rate of innovations.

We also extend the FRI sampling theory for identifying systems that are parametrically

sparse, and for reconstructing images by modelling them as lines of parametrically sparse

signals.

1.2 Outline of the thesis

In Chapter 2 we introduce the sampling problem and the traditional solution to it. We

also overview the recent development of sampling theory for signals with finite rate of

innovations. Moreover, we explain the algorithms for reconstructing such signals.

In Chapter 3 we explain the breakdown phenomenon observed when reconstructing signals

with FRI by subspace swap. We also work out at which noise level the absence of subspace

swap is guaranteed and this gives us an accurate prediction of the breakdown PSNR.

Simulations verify the accuracy of the prediction.

In Chapter 4 we propose a method to identify the rate of innovation, therefore extend the

current framework of sampling FRI signals to a universal one which works with arbitrarily

unknown number of Diracs.

In Chapter 5 we improve current system identification schemes by using the FRI frame-

work. We first show the possibility of exact identification of specific systems. We then
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propose a modified Cadzow algorithm that effectively denoises the spectral data prior to

system identification in the case of noisy measurements, which leads to a robust identifi-

cation framework for linear systems. When both the input sparse signal and the sparse

system are unknown, we show it is possible to exactly identify both the signal and the sys-

tem when the response of the system is of compact support. We also propose a recursive

estimation algorithm that works more reliably in the presence of noise.

Chapter 6 is a novel extension of FRI sampling framework for image upsampling. We

model lines of images as piecewise smooth functions and propose a resolution enhancement

method for this type of functions. We then apply this method along vertical, horizontal

and diagonal directions in an image to obtain a single-image super-resolution algorithm.

We also propose a further improvement of the method based on learning from the errors

of our super-resolution result at lower resolution levels. Simulation results show that our

method outperforms state-of-the-art algorithms under different blurring kernels.

1.3 Publications
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• X. Wei, H. Akhondi Asl, T. Blu, and P. L. Dragotti, “Simultaneous estimation of
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• X Wei and P. L. Dragotti, “FRESH – FRI-based single-image super-resolution
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Conference papers
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Chapter 2

Overview of recent development in

sampling theory

In order to process continuous-time real-world signals with digital systems, we require a

sampling mechanism which converts continuous signals to discrete sequences of numbers,

while preserving the information present in those signals. In this chapter, we first formu-

late the sampling problem mathematically, and introduce the classical solution—Shannon

sampling theorem, which is a sufficient condition for unique mapping between the discrete

sequence to the original continuous signal of finite bandwidth. Then we introduce the

recently developed FRI sampling theory, which overcomes the limitations of the classical

sampling theory. More specifically, we explain the exact sampling framework for classes

of non-bandlimited signals with specific sampling kernels. We also present robust recon-

struction settings and algorithms in the presence of noise and an extension of the exact

framework that works with arbitrary sampling kernels.

2.1 Sampling problem and the classical sampling theory

x(t) h(t) = ϕ(−t/T )
T

yn
y(t)

Figure 2.1: Sampling set-up. Here x(t) is the input signal, h(t) is the impulse response of the
acquisition device and T is the sampling period. The samples are given by yn = 〈x(t), ϕ(t/T − n)〉.

Fig. 2.1 depicts the typical setup for converting a continuous-time signal to discrete se-

quences. The original continuous-time signal x(t) is filtered with a linear-time invariant
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filter with impulse response h(t) and then is sampled with sampling period T . The pre-

filtering process may be by design or may be due to the acquisition device. Under this

model the samples yn are given by

yn = 〈x(t), ϕ(t/T − n)〉 , (2.1)

where ϕ(t) is the sampling kernel and is the scaled and time-reversed version of h(t). Note

that when no sampling kernel is used, we have ϕ(t) = δ(t) and yn = x(nT ).

The key issue in sampling theory is to understand whether the set of samples yn is a

faithful representation of the original signal x(t). If so, how can we reconstruct x(t) from

the samples? It is well known that Shannon sampling theorem [2] provides an answer to

the above questions:

Theorem 2.1 If a function x(t) contains no frequencies higher than B cycles per second,

then samples yn = x(nT ) with T ≤ 1/2B are sufficient to reconstruct x(t).

In this case, the reconstruction process is linear and the reconstruction formulation (see

Fig. 2.2 with ϕ(t) = δ(t) and ϕ̃(t) = sinc(t)) is given by:

x(t) =
∞∑

n=−∞
x(nT ) sinc(t/T − n). (2.2)

Shannon sampling theorem is applicable when the input signal x(t) is from the subspace

of bandlimited signals. When this is not the case, using a sampling kernel ϕ(t) = sinc(t)

(see Fig. 2.2) allows an approximate reconstruction x̂(t), which is the projection of x(t)

onto the subspace of bandlimited signals. Besides the fact that Shannon sampling theorem

cannot achieve perfect reconstruction of real-world signals because those signals are never

exactly bandlimited [19], we also note that Shannon’s reconstruction formula of (2.2) is

rarely used in practice because the sinc function has infinite support and slow decay.

h(t) = ϕ(−t/T )
T yn

ϕ̃(t/T )
x̂(t)x(t) y(t)

Figure 2.2: Linear reconstruction set-up. The reconstruction of the input signal is given by
x̂(t) =

∑
n ynϕ̃(t/T − n). Perfect reconstruction is achieved when x(t) ∈ span{ϕ̃(t/T − n)}n∈Z.

In more recent schemes, the space of bandlimited signals in Shannon theory is generalised

to the space of shift-invariant signals. See Fig. 2.2 for the sampling and reconstruction
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set-up. Here x(t) is reconstructed using a linear filter with response ϕ̃(t):

x̂(t) =
∞∑

n=−∞
ynϕ̃(t/T − n), (2.3)

where the pair {ϕ̃(t), ϕ(t)} is chosen so that 〈ϕ(t− n), ϕ̃(t− k)〉 = δn−k. Under this model

the sampling and reconstruction process can be interpreted as computing the orthogonal

projection of x(t) onto the shift-invariant subspace V spanned by ϕ̃(t) and its shifted

versions: V = span{ϕ̃(t/T − n)}n∈Z. Therefore perfect reconstruction of x(t) is achieved

when x(t) ∈ V.

In this generalised scheme, ϕ̃(t) does not have to be limited to the sinc function as in the

classical Shannon sampling theorem and alternative choices are possible. For example,

ϕ̃(t) could be a polynomial B-spline of a certain order. We also note that slightly more

sophisticated forms of linear reconstruction are also possible where, for example, one tries

to impose consistency . Specifically, the goal is to reconstruct a signal x̂(t) that would lead

to the same samples yn if x̂(t) were to be sampled again. This new constraint leads to

a different synthesis filter and to a reconstruction that gives an oblique projection rather

than an orthogonal projection of x(t) onto V. For more details on the topic, we refer to

the insightful review [20] .

2.2 Sampling and perfect reconstruction of FRI signals

2.2.1 Signals with finite rate of innovation

Signals that are neither bandlimited nor belong to a fixed subspace cannot be reconstructed

perfectly using the classical linear reconstruction method discussed in the previous section.

However recently it was shown that it is possible to develop sampling schemes for classes of

signals having parametric representations with finite number of degrees of freedom. These

signals are called signals with finite rate of innovation (FRI) [21] and can be expressed as

follows:

x(t) =
∑
k∈Z

R∑
r=0

ar,kgr(t− tk). (2.4)

Here {gr(t)}Rr=0 is a set of known functions, therefore the only degrees of freedoms in x(t)

are the shifts tk and the amplitudes ar,k. If we denote with Cx(ta, tb) a function that

counts the number of free parameters of x(t) over an interval of time [ta, tb], then the rate

of innovation of the signal x(t) is defined as:

ρ = lim
τ→∞

1

τ
Cx

(
−τ

2
,
τ

2

)
. (2.5)
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This definition parallels the notion of information rate of a source based on the average

entropy per unit of time introduced by Shannon in the same 1948 paper [2] where he for-

mulated the sampling theory. The formal definition of signals with finite rate of innovation

is given as follows:

Definition 1 A signal with finite rate of innovation is a signal whose parametric repre-

sentation is given by (2.4) and with a finite ρ as defined by (2.5).

In some cases, it is more convenient to consider a local rate of innovation with respect to

a moving window of size τ . The local rate of innovation at time t is thus given by

ρτ (t) =
1

τ
Cx(t− τ

2
, t+

τ

2
). (2.6)

Note that shift-invariant signals, including bandlimited signals, fall under Definition 1.

For example, consider a signal x(t) bandlimited to [−B/2, B/2] which is expressed as

(2.2) with T = 1/B. Then we can say that it has B degrees of freedom per unit of time

(or rate of innovation ρ = B) since x(t) is exactly defined by a sequence of real numbers

x(nT ) spaced T = 1/B seconds apart. Therefore we can say sampling bandlimited signals

is possible (Theorem 2.1) because they have finite rate of innovation, rather than because

they are bandlimited.

We are particularly interested in the class of signals belonging to (2.4) that are not ban-

dlimited and that cannot be sampled and perfectly reconstructed with the classical sam-

pling theory. Is there a sampling theorem for at least some of these signals? If we stick

with the traditional sampling set-up in Fig. 2.1 what kernels h(t) allow for such sampling

schemes? What are the reconstruction algorithms?

Classes of FRI signals that can be sampled and reconstructed perfectly include for example

streams of Diracs, piecewise polynomial signals and piecewise sinusoids. We show examples

of these signals in Fig. 2.3. These signals are fully characterised by some location and

amplitude information, therefore reconstruction of these signals is equivalent to recovering

these unknown parameters. In a later section we will see that the sequence of samples

taken by specific sampling kernel can be transformed to a set of moments τm which have

a power series form:

τm =

K−1∑
k=0

aku
m
k , m = 0, 1, . . . P (2.7)

where uk, ak contain the location and amplitude parameters to be estimated respectively.

Solving uk, ak from {τm}Pm=0 is a classical problem in spectral estimation [22] and arises

in a variety of applications including radar target identification [23], sensor array signal

processing [24], signal analysis in power electronics [25], inverse scattering in imaging [26]
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(b) a piecewise polynomial signal
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(c) a piecewise sinusoidal signal

Figure 2.3: Examples of FRI signals. The shape of the signals are known so they are only
characterized by the amplitude and location information.

and so forth. There are plenty of ways to solve this problem, for example, Prony’s method

or matrix pencil. Reconstruction of the location is non-linear and after the location is

recovered, solving for the amplitude is a linear problem. In what follows we discuss different

sampling kernels that allow perfect reconstruction, and then we specifically introduce the

reconstruction algorithms for recovering stream of Diracs and piecewise polynomial signals

from the samples taken with the set-up of Fig. 2.1 because they are useful for the following

chapters.

2.2.2 Sampling kernels

There are different sampling kernels that allow perfect reconstruction of FRI signals. In the

following we introduce the main two types: the infinite support kernels and the compact

support kernels.

The first kernel used for sampling FRI signals is the traditional ideal low-pass filter [21],

i.e. the sinc function. Sampling a τ -periodic train of K Diracs with the sinc function

with bandwidth B, i.e. h(t) = sinc(Bt), results in samples yn and the discrete Fourier

coefficients of yn provide Bτ consecutive Fourier series coefficients of x(t). From at least

2K consecutive Fourier series coefficients the locations and amplitudes of K Diracs can be

recovered using annihilating method (Prony’s method). However the fundamental limit of

the sampling method is that the kernel has infinite support thus is physically non-realizable

and it also makes FRI reconstruction algorithms potentially unstable.

Later on, a sampling framework based on compactly supported kernels that are able to

reproduce polynomial or exponential functions were presented in [27, 28]. Since these

classes of kernels are of compact support, this setup is more stable and practical for

sampling finite and infinite duration FRI signals.

A polynomial reproducing kernel of order P +1 is a function that together with its shifted
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versions can reproduce polynomials of maximum degree P . That is, any functions ϕ(t)

that satisfies: ∑
n∈Z

cm,nϕ(t− n) = tm, m = 0, 1, . . . , P. (2.8)

for proper coefficients cm,n. The coefficients cm,n are given by cm,n = 1/T
∫∞
−∞ t

mϕ̃(t/T −
n)dt, where ϕ̃(t) is chosen to form with ϕ(t) a quasi-biorthonormal set [29]. This includes

the particular case where ϕ̃(t) is the dual of ϕ(t). Note that the coefficients can be

calculated numerically when the specific kernel that satisfies the polynomial reproduction

property is known. This family of kernels includes any functions satisfying the so-called

Strang-Fix conditions [30]. Namely, ϕ(t) satisfies (2.8) if and only if

Φ(0) 6= 0 and Φ(m)(j2πl) = 0, l ∈ Z\{0} and m = 0, 1, . . . , P, (2.9)

where Φ(ω) is the Fourier transform of ϕ(t) and here (·)(m) stands for the m-th derivative

of (·).

One important example of functions satisfying Strang-Fix condition is given by the family

of B-splines [31]. Zero order B-spline β0(t) is the box function:

β0(t) =

1, 0 ≤ t < 1

0, otherwise

F−→ B0(jω) =
1− e−jω

jω
.

A B-spline βP (t) of order P is obtained from the (P + 1)–fold convolution of β0(t):

βP (t) = β0(t) ∗ β0(t) . . . ∗ β0(t)︸ ︷︷ ︸
P+1 times

. (2.10)

The B-spline of order P can reproduce polynomials of maximum degree P and the size (P+

1) of its support is the smallest for a function that can achieve that order of approximation.

More importantly, it is possible to show that any function ϕ(t) that reproduces polynomials

of degree P can be decomposed into a B-spline and a distribution u(t) with
∫
u(t)dt 6= 0,

that is, ϕ(t) = u(t) ∗ βP (t) [32–34]. Also note that the B-spline function βP (t) converges

to a Gaussian as P tends to infinity [35, Theorem 1].

An exponential reproducing kernel of order P+1 is a function that together with its shifted

versions can reproduce complex exponentials of the form eαmt with m = 0, 1, . . . , P . That

is, any function that satisfies:∑
n∈Z

cm,nϕ(t− n) = eαmt, m = 0, 1, . . . , P (2.11)
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for proper coefficients cm,n. If the exponential reproducing kernel is known, cm,n can

be calculated numerically. Note that αm can be a complex number. It is possible to

show that a function satisfies (2.11) if and only if it meet the generalised Strang-Fix

conditions [36–38]:

Φ(αm) 6= 0 and Φ(αm + j2πl) = 0 l ∈ Z\{0} (2.12)

where Φ(s) is the Laplace transform of ϕ(t).

The theory of exponential reproduction stems from the notion of exponential splines (E-

splines) [39]. We denote the E-spline of first order which is able to reproduce the expo-

nential function eαt by βα:

βα(t) =

eαt, 0 ≤ t < 1

0, otherwise

F−→ Bα(jω) =
1− eα−jω

jω − α .

Notice that βα(t) reduced to the classical zero-order B-spline when α = 0. Higher order

E-splines are obtained by successive convolutions of lower-order ones with specific αm

parameters. Therefore the Fourier transform of the E-splines of order P + 1 is given by

Bα(jω) =
P∏

m=0

1− eαm−jω

jω − αm
, (2.13)

where α = (α0, α1, . . . , αP ). An example of exponential reproduction with an e-spline

of order P + 1 = 3 is shown in Fig. 2.4. Since the exponential reproduction formula is

preserved through convolution [39], any composite function of the form ϕ(t)∗βα(t) is also

able to reproduce exponentials [40]. In the following, we will explain how to sample two

specific classes of FRI signals with exponential reproducing kernels.

2.2.3 Exact sampling using exponential reproducing kernels

Consider the sampling set-up in Fig. 2.1 with ϕ(t) being an exponential reproducing kernel.

An important characteristic of the exponential reproducing kernel is that it allows us to

map the samples yn with the Laplace or Fourier transform of x(t) at {αm}Mm=0 and this is

independent of the input signal. Assume that the signal x(t) is of compact support such

that it is characterised by only N non-zero samples. By computing weighted sum of these

samples, where the weights cm,n are those in (2.11) that reproduce eαmt, we obtain P + 1
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Figure 2.4: Weighted sum of shifted versions of a third order E-spline of (a) can reproduce
exponentials at three different frequencies, which are shown in (b)(c)(d).

new measurements, called exponential moments (or e-moments):

τm =
∑
n

cm,nyn =

〈
x(t),

∑
n

cm,nϕ(t/T − n)

〉

=

∫ ∞
−∞

x(t) eαmt/Tdt, m = 0, 1, . . . , P.

(2.14)

Note that
∫∞
−∞ x(t) eαmtdt is exactly the bilateral Laplace transform of x(t) evaluated at

{αm}Pm=0 and denoted by X(αm). Moreover, when αm is purely imaginary with αm =

−jωm, X(jωm) is the Fourier transform of x(t) at ω = ωm.

When {αm}Pm=0 are equispaced, i.e. in the form αm = α0 + mβ with m = 0, . . . , P , it is

possible to establish a one-to-one mapping between x̂(αm) and x(t) when x(t) is a specific

class of signals with FRI. In the following, we discuss two classes of signals allowing the

one-to-one mapping—streams of Diracs and piecewise polynomial signals.
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Sampling streams of Diracs

Consider a signal x(t) which is a stream of K Diracs located at {tk}K−1
k=0 (refer to Fig. 2.3a):

x(t) =
K−1∑
k=0

akδ(t− tk). (2.15)

Perfect reconstruction of x(t) from its samples is possible when certain conditions are

satisfied:

Theorem 2.2 Consider a sampling kernel ϕ(t) that can reproduce exponentials e(α0+mβ)t

with m = 0, 1, . . . , P and P ≥ 2K−1. Then a stream of K Diracs: x(t) =
∑K−1

k=0 akδ(t−tk)
is uniquely specified by the samples yn = 〈x(t), ϕ(t/T − n)〉.

The following explains why this is possible. The weighted sum of the samples with weights

cm,n in (2.12):

τm =
∑
n

cm,nyn

=

∫ ∞
−∞

K−1∑
k=0

akδ(t− tk) eαmt/Tdt

=

K−1∑
k=0

ak eα0tk/T︸ ︷︷ ︸
âk

e(βtk/T )m︸ ︷︷ ︸
umk

=
K−1∑
k=0

âku
m
k , m = 0, 1, . . . , P,

(2.16)

is a sum of exponentials.

Retrieving {âk, uk}K−1
k=0 from {τm}Pm=0 is a classical problem in spectral estimation and can

be solved by annihilating filter method [21,28] (Prony’s method). The key is to note that

given a filter {hm}Km=0 such that the roots of its z-transform corresponds to the locations

uk:

H(z) =
K∑
m=0

hmz
−m =

K−1∏
k=0

(1− ukz−1), (2.17)

then this filter can annihilate the moments τm:

hm ∗ τm =

K∑
i=0

hiτm−i =

K∑
i=0

K−1∑
k=0

hiâku
m−i
k

=
K−1∑
k=0

âku
m
k

K∑
i=0

hiu
−i
k︸ ︷︷ ︸

H(uk)=0

= 0.
(2.18)
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The zeros of this filter uniquely define the locations tk of the Diracs. The filter coefficients

hm can be found from the equations hm ∗ τm = 0. The system of equations written in

matrix form is as follows:
τK τK−1 τK−2 . . . τ0

τK+1 τK τK−1 . . . τ1

...
...

...
...

...

τP τP−1 τP−2 . . . τP−K


︸ ︷︷ ︸

A


h0

h1

...

hK


︸ ︷︷ ︸

h

=


0

0
...

0

 , (2.19)

where A is a rank-deficient Toeplitz matrix with rank K. Since h0 = 1, we can rearrange

(2.19) to a system solving for {h1, . . . , hK}. Then we need at least 2K consecutive values

of τm to solve this system, hence the order P + 1 of the sampling kernel must be equal

or larger than 2K, which is exactly the number of degrees of freedom of x(t). After we

get hm, the exact locations tk are obtained by finding the roots uk of H(z) and by using

the fact that uk = eβtk/T . Finally the exact amplitudes ak can be retrieved by solving, for

example, the first K consecutive equations in (2.16).

Sampling piecewise polynomials

We consider piecewise polynomial functions with K pieces of maximum degree R−1 (refer

to Fig. 2.3b):

p(t) =

K−1∑
k=0

R−1∑
r=0

ak,r(t− tk)r+, (2.20)

where tr+ = max(t, 0)r. Sampling and perfect reconstruction of these functions is possible

under the following conditions:

Theorem 2.3 Assume a sampling kernel ϕ(t) that can reproduce exponentials e(α0+mβ)t

with m = 0, 1, . . . , P and P ≥ 2KR − 1. A piecewise polynomial signal with K pieces of

maximum degree R− 1: p(t) =
∑K−1

k=0

∑R−1
r=0 ak,r(t− tk)r+ is uniquely determined from the

samples yn = 〈x(t), ϕ(t/T − n)〉.

The following explains why this is possible. We denote the R-th derivative of p(t) by

p(R)(t), and note that p(R)(t) is a stream of (differentiated) Diracs. This means that if we

are able to relate the samples of p(t) to those of p(R)(t) we can interpret the problem as

the one of sampling differentiated Diracs. Indeed this is possible by using the link between

discrete differentiation and derivation in continuous domain. More specifically, consider a

function ϕ(t/T ) with Fourier transform TΦ(jωT ) and the difference ϕ(t/T )−ϕ(t/T − 1).
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The Fourier transform of ϕ(t/T )− ϕ(t/T − 1) is

ϕ(t/T )− ϕ(t/T − 1)
F−→ TΦ(jωT )(1− e−jωT )

=jωTΦ(jωT ) · T 1− e−jωT

jωT

=jω · TΦ(jωT ) · TB0(jωT ).

(2.21)

Therefore

ϕ(t/T )− ϕ(t/T − 1) =
d

dt
[ϕ(t/T ) ∗ β0(t/T )], (2.22)

where β0 is the B-spline of order 0 and its Fourier transform is 1−e−jω

jω . Let z
(1)
n denote

the finite difference yn+1 − yn. It follows that

z(1)
n = yn+1 − yn = 〈p(t), ϕ(t/T − n− 1)− ϕ(t/T − n)〉

(a)
=

〈
p(t),− d

dt
[ϕ(t/T − n) ∗ β0(t/T − n)]

〉
(b)
=

〈
dp(t)

dt
, ϕ(t/T − n) ∗ β0(t/T − n)

〉
,

(2.23)

where (a) follows from (2.22) and (b) is obtained using integration by parts.

Using a similar derivation it is also possible to prove that the R-th finite differences

z(R)
n =

R∑
k=0

(−1)R−k
(
R

k

)
yn+k with yn = 〈p(t), ϕ(t/T − n)〉 (2.24)

is equivalent to the samples
〈
p(R)(t), ϕeq(t/T − n)

〉
obtained by acquiring p(R)(t) with the

new kernel ϕeq(t) = ϕ(t) ∗ βR−1(t), where βR−1(t) is the polynomial B-spline of degree

R− 1.

The new kernel ϕeq(t) = ϕ(t) ∗βR−1(t) also satisfies the generalised Strang-Fix conditions

of (2.12) and can reproduce exponentials:∑
n∈Z

cm,nϕeq(t/T − n) = eαmt/T with m = 0, 1, . . . , P (2.25)

for a proper choice of coefficients cm,n.

Because of this connection in what follows we focus on the reconstruction of streams of

differentiated Diracs to solve the problem of sampling piecewise polynomials.
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The stream of differentiated Diracs p(R)(t) can be expressed as follows:

p(R)(t) =

K−1∑
k=0

R−1∑
r=0

ak,rδ
(r)(t− tk), (2.26)

and the samples z
(R)
n can be written as:

z(R)
n =

〈
p(R)(t), ϕeq(t/T − n)

〉
. (2.27)

Consider now the following weighted sum of the samples z
(R)
n , where the weights cm,n are

those in (2.25) that reproduce eαmt/T , we have:

τm =
∑
n

cm,nz
(R)
n =

〈
p(R)(t),

∑
n

cm,nϕeq(t/T − n)

〉

=

∫ ∞
−∞

p(R)(t) eαmt/Tdt

=

∫ ∞
−∞

K−1∑
k=0

R−1∑
r=0

ak,rδ
(r)(t− tk) eαmt/T dt

=

K−1∑
k=0

R−1∑
r=0

âk,r(αm)rumk , m = 0, 1, . . . , P,

(2.28)

where âk,r = (−1/T )r eα0tk/T ak,r and uk = eβtk/T .

The locations tk’s can be retrieved from τm using Prony’s method (annihilating filter

method). The key is to note that given a filter {hm}KRm=0 whose z-transform is:

H(z) =
KR∑
m=0

hmz
−m =

K−1∏
k=0

(1− ukz−1)R, (2.29)

then this filter can annihilate the sequence τm. That is, hm ∗τm = 0. Similar to the case of

recovering stream of Diracs, the KR unknown coefficients of hm can be found by writing

hm ∗ τm = 0 in matrix/vector form using at least 2KR consecutive τm. From the roots

uk of the annihilating filter H(z) and by using the fact that uk = eβtk/T we obtain the

locations tk exactly. Then the exact amplitudes can be found by solving, for example, the

first KR equations in (2.28).

2.3 Sampling FRI signals in the presence of noise

When there is no noise, incoming FRI signals can be recovered from the moments τm

regardless of the specific design of the exponential reproducing kernel as long as the con-
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dition on the number of exponentials reproduced is satisfied (refer to Theorem 2.2 and

Theorem 2.3) and the solution is unique when the locations are distinct.

However when the measurements yn are corrupted with additive noise, in the case of

sampling streams of Diracs, we have only access to:

ỹn =

K−1∑
k=0

akϕ(tk/T − n)︸ ︷︷ ︸
yn

+εn, n = 0, 1, . . . , N − 1, (2.30)

where we assume that εn are i.i.d. Gaussian random variables with zero mean and standard

deviation σy. The moments τm become noisy as shown below:

τ̃m =
∑
n

cm,nỹn = τm +
∑
n

cm,nεn︸ ︷︷ ︸
bm

, m = 0, 1, . . . , P
(2.31)

or in matrix form:

τ̃ = Cỹ = Cy + Cε, (2.32)

where τ̃ = (τ̃0, τ̃1, . . . , τ̃P )>, y = (y0, y1, . . . , yN−1)>, ε = (ε0, ε1, . . . , εN−1)> and C ∈
CP×N is a matrix whose entry at location (m,n) is cm,n. In order to limit the effect of noise,

we need to understand the effect that noise on the samples has on the moments and also

how to improve the reconstruction algorithms. Therefore, in the following we investigate

both the optimal design of the sampling kernel and the design of good reconstruction

algorithms. We then introduce the Cramér-Rao lower bound which can be used to assess

the performance of the reconstruction algorithms in noisy settings.

2.3.1 Design of the sampling kernel

From (2.32) we see that the statistics of the noisy moments is highly related to C. We desire

a well conditioned C in order to have a good τ̃ . Matrix C is composed of entries cm,n =

cm,0 eαmn at position (m,n). To have a stable C we want |cm,0| to have same magnitude

for all m = 0, 1, . . . , P , for example |cm,0| = 1. Although the cardinal e-spline does not

have this property, given the fact that any composite function of the form ϕ(t) ∗ βα(t)

is also able to reproduce exponentials, it is possible to construct exponential reproducing

functions satisfying |cm,0| = 1. One such family of exponential reproducing kernels are

called exponential spline with Maximum Order and Minimum Support (eMOMS) [38,40].

More details on how to design eMOMS are in [40]. An eMOMS which reproduces same

exponentials as βα(t) has minimum support as βα(t) as well. For this reason for the rest of

this thesis, we use eMOMS when we mention exponential reproducing kernel. An example
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on an eMOMS of order P + 1 = 31 is shown in Fig. 2.5(b). Please note that the eMOMS

in Fig. 2.5(b) has the same support as the cardinal e-spline in (a).
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Figure 2.5: Examples of exponential reproducing functions. (a) E-spline of order P + 1 = 31.
(b) eMOMS of order P + 1 = 31.

In addition, in all situations we always want to choose αm = m′β,with m′ = m−P/2,m =

0, 1, . . . P with β = j 2π
P+1 so that the exponentials reproduced by the kernel span the unit

circle, which is well known to be the best configuration when recovering the parameters

of a power series. At last, whenever possible, we prefer to have a kernel that can produce

number of exponentials equalling the number of the samples N , i.e. P + 1 = N , this leads

to the most stable matrix C (square and unitary) and the best possible performance for

a fixed N [38].

2.3.2 Robust reconstruction algorithms

We have just explained the specific exponential reproducing kernels that gives best mo-

ments for reconstruction. We also desire robust reconstruction algorithms which hopefully

help us separate the true signal information from the noisy moments. In the following we

explain the robust algorithms for recovering streams of Diracs, but note that they are also

applicable for piecewise polynomial functions.

TLS solution of Prony’s method

When there is noise, A becomes noisy and no longer rank-deficient and (2.19) is not sat-

isfied exactly. We denote the noisy A with Ã. In order to have a more robust reconstruc-

tion, we can increase the number of moments by using a sampling kernel that reproduce

a number of exponentials P + 1 which is greater than the critical number 2K (refer to
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Theorem 2.2). The total least square (TLS) solution of Prony’s method can be found by

performing singular value decomposition (SVD) on Ã. The eigenvector corresponding to

the smallest eigenvalue is the desired estimation of h. Once the tk are retrieved, the ak

follow from a least square minimization of the difference between the moments τ̃m and the

model of (2.16).

Cadzow denoising algorithm

Before Prony’s method, we can use an initial denoising (model matching) step, called

Cadzow iterative algorithm [41, 42]. It denoises the moments by recovering a closest

rank deficient matrix which is Toeplitz. To accelerate the denoising procedure, rather

than constructing the Toepliz matrix A of size (P + 1 −K) × (K + 1) built from P + 1

consecutive τm in (2.19) in the noiseless case, we consider an extended Toeplitz matrix T

of size (P + 1− L)× (L+ 1) :

T =


τL τL−1 τL−2 . . . τ0

τL+1 τL τL−1 . . . τ1

...
...

...
...

...

τP τP−1 τP−2 . . . τP−L

 (2.33)

with L ≥ K constructed using P + 1 consecutive moments. In noiseless situation, T is

also of rank K.

The noisy T, denoted by T̃, in the presence of noise is full rank and the annihilation in

(2.18) is not satisfied any more. The main idea of Cadzow algorithm is to recover the

structured low-rank matrix from the full-rank matrix T̃. We first compute the SVD of T̃

and we only keep the K largest singular values of T̃ and set the rest to zero. Now this

new matrix is no longer Toeplitz but its best Toepltiz approximation can be obtained by

averaging the diagonal elements. A few these iterations lead to a denoised set of moments.

Now from the denoised moments we solve the annihilating filter by the total least square

solution of Prony’s method.

Matrix pencil

An alternative to “Cadzow+Prony” method which achieves comparable denoising perfor-

mance is given by the matrix pencil method [43–45] which operates as follows.

We perform the SVD of T̃: T̃ = UΣVH and keep the K left-singular vectors that corre-

spond to the K largest singular values: UK = [u1,u2, . . . ,uK ]. UK will be good estimates

of the singular vectors of the noiseless T when the presence of additive white noise has
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no significant effect on the principal singular vectors. Denote UK and UK the matrix

UK after omission of the first and the last row respectively. It can be shown that when

there is no noise, having λ to be one of the parameters {uk}Kk=1 in (2.16) would reduce

the rank of UK − λUK , and thus {uk}K−1
k=0 can be solved by finding the eigenvalues λ of

the generalised eigenvalue problem:

UKv = λUKv ⇐⇒ (UK − λUK)v = 0. (2.34)

This generalised eigenvalue problem can be transformed to a simple eigenvalue problem

by multiplying both sides by the pseudo-inverse of UK :

(UK
†UK − λI)v = 0. (2.35)

2.3.3 Performance of the reconstruction algorithms

Any unbiased estimator of deterministic parameters has a covariance matrix that is lower

bounded by the Cramér-Rao bounds [42, 46–48]. An unbiased estimator which achieves

this lower bound achieves the lowest possible variance among all unbiased methods. So we

could assess the estimation performance of the reconstruction algorithms in the presence

of noise by comparing it to the theoretical minimum provided by the Cramér-Rao bound.

In the context of recovering a stream of K Diracs, the estimation problem consists in

estimating all the unknown locations and amplitudes θ = (t0, . . . , tK−1, a0, . . . , aK−1)>

from N noisy samples ỹ = (ỹ0, . . . , ỹN−1)> of (2.30), which is the sum of the deterministic

parametric model f(n, θ) =
∑K−1

k=0 akϕ(tk/T − n) and the additive Gaussian noise εn ∼
N (0, σ2

y) with covariance matrix Rε = E{εεH} = σ2
yI, where ε is a vector containing values

{εn}N−1
n=0 . We denote any unbiased estimate of the unknown parameters from ỹ by θ̂(ỹ).

It is known that the covariance matrix of θ̂ is lower bounded by the inverse of the Fisher

information matrix I(θ):

cov{θ̂(ỹ)} ≥
(
G>yRε

−1Gy

)
︸ ︷︷ ︸

I(θ)

−1
, (2.36)

where matrix Gy is a N × 2K matrix where each row is given by vector ∇f(n,θ). For

simplicity we assume the sampling period T is 1. The expression of Gy is as follows:

Gy =


a0ϕ

′(t0) . . . a0ϕ
′(tK−1) ϕ(t0) . . . ϕ(tK−1)

a0ϕ
′(t0−1) . . . a0ϕ

′(tK−1−1) ϕ(t0−1) . . . ϕ(tK−1−1)
...

. . .
...

...
. . .

...

a0ϕ
′(t0−(N−1)) . . . a0ϕ

′(tK−1−(N−1)) ϕ(t0−(N−1)) . . . ϕ(tK−1−(N−1))

 .
(2.37)

In the specific FRI recovery problem where the sampling kernel is exponential reproducing
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kernel, the unknown parameters θ are recovered from the exponential moments {τ̃m}Pm=0,

which is now the sum of the deterministic parametric model f(m,θ) =
∑K−1

k=0 ak eαmtk/T

and the noise on moments, i.e. {bm}Pm=0 =
∑

n cm,nεn in (2.31). Therefore, it is of interest

to find the Cramér-Rao bound associated to the measurements {τ̃m}Pm=0 which indicates

the best performance that can be achieved when working with {τ̃m}Pm=0. In this case, the

covariance matrix of θ̂ is lower bounded by

cov{θ̂(τ̃ )} ≥
(
GH
τ Rb

−1Gτ

)︸ ︷︷ ︸
I(θ)

−1
, (2.38)

where Rb = E{bbH}, where b is a vector containing {bm}Pm=0. Again for simplicity we

assume the sampling period T is 1. Matrix Gτ takes the form:

Gτ =


a0α0 eα0t0 . . . aK1α0 eα0tK−1 eα0t0 . . . eα0tK−1

a0α1 eα1t0 . . . aK1α1 eα1tK−1 eα1t0 . . . eα1tK−1

...
. . .

...
...

. . .
...

a0αP eαP t0 . . . aK1αP eαP tK−1 eαP t0 . . . eαP tK−1

 . (2.39)

Note that Rb = σ2
yCCH and retrieving the unknown parameters from the moments when

the number of moments P +1 < N is suboptimal. However, when the number of moments

P + 1 equals the number of samples N , it can be shown that Rb = Rε, and the optimal

estimation results from the moments equals that from the samples. More details can be

found in [38].

Now we want to compare the square root of the theoretical lowest variances of the Dirac

locations given by the sample-based/moment-based Cramér-Rao bounds with the stan-

dard deviation of the recovered locations {t̂(i)k }Ii=1 in I realizations given by ∆tk =√∑I
i=1(tk − t̂(i)k )2/I, where tk is the true location of the Dirac and I is the total number

of realisations per noise level. Previous works in FRI, e.g. in [38, 42, 49], have shown

that FRI algorithms achieve the Cramér-Rao bound up to certain noise level. Please see

Fig. 2.6 for the performance of Cadzow+Prony method in recovering the locations of a

stream of two Diracs from its samples taken with an exponential reproducing kernel.

2.4 Approximate Strang-Fix: Sampling FRI signals with ar-

bitrary sampling kernel

We have shown that when the sampling kernel ϕ(t) is an exponential reproducing kernel,

we can retrieve the exact moments of the input signals and then recover the unknown

parameters of the FRI signals exactly. For any other kernel which does not satisfy the

generalised Strang-Fix conditions of (2.12) we want to find a linear combination of ϕ(t)
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Figure 2.6: Standard deviation (averages over 1000 realizations) of the retrieved locations of a
FRI signal (a stream of two Diracs) compared to Cramér-Rao lower bounds (CRB). The estimation
algorithm (Cadzow+Prony) achieves CRB up to certain peak signal-to-noise ratio (PSNR). The
two Diracs are recovered from 29 samples taken by a kernel which can reproduce 29 exponentials.

with its shifted versions that provides the best approximation to a specific exponential [38].

More precisely, we want to find coefficients cm,n such that:∑
n∈Z

cm,nϕ(t− n) ≈ eαmt . (2.40)

For the sake of clarity, we use cm,n = cm,0 eαmn and then it can be shown that the error

in approximating the exponential is [38]:

εapprox,m(t) = eαmt[1− cm,0
∑
l∈Z

Φ(αm + j2πl) ej2πlt]. (2.41)

Note that if the Fourier transform of ϕ(t) decays sufficiently quickly, which is true for any

low-pass filter, we can assume the terms Φ(αm + j2πl) are close to zero for l ∈ Z\{0}. In

this case, the approximation error is small and is minimised when

cm,n = Φ(αm)−1 eαmn . (2.42)

Note that when ϕ(t) satisfies the generalised Strang-Fix conditions, this equation gives

exactly the cm,n for exact exponential reproduction. Having cm,n we are now able to

calculate the approximate moments τm of the input signal by
∑

n cm,nyn, where yn are the

samples of the input signal taken by the low-pass filter ϕ(t). From the moments, the input

signal can be recovered using the same methods for the case of exponential reproducing

kernels in Sec. 2.3.2.
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Figure 2.8: Approximate reconstruction of a stream of Diracs from samples taken with a linear
spline when SNR=10dB.

This approximate Strang-Fix theory enables accurate reconstruction of the input FRI

signal with arbitrary sampling kernels that behave approximately like low-pass filters. An

example of approximate reproduction of exponential with a linear spline is shown in Fig. 2.7

and reconstruction of a stream of Diracs with the linear spline when SNR=10dB noise is

demonstrated in Fig. 2.8.

This approximate theory will be particularly useful for Chapter 6 on image upscaling since

point spread functions are approximately low-pass filters.
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A note on selecting frequencies of exponentials As discussed in Section 2.3.1, on

the one hand we want the exponentials eαmt to span the unit circle, on the other hand, we

want |cm,0| = |Φ(αm)−1| to be as constant as possible for all m. While this can be satisfied

at the same time in the exact reproduction framework, for general low-pass filters the two

requirements lead to a trade-off in the choice of αm since the former means spread-out

of the exponents while the latter means the frequencies are concentrated around ω = 0.

In [38], Urigüen et al. determine the optimal αm for specific low-pass filters through

numerical simulations.



Chapter 3

Guaranteed performance of the

FRI reconstruction algorithm

FRI sampling theory has shown that it is possible to sample and perfectly reconstruct

classes of non-bandlimited signals such as streams of Diracs. In the case of noisy measure-

ments, we use robust algorithms like Cadzow iterative algorithm [41] or matrix pencil [43],

which have been introduced in Section 2.3. They are SVD-based methods, which are

centered around splitting the measurement space into an estimated signal-subspace and

an orthogonal-subspace. The knowledge of the orthogonal subspace allows the unique

reconstruction of the FRI signal. FRI methods achieve the optimal performance given by

the Cramér-Rao bound up to a certain PSNR and breaks down for smaller PSNRs (see

Fig. 2.6).

It is well known that this breakdown phenomenon appears in non-linear estimation prob-

lems, e.g. direction of arrival, and has been studied in the past [50–52]. Knowing the

breakdown is crucial for ensuring the estimation algorithm operates in the asymptotic re-

gion predicted by the Cramér-Rao bound. To the best of our knowledge, however, precise

anticipation of the breakdown in FRI framework is still an open question. In this chapter,

we explain the breakdown event by subspace swap, which has been broadly recognised as

the reason of performance breakdown in SVD-based parameter estimation algorithms. For

subspace swap we mean the situation when due to noise the orthogonal subspace mixes

with the signal subspace making the retrieval of the signal unreliable. We then work out

at which noise level the absence of subspace swap is guaranteed and this gives us an ac-

curate prediction of the breakdown PSNR which we also relate to the sampling rate and

the distance between adjacent Diracs.

51
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3.1 A revisit to FRI theory

Now we briefly revisit the FRI sampling method where the emphasis is given only to key

aspects of the method which will be used in Section 3.2 to predict when noisy FRI recovery

fails.

We consider sampling a stream of Diracs x(t) =
∑K−1

k=0 akδ(t − tk) with tk ∈ [0, 1), k =

0, 1, . . . ,K − 1 using the sampling kernel ϕ(t) at sampling rate 1/T (refer to Fig. 2.1).

Under this model the observed samples are given by

yn = 〈x(t), ϕ(t/T − n)〉 , n = 0, 1, . . . , N − 1. (3.1)

The goal is to estimate the locations {tk}K−1
k=0 and the amplitudes {ak}K−1

k=0 from the

N samples yn (sampling rate T = 1/N). As discussed in the previous chapter, exact

retrieval of these parameters is possible when the sampling kernel ϕ(t) is an exponential

reproducing function. Assume we now have a P + 1-th order exponential reproducing

kernel ϕ(t), then linear combinations of ϕ(t) with its integer shifts can reproduce P + 1

exponentials eαmt,m = 0, 1, . . . , P :∑
n∈Z

cm,nϕ(t− n) = eαmt, m = 0, 1, . . . , P (3.2)

for a proper choice of coefficients cm,n.

Here we consider the exponential reproducing kernel which reproduces complex conjugated

exponential pairs. That is, αm in (3.2) have the form αm = m′β with m′ = m − P/2,

m = 0, . . . , P and β is an imaginary number. In the following, we assume P is even and we

use 2M instead of P (i.e. M = P/2) for simplicity and clear presentation of derivations.

We use this kernel to take the N samples yn of x(t). By linearly combining the samples yn

with the coefficients cm,n in (3.2) we obtain the following 2M + 1 exponential moments:

τm =
∑
n

cm,nyn =
K−1∑
k=0

âku
m
k , m = 0, 1, . . . , 2M, (3.3)

where âk = e−(βtk/T )M and uk = eβtk/T . Recall from Section 2.2.3, retrieving uk from τm

can be solved by using the annihilating filter method, which solves for the filter hm that

annihilates τm, i.e. hm ∗ τm = 0. It can be written in matrix form of (2.19): Ah = 0.

In noiseless situations, A is rank deficient (rank K). Therefore, the null space has dimen-

sion one and we can solve for h. Then from the roots of H(z) we retrieve the locations

exactly. Given {uk}K−1
k=0 , the amplitudes are retrieved by solving, for example, the first K
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consecutive equations in (3.3).

Note that the subspace spanned by the K singular vectors related to the non-zero singular

values of A is called the signal subspace. Also note that an extended Toeplitz matrix T

(see (2.33)), which is built from τm,m = 0, 1, . . . , 2M and is of size (2M + 1−L)× (L+ 1)

with L ≥ K, is also of rank K and there are L−K+ 1 independent vectors {hl}Ll=0 which

can annihilate τm. This is shown in matrix form as follows:

ThL+1 = 0, (3.4)

Now we assume the measurements yn are corrupted with additive noise, and we have

access to

ỹn = yn + εn, n = 0, 1, . . . , N − 1, (3.5)

where εn are i.i.d Gaussian random variables with zero mean and standard deviation σy.

The moments τm become noisy as shown below:

τ̃m =
∑
n

cm,nỹn = τm +
∑
n

cm,nεn︸ ︷︷ ︸
bm

, m = 0, 1, . . . , 2M.
(3.6)

The noisy T, denoted by T̃, is now full rank and (3.4) is not satisfied any more. We can

look for its total least square (TLS) solution that can be found by performing singular

value decomposition (SVD) on T̃ with L = K. The eigenvector corresponding to the

smallest eigenvalue is the desired estimation of h. As introduced in the previous chapter,

before looking for the TLS solution the moments {τm}2Mm=0 can be first denoised by Cadzow

denoising algorithm. It denoises T̃ by looking for the closest rank deficient matrix which

is Toeplitz. First, we consider the Toeplitz matrix T̃ with L = M for effective denoising

and perform a SVD on T̃: T̃ = UΣVH. Then we truncate it to rank-K approximation

T′ by forcing to zero the M + 1−K smallest singular values. T′ is no longer Toeplitz but

its best Toeplitz approximation can be obtained by averaging the diagonals of T′. A few

of these iterations lead to a denoised set of moments.

The above method works under the assumption that T is well approximated by the K

signal-subspace singular vectors of T̃ and that discarding information in the orthogonal-

subspace of T̃ removes certain amount of noise. However, when the noise on τm is very

high we may experience a subspace swap. Specifically, at high noise level T̃ is better

approximated by some orthogonal-subspace singular vectors rather than by the weakest

signal-subspace singular vector. In this case, the truncation of the M + 1 − K smallest

singular values of T̃ in the first iteration of Cadzow will lead to an unrecoverable removal

of information which belongs to the signal-subspace. Consequently we are not able to

retrieve the locations by TLS and it is widely recognised that this is when performance
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breakdown is observed. Moreover, we conjecture that as long as the subspace swap does

not happen in the first iteration, the following iterations would separate the subspaces

correctly. Hence the analysis on the SVD of the original noisy T̃ is sufficient for predicting

when subspace swap event happens and is given in the next section.

3.2 Necessary condition for subspace swap event

In this section we are going to work out at which noise level the orthogonal-subspace

singular vectors substitute the position of the weakest signal-space singular vector in SVD

of the noisy data matrix T̃ with L = M .

We first look at the noiseless T ∈ C(M+1)×(M+1) and we rewrite it as follows:

T = (M + 1)G


a1

. . .

aK

GH, (3.7)

where

G =
1√

M + 1

[
g(t0) . . . g(tK−1)

]
(3.8)

and

g(t) =
[
eβt/T e2βt/T . . . e(M+1)βt/T

]>
. (3.9)

G is Vandermonde and has full rank K since the locations tk are distinct, hence in

the noiselesss case T has rank K. SVD of T can be written as T = UΣsV
H, where

Σs = diag(s1, s2, . . . , sK , 0, . . . , 0︸ ︷︷ ︸
M+1−K

), s1 ≥ s2 ≥ . . . ≥ sK > 0. The unitary matrix U

has size (M + 1) × (M + 1) and can be partitioned into Us = (u1,u2, . . . ,uK) and

U0 = (uK+1,uK+2, . . . ,uM+1). The matrix Us generates the signal-subspace and the

orthogonal-subspace covered by U0 completes the space. The subspace U0 is used to

identify the locations of Diracs as discussed in the previous section.

When there is noise, the new moments τ̃m are noisy as described in (3.6), which can also

be written in matrix form as follows:

τ̃ =Cy + Cε

=τ + b,
(3.10)

where C is composed of entries cm,n = cm,0 e(m−M)βn at position (m,n). Note that the

statistics of the noise b depends directly on the distribution of the sample noise ε and on

the coefficients C. A stable matrix C is therefore desired. As discussed in Sec. 2.3.1, the
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most stable C has condition number one and this can be achieved by choosing β = j 2π
N and

the kernel is an eMOMS whose corresponding |cm,0| = 1/
√
N for m = 0, 1, . . . , 2M . Since

by construction CHC = I we have that the covariance matrix of the moment noise equals

that of the sample noise: Rb = Rε = σ2
yI. Note that for β other than j 2π

N , Rb is not

exactly diagonal, but we have experimental evidence that the derivation in the following

part still approximately applies.

The matrix T becomes T̃ = T + N, where N ∈ C(M+1)×(M+1) is a Toeplitz matrix built

with {bm}2Mm=0 in (3.6). T̃ has full rank and will not lie entirely within the signal-subspace.

When noise is strong, T̃ will lie far from the signal-subspace and at certain point the

subspace swap happens.

Now we describe a worst subspace swap scenario and show that this gives us the necessary

condition for a swap event to happen. When this condition is not satisfied, absence of

subspace-swap is guaranteed and the standard deviation of the retrieved locations can be

predicted by Cramér-Rao bound.

We denote the singular values of N with λ1 ≥ λ2 ≥ . . . ≥ λM+1. The worst situation is

when the strongest noise component with strength λ1 is aligned with one of the elements in

U0, and the second strongest noise component with strength λ2 is aligned with the weakest

signal component with strength sK and sums destructively with it making it become even

weaker (sK − λ2). Hence subspace swap happens when

λ1 > sK − λ2. (3.11)

This is a necessary condition since any other swap event requires stronger conditions on

the amplitude of noise singular values.

It is known that the maximum singular value of a n×n random symmetric Toeplitz matrix

whose entries come from a sequence of i.i.d random Gaussian variables with variance σ2

is smaller than
√

2σ2n lnn [53]. Given this, we can relate the maximum singular value of

N to the order 2M of the sampling kernel and the noise level as follows:

λ1 <
√

2σ2
y(M + 1) ln(M + 1). (3.12)

Now the least favourable scenario is when both λ1 and λ2 equals the maximum: λ2 = λ1 =√
2σ2

y(M + 1) ln(M + 1) which yields the following necessary condition for a subspace

swap:

λ1 > sK − λ2 ⇐⇒ λ1 > sK/2

⇐⇒
√

2σ2
y(M + 1) ln(M + 1) > sK/2.

(3.13)
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This can be further derived to:

σ2
y >

s2
K

8(M + 1) ln(M + 1)
. (3.14)

K = 1 :

When we have 1 Dirac with amplitude a, then sK = s1 = |a|(M + 1). We define PSNR=

10 log10
a2

σ2
y
. Hence we can relate breakdown PSNR to the order P + 1 = 2M + 1 of the

kernel as follows:

PSNR < 10 log10

8 ln(M + 1)

(M + 1)
. (3.15)

The condition in (3.15) is shown in Fig. 3.1 by solid curve. Note that (3.15) is a necessary

condition for breakdown, hence breakdown may happen for settings in the area below the

blue curve and it is guaranteed no-breakdown will happen for the area above the curve.
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Figure 3.1: Necessary condition for subspace swap in the case of single Dirac for different number
of samples N .

K = 2 :

When there are 2 Diracs and we assume both Diracs are with same amplitude a, (3.7)

can be written as T = a(M + 1)GGH. Its singular values s1 and s2, i.e. the non-zero

eigenvalues of T, can be derived easily by computing the eigenvalues of the two-by-two

matrix a(M + 1)GHG. The expressions are as follows:

s1 = |a| (M + 1 + | 〈g(t0),g(t1)〉 |)
and s2 = |a| (M + 1− | 〈g(t0),g(t1)〉 |) .

(3.16)

Further manipulations gives

s2 = |a| (M + 1− | 〈g(t0),g(t1)〉 |)

= |a|
(
M + 1−

∣∣∣∣∣sin(β2 (M + 1)∆t/T )

sin(β2 ∆t/T )

∣∣∣∣∣
)
,

(3.17)
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where ∆t = t1 − t0. By substituting (3.17) to (3.14) and defining PSNR with 10 log10
a2

σ2
y
,

we can relate the breakdown PSNR to the sampling period T , the distance ∆t between

the two Diracs, the frequency interval β and the order of the kernel P + 1 = 2M + 1:

PSNR < 10 log10

8(M + 1) ln(M + 1)(
M + 1−

∣∣∣∣ sin(β
2

(M+1)∆t/T )

sin(β
2

∆t/T )

∣∣∣∣)2 . (3.18)

The threshold PSNR in (3.18) for different number of samples N is illustrated by blue

curves in Fig. 3.2, where we use the fact that we set T = 1/N .

0 0.05 0.1 0.15 0.2
0

10

20

30

40

distance between two Diracs ∆ t

P
S

N
R

 (
d
B

)

Estimated breakdown PSNR for different N and ∆ t

 

 
N=21
N=31
N=41

Figure 3.2: Necessary condition for subspace swap in the case of 2 Diracs for different number
of samples N .

We can observe that when the relative distance ∆t/T increases, the level of noise we can

handle increases too. Once the PSNR has reached a minimum, it then oscillates near

the minimum PSNR. Interestingly, when we use our favourable setting P + 1 = N (i.e

2M + 1 = N), then the first local minimum is exactly at ∆t = 2/(N + 1). This implies

that if we guarantee N + 1 to be larger than 2/∆t we can achieve in general the most

robust estimation result in the sense of low breakdown PSNR.

When there are more than 2 Diracs, the breakdown point given by subspace swap condition

for the case of K = 2 still approximately applies when picking the two closest Diracs.

3.3 Simulations

In this section, we verify our proposed no-breakdown condition by comparing it to the

empirical breakdown points obtained by the method as in Fig. 2.6. We show that the

estimation algorithm1 breaks down at a PSNR just below our predicted no-breakdown

PSNR, confirming the reliability of our derivation. For simplicity, we only show the

1Note that Cadzow iterative algorithm and matrix pencil lead to very similar performances.
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verification result when we use the most robust sampling kernel as mentioned in the

previous section, i.e. a kernel of order P + 1 (i.e. 2M + 1) which reproduces P + 1 = N

exponentials {em′βt/T }Mm′=−M with β = j 2π
N and its exponential reproducing coefficient

|cm,0| = 1/
√
N , m = 0, 1, . . . , 2M . We emphasize that for other settings our calculated

necessary condition for subspace swap (3.15) and (3.18) still accurately anticipate the

breakdown event.

3.3.1 K = 1

The guaranteed no-breakdown PSNR (3.15) for different kernel order P + 1 = 2M + 1 is

shown by the blue curve in Fig. 3.3. The measured breakpoints shown by red markers in

general agree with our proposed condition.
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Figure 3.3: Subspace swap condition compared to the empirical breakdown points for K = 1
with the settings N = P + 1, T = 1/N and β = j2π/N .

3.3.2 K = 2

The guaranteed no-breakdown PSNR (3.18) for different number of samples N and Diracs

interval ∆t is shown by the blue curves in Fig. 3.4. We can see that the observed breakdown

points, which are shown by red markers, are well predicted by our proposed condition.
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Figure 3.4: Subspace swap condition compared to the empirical breakdown points for K = 2
with the settings N = P + 1, T = 1/N and β = j2π/N .
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3.3.3 K > 2

In this simulation, we show that when there are more than K = 2 Diracs, the breakpoint

given by subspace swap condition for K = 2 still approximately applies. For example,

from Fig. 3.4 we see that the smallest possible breakdown PSNR for K = 2 and N = 41

is roughly 0dB and is achieved when ∆t ≥ 2/(N + 1). We now demonstrate that the

guideline is reliable even for K > 2. We show in Fig. 3.5 that we accurately reconstruct 17

Diracs from N = 41 samples in noise of PSNR = 0dB, where the distance between every

two Diracs is greater than 2/(N + 1).
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Figure 3.5: Reconstruction of 17 Diracs with minimum Dirac separation ∆t ≥ 2/(N + 1) from
41 samples with PSNR = 0dB.

3.4 Summary

In this chapter, we have studied when FRI estimation algorithms break down in the

presence of noise using the subspace swap criterion. We have then derived the breakdown

region and related it to the sampling rate, the minimum distance between two Diracs

and PSNR. The reliability of our predicted breakdown region has then been confirmed by

simulation results.





Chapter 4

Universal sampling of signals with

finite rate of innovation

It has been shown that specific classes of non-bandlimited signals known as signals with

finite rate of innovation (FRI) can be perfectly reconstructed by using appropriate sam-

pling kernels and reconstruction schemes. This exact FRI framework was later extended

to an approximate FRI framework that works with any kernel.

Reconstruction is achieved by recovering all the parameters in the parametric model of

the incoming signal, hence it is essential to know the model order (the rate of innova-

tion) to ensure recovery. In view of this, we devise an algorithm for identifying the rate

of innovation in order to extend the current sampling scheme to a universal one which

enables sampling signals with arbitrary FRI using any acquisition device. Our proposed

algorithm can effectively identify the rate of innovation prior to the signal reconstruction

using arbitrary kernels and in different noise levels where we show that it achieves perfect

identification result in noiseless scenario and achieves 95% correct identification rate even

at SNRs as low as 5dB. This identification rate is achieved under the assumption that

the algorithm is operating under the guaranteed performance conditions discussed in the

previous chapter. This means that a minimum distance condition on the closest Diracs

linked to the SNR must be imposed.

Recall that in the exact reproduction framework introduced in Section 2.2, perfect recon-

struction of certain classes of FRI signals requires the acquisition device ϕ(t) to behave

like an exponential reproducing function and its order P + 1 must be equal or larger than

the rate of innovation of the signal with FRI. Specifically, in the example of recovering a

stream of K Diracs:

x(t) =

K∑
k=1

akδ(t− tk), (4.1)

61
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from its samples yn = 〈x(t), ϕ(t/T − n)〉 , n = 1, . . . , N , a condition on the order of the

kernel P + 1 ≥ 2K must be satisfied. This means that an acquisition device may be no

longer usable and perfect reconstruction is no longer possible when the rate of innovation

of the incoming signal exceeds 2K, and this even if we increase the sampling rate. In con-

trast, the approximate framework introduced in Section 2.4 allows us to use any arbitrary

sampling kernel and N samples can give us N approximate exponentials for reconstruc-

tion. This property directly relates the highest rate of innovation it can be recovered to

the sampling rate rather than the order of the kernel. Hence any acquisition device is

always usable for signals with arbitrary rate of innovation below the sampling rate.

4.1 Identification of the rate of innovation

The approximate FRI framework, which allows us to sample FRI signals using any sam-

pling kernel, together with the algorithm we are going to propose for identifying the rate

of innovation, enable us to extend the current sampling scheme to a universal one which

can recover signals with arbitrarily unknown finite rate of innovation using any sampling

kernel.

The general idea behind our algorithm is as follows. Given cN (c > 1) samples of the

input stream of Diracs yn, we are able to obtain cN approximated Fourier coefficients

X(αm),m = 1, . . . , cN . From these coefficients we estimate at most N/2 Diracs. Note

that theoretically N samples is enough for recovering N/2 Diracs, but in reality we require

a slightly higher number of samples per unit time since the Fourier coefficients are all

approximated.

We first assume that the number of the Diracs is p = 1 and we retrieve the location and

amplitude of the Dirac in the parametric model
∑p

k=1 akδ(t−tk). Next we resynthesize the

samples to obtain ỹn(p) and compute εp = ‖ỹn(p)−yn‖ the error between the resynthesized

samples and yn. Then we repeat this procedure but with assumption that p is 2, 3 up to

N/2.

We expect that the error on the samples will first decrease gradually when the number

of Diracs p we assumed approaches the true number K and will eventually reach nearly

zero when p is exactly the number of the Diracs. When we further increase p, the errors

will either rise slightly or further decrease with a much slower rate. In either case, the

turning point can be recognised from the second derivative of the error. Once the number

of Diracs K is known, the input signal x(t) can be recovered using the parametric model

with correct order.

We summarize the algorithm as follows:
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Algorithm 1: Reconstruction of a stream of unknown number of Diracs

Data: cN samples yn = 〈x(t), ϕ(t− n)〉
Result: Estimation of the number of Diracs K and corresponding reconstruction of the

Diracs x̂(t)
1 Obtain cN Fourier coefficients X(αm) from {yn}cNn=1;
2 for Assumed number of Diracs p = 1 . . . N/2 do

3 Estimate location(s) t̂k and amplitude(s) âk of p Diracs from yn (with Cadzow
method or matrix pencil);

4 Resynthesize the samples ỹn(p) =
〈∑p

k=1 âkδ(t− t̂k), ϕ(t− n)
〉
;

5 Compute the error εp = ‖ỹn(p)− yn‖;
6 end
7 Compute second derivative ε′′p of the error function interpolated from {εp}Pp=1;

8 Choose for K the number of Diracs p corresponding to the largest ε′′p. Then x̂(t) is the

reconstructed stream of Diracs corresponding to the model
∑p

k=1 âkδ(t− t̂k).

4.1.1 Discussions

In this section, we use numerical examples to show that the second derivative is indeed

a good indicator for identifying the number of Diracs. We also discuss the limitations of

the current algorithm due to the instability of the second derivative method in the noisy

scenario and to the fact that the guaranteed recovery conditions of the previous section

may not be satisfied.

Universal sampling in the absence of noise

Assume we have a stream of K Diracs with unknown K and we take cN samples with

a B-spline of order 5 following the scheme in Fig. 2.1. In the exact framework, this

specific acquisition device restricts the number of Diracs we can reconstruct to 3. Thanks

to the approximate Strang-Fix framework, with a B-spline of order 5 we can build cN

approximated Fourier coefficients which allows us to reconstruct 1 up to N/2 Diracs. In

Fig. 4.1(a,b) we try to identify the number K = 31 of Diracs given the cN = 99 samples.

In Fig. 4.1(b), we can clearly see a sudden drop in the error function εp and which position

exactly corresponds to the the correct number of Diracs, therefore second derivative at

that point is the largest and the number of Diracs can be easily identified. Then all the 31

Diracs are almost perfectly reconstructed in the absence of noise as shown in Fig. 4.1(a).

In Fig. 4.1(c,d), we also highlight the universality of the sampling scheme since even if

the number of Diracs of the incoming signal changes from K = 31 to K = 21, reliable

reconstruction can still be achieved without the need to change the set-up.
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Figure 4.1: Universal sampling of a stream of unknown number of Diracs using B-spline kernel
of order 5 in the absence of noise. (b)(d) The number of Diracs is identified from second derivative
of the error function. (a)(c) All the Diracs are retrieved almost perfectly.

Universal sampling in the presence of noise

In the following we consider the noisy scenario. Here the noise is added to the samples yn

and is white Gaussian noise of variance σ2, chosen according to the target signal-to-noise

ratio defined as SNR(dB)= 10 log ‖y‖
2

Nσ2 .

Not that our proposed algorithm is based on the canonical FRI reconstruction algorithm,

which may break down when the necessary condition for subspace swap is satisfied. As

a result the performance of our proposed method would also be limited by the subspace

swap condition and would not achieve flawless result as shown in noiseless scenario.

In the following, we first briefly discuss the limitation of the FRI location reconstruction
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algorithm and then we demonstrate its effects on our proposed universal reconstruction

algorithm. As presented in Sec. 2.3.3, we can assess the performance of the location re-

construction algorithm by comparing it to the theoretical best performance provided by

the Cramér-Rao bound. In Fig. 4.2 we show the estimated locations and the Cramér-Rao

bounds for the situation where there are two Diracs with same amplitude sampled at the

rate 1/T = 31 in noise levels of SNR=10dB and 20dB. It shows that the location recon-

struction algorithm in general achieves the Cramér-Rao bounds for distances d beyond

some specific critical values.
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Figure 4.2: Scatterplot of locations retrieved using standard FRI reconstruction algorithm (Cad-
zow+Prony) compared to 3 times the standard deviation given by Cramér-Rao lower bounds. (a)
SNR=10dB (b) SNR=20dB

For distances d smaller than the critical values, these two Diracs are indistinguishable.

More accurately, as we analysed in Chapter 3, the inability of FRI algorithms to achieve

the Cramér-Rao bounds for d smaller than specific value can be explained by subspace

swap, i.e. the noise is so high that the signal-subspace singular vector with smallest

amplitude of A in (2.19) for reconstruction is replaced by some noise-subspace singular

vectors. In this situation, the FRI reconstruction algorithm reconstructs them as one tall

Dirac situated in between the true Diracs and one Dirac far away from the true Diracs with

negligible amplitude. Consequently, our algorithm for identifying the number of Diracs,

which is based on the FRI reconstruction algorithm, will neglect the one with negligible

amplitude and identify only one Dirac.

The results in Fig. 4.3 confirm that the performance of our identification algorithm is

affected when the FRI location reconstruction algorithm breaks down.



66 Chapter 4. Universal sampling of signals with finite rate of innovation

−0.5 0 0.5
−1

0
1
2
3

Input Signal x(t): Number of Diracs K = 8

−0.5 0 0.5
−1

0
1
2
31 samples, SNR = 20dB, B−spline of 5th order

−0.5 0 0.5
−1

0
1
2
3

8 Diracs are reconstructed from 31 approximated moments

(a) 8 Diracs are reconstructed when SNR=20dB.

2 4 6 8 10 12
0
1
2
3

Error in the resynthesized samples for different p: ε
p

2 4 6 8 10 12
0
1
2
3

interpolated  ε
p

2 4 6 8 10 12
−0.2

0
0.2
0.4
0.6

Second Derivative of the interpolated ε
p

 

 

True number of Diracs

Estimated number of Diracs

(b) Estimate the number of Diracs

−0.5 0 0.5
−1

0
1
2
3

Input Signal x(t): Number of Diracs K = 8

−0.5 0 0.5
−1

0
1
2
31 samples, SNR = 10dB, B−spline of 5th order

−0.5 0 0.5
−1

0
1
2
3

7 Diracs are reconstructed from 31 approximated moments

(c) 7 Diracs are reconstructed when SNR=10dB.

2 4 6 8 10 12
0
1
2
3

Error in the resynthesized samples for different p: ε
p

2 4 6 8 10 12
0
1
2
3

interpolated  ε
p

2 4 6 8 10 12
−0.20

0.20.40.60.8

Second Derivative of the interpolated ε
p

 

 

True number of Diracs

Estimated number of Diracs

(d) Estimate the number of Diracs

Figure 4.3: Universal sampling of a stream of unknown number of Diracs using B-spline kernel
of order 5 in the presence of noise. Two close Diracs in the 8 Diracs are recognised as one Dirac in
when SNR=10dB and the others are accurately retrieved.

In this example, there are 8 Diracs sampled with 5th order B-spline at rate 1/T = 31,

in which two Diracs are close to each other and the others are well separated. We notice

that when SNR=20dB the number of Diracs is identified correctly and all the 8 Diracs are

accurately reconstructed. When SNR=10dB, however, the algorithm recognises K = 7

in total since the two close Diracs, whose distance, 0.046, is smaller than the guaranteed

no-breakdown distance 0.05 (see Fig. 4.2a) are recognised as one Dirac. In such situa-

tions, that is, when subspace swap occurs, the misidentification of the number of Diracs

is inevitable and is not due to the proposed identification algorithm. Nevertheless, we

highlight that this can be easily solved by increasing the sampling rate.

We have just discussed the misidentification of number of Diracs due to subspace swap

event. Another reason for misidentification in the presence of noise is that the error εp
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has more variations, and as a result the second derivative method is less effective in noisy

scenario. More specifically, the second derivative method is able to correctly identify the

number of Diracs when the rate of decay of the error εp at the correct number K is the

highest compared to that of other possible values of K. However this is not always true

when the noise level is moderate to high. For example, there are situations where the

rate of decay of the error is slow and identification based only on second derivative is then

affected by noise.

4.2 Robust identification algorithm

The previous section has shown the use of second derivatives to identify the number of

Diracs, and this method resulted in the publication [18]. Here we propose a more robust

and faster scoring system to determine the number of Diracs given the noisy samples.

This new algorithm is different from Algorithm 1 in the following ways. First, while the

previous version of algorithm tests all possible number of Diracs, this new version would

immediately stop when the resynthesis error increased, i.e. when εp−εp−1 > 0 is detected.

We denote the stopping number by Kstop. Moreover, instead of deciding the number of

Diracs by looking for the highest second derivative of resynthesis error εp, we propose a

scoring system that gives scores to all the numbers p = 1, . . . ,Kstop based on resynthesis

error εp on samples, first derivative of εp and second derivative of εp. More specifically,

the score Sp for p = 1, . . . ,Kstop is as follows:

Sp = ε′′p − 2|ε′p| − 2εp − (ε1 − ε2)p. (4.2)

The term ε′′ in Sp rewards p which is a sudden turning point in εp, and −2|ε′p| penalizes p

where the speed of decreasing in the resynthesis error in comparatively high. −εp penalizes

p with large resynthesis error. Finally, −(εp+(ε1−ε2)p) penalizes large p that cannot reach

the expected decreasing rate of the resynthesis error. The estimated number of Diracs with

highest score will be our chosen number of Diracs. Note that this scoring system decides

the number of Diracs by choosing the p with highest possibility among all instead of an

absolute numerical criterion, it works regardless of the number of Diracs, signal to noise

ratio, amplitude of Diracs, etc. We summarize the algorithm in Algorithm 2.

4.2.1 Simulations

In this part, we want to test the performance of the proposed algorithm. We want to

show that our algorithm can identify the number of Diracs when the sampling setting is
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Algorithm 2: Reconstruction of a stream of unknown number of Diracs

Data: cN samples yn = 〈x(t), ϕ(t− n)〉
Result: Estimation of the number of Diracs K and corresponding reconstruction of the

stream of Diracs x̂(t)
1 Obtain cN Fourier coefficients X(αm) from {yn}cNn=1;
2 p = 0;
3 while assumed number of Diracs p < N/2 and errDecreaseDetector do
4 p = p+ 1;

5 Estimate location(s) t̂k and amplitude(s) âk of p Diracs from yn (with Cadzow
method or matrix pencil);

6 Resynthesize the samples ỹn(p) =
〈∑p

k=1 âkδ(t− t̂k), ϕ(t− n)
〉
;

7 Compute the error εp = ‖ỹn(p)− yn‖;
8 if p > 1 then
9 errDecreaseDetector = (εp − εp−1) ≤ 0;

10 Kstop = p;

11 end

12 end
13 Compute the scores Sp = ε′′p − 2|ε′p| − 2εp − (ε1 − ε2)p for p = 1, . . . ,Kstop;

14 Choose for K the number of Diracs p corresponding to the largest Sp. Then x̂(t) is the

reconstructed stream of Diracs corresponding to the model
∑p

k=1 âkδ(t− t̂k).

in the no-breakdown region, and when it is not the algorithm is able to choose the most

reasonable number of Diracs.

In the example of Fig. 4.4, there are 8 Diracs sampled at 1/T = 31, in which two close-by

Diracs have a distance satisfying the 20dB no-breakdown condition but not the 10dB no-

breakdown condition. We notice that when SNR=20dB the number of Diracs is identified

correctly and all the 8 Diracs are accurately reconstructed. When SNR=10dB subspace

swap happens, FRI reconstruction methods are not able to resolve the two Diracs no matter

what the number of Diracs we assumes, but K = 7 results in a better reconstruction.

Our proposed algorithm makes the right selection of the number of Diracs when there is

subspace swap event.

Now we do a more systematic test where we generate a stream of 4 Diracs with random

locations and ramdom amplitudes between 1 to 1.5, satisfying the minimum distance

required by the no-breakdown condition. Note that the results in Chapter 3 are a bit

optimistic when compared to the current setting since the kernel in Chapter 3 reproduces

exponential exactly whereas the kernels in this chapter achieves approximate reproduction

only. In this setting, we estimate the breakdown distance empirically, for example, by

looking at breakdown distance d in Fig. 4.2.

We use our method to reconstruct the unknown number of Diracs from 51 samples taken

with the kernel of 5th order B-spline. There are 10000 realisations for each noise level.
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Figure 4.4: Universal sampling of a stream of unknown number of Diracs using 5th order B-spline
in the presence of noise.

The percentage of correct estimations for different level of noise is shown in Table 4.1. The

result is compared with our previous version of identification algorithm, i.e. Algorithm 1,

which is slower and only based on the second derivative of resynthesis errors.

Table 4.1: The percentage of correct identification of the number (4) of Diracs from 51 samples
in different noise level. 10000 realisations for each noise level.

noise level (SNR) no noise 20dB 15dB 10dB 5dB

identif. % of Alg. 1 100% 99.92% 97.38% 89.32% 63.55%

identif. % of Alg. 2 100% 100% 100% 99.99% 95.72%

Both versions of our proposed algorithms achieve flawless identification in the absence of

noise. In the presence of noise, the old version is still able to identify the model order in

medium to high SNRs and the updated one is more robust since it works well in all levels

of noise. We can observe a decreasing identification rate when the noise level increases.

This is not surprising because for high noise levels, the turning point of the resynthesis

error is more shallow, and as a result the scores for different points are similar and this

situation leads to misidentification.

Note that as long as the model order is identified correctly, the FRI reconstruction algo-
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rithm will then achieve the best possible result indicated by the Cramér-Rao bounds. So

we can draw the conclusion that in the presence of noise, our proposed algorithm is able to

robustly recover streams of any unknown number of Diracs and its performance in general

achieves the Cramér-Rao bounds, with only very low failure rate.

4.3 Summary

In this chapter we have shown how to sample FRI signals with arbitrary kernels and

that a novel algorithm can identify the model order accurately prior to reconstruction.

Simulation results have confirmed the effectiveness of the proposed method.



Chapter 5

Simultaneous estimation of sparse

linear systems and sparse signals

using FRI principles

In Sec. 2.2.3 we have shown that with FRI sampling theory, we are able to obtain exact

Fourier coefficients of specific classes of FRI signals and that by using this information we

are able to achieve perfect reconstruction at low sampling rate. There are classes of linear

systems that can also be fully specified by a small number of parameters (“parametrically

sparse” system) and are fully characterized by their Fourier samples. We expect that

these systems can be identified from samples at a low rate instead of the Nyquist sampling

rate as in current system identification scheme. Therefore in this chapter, we explore the

possibility of extending the framework for sampling FRI signals to achieve perfect system

identification at a low rate.

5.1 Introduction

A classical set-up for identifying systems that are fully characterized by finite number of

parameters is shown in Fig. 5.1. In the first channel, the discrete Fourier transform of an

excitation signal x(t) is obtained. In the second channel, x(t) is first fed to an unknown

system with impulse response ψ(t) then its discrete Fourier transform is obtained. The

aim of system identification is to determine ψ(t) from the two set of Fourier data at specific

frequencies.

This chapter is a joint work with Hojjat Akhondi Asl and Thierry Blu.

71
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x(t)

ψ(t)
ysysn

Antialias
T ysign

T

FFT

FFT

filter

Antialias
filter

Y (jωn)

X(jωn)

y(t)

Figure 5.1: A typical system identification set-up. Adapted from [1].

Since the input signals x(t) and the convolution of x(t) and ψ(t) are normally non-

bandlimited, the exact Fourier transform of these signals can never be computed and

a faithful approximation is achieved only when anti-aliasing filters are used and the re-

quirement of Nyquist sampling rate is satisfied [1, 54]. So perfect identification of an

unknown system is in general not possible.

However, by replacing the anti-aliasing filter in Fig. 5.1 with exponential reproducing

kernels, we show that when both the input signals and the system are of compact support it

is possible to retrieve the exact continuous Fourier transform of ψ(t) at specific frequencies

and hence to perfectly reconstruct the unknown system.

The fact that our approach is universal in that it uses the classical set-up with anti-aliasing

filter replaced with an exponential reproducing kernel but can be used with any finite x(t)

at low sampling rate makes it valuable when considering real-life applications, for example,

a system identification problem where the users prefer to apply random excitation signal for

psychological or technological reasons [55], or the situation where the maximum sampling

rate (or the sampling duration) is restricted by various environmental conditions [56].

We then focus our attention on linear circuits and while their impulse responses have

infinite support, our set-up is still able to yield high quality discrete spectral data and

rather good identification results. When the samples are corrupted with noise, we propose

a modified Cadzow iterative algorithm which is proved to be effective for denoising the set

of spectral data which significantly improve the identification accuracy.

We finally show (Theorem 5.2, Section 5.4) that even when we have no access to the

samples of the input signal and only have ysys
n we can still perfectly reconstruct the input

signal and the unknown system ψ(t) if the input signal is a certain type of FRI signal and

the response system is of compact support. We also propose a recursive algorithm that

reliably identify the unknown input signal and the system in the presence of noise.

We note that system and channel estimation from low-rate samples has already been con-

sidered in [57–60], but the systems considered there are in discrete-time and are different

from the continuous-time systems studied here.

The outline of this chapter is as follows. In Section 5.2 we revisit the theory of finite rate
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of innovation that will assist us developing methods for system identification in the rest of

the content. In Section 5.3, we present our sampling set-up for system identification and

discuss the method to obtain the Fourier data for system identification in the frequency

domain. We also propose the modified Cadzow iterative algorithm to handle additive

noise introduced by the acquisition device. In Section 5.4, we show perfect identification

of both the unknown input signal and the system is possible and then propose a recursive

algorithm to simultaneously estimate them in the presence of noise. In Section 5.5, we

show simulation results on the nearly perfect reconstruction of an unknown system when

there is no noise in the Fourier data, and also on the data denoising performance using the

modified Cadzow iterative algorithm. Moreover, we show the possibility of simultaneous

estimation of the unknown signal and system. Finally we conclude in Section 5.6.

5.2 Overview of FRI theory

Given that a system is fully specified by finite free parameters (“parametrically sparse”

system), the system identification problem is nothing but estimating the unknown free

parameters with the prior knowledge of the system’s model. The difficulties in identifying

unknown systems is similar to that in reconstruction FRI signals, which are raised from

the fact that real-life signals are usually non-bandlimited and the impossibility of getting

an ideal low pass filter. In fact, perfect reconstruction of FRI signals and perfect identifica-

tion of “parametrically sparse” system are impossible by classical sampling theory and in

practice they require extremely high sampling rate. However, FRI theory makes sampling

non-bandlimited signal at low rate possible. It also provides three ideas for handling the

system identification problem:

First, if we sample using the setup of Fig. 2.1 a compactly supported signal x(t) with an

exponential reproducing kernel ϕ(t) satisfying:∑
n∈Z

cm,nϕ(t/T − n) = eαmt/T with m = 0, 1, . . . ,M, (5.1)

then from its samples yn = 〈x(t), ϕ(t/T − n)〉 , n = 0, 1, . . . , N − 1 we would be able to

compute the e-moments of x(t) by:

τm =
∑
n∈Z

cm,nyn (5.2)

=

∫ ∞
−∞

x(t) eαmt/Tdt, m = 0, 1, . . . ,M. (5.3)

Note that when αm is purely imaginary and is given by αm = −jωT , the e-moments
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are exactly the continuous-time Fourier transform of x(t) at ω = ωm,m = 0, 1, . . . ,M ,

denoted by X(jωm).

Furthermore, we can perfectly reconstruct classes of FRI signals, for example, stream of

Diracs, piecewise polynomials, which are all fully characterized by its Fourier data, using

annihilating filter method which is described in detail in Section 2.2.3 and 2.2.3.

Lastly, it is possible to use Cadzow—a structured low-rank approximation method to de-

noise the Fourier data if the matrix composed by this data is rank deficient and structured

(e.g. Toeplitz) before being corrupted by noise. Recall that the Cadzow denoises the

noisy matrix by iteratively and alternatively finding the rank-deficient approximation and

closest Toeplitz approximation of the noisy matrix.

5.3 Identification of parametrically sparse systems

In this section, we show how the sampling scheme explained can be employed to estimate

an unknown system ψ(t). The sampling set-up for addressing the system identification

problem is shown in Fig. 5.2. This is similar to the classical set-up in Fig. 5.1 except the

anti-aliasing filter is replaced with an exponential reproducing kernel, which is of compact

support. The general idea of identifying ψ(t) is similar to reconstructing FRI signals: we

arbitrary x(t)

ψ(t) ϕ(t)
ysysn

ϕ(t)
T ysign

T

unknown system low sampling ratesampling kernel

compute

compute

e-moments

e-moments

X(jωn)

X(jωn)Ψ(jωn)

Figure 5.2: FRI sampling set-up for system identification. Here x(t) is the input signal, ψ(t) is
the unknown system and ϕ(t) is the exponential reproducing kernel.

first compute the Fourier coefficients of the unknown system ψ(t) using samples taken

with an exponential reproducing kernel ϕ(t), then we estimate the free parameters in

ψ(t)’s frequency-domain model. The details of how to obtain the Fourier coefficients of

ψ(t) are described as follows:

First, we compute the M + 1 exponential moments of the signal x(t) as described in (5.3)

yielding (refer to channel 1 in Fig. 5.2):

τ sig
m = X(jωm), m = 0, . . . ,M. (5.4)
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Next, we compute the M+1 exponential moments of x(t)∗ψ(t) as follows (refer to channel

2 in Fig. 5.2):

τ sys
m =

∑
n

cm,ny
sys
n

=

〈
x(t) ∗ ψ(t),

∑
n

cm,nϕ(t/T − n)

〉

=

∫ ∞
−∞

[x(t) ∗ ψ(t)] e−jωmtdt

= X(jωm) ·Ψ(jωm), m = 0, . . . ,M.

(5.5)

where we have used the fact that convolution in the time domain corresponds to multipli-

cation in Fourier domain.

Then Ψ(jωm) can be obtained by dividing τ sys
m by τ sig

m :

τ sys
m

τ sig
m

=
X(jωm) ·Ψ(jωm)

X(jωm)
(5.6)

= Ψ(jωm), m = 0, . . . ,M.

Here we assume X(jωm) 6= 0.

The above derivation leads to an important fact: we can retrieve some Fourier coefficients

Ψ(jω0),Ψ(jω1), . . . ,Ψ(jωM ) of the unknown system ψ(t) from the samples taken with an

exponential reproducing kernel of order M + 1, and this is independent of the choice of

input signal. Fig. 5.3 shows that we are able to retrieve accurate Fourier data of a system

with transfer function 10
s2+4s+10

by taking 50 samples at sampling rate of 4Hz through an

exponential reproducing kernel. Note that when both the input signal x(t) and the system

response x(t) ∗ ψ(t) are of compact support, the Fourier coefficients {X(jωm)}Mm=0 and

{X(jωm) ·Ψ(jωm)}Mm=0 we retrieve are exact.
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Figure 5.3: True Transfer Function: 10
s2+4s+10 and the Fourier data obtained by taking 50 samples

at sampling rate f = 4 Hz through an exponential reproducing kernel.
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In what follows we show that this partial knowledge of the spectrum together with the

Fourier transform function model of the unknown system is in some cases sufficient to

solve for the unknown parameters in the model. In other words, a specific system ψ(t) will

be completely determined by Ψ(jω0),Ψ(jω1), . . . ,Ψ(jωM ), where the frequency samples

need not to be uniform.

5.3.1 Exact identification of E-spline

We have shown we are able to obtain Fourier coefficients of a system ψ(t) with our sampling

set-up, any ψ(t) that is fully characterized by its Fourier coefficients can be reconstructed.

For example, streams of Diracs, E-splines, etc. In particular when ψ(t) is of compact

support, we are able to obtain its exact Fourier coefficients and it is possible to establish a

one-to-one mapping between ysys
n and ψ(t). Now we demonstrate how to perfectly identify

an E-spline system ψ(t).

Assume ψ(t) is an E-spline of known order P . Its Fourier transform is:

Bγ(jω) =
P−1∏
p=0

1− eγp−jω

jω − γp
, (5.7)

where γ = (γ0, γ1, . . . , γP−1) are the unknown parameters to be retrieved. Based on the

observation that dividing τ sys
m by τ sig

m yields the exact Fourier transform of ψ(t) at ωm, we

are able to estimate the unknown parameters γ using the following approach:

We have the relationship:

Ψ(jωm) =
P−1∏
p=0

1− eγp−jωm

jωm − γp
, m = 0, 1, . . . ,M. (5.8)

By rearranging the equation we get:

Ψ(jωm)

P−1∏
p=0

(jωm − γp)︸ ︷︷ ︸
polynomial p(jωm)

=

P−1∏
p=0

(
1− eγp−jωm

)
︸ ︷︷ ︸
polynomial q(e−jωm )

(5.9)

Then by expanding the two products of sums we have the following:

Ψ(jωm)

P∑
p=0

ap(jωm)p =

P∑
p=0

bp(e
−jωm)p. (5.10)

TheM+1 equations above form a linear system with unknown parameters σ = (a0, . . . , aP ,
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b0, b1, . . . , bP ): 
Ψ(jω0) 0 . . . 0

0 Ψ(jω1) . . . 0
...

...
. . .

...

0 0 . . . Ψ(jωM )




1 jω0 . . . (jω0)P

1 jω1 . . . (jω1)P

...
...

...
...

1 jωM . . . (jωM )P



a0

a1

...

aP



=


1 e−jω0 . . . (e−jω0)P

1 e−jω1 . . . (e−jω1)P

...
...

...
...

1 e−jωM . . . (e−jωM )P



b0

b1
...

bP

 .

(5.11)

Since aP = 1 and b0 = 1, all the unknown coefficients of the polynomials p and q,

(a0, . . . , aP−1, b1, . . . , bP ), can be obtained by solving the equivalent system (5.12).


Ψ(jω0) Ψ(jω0)jω0 . . . Ψ(jω0)(jω0)P−1 − e−jω0 . . . −(e−jω0)P

Ψ(jω1) Ψ(jω1)jω1 . . . Ψ(jω1)(jω1)P−1 − e−jω1 . . . −(e−jω1)P

...
...

...
...

...
...

...

Ψ(jωM ) Ψ(jωM )jωM . . . Ψ(jωM )(jωM )P−1 − e−jωM . . . −(e−jωM )P


︸ ︷︷ ︸

size(M+1)×(2P )



a0

a1
...

aP−1

b1
...

bP



=


1 − Ψ(jω0)(jω0)P

1 − Ψ(jω1)(jω1)P

...

1 − Ψ(jωM )(jωM )P

 .

(5.12)

Since we need M + 1 ≥ 2P to solve this system, we require the sampling kernel to be

able to reproduce exponentials {eαmt/T }Mm=0 with M ≥ 2P − 1. Once all the polynomial

coefficients have been found, the unknown parameters {γp}Pp=0 can be retrieved by looking

for the roots of either polynomial. As a result, the E-spline system is fully determined.

The above steps show that it is possible to identify an unknown E-spline system of order

P from its samples. Hence we have the following result.

Theorem 5.1 Assume a sampling kernel ϕ(t) that can reproduce exponentials eαmt with

m = 0, 1, . . . ,M . An E-spline system ψ(t) of order P , is uniquely defined by the samples

ysign = 〈x(t), ϕ(t/T − n)〉 together with the samples ysysn = 〈x(t) ∗ ψ(t), ϕ(t/T − n)〉 if M ≥
2P − 1 and x(t) is of compact support.
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5.3.2 Identification of linear systems with rational Fourier transform

Linear systems with rational Fourier transform can be characterised through their trans-

fer functions in the frequency domain and are entirely determined by their Fourier coeffi-

cients. In the previous subsection, the possibility of perfect identification of an unknown

E-spline system is partly due to the fact that the E-spline function ψ(t) is of compact

support. When a system is of compact support, the weighted sum
∑

n cm,ny
sys
n yields

X(jωm) · Ψ(jωm) exactly. When the transient response of the system is infinite, we can

still reasonably extend the results to this case. Since we can only access the truncated

version of ψ(t) and of x(t)∗ψ(t) in the case of linear circuits,
∑

n cm,ny
sys
n is an approxima-

tion of X(jωm) · Ψ(jωm). Nevertheless, assuming enough samples are taken, that is, the

number of samples is large enough to retain most of the energy of the impulse response,

the error in this approximation is negligible. This is later verified by the simulation results

in Table 5.1.

Notice that a P -th order LTI system can be characterized by the transfer function:

Ψ(s) =

∑Q
q=0 bqs

q∑P
p=0 aps

p
. (5.13)

Taking s = jωm, we have M + 1 equations:

Ψ(jωm)

P∑
p=0

ap(jωm)p︸ ︷︷ ︸
polynomial p(jωm)

=

Q∑
q=0

bq(jωm)q︸ ︷︷ ︸
polynomial q(jωm)

, m = 0, 1, . . . ,M. (5.14)

Therefore, a linear system with unknowns θ = (a0, a1, . . . , aP , b0, b1, . . . , bQ) can be con-

structed:


Ψ(jω0) 0 . . . 0

0 Ψ(jω1) . . . 0
...

...
. . .

...

0 0 . . . Ψ(jωM )


︸ ︷︷ ︸

∆M+1


1 jω0 . . . (jω0)P

1 jω1 . . . (jω1)P

...
...

...
...

1 jωM . . . (jωM )P


︸ ︷︷ ︸

VP+1


a0

a1

...

aP


︸ ︷︷ ︸

p

=


1 jω0 . . . (jω0)Q

1 jω1 . . . (jω1)Q

...
...

...
...

1 jωM . . . (jωM )Q


︸ ︷︷ ︸

WQ+1


b0

b1
...

bQ


︸ ︷︷ ︸

q

.

(5.15)

From (5.15) we can directly solve for all the unknown parameters to determine the transfer

function in much the same way as in the case of identifying an E-spline system from (5.11).
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5.3.3 Identification of linear systems with rational Fourier transform in

noisy scenario

In practical situations, the measurements are corrupted with noise: ŷn = yn+εn and (5.15)

is not satisfied exactly. We therefore propose a modified Cadzow algorithm to denoise

the spectral data {Ψ(jωm)}Mm=0 of the unknown system before solving for the unknown

parameters in (5.13). The method we propose exploits the prior knowledge of the system

model (or the structure of the noiseless system matrix (5.15)) and yields denoised spectral

data that well matches the model. The algorithm we propose is in spirit similar to the

one in [61,62].

First of all, we intend to better condition the system of equations in (5.15). Since WQ+1 is

an (M+1)×(Q+1) matrix with M > Q, we can find an orthonormal set of M−Q vectors,

ordered in an (M +1)× (M −Q) orthonormal matrix UM−Q such that UH
M−QWQ+1 = 0.

Hence, by eliminating q, (5.15) is equivalent to

UH
M−Q∆M+1VP+1p = 0. (5.16)

We can further perform the QR decomposition of VP+1 = QP+1R where QP+1 is an

orthonormal (M + 1)× (P + 1) matrix leading to

UH
M−Q∆M+1QP+1︸ ︷︷ ︸

AP+1

Rp = 0. (5.17)

Here, both UM−Q and QP+1 are orthonormal matrices which provide the stability in the

computations that we were looking for. We note that for a transfer function with P poles,

AP+1 has size (M − Q) × (P + 1) and is a rank-deficient matrix with rank P . We call

AP+1 the annihilation matrix since AP+1Rp=0.

Moreover, for the same unknown system of order P , we notice that if we extend its

corresponding linear system of equations (5.14) to:

Ψ(jωm) · pext(jωm) = qext(jωm), for m = 1, 2, . . . ,M (5.18)

as if we were looking for an unknown system of higher-order Pext rather than P , the

solution is no longer unique. The possible solutions are pext(jω) = p(jω)r(jω) and

qext(jω) = q(jω)r(jω), where r is any arbitrary polynomial of degree equal to or smaller

than Pext−P . The solution space is thus of dimension Pext−P . Therefore, the extension

of the annihilation matrix in (5.17), denoted as APext+1, is still of rank P if no noise is

present. Note that the extension does not change the property of the annihilation matrix

and working on it can accelerate the denoising process.

When there is noise, however, the annihilation matrix A or its extension is full rank.
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Given the rank-deficiency property of the annihilation matrix A in the noiseless situation,

we intend to recover the structured low-rank matrix from the noisy A for the purpose

of denoising. However, the canonical Cadzow algorithm is not directly applicable in this

case since the matrix A is not Toeplitz. Therefore, we propose a modified Cadzow it-

erative algorithm which enables denoising A with the specific structure UH∆Q. More

specifically, from A we find a rank-deficient matrix that belongs to the matrix space

spanned by the matrices UHeke
>
kQ for k = 1, . . . ,M + 1, where ek is the canonical vec-

tor (0, . . . , 1, 0, . . . , 0)> with element 1 at index k. At each iteration of this algorithm,

a low-rank approximation of the annihilation matrix, A′, is obtained by keeping the P

largest singular values. Notice that the low-rank approximation is no longer consistent

with the annihilation matrix’s structure UH∆Q, we therefore look for a closest matrix in

the form of UH∆′Q to the rank-P approximation A′ (see Appendix A for more details).

This routine is iterated until the annihilation matrix A becomes effectively of rank-P .

The algorithm is summarized in the inset called ‘Iterative Denoising Algorithm’.

Algorithm 3: Iterative Denoising Algorithm

input : The moments Ψ(jωm)
output: The denoised moments Ψ̃(jωm)

1 repeat
2 From the moments Ψ(jωm), build the modified (M −Qext)× (Pext + 1) annihilation

matrix: APext+1 = UH
M−Qext

∆M+1QPext+1
.

3 Perform the SVD of APext+1: APext+1 = USVH and keep only the P largest singular

values in S→ S′, to build a rank-P matrix A′ = US′VH.
4 Find the closest matrix to A′ that belongs to the matrix space spanned by the

matrices UH
M−Qext

eke
>
kQPext+1 for k = 1, 2, . . . ,M + 1. This results in a “denoised”

annihilation matrix Ã and its corresponding moments Ψ̃(jωm) .

5 until S(P + 1, P + 1) < δ, where δ is a predefined threshold

The denoising performance is exemplified in Fig. 5.4.
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Figure 5.4: Modified Cadzow denoising on the spectral data of the system: Ψ(s) = 10
s2+4s+10 .

SNR=10dB.
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5.4 Simultaneous identification of input signals and systems

Consider now the scenario shown in Fig. 5.5 where both x(t) and ψ(t) need to be estimated.

x(t)

ψ(t) ϕ(t)
ysysn

T

unknown
unknown system sampling kernelstream of Diracs

. . .

low sampling rate

Figure 5.5: FRI sampling set-up for simultaneous estimation of the input signal and the linear
system. Here x(t) is an FRI signal, ϕ(t) is an exponential reproducing kernel and ψ(t) is a linear
system of order P .

The problem is more difficult since both the input signal and the system are unknown

and we only have access to the output samples ysys
n . We can show we are able to use

an extension of the annihilating filter for FRI signals (e.g. filter of (2.17) for streams of

Diracs) to identify both the input signal x(t) and the system ψ(t) perfectly when x(t) is an

FRI signal and the response of the linear system ψ(t) is of compact support. In particular,

if x(t) is a stream of K Diracs we can state the following:

Theorem 5.2 Assume a sampling kernel ϕ(t) that can reproduce exponentials e(α0+mλ)t

with m = 0, 1, . . . ,M . An E-spline system of order P , ψ(t), and an unknown stream of

input K Diracs, x(t), are uniquely defined by the samples ysysn = 〈x(t) ∗ ψ(t), ϕ(t/T − n)〉
if M ≥ 2K(P + 1).

See Appendix B.1 for the proof. Here the exact identification is possible because the

response of the system is of compact support and the Fourier coefficients we obtain are

exact. When the system is a linear system characterized by a transfer function, there

is still an annihilating filter method to solve for both the input signal and the system

(see Appendix B.2 for more details). Remember that its response has infinite support,

consequently the Fourier coefficients and the identification results are not exact. In such

practical situations when the Fourier coefficients obtained are not exact due to for example

the infinite response or noise, we propose a recursive version of the identification method

in Section 5.3 to reliably estimate x(t) and ψ(t) simultaneously.
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Reconstruct ϕ(t)
ysig
n

T
Calculate

x̂(t) X̂upd(jωm)

Estimate

Ψ̂(jωm)

Estimate

X̂(jωm)

Calculate

Ψ̂upd(jωm)

Estimate

θ̂

Ψ̂0(jωm) ← τ0
m

τ0m

Initialization

τ0m

Figure 5.6: Schematic diagram of the algorithm that recursively estimate the input signal and
the system.

The schematic diagram for the recursive algorithm is shown in Fig. 5.6. The moments

can be calculated by τ0
m =

∑
n cm,ny

sys
n , and τ0

m = X(jωm) · Ψ(jωm) as derived in (5.5).

We first let the initial guess of the spectral data Ψ(jωm) of the unknown system be the

moments τ0
m, and estimate the parameters in the transfer function from the spectral data

Ψ(jωm). Next, by using the estimated parameters we are able to re-synthesize Ψ(jωm).

Now we can calculate X(jωm) given the relationship τ0
m = X(jωm) · Ψ(jωm). Since we

know that the input signal x(t) is a specific type of FRI signal, we are able to estimate

it using the annihilating filter method from X(jωm) as described in Section 2.2. Given

an estimation of the input signal, we can re-synthesize the samples ysig
n and subsequently

X(jωm), and then obtain Ψ(jωm) by using the relationship τ0
m = X(jωm) · Ψ(jωm). By

updating X(jωm) and Ψ(jωm) alternatively and iteratively, this process converges to an

estimation of the input signal and the unknown system. The algorithm is summarized as

follows:

Algorithm 4: Simultaneous estimation of the input signal and the system

input : the moments τ0
m, which are equivalent to X(jωm) ·Ψ(jωm), m = 0, 1, . . . ,M

output: the estimation of x(t) and of the system parameters θ

1 set Ψ̂(jωm) = τ0
m in order to get an initial θ̂

2 while iteration < a finite number do

3 estimate unknown parameters θ̂ of Ψ̂(jωm) by solving (5.15) (apply the modified

Cadzow denoising algorithm)

4 calculate Ψ̂upd(jωm) from the estimated parameters θ̂

5 estimate X̂(jωm) from X̂(jωm) = τ0m
Ψ̂upd(jωm)

6 calculate x̂(t) by applying FRI reconstruction methods on X̂(jωm)

7 calculate X̂upd(jωm) by re-synthesizing ysys
n from the estimated x̂(t)

8 estimate Ψ̂(jωm) from Ψ̂(jωm) = τ0m
X̂upd(jωm)

9 end
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5.5 Simulations

5.5.1 System identification using arbitrary known input signal

In Section 5.3, we proved (Theorem 5.1) the possibility of exact reconstruction of a “para-

metrically sparse” system with compact support using any arbitrary finite-length input

signal. Here we evaluate our proposed scheme on identifying linear circuits, whose re-

sponse is infinite. We will first show the nearly error-free identification performance in

the noiseless scenario to prove that the spectral data of linear circuits obtained by our

proposed set-up is of extremely high accuracy. We also evaluate the performance of the

modified Cadzow denoising algorithm we proposed and show that it yields reliable iden-

tification results in the presence of noise. The experimental set-up is shown in Fig. 5.7.

The input signal is a pulse, and the sampling kernel is an exponential reproducing kernel.

x(t): a pulse

ψ(t)
ysysn

ϕ(t): sampling kernel

T
ysign

T

unknown system

Figure 5.7: Sampling set-up for system identification. The input signal x(t) is a pulse and the
sampling kernel ϕ(t) is an exponential reproducing kernel.

The system to be estimated are two Sallen-Key low pass filters (see Fig. 5.8) with transfer

functions Ψ(s) = 1
s2+s+1

and Ψ(s) = 10
s2+4s+10

, and a higher order system s+2
s3+2s2+2s+1

.

The sampling rates for the three unknown systems are respectively 1 Hz, 4 Hz and 2 Hz.

The number of samples N are 50, 50 and 100 respectively.

Figure 5.8: Sallen-Key filter topology. The transfer function of a Sallen-Key filter is Ψ(s) =
1

R1C1R2C2

s2+s
(

1
R2C1

+ 1
R1C1

)
+ 1
R1C1R2C2

.
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Noiseless samples

In this part, we assess the quality of the Fourier data obtained with our sampling scheme

using noiseless measurements. We use our computed Fourier data to estimate the unknown

parameters directly by solving the linear system of equations in (5.15).

As shown in Table 5.1, our estimated transfer functions are nearly error-free which confirms

that our sampling method provides high-quality Fourier data even at low sampling rate

and when ψ(t) has infinite support. In comparison, when we input the low-rate samples

to the widely-used MATLAB system identification toolbox which is based on prediction

error method [63], it fails to identify the system with satisfactory accuracy.

Table 5.1: System identification in the absence of noise. ϕ(t) is an E-spline and x(t) is a pulse.

True Transfer Function Method Estimation (ideal set-up)

1
s2+s+1

Our method 1.000
s2+1.000s+1.000

Toolbox 2.00
s2+1.89s+1.99

10
s2+4s+10

Our method 10.000
s2+4.000s+10.000

Toolbox 20.46
s2+7.91s+20.32

s+2
s3+2s2+2s+1

Our method 1.000s+2.000
s3+2.000s2+2.000s+1.000

Toolbox 695.3s+3200
s3+1901s2+2024s+1710

Noisy samples

In the following simulations, we show the robustness of our proposed sampling scheme and

denoising scheme. We assume we have full control of the input signal. This means that we

have assess to the noiseless samples of the input signal ysig
n . The system samples ŷsys

n are

corrupted with additive white Gaussian noise of variance σ2. Signal-to-noise ratio (SNR)

in our case is defined as:

SNR(dB) = 10 log
‖y‖2
Nσ2

, (5.19)

where N is the number of samples.

By comparing the identification results obtained by using the following two data sets, we

evaluate the effectiveness of our proposed denoising scheme.

1. Raw spectral data Ψ̂(jωm) =
∑
n cm,nŷ

sys
n∑

n cm,ny
sig
n

.

2. Denoised spectral data Ψ̃(jωm) by performing our proposed Cadzow routine on Ψ̂(jωm).
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Table 5.2 shows the average estimation errors (200 realizations) on all the free parameters

in different levels of noise.

The results in the table shows that the modified Cadzow algorithm can effectively denoise

the spectral data, and the identification accuracy is satisfactory in low to medium level of

noise. A higher order exponential reproducing kernel would give more Fourier coefficients

and therefore further improve the identification accuracy.

Table 5.2: Parameter errors of identification of Ψ(s) = 1
s2+1s+1 and Ψ(s) = 10

s2+4s+10 under
different levels of additive noise on the input samples and output samples.

True Transfer function: b0
a2s2+a1s+a0

= 1
s2+s+1

Fourier coefficients used SNR Errors on parameters b0, a1, a0

Noisy data 20dB 0.034 0.040 0.020

Denoised data 0.025 0.029 0.017

Noisy data 15dB 0.057 0.070 0.034

Denoised data 0.044 0.048 0.032

Noisy data 10dB 0.124 0.152 0.069

Denoised data 0.081 0.093 0.052

True Transfer function: b0
a2s2+a1s+a0

= 10
s2+4s+10

Fourier coefficients used SNR Errors on parameters b0, a1, a0

Noisy data 20dB 0.493 0.235 0.281

Denoised data 0.288 0.127 0.225

Noisy data 15dB 0.863 0.400 0.485

Denoised data 0.527 0.236 0.371

Noisy data 10dB 1.588 0.813 0.882

Denoised data 0.941 0.420 0.733

True Transfer function: b1s+b0
a3s3+a2s2+a1s+a0

= s+2
s3+2s2+2+1

Fourier coefficients used SNR Errors on parameters b1, b0, a2, a1, a0

Noisy data 20dB 0.658 4.264 3.641 2.627 2.541

Denoised data 0.146 0.676 0.397 0.433 0.347

Noisy data 15dB 1.308 7.556 5.056 7.063 3.248

Denoised data 0.265 1.332 0.775 0.853 0.679

Noisy data 10dB 2.192 10.61 6.628 10.58 4.114

Denoised data 0.324 1.717 0.998 1.103 0.867
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5.5.2 Simultaneous identification of input signals and systems

In Section 5.3, we showed identification of systems with arbitrary known input signals.

Then in Section 5.4 we proved (Theorem 5.2) that when the input signal is an unknown

FRI signal, we can identify both the input signal and the unknown system perfectly . We

also proposed a more robust recursive algorithm. Here we evaluate the identification

accuracy of the recursive algorithm. The experimental set-up is shown in Fig. 5.9.

x(t)

ψ(t)

ϕ(t)
ysysn

T

unknown
low sampling rateunknown system sampling kernelstream of Diracs

Figure 5.9: FRI sampling set-ups for recursive estimation. ϕ(t) is an exponential reproducing
kernel.

Noticing an ambiguity between the amplitude of the Dirac and the magnitude of the

unknown system, we assume we know the amplitude of the input Dirac.

Noiseless samples

When there is no noise, the algorithm gives nearly exact estimations of both the unknown

input signal and the unknown system within few iterations. The identification results are

shown in Table 5.3.

Table 5.3: Simultaneous identification of the input signal and the system in the absence of noise.
x(t) is a stream of two Diracs. ϕ(t) is an exponential reproducing kernel.

Ground Truth Estimation

Transfer Function of ψ(t) 1
s2+s+1

1.00
s2+1.00s+1.00

Locations of input Diracs x(t) 6.2344, 12.4844 6.2344, 12.4844

Transfer Function of ψ(t) 10
s2+4s+10

10.00
s2+4.00s+10.00

Locations of input Diracs x(t) 0.5039, 1.8711 0.5039, 1.8711

Transfer Function of ψ(t) s+2
s3+2s2+2s+1

1.00s+2.00
s3+2.00s2+2.00s+1.00

Locations of input Diracs x(t) 8.9766 8.9766

Noisy samples

In this part we demonstrate three simultaneous estimation results when the samples ysys
n

are corrupted with noise of SNR=20dB. In Fig. 5.10 the input signal is a stream of two
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Diracs of amplitudes 1 at locations {0.9875, 8.4875} and the system to be estimated is
1

s2+s+1
. In Fig. 5.11 the input signal is a stream of two Diracs of amplitudes 1 at locations

{0.3086, 3.4336} and the system to be estimated is 10
s2+4s+10

. Moreover in Fig. 5.12, the

input signal is one Dirac of amplitude 1 at location 8.9766 and the system to be estimated is
s+2

s3+2s2+2s+1
. For each simulation, we plot the estimation of the location(s) of the Dirac(s)

after each iteration, and the Bode diagram of the estimated system after 10 iterations.

From the results we see that both the location(s) of the Dirac(s) and the unknown systems

are estimated accurately.
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Figure 5.10: Simultaneous estimation of both the input signal and the system in the presence of
noise. SNR=20dB. (a) The true locations of the input Diracs: {0.9875, 8.4875} and the estimations
of the locations of the input Diracs after each iteration. (b) Bode diagrams of the true system

1
s2+s+1 and the estimated system 1.000

s2+0.979s+1.003 .
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Figure 5.11: Simultaneous estimation of both the input signal and the system in the presence of
noise. SNR=20dB. (a) The true locations of the input Diracs: {0.3086, 3.4336} and the estimations
of the locations of the input Diracs after each iteration. (b) Bode diagrams of the true system

10
s2+4s+10 and the estimated system 9.956

s2+4.272s+10.055 .
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Figure 5.12: Simultaneous estimation of both the input signal and the system in the presence
of noise. SNR=20dB. (a) The true locations of the input Diracs: {8.9766} and the estimations
of the locations of the input Diracs after each iteration. (b) Bode diagrams of the true system

s+2
s3+2s2+2s+1 and the estimated system 1.01s+1.35

s3+1.52s2+1.58s+0.67 .

5.6 Summary

In this chapter we have used the FRI sampling framework to develop new methods for

system identification. We have shown that exact identification of specific classes of sparse

system is possible when using exponential reproducing kernels. We have then extended this

approach to the estimation of linear circuits. We also proposed a corresponding denoising

technique when the samples are corrupted with additive white Gaussian noise, and the

effectiveness of the denoising scheme is verified by the simulations. Finally, an iterative

algorithm has been introduced for the simultaneous estimation of the FRI input signal

and the sparse system. Since there is an approximate framework, which is introduced in

Section 2.4, that enables computation of approximations of Fourier data with an arbitrary

sampling kernel, the proposed method for system identification in this chapter works also

with general low-pass filters but with less accuracy .



Chapter 6

FRESH – FRI-based single-image

super-resolution algorithm

In this chapter we consider the problem of single image super-resolution and propose a

novel algorithm that outperforms state-of-the-art methods without the need of learning

patches pairs from external datasets. We have the observation that images can be modelled

by lines of piecewise smooth functions, although non-bandlimited, can be seen as the sum of

a piecewise polynomial signal that can be recovered by FRI and a slowly varying part that

can be recovered by classical linear reconstruction. Based on this model, we first propose

a resolution enhancement method for this type of functions and then its extension to 2-D

images. We also propose a further improvement of the method based on learning from the

errors of our super-resolution result at lower resolution levels.

6.1 Introduction

Single-image super-resolution refers to the problem of obtaining a high-resolution (HR)

version of a single low-resolution (LR) image. This differs from the more traditional multi-

frame super-resolution problem where one has access to multiple shifted versions of the

LR image and tries to estimate a single HR image from these multiple images (see [64] for

a nice overview). The single image super-resolution problem is highly ill-posed since it is

possible to find many high-resolution images that can lead to the same low-resolution one.

Thus prior knowledge of the properties of natural images has to be used to regularize the

problem.

Strategies to solve the resolution enhancement problem are typically categorized into three

broad methods: interpolation based methods, constrained reconstruction based methods,

89
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and learning based methods. Interpolation based techniques [65,66], e.g. bilinear, bicubic

interpolation algorithms have their roots in sampling theory and their essence is to re-

cover the continuous-time signal from the given discrete pixels. They are computationally

simple, however they typically are based on a slow-varying image model (sum of weighted

and shifted versions of a basis function) so often produce images without high frequency

details. Reconstruction based approaches (e.g., [67–73]) define constraints for the target

high-resolution image. Commonly used priors includes statistical prior of natural im-

ages [67, 68], total-variation prior [69], gradient-profile prior [71]. There are also learning

based algorithms which infer missing high frequency information based on a dictionary

containing pairs of low-resolution and high-resolution patches. The dictionary is either

trained externally using a database of low-resolution (LR) and high-resolution (HR) im-

age pairs [74–79] or internally using self-similarities of the image at different scales [80–83].

lens sensor 
camera continuous scene digital image 

Figure 6.1: Image formation process. The incoming irradiance light field is blurred by the lens
and sampled by the image sensor.

In this chapter we connect the single image super-resolution problem to the one of sampling

and reconstructing piecewise regular functions. We note that the high-resolution, high-

frequency information of an image is lost during the acquisition process (see Fig. 6.1)

because of lens blur (usually modelled by the point spread function) and limited density

of imaging sensors. This process is very similar to the way acquisition is modelled in

traditional sampling theory where the analogue signal is low-pass filtered (equivalent to

the blurring due to lenses) and then sampled (equivalent to the sensor grid in a digital

camera). Linear interpolation methods have the merit of making this connection explicit.

However, they are not effective in practice because they can only recover globally smooth

functions, whereas images and scan-lines of images are piecewise regular (see Fig. 6.2).

50 100 150 200 250
0

50

100

150

200

250

Figure 6.2: Natural images and scan-lines of natural images are approximately 2-D and 1-D
piecewise smooth functions respectively.
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The recently developed FRI theory overcomes in some cases the limitation of the linear

interpolation methods by exploiting the fact that many signals, like piecewise polynomial

functions, are fully specified by a finite number of parameters. In Chapter 2, we have

shown that these signals, although non-bandlimited, can be uniquely reconstructed by only

a small number of samples taken with specific acquisition devices. In other words, there

is a unique mapping between a specific low-resolution version to the infinite-resolution

version for these signals and there is a constructive way for recovery. We have also shown

in Sec. 2.4 that this exact framework is later extended to the approximate FRI framework

that works with any sampling kernel [38].

This insight inspires a novel method for sampling continuous-time image scan-lines or 1-D

piecewise smooth functions: a piecewise smooth signal can be modelled as the sum of a

piecewise polynomial and a globally smooth part and we propose a hybrid reconstruction

method based on classical linear recovery of the smooth part and non-linear recovery of the

piecewise polynomial part using FRI on the same set of samples. We then leverage from

wavelet theory and the corresponding multi-resolution analysis [84] to adapt this hybrid

reconstruction method to the resolution enhancement problem. In particular, enhancing

the resolution of a signal is equivalent to finding the detail wavelet coefficients at finer

scales. We do this using FRI and we combine the details with the coarse linear approx-

imation. Because of the connection with wavelet theory this can be achieved using filter

banks. This leads to a fast and extremely effective algorithm to enhance the resolution of

1-D piecewise smooth functions.

We extend this approach to images by approximating the point-spread-function with a

scaling function in the wavelet theory (typically a spline of a certain order) and apply the

1-D method along vertical, horizontal and diagonal directions. These reconstruction are

then combined with the low-resolution version of the image using a 2-D filter-bank.

Finally, inspired by the works in single image super-resolution based on self-learning, we

propose correcting the error in our FRI upsampling result by learning from the pair of

input LR image and the corresponding FRI image of same size recovered from an even

lower scale. Instead of using simple bicubic interpolation as “LR image” in self-learning

algorithms, we are using FRI reconstruction which is much sharper, and as a result we do

not require learning at every small increment of scales. The end result is an FRi-based

singlE-image Super-resolution algoritHm - FRESH, which outperforms state-of-the-art

methods in most situations. Fig. 6.3 shows a comparison on one example.

The chapter is organized as follows. In Section 6.2, we first show our interpretation of

sampling from multi-resolution property of wavelet transform and propose how to sample

piecewise smooth signals, then by relating the resolution enhancement problem to sampling

problem we propose a method for enhancing the resolution of piecewise smooth signals
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using filter-banks. In Section 6.3, we show how the 1-D upsampling method is extended to

enhance the resolution of 2-D images. We then propose an improved upsampling method

which corrects errors in the FRI upsampled image by exploiting the similarities between

images at different resolutions. We show simulation results in Section 6.4 and conclude in

Section 6.5.

(a) the original image (b) linear reconstr.

PSNR=25.91dB

(c) method A+ [79]

PSNR=27.34dB

(d) our algorithm

PSNR=27.72dB

Figure 6.3: Upsampling results (factor 4) of woman by different methods. The downsampling
kernel is bior4.4.

6.2 Sampling and resolution enhancement of 1-D piecewise

smooth signals

We have the following observations for the problem of enhancing the resolution of images.

First of all we note that the image formation process in a digital camera (refer to Fig. 6.1)

can be seen as a 2-D version of the classical sampling set-up of Fig. 6.4 where the sampling

kernel now is the point spread function of the camera. Moreover, images are piecewise

regular functions (see Fig. 6.2), therefore, enhancing images to infinite resolution can be

interpreted as the problem of sampling and reconstructing 2-D piecewise smooth functions.

x(t) h(t) = ϕ̃(−t/T )
T

yn

Figure 6.4: Enhancing images to infinite resolution can be interpreted as the problem of sampling
and reconstructing piecewise smooth functions.

In this section, we consider a 1-D version of this problem and discuss the 2-D case in

Sec. 6.3. We consider the sampling and reconstruction of 1-D continuous-time functions
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first and then the resolution enhancement of 1-D discrete-time signals.

6.2.1 Sampling of piecewise smooth signals

We consider the case where the sampling kernel ϕ(t) in the setup of Fig. 6.4 (or point

spread function in 2-D case) is the scaling function of a wavelet transform because the

wavelet framework naturally relates the linear and FRI non-linear reconstruction methods

to the notion of resolution enhancement and therefore provides a proper way to combine

them. Here we emphasize that the FRI sampling method itself is universal since it works

with any kernel. The wavelet scheme may seem to limit the classes of acquisition filters

we are able to handle, however it is worth mentioning that the point spread function of a

camera can be accurately modelled by splines which are valid scaling functions.

Now we provide an interpretation of the problem of sampling an input signal x(t) from the

multi-resolution representation of x(t). Denote with ϕ(t) and ψ(t) the scaling and wavelet

functions respectively, and with ϕJ,n(t) = 2−J/2ϕ(2−J t−n) and ψm,n(t) = 2−m/2ψ(2−mt−
n), J,m, n ∈ Z the set of dilated and shifted versions of the scaling and wavelet function.

Consider the following multi-resolution representation of a signal x(t) in terms of the

scaling and wavelet functions:

x(t) =
∞∑

n=−∞
yJ,nϕJ,n(t)︸ ︷︷ ︸
xJ (t)

+
J∑

m=−∞

∞∑
n=−∞

dm,nψm,n(t), (6.1)

where yJ,n = 〈x(t), ϕ̃J,n〉 and dm,n =
〈
x(t), ψ̃m,n

〉
. Here ϕ̃J,n, ψ̃m,n are the dual bases of

ϕJ,n and ψm,n respectively. We also note that xJ(t) in (6.1) represents an approximation

of x(t) at resolution 2J . Adding more and more levels of details
∑∞

n=−∞ dm,nψm,n(t) to

the coarse version xJ(t) gives finer and finer resolution approximations and eventually the

original signal x(t).

The inner products yJ,n = 〈x(t), ϕ̃J,n〉 are equivalent to the samples obtained by sampling

x(t) with sampling kernel ϕ̃J,n and sampling period T = 2J (see Fig. 6.4). Moreover, the

coarse approximation xJ(t) =
∑∞

n=−∞ yJ,nϕJ,n(t) in (6.1) corresponds to the linear recon-

struction process in classical sampling theory discussed in Sec. 2.1 (see also Fig. 2.2), which

finds projection of x(t) onto the shift-invariant subspace spanned by {ϕJ,n(t)}n∈Z [20].

However, for the purpose of resolution enhancement, we are after an algorithm which is

able to recover details from yJ,n which are beyond the coarse approximation.
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+

Figure 6.5: We model piecewise smooth signals as the sum of a piecewise polynomial signal and
a globally smooth signal.

We assume x(t) is piecewise smooth and model piecewise smooth functions as the com-

bination of a piecewise polynomial signal p(t) and a globally smooth function r(t) (see

Fig. 6.5). We assume the smooth part r(t) lives in the shift-invariant subspace generated

by integer shifts of ϕ(2−J t). The piecewise smooth function can then be expressed as:

x(t) = p(t) + r(t)

=

∞∑
n=−∞

ypJ,nϕJ,n(t) +

J∑
m=−∞

∞∑
n=−∞

dpm,nψm,n(t)︸ ︷︷ ︸
p(t)

+

∞∑
n=−∞

yrJ,nϕJ,n(t)︸ ︷︷ ︸
r(t)

=

∞∑
n=−∞

(ypJ,n + yrJ,n)︸ ︷︷ ︸
yJ,n

ϕJ,n(t) +

J∑
m=−∞

∞∑
n=−∞

dpm,nψm,n(t). (6.2)

By comparing (6.2) with (6.1), we notice that the details dpm,n we need for resolution

enhancement are due only to the piecewise polynomial part p(t) (see also Fig. 6.6), and

the remaining part can simply be obtained through linear recovery using coefficients yJ,n.
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Figure 6.6: The details we need for resolution enhancement are due only to the piecewise poly-
nomial part. (a) The piecewise smooth signal x(t) = p(t)+r(t), the piecewise polynomial part p(t)
and the globally smooth part r(t). (b) Wavelet decomposition of x(t), p(t) and r(t) respectively.
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This observation together with the fact that FRI theory enables accurate reconstruction

of piecewise polynomial function using any kernel ϕ̃(t) (refer to Section 2.2.3 for the

reconstruction algorithm and Section 2.4 for reconstruction with an arbitrary kernel), leads

to the proposed hybrid reconstruction strategy highlighted in Fig. 6.7, which recovers p(t)

using FRI method and r(t) using the traditional linear reconstruction approach.

T
yn

x(t) FRI
reconstru-

p̂(t)

ϕ(t)
r̂(t)

ϕ̃(t) T
ŷpn −

ŷrn = yn − ŷpn

+
ction

Figure 6.7: Schematic diagram of our proposed sampling and reconstruction strategy for piecewise
smooth signals. The blue solid part: FRI reconstruction of the piecewise polynomial function p(t).
The black dashed part: linear reconstruction of the smooth residual r(t).

Specifically, our proposed scheme first reconstructs the piecewise polynomial part p(t)

using the approximate Strang-Fix theory from the samples yJ,n by treating the globally

smooth residual as noise (the blue solid part in Fig. 6.7). Given the estimated piecewise

polynomial p̂(t), we compute ŷpJ,n = 〈p̂(t), ϕ̃J,n(t)〉 which can then be removed from the

samples yJ,n to obtain the contribution ŷrJ,n = yJ,n − ŷpJ,n due to the smooth residual r(t).

Then r(t) can be reconstructed by classical linear method using the dual of the sampling

kernel, i.e. r(t) =
∑∞

n=−∞ ŷ
r
J,nϕJ,n(t) (the black dashed part in Fig. 6.7). The estimation

of x(t) is then the summation of estimated piecewise polynomial and estimated smooth

part.

6.2.2 Resolution enhancement of 1-D piecewise smooth signal

Given the discrete-time sequence yJ,n = 〈x(t), ϕ̃J,n〉, rather than trying to reconstruct the

original continuous-time signal x(t), one could be more interested in just trying to enhance

the resolution of yJ,n and the multi-resolution decomposition of (6.1) provides the right

framework to achieve this goal. Assume that ϕ̃(t) is a valid scaling function satisfying the

two-scale relation:

ϕ̃(t) =
√

2
∑

h0[n]ϕ̃(2t− n), (6.3)

and that we aim to enhance the resolution of yJ,n by a factor 2K for some positive integer

K. It is then natural to seek for the signal yJ−K,n which corresponds to the sequence

obtained by sampling x(t) with scaling function ϕ̃J−K(t) at finer scale 2J−K .

Because of the two-scale equation (6.3) we can relate yJ,n to yJ−K,n using the K-level filter
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bank of Fig. 6.8. More precisely,

yJ = (yJ−K ∗ h(K)
0 ) ↓2K , (6.4)

where h
(K)
0 in z-domain is H

(K)
0 (z) = H0(z)H0(z2) . . . H0(z2K−1

) and is derived based on

the fact that the cascade of K analysis filters H0(z) each followed by subsampling by 2 is

equivalent to one filter H
(K)
0 (z) = H0(z)H0(z2) . . . H0(z2K−1

) followed by subsampling by

2K . Here H0(z) is the z-transform of h0 in (6.3).

H0(z)

H1(z)

2

2

H0(z)

H1(z)

2

2

yJ

2

G1(z)
2

G1(z)

2

G0(z)

+ 2

G0(z)

+
yJ−KyJ−K

... ...

Decomposition Reconstruction

dJ

dJ−K+1

K-level K-level

Figure 6.8: K-level biorthogonal filter bank. Given the approximation coefficients yJ =
〈x(t), ϕ̃J,n〉 we are looking for a higher resolution version yJ−K = 〈x(t), ϕ̃J−K,n〉.

Therefore, one reasonable linear upsampling of yJ,n is the version obtained by simply

feeding yJ,n to the wavelet reconstruction stage, and can be expressed as:

ŷJ−K = yJ ↑2
K ∗g(K)

0 , (6.5)

where g
(K)
0 in z-domain is G

(K)
0 (z) = G0(z)G0(z2) . . . G0(z2K−1

) and ŷJ−K is the projection

of yJ−K to the subspace spanned by {g(K)
0 [n− 2Kk]}k∈Z. Here G0(z) is the synthesis low-

pass filter.

However, as Fig. 6.8 also indicates, this linear reconstruction does not allow us to retrieve

the missing detail coefficients dJ . . . dJ−K+1, so in order to get a better estimate of yJ−K
we estimate the detail coefficients using FRI.

More specifically, knowing the low-pass filter ϕ̃J(t) we first apply FRI method in Sec. 2.2.3

to estimate the piecewise polynomial part p(t) from the approximation coefficients yJ,n,

with the assumption that the contribution to yJ,n only comes from p(t) and that the

smooth part r(t) is noise. We call this estimated piecewise polynomial signal p̂FRI(t).

We then put p̂FRI(t) onto a grid of resolution 2J−K−L with L > 0, which is a grid finer

than the resolution 2J−K we are looking for, and we denote this discretized polynomial

with p̂FRI
J−K−L[n]. Recall that in our piecewise smooth model the detail coefficients are

due only to the piecewise polynomial, we therefore obtain the detail coefficients at res-

olution 2J to 2J−K+1 from p̂FRI
J−K−L[n] through (K + L)-level filter-bank decomposition.

Finally the estimation of yJ−K,n is obtained by computing K-level wavelet reconstruction
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of Fig. 6.8 using the approximation coefficients yJ,n and the estimated detail coefficients

dJ [n] . . . dJ−K+1[n]. We summarize this resolution enhancement method in Fig. 6.9.
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Figure 6.9: The schematic diagram of resolution enhancement of a piecewise smooth signal by
factor of 2K using a biorthogonal filter bank. From the given approximation coefficients yJ =
〈x(t), ϕ̃J,n〉 and the detail coefficients dJ , . . . , dJ−K+1 estimated using FRI, we are able to recover
a higher resolution version yJ−K = 〈x(t), ϕ̃J−K,n〉.

6.3 Image up-sampling

Equipped with the resolution enhancement method of the previous section, we now ap-

proach image upsampling by modelling lines (along different directions) of images as 1-D

piecewise smooth functions and extend the method of 1-D case to 2-D images. For clarity

and simplicity, we denote the image at original low-resolution with y0 and its upsampled

version by factor 2K with y−K . The low-resolution image y0 of size N ×N is the low-pass

version of a K-level 2D wavelet transform applied to the high-resolution image y−K of size

2KN × 2KN with all the high-pass coefficients discarded (see Fig. 6.10).

(a) The high-resolution piece-

wise smooth image

(b) Low-pass and high-pass

subbands of a 2-level 2D wavelet

transform of (a)

(c) We only have access to the

low-pass subband in (b)

Figure 6.10: Assume we only have access to the low-pass subband y0 of a 2D wavelet transform
applied to the high-resolution image y−K . We want to estimate the high-pass coefficients using
FRI in order to recover the high-resolution image.
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The 2D wavelet decomposition leads to a set of approximation coefficients and three types

of high-pass coefficients, representing horizontal, vertical and diagonal high-frequency de-

tails respectively. Similar to the 1D case, a simple linear reconstruction of y−K from

approximation coefficients y0 merely increases the size of y0 without increasing the res-

olution. The goal is to estimate the high-pass coefficients for the purpose of resolution

enhancement.

In part A, we introduce the basic FRI image upsampling algorithm, and we explain in part

B an improved method which uses the basic algorithm and also exploits patch repetitions

across scales to correct errors of the basic upsampling method.

6.3.1 Basic image up-sampling algorithm

The basic idea is that high-pass coefficients can be estimated from the set of FRI recovered

images (stacks of high-resolution piecewise polynomials) along horizontal, vertical and

diagonal directions. The proposed image upsampling method is summarized in the block

diagram of Fig. 6.11 and described in further detail in this section.

inverse

HL: horizontal

LH: vertical

HH: diagonal

wavelet transform

FRI diagonal
upsampling

edges

edges

edges

wavelet transform

wavelet transform

upsampling
FRI vertical

upsampling
FRI horizontal

ŷFRI
−K,v

ŷFRI
−K,h

yFRI
−K

K-level

K-level

low-pass y0

y0

Figure 6.11: The block diagram of our proposed upsampling scheme.

We first linearly interpolate column by column the low-resolution image y0 to size 2KN×N
using the synthesis filter g

(K)
0 (refer to (6.5)). Then from the N samples of each horizontal

line we reconstruct a piecewise polynomial of length 2KN using the resolution enhancement

method described in Sec. 6.2.2. In this way we get an image ŷFRI
−K,h of size 2KN × 2KN

which contains estimates of the vertical edges of y−K . Similarly, we operate on the other

coordinate of y0 to recover an image ŷFRI
−K,v that contains horizontal edges.

Then we obtain a first reconstruction ŷFRI
−K by feeding ŷFRI

−K,h to the decomposition channels

that capture vertical edges, ŷFRI
−K,v to the channels that capture horizontal edges and either

one of them to the channels that capture diagonal edges.

We then improve this reconstruction by operating diagonally. We do this to remove jaggies

in ŷFRI
−K . We first downsample each 45 degree diagonal line of ŷFRI

−K by factor 2, and then
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recover it with FRI and we call the recovered image ŷFRI
−K,d1. We then do the same on

-45 degree diagonal lines of ŷFRI
−K and obtain the image ŷFRI

−K,d2. Then we reconstruct a

final image by selecting patch by patch (size 4× 4 with 1-pixel overlap) from ŷFRI
−K,d1 and

ŷFRI
−K,d2. For patch with dominant gradient direction closer to 45 degrees we use the patch

from ŷFRI
−K,d1 and otherwise from ŷFRI

−K,d2. Then we ensure the consistency between our

reconstruction and the input data y0 by replacing the approximation coefficients of our

reconstruction with y0. The final unsampled image with upsampling factor 2K is denoted

with yFRI
−K .

Fig. 6.12 demonstrates that our proposed method is able to upsample a piecewise smooth

image with sharp edges. It is evident that we gain by adding our estimated high-frequency

information.

(a) linear reconstruction,

PSNR=36.49dB

(b) our reconstruction,

PSNR=42.81dB

Figure 6.12: Upsampling results of a piecewise smooth image by linear reconstruction and by
proposed method.

6.3.2 Exploiting cross scale similarities

Inevitably, there are errors in our FRI reconstruction yFRI
−K , some are due to imperfection

of the piecewise smooth model—for example not all edges behave like an immediate tran-

sition between two nearby pixels. Inspired by the idea of deriving a HR patch from an

input LR patch with a linear transformation learnt from internal LR and HR dictionary

patches [82], we propose estimating and correcting the error in upsampled FRI image by

learning the relationship between the ground truth input LR image and our FRI recon-

struction recovered from an even lower resolution version of the input LR image. More

precisely, a specific patch in yFRI
−1 is expected to be corrected by a linear transformation M

which transforms its similar patches in yFRI
−1+m to corresponding patches in y−1+m, where

y−1+m is an intermediate scale 1.25 times smaller than y−1 (1.6 times larger than y0).

This is possible because there are patch repetitions across small-scale factors (typically
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1.25). This is also the prior typically used in most single-image super-resolution techniques

without external dictionary [80–82].

Now we explain in detail our proposed algorithm for upsampling by 2. Its main idea is

depicted in Fig. 6.13. For an upsampling factor 2K(K > 1), we iterate it K times.

First of all, we use the basic FRI upsampling method explained in Section 6.3.1 to upsample

input low-resolution image y0 to yFRI
−1 (see Fig. 6.13a).

Then for updating the yFRI
−1 we try to create the FRI image yFRI

−1+m and ground truth image

y−1+m pair, whose resolution is slightly lower than y−1. A temporary version of y−1+m is

obtained by bicubic interpolation of y0 by factor 1.6 (see Fig. 6.13a), and its corresponding

FRI image yFRI
−1+m is obtained by downsampling y−1+m by factor 2 followed by upsampling

by 2 using basic FRI image upsampling method of Section 6.3.1 (see Fig. 6.13b).

Having obtained the first version of y−1+m and yFRI
−1+m pair, we use them to update yFRI

−1

as follows (see Fig. 6.13c): first, for each patch bFRI
−1,i in yFRI

−1 (size 5× 5 with 1-pixel shift

each time), we search for P (e.g. 4) similar patches {bFRI
−1+m,i,j}Pj=1 in yFRI

−1+m. We do the

search locally within a small window of 25 by 25 pixels centred around the relative center-

coordinates of bFRI
−1,i. Now we compute the transformation Mi ∈ R25×25 that maps the P

vectorized patches in yFRI
−1+m to the corresponding P vectorized patches in y−1+m. This

transformation Mi is expected to correct bFRI
−1,i and the way to compute it is explained in

detail later. We apply the Mi learnt to correct bFRI
−1,i:

bcorrected
−1,i (:) = Mib

FRI
−1,i(:), (6.6)

where b(:) denote the vectorized version of patch b. All the corrected patches bcorrected
−1,i

are then combined to obtain a corrected high-resolution image ycorrected
−1 by averaging

contributing patch values at each pixel. Then we ensure data fidelity by replacing the

low-pass coefficients of ycorrected
−1 with the ground-truth y0.

Lastly, we want to update y−1+m, yFRI
−1+m and subsequently ycorrected

−1 because the current

y−1+m we learnt from is simply a bicubic interpolation of y0 which is blurred and is not

well served as the ground truth image at resolution 2−1+m. So we update it (see Fig. 6.13d)

by downsampling ycorrected
−1 by factor 1.25 using bicubic interpolation. Its corresponding

FRI version yFRI
−1+m is updated by downsampling y−1+m by 2 followed by upsampling by

2 using the basic FRI image upsampling method. Then given the new y−1+m and yFRI
−1+m

pair we re-calculate the transformation Mi for each patch bFRI
−1,i in yFRI

−1 and apply the new

Mi to bFRI
−1,i as in (6.6). Again, we combine all the patches and ensure the low-pass version

of ycorrected
−1 is y0. We note that we could further repeat this updating step. However, we

have numerical evidence that further iterations would not improve the result significantly,

so we stick with one updating iteration.
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FRI upsampling results 

bicubic interpolation of y0  
by factor 1.6 

Ground truth/updated upsampling result 

upsample by 2 using 

FRI 

y-1,corrected 

Input LR image y0  

y-1+m 

ym 

y-1+m, FRI 

y-1, FRI 

(a) Creating yFRI
−1 and the first version of the intermediate level y−1+m.

FRI upsampling results Ground truth/updated upsampling result 

upsample by 2 using 

FRI downsample y-1+m  
by 2 with scaling 
function 
 

y-1,corrected 

Input LR image y0  

y-1+m 

ym 

y-1+m, FRI 

y-1, FRI 

(b) Creating the FRI version of the intermediate level, yFRI
−1+m.

3. apply M 

2. calculate the 
transformation M 

1. search for 
similar patches 
locally 

FRI upsampling results Ground truth/updated upsampling result 

y-1,corrected 

Input LR image y0  

y-1+m 

ym 

y-1+m, FRI 

y-1, FRI 

(c) Correcting yFRI
−1 using the intermediate image pair y−1+m and yFRI

−1+m

and obtaining ycorrected−1 .

2. apply M 

1. re-calculate the 
transformation M 

FRI upsampling results 

y-1,corrected 

Input LR image y0  

y-1+m 

ym 

update y-1+m: bicubic 
interpolation of 
y-1,FRI 

 

y-1+m, FRI 

Ground truth/updated upsampling result 

downsample y-1+m  
by 2 with scaling 
function 
 

upsample by 2 using 

FRI 

updated y-1+m, FRI 

 

y-1, FRI 

(d) Updating the intermediate image pair y−1+m and yFRI
−1+m followed by

updating ycorrected−1 .

Figure 6.13: The schematic diagram of how to correct our FRI upsampled image yFRI
−1 .
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The linear transformation Mi ∈ RD2×D2
that maps the P FRI patches {bFRI

−1,i,j ∈ RD×D}Pj=1

to ground truth patches {b−1,i,j ∈ RD×D}Pj=1 can be found by minimizing the empirical

fitting error between all P pairs of examples. However, this problem is underdetermined

and Tikhonov regularization is added to solve it stably:

Mi = argmin
Mi∈RD2×D2

P∑
j=1

‖bi,j(:)−Mib
FRI
i,j (:)‖2 + λ‖Mi‖2F

= argmin
Mi∈RD2×D2

‖Bi −MiB
FRI
i ‖2F + λ‖Mi‖2F ,

(6.7)

where λ is a regularization parameter, Bi and BFRI
i are matrices with {bi,j(:)}Pj=1 and

{bFRI
i,j (:)}Pj=1 as their columns respectively. The solution of (6.7) can be written in a close-

form as follows:

Mi = BiB
FRI
i

>
(
BFRI
i BFRI

i
>

+ λI
)−1

, (6.8)

where I is the identity matrix.

To conclude, we summarize the complete method in Algorithm 5.

Algorithm 5: FRI-based single image super-resolution algorithm

input : y0

output: y−1: upsampled version of y0

1 Upsample y0 to yFRI
−1 by the basic FRI algorithm in part A.

2 Create the intermediate level y−1+m by upsampling y0 by a factor 1.6 using bicubic

interpolation

3 Create the corresponding intermediate FRI level yFRI
−1+m by first downsampling y−1+m by

2 followed by upsampling it using the basic FRI algorithm.

4 for patch bFRI
−1,i in yFRI

−1 do

5 Search for P similar patches {bFRI
−1+m,i,j}Pj=1 in yFRI

−1+m, locally within the small

window centred around the relative center-coordinates of bFRI
−1,i.

6 Calculate the linear transformation Mi that transforms the patches {bFRI
−1+m,i,j}Pj=1 to

the corresponding ground truth patches {b−1+m,i,j}Pj=1 in y−1+m (refer to (6.8)).

7 Correct bFRI
−1,i by applying the linear transformation Mi to it (refer to (6.6)).

8 end

9 Combine all the corrected patches and replace the low-pass coefficients of the corrected

yFRI
−1 with the ground-truth y0, and call the image ycorrected

−1 .

10 Update the intermediate level y−1+m by downsampling yFRI
−1 with bicubic interpolation.

11 Update yFRI
−1+m by downsampling the updated y−1+m by 2 followed by upsampling by 2

with the basic FRI algorithm.

12 Repeat step 4 to 9 with the updated pair of intermediate images except step 5 need not

to be recalculated.
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6.4 Simulation results

6.4.1 1-D piecewise smooth signal upsampling

In the following simulations, we show the resolution enhancement results using our novel

hybrid reconstruction method introduced in Sec. 6.2.2. In this section we assume our

samples y0 (refer to Fig. 6.8) are the low-pass coefficients of 2-level wavelet decomposition

applied to a high-resolution piecewise smooth signal and we want to recover it to its

original resolution.

First, we demonstrate in Fig. 6.14 that when the signal is exactly the discrete-time version

of model (6.2), our method, compared to the linear reconstruction and the total variation

method, is able to achieve nearly perfect reconstruction.
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(a) the original high-resolution piecewise smooth signal and its wavelet decomposition
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(b) the linear reconstruction (22.7dB) and its wavelet decomposition
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(c) TV reconstruction (26.7dB) and its wavelet decomposition
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(d) our reconstruction (48.5dB) and its wavelet decomposition

Figure 6.14: Our method is able to accurately recover a piecewise smooth signal from its ap-
proximation coefficients.

Then we also test our algorithm in the case where the high-resolution signal is not exactly

in our model but is a scan-line of an image (see Fig. 6.2). The result of comparisons
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between our reconstruction, the linear reconstruction, and the total variation method in

Table 6.1 shows that our model is an accurate representation of the scan-lines such that

our proposed method is still efficient in this case. The result also proves the universality

of our method in the sense that it works robustly with different downsampling kernels.

Table 6.1: Recovering the high-resolution image scan-line from its approximation coefficients of
different wavelet decomposition with different methods.

scaling function linear reconstr. TV reconstr. our reconstr.

linear spline 21.7 dB 23.1 dB 24.2 dB

cubic spline 22.2 dB 23.1 dB 24.4 dB

bior4.4 23.9 dB 23.0 dB 25.0 dB

6.4.2 Image upsampling

Upsampling of artificially downsampled images

In this part, we test upsampling of low-resolution images obtained by downsampling the

original ones by a factor 4 using the 2-level 2-D wavelet decomposition with biorthogonal

4.4 filter, and those obtained by downsampling with a linear spline. We compare our basic

upsampling method in Sec. 6.3.1 and our improved method in Sec. 6.3.2 with the linear re-

construction method and some of the state-of-the-art algorithms, we show the upsampling

results of the two different downsampling kernels in terms of PSNR and SSIM (structural

similarity index [85]) in Table 6.2 and Table 6.3 respectively. Visual comparison on one

of the test images ‘Zebra’ (downsampling kernel of bior4.4) and ‘Comic’ (downsampling

kernel of linear spline) are shown in Fig. 6.15 and Fig. 6.16 respectively. Note that for

self-learning method [80], we use a third-party implementation [86] and we cannot guar-

antee the implementation duplicates the original results. For other methods we ensure

the comparison is fair because we modified the blurring kernel in the source codes to the

specific kernel we use (bior4.4/linear spline), and for dictionary-based methods of [78,79],

the dictionary was re-trained with the same kernel used in upsampling process.

Our proposed method is universal in the sense that it works with different blurring kernels.

The results demonstrate that our proposed basic (fast) method, with no learning involved,

outperforms other reconstruction-based algorithms, e.g. total variation [69], contourlet [70]

and even one of the dictionary learning methods [78]. The improved method – FRESH

is robust and outperforms state-of-the-art methods in different categories. Moreover, our

method leads to visually pleasant edges.
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Table 6.2: Comparisons of upsampling results (factor 4) given by different methods in terms of
PSNR. Sampling kernel: bior4.4.

PSNR (dB)

& SSIM [85]
linear

TV

[69]

con-

tourleta

[70]

sparse

cod-

ing

[78]

A+

[79]

self-

learn

[80]

our

basic

method

FRESH

Peppers 29.91 30.98 30.19 31.03 31.73 31.31 31.13 31.85

0.823 0.835 0.824 0.837 0.846 0.837 0.836 0.845

Lena 29.49 29.97 29.82 30.17 30.64 29.99 30.16 30.55

0.835 0.837 0.839 0.844 0.853 0.843 0.841 0.849

Cameraman 28.35 28.85 28.59 29.21 29.63 29.04 29.16 29.82

0.872 0.883 0.872 0.885 0.892 0.886 0.886 0.894

Butterfly 21.50 23.76 21.66 22.37 23.19 24.41 23.40 24.24

0.744 0.853 0.736 0.796 0.836 0.859 0.833 0.864

Bird 29.37 29.99 29.75 30.23 30.94 30.04 30.29 31.04

0.877 0.887 0.881 0.893 0.905 0.888 0.891 0.904

Comic 20.83 21.10 – 21.07 21.29 21.00 21.13 21.32

0.621 0.647 – 0.636 0.654 0.654 0.642 0.659

Zebra 23.61 24.34 – 24.38 24.71 24.44 24.50 25.11

0.711 0.721 – 0.726 0.731 0.732 0.726 0.737

Woman 25.91 26.71 – 26.66 27.34 27.36 26.91 27.72

0.842 0.857 – 0.861 0.876 0.872 0.859 0.879

Average 26.12 26.96 – 26.89 27.43 27.20 27.09 27.71

0.791 0.815 – 0.810 0.824 0.821 0.814 0.829

a contourlet interpolation software does not support upsampling of non-square

images.
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Table 6.3: Comparisons of upsampling results (factor 4) given by different methods in terms of
PSNR. Sampling kernel: linear spline.

PSNR (dB)

& SSIM [85]
linear

TV

[69]

con-

tourleta

[70]

sparse

cod-

ing

[78]

A+

[79]

self-

learn

[80]

our

basic

method

FRESH

Peppers 29.95 31.09 30.25 30.77 31.63 31.49 31.28 31.95

0.821 0.835 0.824 0.831 0.844 0.836 0.836 0.845

Lena 29.53 30.02 29.90 29.84 30.58 30.13 30.28 30.66

0.834 0.838 0.84 0.835 0.850 0.837 0.842 0.850

Cameraman 28.40 28.89 28.66 28.88 29.54 29.27 29.34 30.05

0.870 0.884 0.871 0.877 0.890 0.881 0.888 0.896

Butterfly 21.55 23.91 21.72 22.08 23.03 24.22 23.52 24.61

0.737 0.856 0.736 0.782 0.830 0.860 0.835 0.870

Bird 29.42 30.05 29.82 29.86 30.73 30.23 30.43 31.26

0.876 0.887 0.881 0.883 0.901 0.888 0.892 0.906

Comic 20.85 21.15 – 20.92 21.27 21.09 21.22 21.41

0.619 0.648 – 0.616 0.647 0.632 0.644 0.662

Zebra 23.67 24.41 – 24.13 24.61 24.65 24.61 25.30

0.711 0.722 – 0.709 0.728 0.728 0.728 0.741

Woman 25.95 26.78 – 26.36 27.22 27.23 27.04 27.86

0.838 0.858 – 0.851 0.872 0.867 0.861 0.881

Average 26.17 27.04 – 26.60 27.33 27.29 27.22 27.89

0.788 0.816 – 0.798 0.820 0.816 0.816 0.831

a contourlet interpolation software does not support upsampling of non-square

images.
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(a) the original image (b) linear reconstruction

PSNR=23.61dB, SSIM=0.711

(c) total variation [69]

PSNR=24.34dB, SSIM=0.721

(d) sparse coding [78]

PSNR=24.38dB, SSIM=0.726

(e) A+ [79]

PSNR=24.71dB, SSIM=0.731

(f) self-learning [80]

PSNR=24.44dB, SSIM=0.732

(g) our basic algorithm

PSNR=24.50dB, SSIM=0.726

(h) our improved algorithm

PSNR=25.11dB, SSIM=0.737

Figure 6.15: Upsampling results (factor 4) of Zebra by different methods. The downsampling
kernel is bior4.4.
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(a) the original image
(b) linear reconstruction

PSNR=20.85dB, SSIM=0.619

(c) total variation [69]

PSNR=21.15dB, SSIM=0.648

(d) sparse coding [78]

PSNR=20.92dB, SSIM=0.616

(e) A+ [79]

PSNR=21.27dB, SSIM=0.647

(f) self-learning [80]

PSNR=21.09dB, SSIM=0.632

(g) our basic algorithm

PSNR=21.22dB, SSIM=0.644

(h) our improved algorithm

PSNR=21.41dB, SSIM=0.662

Figure 6.16: Upsampling results (factor 4) of Comic by different methods. The downsampling
kernel is linear spline.
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Upsampling of images taken with a camera

Finally, we show that the proposed algorithm is also able to upsample the images taken

with a real camera, where the blurring due to lens is not exactly a scaling function as

assumed previously but can still be modelled as a spline. We demonstrate in Fig. 6.17

that the algorithm achieves visually good performance for upsampling factor of 4. In

the following result, the original photographs are taken with Canon 400D, and its point

spread function is modelled by the fifth order spline. The upsampling is performed only on

the luminance component of the input image and the chrominance component are simply

upscaled by bicubic interpolation.

(a) (b) (c)

(d) (e) (f)

Figure 6.17: Upsampling of images taken with Canon 400D. Our upsampling results are sharper
than the bicubic interpolation results. (a)(d) original images. (b)(e) bicubic interpolation. (c)(f)
our upsampling results.

6.4.3 Computation complexity and discussions

Upsampling an image of size N × N to 2KN × 2KN with the basic algorithm proposed

in Sec. 6.3.1 requires number of line upsampling operations in the order of 2KN and also

2KN × 2KN block selecting operations.
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Unlike the basic algorithm, the improved algorithm proposed in Sec. 6.3.2 requires up-

sampling one level per time (factor 2 each time) and involves searching for similar blocks,

which is computational more expensive.

Table 6.4 shows the execution time (averaged over 5 test images) of the C++ implemen-

tations1 of the basic method and FRESH on a Mac mini with 2.6GHz Intel Core i7 CPU

and 16GB RAM.

Table 6.4: Computation cost for upsampling an image using the basic method and FRESH on a
Mac mini with 2.6GHz Intel Core i7 CPU and 16GB RAM.

time (seconds)
upsample 64×64 im-

ages by 2

upsample 64×64 im-

ages by 4

basic algorithm 0.45 2.68

FRESH 1.65 8.95

Since we are using a wavelet scheme to handle the upsampling, the scale factor can only

be powers of 2. Moreover, the point spread function of the camera needs to be fairly close

to the scaling function of a wavelet transform. The wavelet scheme may seem to limit

the classes of acquisition filters we are able to handle, nevertheless we want to emphasize

that the point spread function of cameras in general can be accurately modelled by splines

which are valid scaling functions and numerical results on images taken with real cameras

confirm the universality of our approach.

6.5 Summary

In this chapter, we have proposed a scheme for upsampling piecewise smooth signals and

its extension to images by modelling images as lines of piecewise smooth signals. We

show that the method proposed improves classical linear reconstruction results by making

use of an additional non-linear reconstruction method based on FRI theory. The method

is further improved by using a self-learning approach which also makes use of FRI. The

resulting algorithm outperforms state-of-the-art methods and does not require the use of

external datasets.

1C++ implementations of our algorithms were created by Matteo Maggioni.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis we have studied sampling and reconstruction scheme for signals with finite

rate of innovations. This sampling scheme breaks the limitation of classical sampling the-

orem where only bandlimited signals can be recovered. We have studied the phenomenon

of performance breakdown of the FRI reconstruction algorithms when the noise level is

higher than a threshold and have provided an accurate prediction of the breakdown PSNR

in terms of settings like sampling rate and the distance between adjacent Diracs. We have

also extended the current FRI sampling theory to a universal one that works with unknown

rate of innovations. Moreover, we have explored possible applications of FRI sampling the-

ory. More precisely, we have extended the FRI sampling theory for identifying systems

that are parametrically sparse, and also for reconstructing images that can be modelled

by parametrically sparse signals.

In Chapter 2, we have revisited the classical theory for sampling bandlimited signals

and discussed its limitations. Then we have introduced FRI theory, which provides a

more general representation of signals, and we have shown FRI theory is able to perfectly

recover classes of signals that cannot be recovered by classical sampling theory. Specifi-

cally, we have explained the reconstruction algorithms of streams of Diracs and piecewise

polynomial signals with the sampling kernel being the exponential reproducing functions.

Moreover, we have described how to choose the most stable sampling kernel and what

algorithms can be used for robust reconstruction when the samples are noisy. We have

explained the method to access performance of FRI reconstruction algorithms by using

Cramér-Rao bounds, and shown that the widely used FRI reconstruction algorithm, i.e.

Cadzow algorithm with Prony’s method, in general is able to achieve the best possible

performance given by the Cramér-Rao bound above a certain level of signal-to-noise ratio.

111
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Lastly, we have revisited the generalised sampling scheme that works with any arbitrary

sampling kernel where the exponential reproducing properties need not to be satisfied.

In Chapter 3, we have explained the breakdown phenomenon observed in the FRI recon-

struction algorithms by subspace swap, which refers to the event where noise subspace

singular vectors are so large that replace one or more of the signal subspace singular

vectors. By analysing the signal and noise singular values of the data matrix on which

Cadzow denoising algorithm is operated, we have derived the necessary conditions for

subspace swap to happen, and from there we have established an explicit connection be-

tween breakdown point (PSNR) to kernel settings and distance between input streams of

Diracs. Specifically, the closer the adjacent Diracs or the lower the order of the kernel,

the higher the breakdown PSNR. Simulation results have proven accurate prediction of

the breakdown point in different setups.

In Chapter 4, we have proposed a robust algorithm to estimate the number of Diracs

and thus extend the current approximate framework to one that works with arbitrary and

unknown numbers of Diracs. The algorithm tests all possible number of Diracs and decides

the number of Diracs by choosing the turning point of the resynthesis error function. The

old version of the algorithm finds the turning point by computing the second derivative

of the resynthesis error. The new version, instead of relying only on second derivatives,

calculates a score which dependent on the resynthesis error and also the first and second

derivative of it for each possible number. The number with highest score will be the

estimated number of Diracs. Simulation results have shown that our newly proposed

method is robust in that it achieves the Cramér-Rao bound with only a very low failure

rate.

In Chapter 5, we have shown the possibility of perfect identification of linear systems that

are fully characterized by a small number of its Fourier coefficients. The set-up is a multi-

channel version of the current FRI sampling set-up with one channel taking samples of the

input signal only using an exponential reproducing kernel and the other one taking samples

of the output of the input signal through the unknown system using the same kernel. In

order to have the scheme work robustly in noisy scenario, we have proposed a modified

Cadzow algorithm that can efficiently denoise the Fourier coefficients for identification.

This algorithm, similar to the Cadzow denoising algorithm, makes use of the fact that the

Fourier data matrix is structured and rank-deficient when there is no noise. The algorithm

gradually and iteratively recovers a rank-deficient matrix which also follows the structure

of the noiseless matrix. Moreover, we have shown that in certain scenarios, even when

the sampling setup has only one channel, i.e. we have no direct access to the samples of

the input signal, we can still perfectly identify the unknown system without iterations.

In noisy scenario, we have proposed a robust algorithm that identify the input signal and
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unknown system iteratively.

In Chapter 6, we have investigated the extensions of FRI theory for image upsampling.

Since we have the observation that images can be modelled by lines of piecewise smooth

signals, we first approach the problems of sampling and resolution enhancement piecewise

smooth signals before solving the image upsampling problem. Firstly, we have proposed

a scheme that combines the classical linear reconstruction and the non-linear methods of

FRI for sampling piecewise smooth signals. We have also considered the case where the

input signal is discrete and proposed resolution enhancement of piecewise smooth signals

by relating the notion of multi-resolution in the wavelet transform to sampling. Then

based on the idea of our proposed 1-D resolution enhancement scheme, we have applied

the 1-D upsampling scheme along vertical, horizontal and diagonal directions in an image

to obtain an image upsampling algorithm. We have also proposed a further improvement

of the algorithm, which improves our upsampled image by learning from the errors of

our upsampled results at lower resolution levels. This leads to our robust algorithm for

image upsampling called FRESH. Simulation results have shown that FRESH outperforms

state-of-the-art algorithms without the need of external dictionaries. Moreover, numerical

results on images taken with real cameras have confirmed the universality of our approach.

7.2 Future Work

In what follows, we propose some future research topics:

• We have explained the breakdown phenomenon of FRI reconstruction algorithm

in high level of noise by subspace swap in Chapter 3 and we have provided an

accurate prediction of the breakdown PSNR in terms of the sampling rate and the

distance between adjacent Diracs for exponential reproducing kernels. Extending

this performance analysis for arbitrary low-pass filters would be interesting because

it would give us a better understanding on the performance of approximate Strang-

Fix. This work would require studying how the response of the low-pass filter affects

the noise on the exponential moments, and then the orthogonal subspace singular

values.

• In Chapter 6 we have proposed an image upsampling algorithm based on the idea

that lines of images can be modelled by piecewise smooth signals. One crucial step

of the algorithm is to recover lines of piecewise polynomial signals. In the proposed

algorithm we set the number of discontinuities of the piecewise polynomial signals

to a predefined number. This implies that for all lines in all kinds of input images,

we are assuming a piecewise smooth signal model with only freedom in locations
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of discontinuities and amplitude information for each piece, but no freedom in the

number of discontinuities. We could imagine there should be a better choice than

using a predefined number of discontinuities. We may try to apply the method for

estimating number of Diracs proposed in Chapter 4 for estimating the number of

discontinuities.

• Piecewise smooth signal we have discussed in Chapter 6 actually is a very important

class of sparse signals. We can find them in images and many punctuated real-world

phenomena [87]. In Chapter 6 we show that we can recover such a signal from its

samples accurately by recovering the smooth part and the piecewise polynomial part

separately. When recovering the piecewise polynomial part, we regard the smooth

part as noise. This means, as long as there is a smooth part the proposed method

cannot recover the piecewise smooth signal perfectly, and certainly the larger the

amplitudes of the smooth part, the larger the error on the reconstruction of the

piecewise polynomial part. To solve the problem, we may try to develop an exact

sampling framework for piecewise smooth signals. In order to perfectly recover the

piecewise polynomial part, we would need a sampling setup which can not only

annihilate the smooth part and output a set of samples that are only due to the

piecewise polynomial signal, but also satisfy the Strang-Fix condition. Moreover,

the sampling setup have to be able to output another set of samples which are due

to both the piecewise polynomial part and the smooth part so that we may deduce

the contribution from the recovered piecewise polynomial part from the samples and

recover the smooth part linearly.



Appendix A

Find the closest matrix in the

sense of Frobenius norm

To find the closest matrix to A′ that belongs to the matrix spanned by the matrices

UH
M−Qext

eke
>
kQPext+1 for k = 1, 2, . . . ,M + 1, we look for a diagonal matrix ∆ that sets

to zero the differential-infinitesimal-variation of the Frobenius distance between A′ and

UH∆Q:

d
{
‖UH∆Q−A′‖2Fro

}
= 0, for all possible variations d∆. (A.1)

Since the square of the Frobenius norm of a matrix A is equal to the trace of the matrix

AAH, denoted Tr(AAH), (A.1) can be rewritten as follows:

0 = d
{

Tr
(
(UH∆Q−A)(UH∆Q−A)H

)}
= Tr

(
d
{

(UH∆Q−A)(UH∆Q−A)H
})

= Tr
(

d∆
(
UUH∆QQH −UAQH

)H) (A.2)

for all possible variations d∆. This implies that (A.1) is satisfied only when all the diagonal

elements of the matrix UUH∆QQH−UAQH vanish, which amounts to a system of linear

equations: ∑
k′

uuk,k′qqk,k′dk′ = uaqk,k, for all possible values of k, (A.3)

where dk refers to the diagonal entries of ∆, and uuk,l, qqk,l and uaqk,l refer to the entries

of the matrices [UUH
k,l],[QQH]k,l and [UAQH]k,l respectively. After (A.3) is solved, we

obtain a “denoised” diagonal matrix ∆. The corresponding UH∆Q is the closest matrix

to A′ in the Frobenius sense.
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Appendix B

Simultaneous identification of

input signals and linear systems

B.1 Exact identification of E-spline and input stream of

Diracs

Assume the linear system is an E-spline of order P with Fourier transform:

Ψγ(jω) =
P−1∏
p=0

1− eγp−jω

jω − γp
(B.1)

and the sampling kernel can reproduce M + 1 exponentials e(α0+mλ)t/T , m = 0, . . . ,M .

By computing the weighted sum of the samples ysys
n taken by this kernel, we have:

τ sys
m =

∑
n

cm,ny
sys
n

= X(jωm) ·Ψ(jωm)

=

∑K−1
k=0 âku

m
k q(e

−jωm)

p(jωm)
,

(B.2)

where âk = ak eα0tk/T , uk = eλtk/T , p(jωm) =
∑P

p=0 bp(jωm)p and q(e−jωm) =
∑P

q=0 cq(e
−jωm)q

are polynomials of degree P (the order of the E-spline). Multiplying both sides of (B.2)

by p(jωm) gives us:

p(jωm)τ sys
m =

K−1∑
k=0

P∑
q=0

fk,q(e
mλ(tk−q)/T ). (B.3)
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Therefore a filter with z-transform:

H(z) =
K−1∏
k=0

P∏
q=0

(1− eλ(tk−q)/T z−1) =
D∑
d=0

h[d]z−d (B.4)

with D = K(P + 1) will annihilate (B.3). It follows that

D∑
d=0

h[d]p(jωm−d)τm−d = 0, m = D,D + 1, . . . ,M. (B.5)

By replacing p(jωm) with
∑P

p=0 bp(jωm)p in (B.5) we get:

D∑
d=0

h[d]

P∑
p=0

bp(jωm−d)
pτm−d = 0, m = D,D + 1, . . . ,M. (B.6)

We can write this system in matrix form as follows:


τD . . . (jωD)P τD . . . τ0 . . . (jω0)P τ0

τD+1 . . .(jωD+1)P τD+1 . . . τ1 . . . (jω1)P τ1
...

. . .
...

. . .
...

. . .
...

τM . . . (jωM )P τM . . . τM−D . . .(jωM−D)P τM−D





h[0]b0
...

h[0]bP
...

h[D]b0
...

h[D]bP


= 0. (B.7)

By solving this linear system of equations we can then find (b0, . . . , bP ) by setting h[0] = 1,

and we are able to solve for the unknown parameters {γp}Pp=0 by finding the roots of p(jω).

Having (b0, . . . , bP ) also means we can retrieve h[1], . . . , h[D]. Now by finding the roots

of H(z) we are able to retrieve tk exactly. The solution is unique and we need at least

2D + 1 values of τm to solve this system, so we need the sampling kernel ϕ(t) to be able

to reproduce {e(α0+mλ)t}Mm=0 with M ≥ 2D = 2K(P + 1).

B.2 Identification of linear circuits and input stream of Diracs

Similaly, when we try to identify a P -th order linear circuit, which is specified by:

Ψ(jω) =

∑Q
q=0 bq(jω)q∑P
p=0 ap(jω)p

, (B.8)
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we first compute the weighted sum of the samples as follows:

τ sys
m =

∑
n

cm,ny
sys
n

= X(jωm) ·Ψ(jωm)

=

∑K−1
k=0 âku

m
k q(jωm)

p(jωm)
,

(B.9)

where âk = ak eα0tk/T , uk = eλtk/T , p(jωm) =
∑P

p=0 bp(jω)p is a polynomial of degree P

(the order of the LTI system) and q(jωm) =
∑Q

q=0 cq(jω)Q is a polynomial of degree Q.

Multiplying both sides of (B.9) by p(jωm) we obtain:

p(jωm)τ sys
m =

K−1∑
k=0

Q∑
q=0

fk,qm
q(emλtk/T ). (B.10)

Then a filter with z-transform:

H(z) =

K−1∏
k=0

(1− eλtk/T z−1)Q+1 =
D∑
d=0

h[d]z−d (B.11)

with D = K(Q + 1) will annihilates (B.10). Now we can establish a linear system of

equations as the one in (B.7). Again we find (b0, . . . , bP ) and coefficients of H(z), and

then the locations of the Diracs tk by looking for the roots of H(z). Finally finding

the remaining unknown parameters in the transfer function is straightforward. Here in

order to solve the linear system we require a sampling kernel ϕ(t) that can reproduce

{e(α0+mλ)t}Mm=0 with M ≥ 2D = 2K(Q+ 1).
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