
Adaptive Plenoptic Sampling:

Theory and Applications

by
Christopher Gilliam

A Thesis submitted in fulfilment of requirements for the degree of
Doctor of Philosophy of Imperial College London

Communications & Signal Processing Group
Department of Electrical & Electronic Engineering

Imperial College London
2012





3

Statement of Originality

I declare that this thesis, and the research it contains, is the product of my own work

under the guidance of my thesis supervisors: Dr. Pier Luigi Dragotti and Mike Brookes.

Any ideas or quotations from the work of other people, published or otherwise, are fully

acknowledged in accordance with the standard referencing practices of the discipline.

The material of this thesis has not been submitted for any degree at any other academic

or professional institution.





5

Abstract

Image-Based Rendering (IBR) is an effective technique for rendering novel views of a

scene from multi-view images. The plenoptic function enables IBR to be formulated in

terms of sampling and reconstruction. In this thesis, we combine the theoretical results

from uniform plenoptic sampling with non-uniform camera placement. The central

concept is that geometry of the scene can be modelled with a sequence of slanted planes.

The positions of the cameras are then derived from the plenoptic spectral analysis of a

slanted plane. To this end, we present novel results for the plenoptic spectral analysis

of a slanted plane and an algorithm for adaptive plenoptic sampling.

The novelty of our spectral analysis lies in the inclusion of two realistic conditions

when calculating the plenoptic spectrum: finite scene width and cameras with finite

field of view. Using these conditions, we derive an exact closed-form expression for the

plenoptic spectrum of a slanted plane with bandlimited texture. From this spectrum,

we determine an expression for the maximum spacing between adjacent cameras. Using

synthetic and real scenes, we show that this expression is a more accurate gauge of the

Nyquist sampling density than the current state-of-the-art.

Based on these results, we design an adaptive plenoptic sampling algorithm for a

scene with a smoothly varying surface and bandlimited texture. The algorithm oper-

ates by determining the best sequence of slanted planes to model the scene given its

geometry and a limited number of cameras. Once this sequence of planes is obtained,

the algorithm then positions the cameras using our sampling analysis of a slanted plane.

Using synthetic and real scenes, we show that this algorithm outperforms uniform sam-

pling. Finally, we also present a novel reconstruction filter for plenoptic sampling that
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outperforms the state-of-the-art for both synthetic and real scenes. The filter uses

interpolators of maximum-order-minimal-support (MOMS).
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Chapter 1

Introduction

1.1 Motivation

Visual media is currently undergoing a transition from a two dimensional based display

system to one that offers users a three dimensional (3D) experience. Examples of this

transition can be seen in the recent increase in 3D films, like Avatar, the deployment of

consumer 3D displays [33], such as stereoscopic TV sets, and the emergence of dedicated

broadcast channels to supply 3D content. One way of creating this 3D experience is

3DTV, which offers the user a depth impression of the observed scene [34]. However this

experience is limited when compared to the real world as the user’s viewing position

within the scene is either fixed or severally restricted. A solution is free-viewpoint

television (FTV) [60], which offers the user an interactive 3D experience by allowing

them free control over the viewpoint within the scene. This type of user interactivity

has many potential applications from televised sporting events to virtual guided tours

of museums. The free-viewpoint experience is achieved by creating new views of the

scene from a collection of images, each taken from a different direction. The technique

is known as virtual view synthesis and is a topic within the growing area of multi-view

imaging.

From a multi-view imaging perspective, there are two approaches to performing

virtual view synthesis. The first approach, from 3D computer graphics, involves exact

modelling of the scene using 3D meshes and light source descriptions. A virtual view is
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(a) Multi-view images (b) Examples of rendered images

Figure 1.1: Diagram illustrating IBR. The set of multi-view images are shown in
(a) and two examples of rendered views in (b). The images in (b) were rendered
using the algorithm presented in [45].

then generated by warping the existing images of the scene onto the 3D geometry and

then projecting the result into the image domain. This approach is known as model-

based rendering (MBR). The 3D model of the scene is generated using multi-view stereo

vision algorithms [48]. These algorithms operate by matching consistent points, lines or

patches across the set of multi-view images. The matches relate to objects and surfaces

within the scene, and are used to generate a 3D model. However, the disadvantage of

this approach is that this matching process is typically expensive and error prone, and

hence it requires human assistance for high quality rendering [34].

The second approach, and the focus of this thesis, is known as image-based rendering

(IBR). The underlying principle is that since each image captures a set of light rays

travelling from the scene to the camera, it is possible to synthesise a new view by

interpolating nearby light rays. Therefore, instead of using an explicit 3D model, the

multi-view images of the scene are used to create new views directly [11]. An example

of IBR is shown in Figure 1.1. The initial set of multi-view images are shown in

Figure 1.1(a) and two rendered images from the set are shown in Figure 1.1(b). The

images are rendered using the algorithm presented in [45]. The figure also illustrates



1.2 Problem Statement 35

the main benefit of interpolating from real images: photorealistic rendering quality.

Therefore IBR offers high quality rendering from a set of images without the difficulty

of determining 3D models. Such flexibility has allowed IBR to find application in

many areas aside from FTV. Examples of these applications include surveillance [56],

immersive communications [3, 18] and virtual or augmented reality [64].

There are, however, some important challenges involved in IBR. In particular, al-

though it is easy to capture and store a single image, high quality rendering in IBR

requires a dense sampling of the real world [34]. For instance the Stanford multi-

camera array [62] contains 100 video cameras, each 640 by 480 pixels with a frame rate

of 30 frame/sec. Therefore, even with the recent advancements in computing technol-

ogy, the requirement for so many images imposes significant costs. The penalty for not

having enough cameras is the appearance of artefacts in the rendering process. In view

of this, an important topic of research in IBR is to determine the minimum number

of cameras required for artefact-free rendering. It is this particular problem that we

examine in this thesis. We also examine the associated problem of determining the best

position of these cameras.

1.2 Problem Statement

A natural framework for studying IBR is the seven dimensional plenoptic function [2].

This function specifies the intensity of a light ray passing through a 3D spatial location,

in a certain direction, with a certain wavelength and at a certain time [50]. Using this

function, IBR can be regarded in terms of sampling and reconstruction. Assuming a pin-

hole camera model, the set of multi-view images represents samples of the continuous

plenoptic function and the rendering of a new view entails the function’s reconstruction

from the samples [69].

Within this framework, artefacts in the rendering process, such as blurring and

ghosting effects, are manifestations of aliasing caused by undersampling the plenoptic

function [10]. Therefore, we can determine the minimum number of images required

for artefact-free rendering by analysing the sampling of the plenoptic function. In
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particular, we want to determine the minimum sampling of the plenoptic function re-

quired for alias-free reconstruction. Assuming uniform sampling, the authors of [10]

addressed this problem in a Fourier framework. They performed a spectral analysis

of the plenoptic function to determine the maximum distance between adjacent cam-

eras for alias-free reconstruction. In contrast non-uniform sampling of the plenoptic

function, such as [47,67,71], is based on minimising an estimate of the rendering error

between two adjacent cameras.

In this thesis, we aim to combine theoretical results from the spectral analysis of

the plenoptic function with non-uniform camera placement. To achieve this, we start

by analysing the uniform sampling of the plenoptic function of a slanted plane. The

purpose of this analysis is to determine the maximum spacing between adjacent cameras

for a slanted plane. Although this scene is very simple, our interest comes from using it

as an elementary element with which to construct more complicated geometries. To this

end, we propose approximating the scene of interest using a set of slanted planes. The

position of the cameras are then determined by the plenoptic sampling analysis for each

slanted plane we use to approximate the scene. Accordingly, unless the same sampling

is required for all the planes, the placement of the cameras will be non-uniform. Note

that the focus of this thesis is on the sampling of the plenoptic function rather than the

effect of depth information in IBR. As a result, to simplify this analysis, we concentrate

on IBR rather than depth IBR (DIBR).

1.3 Original Contribution

The following aspects of this thesis are believed to be original contributions:

Plenoptic Spectral Analysis under Realistic Conditions

For the first time, we present a spectral analysis of the 2D plenoptic function that

incorporates two realistic conditions: finite scene width and cameras with finite field of

view. The novelty of our spectral analysis is that these realistic conditions are applied

directly when deriving the 2D plenoptic spectrum, thus allowing a greater class of scene
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geometry to be analysed. In particular, we are able to derive an exact expression for

the 2D plenoptic spectrum of a 1D slanted plane with complex exponential texture in

Section 3.3.1 and extend this expression to bandlimited texture in Section 4.2.1. Using

these exact expressions, we are then able to provide greater insight into the behaviour of

the plenoptic spectrum of a slanted plane, which in turn leads to greater understanding

in plenoptic sampling.

Uniform Plenoptic Sampling using the Essential Bandwidth

In [10] uniform sampling of the plenoptic function is analysed in a Fourier framework

and the maximum spacing between adjacent cameras is determined from the spectral

support of the 2D plenoptic function. However, in Chapter 3, we show that the 2D

plenoptic spectrum under certain realistic conditions is band-unlimited. In view of

this, we present a novel approach to uniform plenoptic sampling using its essential

bandwidth - a region in frequency containing approximately 90% of the signal’s energy.

This approach involves sampling the 2D plenoptic function assuming it is bandlimited

to its essential bandwidth. Therefore, in Chapter 4, we determine a non-separable

2D essential bandwidth for the plenoptic function of a slanted plane and use it to

sample the scene. From this analysis, in Section 4.3, we present a new expression for

the maximum spacing between adjacent cameras for a slanted plane and validate it

using both synthetic and real scenes. This validation shows that our expression for the

maximum camera spacing is a more accurate gauge of the optimal plenoptic sampling

for a slanted plane than the current state-of-the-art.

Non-Uniform Plenoptic Sampling based on Plenoptic Spectral Analysis

In Chapter 5, we present a framework for non-uniformly sampling the 2D plenoptic

function for a scene with a smoothly varying surface and bandlimited texture. In

this framework, we combine our results from plenoptic spectral analysis with adaptive

camera placement. The main concept is that the essential geometry of the scene is

captured using a sequence of slanted planes. The cameras are then positioned based on

the plenoptic spectral analysis presented in Chapters 3 and 4. Using this framework,
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we present a novel algorithm that adaptively positions a finite number of cameras by

determining the best model of the scene geometry using slanted planes. This model

adapts depending on the geometry of the scene, hence the camera placement adapts

as well. In Sections 5.4 and 5.5, we validate the algorithm using synthetic and real

scenes and show that the reconstruction from the adaptive samples outperforms uniform

sampling.

The Reconstruction Filter for the Plenoptic Function

Assuming a uniform camera distribution, a reconstruction filter for the plenoptic func-

tion was presented in [10] based on its spectral support. If we sample the plenoptic

function using the essential bandwidth, however, a different filter is required. Following

from this, in Section 4.3, we present a new parametrisation of the reconstruction filter

and show it to be an improvement when sampling and reconstructing synthetic and real

scenes. Furthermore, we improve reconstruction again by using functions of maximum-

order-minimal-support (MOMS) to interpolate the plenoptic function as described in

Section 4.4. Therefore, taking both contributions into account, we present a novel re-

construction filter for uniform plenoptic sampling of a slanted plane that outperforms

existing ones. An adaptive version of this filter is presented in Section 5.3.3. It allows

reconstruction from non-uniform plenoptic samples and the incorporation of varying

depth information.

Publications

The work presented in this thesis has lead to the following publications:

• C. Gilliam, P. L. Dragotti and M. Brookes, “On Uniform Plenoptic Sampling”,

to be submitted, IEEE Transactions on Image Processing.

• C. Gilliam, M. Brookes and P. L. Dragotti, “Image Based Rendering and the

Sampling of the Plenoptic Function”, in Emerging Technologies for 3D Video:

Creation, Coding, Transmission and Rendering, F. Dufaux, B. Pesquet-Popescu

and M. Cagnazzo Eds., Wiley, 2013.
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• C. Gilliam, J. Pearson, M. Brookes and P. L. Dragotti, “Image Based Rendering

with Depth Cameras: How Many are Needed?”, in Proc. IEEE International

Conference on Acoustic, Speech and Signal Processing, Kyoto (Japan), March

2012, pp. 5437-5440.

• C. Gilliam, P. L Dragotti and M. Brookes, “Adaptive Plenoptic Sampling”, in

Proc. IEEE International Conference on Image Processing, Brussels, September

2011, pp. 2581-2584.

• C. Gilliam, P. L Dragotti and M. Brookes, “A Closed-form Expression for the

Bandwidth of the Plenoptic Function under Finite Field of View Constraints”, in

Proc. IEEE International Conference on Image Processing, Hong Kong, Septem-

ber 2010, pp. 3965-3968.

1.4 Thesis Outline

This thesis is organised as follows.

In Chapter 2, we examine the state-of-the-art in sampling of the plenoptic function

and its application to IBR. In more detail, we start by examining the structure of the

plenoptic function and present two key parametrisations: the light field and the surface

light field representations. Once these key parametrisations are established, we exam-

ine their sampling and reconstruction in both uniform and non-uniform frameworks.

Finally, we discuss the role of depth information when sampling the plenoptic function.

In Chapter 3, we re-examine the spectral analysis of the plenoptic function assum-

ing two realistic conditions; finite scene width and cameras with finite field of view.

We show that these conditions lead to spectral spreading in frequency, which results

in a band-unlimited plenoptic spectrum. Using these conditions, we then examine the

plenoptic spectrum for a simple scene: a slanted plane with bandlimited texture. We

derive an exact expression for the plenoptic spectrum of this scene. From this ex-

pression, we analyse the behaviour of the plenoptic spectrum and present a model to

characterise this behaviour. We end the chapter by extending this analysis to multiple
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planes.

In Chapter 4, we study the uniform sampling and reconstruction of the plenoptic

function of a slanted plane in a Fourier framework. We explore this sampling and

reconstruction of the plenoptic function using its essential bandwidth. In particular,

we present a new expression for the maximum spacing between adjacent cameras for

a slanted plane and a new parametrisation for the reconstruction filter. We show the

validity of these results using synthetic and real plenoptic functions that correspond to

slanted planes. The chapter also explores the reconstruction of the plenoptic function

using different interpolating functions.

Chapter 5 extends the sampling analysis to a non-uniform framework and generalises

the scene geometry. It examines the non-uniform sampling and reconstruction of the

plenoptic function relating to a scene with a smoothly varying surface. To sample this

scene, we propose a novel framework that combines the results from uniform plenoptic

sampling with adaptive camera placement. Based on this framework, we present an

adaptive sampling algorithm that adaptively positions cameras to sample the plenoptic

function. Using synthetic and real data, we show the validity of the algorithm when

compared to uniform sampling. We also present an adaptive filter to reconstruct the

non-uniformly sampled plenoptic function.

Finally, Chapter 6 concludes this thesis with a summary of its achievements and

presents possible directions for future research.
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Chapter 2

Image Based Rendering and the

Plenoptic Function

2.1 Introduction

The central concept in IBR is that a scene can be represented as a collection of light

rays emanating from its surface. A set of multi-view images, therefore, records the

scene as each image captures a collection of light rays travelling from the scene to a

camera. Using these images, a virtual view is rendered by interpolating a sub-set of the

light rays. This interpolation is easily performed if the number of images available is

very large. However, the requirement for so many images imposes significant costs. The

number of images can be reduced through knowledge of the scene, such as a 3D model

of its geometry. In this case, a virtual view is rendered by projecting each light ray

to the required viewpoint via the model. The resulting projections are then combined

using interpolation. A disadvantage of this approach is that high quality rendering

requires detailed 3D models and the generation of such models can be time consuming.

Another approach, and the focus of this thesis, is to model the light rays using the

concept of the plenoptic function proposed by Adelson and Bergen [2].

The plenoptic function models the intensity of all the light rays passing through

each point in space, thus providing a natural framework in which to study IBR [17].
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Figure 2.1: Diagram showing the 7D plenoptic function, where (x, y, z) is the view-
ing position, (v, w) is the viewing direction in terms of pixel coordinates, and τ and
µ are the time and wavelength, respectively.

Its full parametrisation comprises seven variables, three for the spatial viewing posi-

tion, (x, y, z), two for the angular viewing direction, (ϑx, ϑy), and the last two for the

time, τ , and wavelength, µ, dimensions. In many situations, however, it is convenient

to parametrise the viewing direction in pixel coordinates, (v, w). Therefore the full

plenoptic function is

p7 = p(x, y, z, v, w, µ, τ), (2.1)

as illustrated in Figure 2.1.

Using this function, IBR can be seen in terms of sampling and reconstruction. The

multi-view images represent the samples of the plenoptic function and the rendering of

a new view its reconstruction [69]. If there are too few samples or they are incorrectly

positioned, then the plenoptic function will be incorrectly sampled leading to a degra-

dation in the rendering quality. As a result, studying the sampling of the plenoptic

function can yield answers to the following: how many images are required in IBR and

where should these images be placed.

In view of this, the following chapter presents the state-of-the-art in sampling of

the plenoptic function and its application to IBR. It is organised as follows. Section

2.2 describes the range of plenoptic parametrisations that arise by restricting aspects

of the scene and the viewing position. In particular the section focuses on the structure

of two common plenoptic representations: the light field and the surface light field.

We then examine the sampling and reconstruction of the plenoptic function, known as



2.2 Parametrisation of the Plenoptic Function 43

plenoptic sampling, in Section 2.3. The section covers both uniform and non-uniform

camera placement, and the corresponding synthesis in each case. In Section 2.4 we

examine the use of depth information in IBR, in particular how rendering quality can

be improved with additional geometric knowledge. Finally, in Section 2.5, we end the

chapter with a summary of key points relevant to the remainder of the thesis. For other

detailed surveys on the plenoptic function and IBR see [52,69] and more recently [34,50].

2.2 Parametrisation of the Plenoptic Function

The high dimensionality of the plenoptic function makes theoretical analysis a chal-

lenging problem. A common solution is to reduce this dimensionality by restricting

certain aspects of the scene and sensing set-up [69]. With these restrictions, we can

re-parametrise the 7D plenoptic function into more tractable representations. In [69],

Zhang and Chen categorised plenoptic representations based on a combination of six as-

sumptions required to produce them. The proposed six assumptions can be divided into

those that restrict the scene and those that progressively restrict the viewing position,

i.e. from 3D to a 2D surface, then a 1D path and finally a fixed position.

For example the 6D surface plenoptic function [68] removes one dimension by as-

suming the radiance of a light ray is constant along its path through empty space.

Likewise, McMillan and Bishop [40] remove both the time and wavelength parameters

to construct their 5D plenoptic model. The time is removed by assuming a static scene

and then the wavelength is removed by splitting it into three bands (red, green and

blue). By using all of these assumptions, coupled with restricting the viewing position

to a surface, the authors in [51] construct the concentric mosaic representation. In

this representation the scene is captured by a single camera mounted to the end of a

rotating beam. As a result the intensity of a light ray is described using just three

parameters; the 2D pixel location and the beam’s angle of rotation.
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(a) (b)

Figure 2.2: Diagram (a) illustrates the 4D light field, p(t, u, v, w), in which a light
ray is defined by its location on the camera plane, (t, u), and its pixel location on
the image plane, (v, w) = (v′ − t, w′ − u). The distance between the two planes is the
focal length f . Diagram (b) illustrates the surface light field, l(s, r, θs, θr), which is
the intensity of a light ray emitted from a point (s, r) on the scene surface S at a
viewing direction (θs, θr).

2.2.1 Light Field and Surface Light Field Parametrisations

In this thesis we will focus on two popular plenoptic representations: the light field [37]

(similar to the lumigraph [27] or ray-space [24] representations) and the surface light

field [41,65]. Both parametrisations assume that the scene is static and the radiance of

a light ray is constant along its path through space. Therefore the spatial location of

the cameras can be simplified to a 2D surface. As a result both the light field and the

surface light field are four dimensional plenoptic representations. They differ, however,

in their approach to characterising a light ray using these four dimensions.

In the light field parametrisation the scene is bounded within a box and a pin-hole

camera model is assumed. Therefore each light ray is defined by its intersection with two

parallel planes, the camera plane, (t, u), and the image plane, (v, w). The separation

between the two planes is equal to the focal length, f . Therefore the intensity of the

light ray at camera location (t, u) and pixel location (v, w) is

p4 = p(t, u, v, w), (2.2)

see Figure 2.2(a) for a diagram. By re-introducing the time parameter, [63] proposed
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a time dependent version of the light field that can handle dynamic scenes. This new

representation was termed light field video. Another variant, is the spherical light field

proposed in [28]. In this case the scene is bounded within a sphere and each light ray

is defined by its intersection with two concentric spheres. Notice, however, that in this

framework, and its variations, the light ray is defined with respect to the receiving

camera position.

In contrast, the light ray in the surface light field is defined relative to its point

of origin on the scene surface, S. This surface is parametrised using two curvilinear

surface coordinates, (s, r), such that a point on the surface is defined as S(s, r) =

[x(s, r), y(s, r), z(s, r)]T , where [x, y, z]T is the real world coordinates [44]. The direction

the light ray leaves the surface is defined by the viewing angle (θs, θr), where θs and θr

are defined relative to the z-axis. Therefore the intensity of a light ray emitted from a

point (s, r) on the scene surface at a viewing direction (θs, θr) is

l4 = l(s, r, θs, θr). (2.3)

Similar to the light field, a diagram of this framework is shown in Figure 2.2(b).

On a final note, several authors [10, 17, 68] further reduce the dimensionality of

both parametrisations by considering only a horizontal slice of the scene. In the case

of the light field, u and w are fixed; this corresponds to the situation where the camera

positions are constrained to a line parallel to the x-axis and only one scan-line is

considered in each image. Therefore the intensity of the light ray at camera location t

and pixel location v is

p2 = p(t, v). (2.4)

For the surface light field, r and θr are fixed corresponding to a one dimensional surface,

S(s). Therefore the intensity of the light ray emitted from a surface point [x(s), z(s)]T ,

at viewing angle θs is

l2 = l(s, θs). (2.5)

Diagrams of the 2D light field and 2D surface light field are shown in Figure 2.3. For
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(a) (b)

Figure 2.3: Diagram (a) illustrates the 2D light field, p(t, v), in which a light ray is
defined by its intersection with the camera line at a location t and the corresponding
pixel location, v, on the image line. Diagram (b) illustrates the 2D surface light
field, l(s, θs), in which a light ray is defined by its point of origin, s, on the object
surface, S, at a viewing angle θs.

the remainder of this thesis we shall use (2.4) and (2.5) when analysing the light field

and surface light field, respectively. Accordingly, in the 2D surface light field, we drop

the s subscript from the viewing angle, referring to it only as θ.

2.2.2 Epipolar Plane Image

As covered in the last section, the 2D light field representation explicitly defines the

intensity of a light ray captured at a coordinate (t, v). Now, if we consider all possible

(t, v) coordinates, a visual representation of the 2D light field can be constructed. This

visual representation is known as the Epipolar Plane Image (EPI) [7] or EPI-volume

if we are considering 2D images. It highlights how the inherent structure in the linear

camera path leads to structure in the light field. For example a point at a depth z0, see

Figure 2.4(a), is mapped to a line in the EPI with a slope that is inversely proportional

to z0, see Figure 2.4(b). This structure leads to the following important characteristic:

lines with steeper slopes will always occlude lines with shallower slopes in the EPI

domain, in other words a point close to the camera will occlude those that are more

distant. Feldmann et al [21] introduced the notion of Image Cube Trajectories in order

to extend this visual tool to non-linear camera paths.

This concept of mapping a point in space to a line in the EPI can be generalised to
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(a) (b)

Figure 2.4: Diagram showing the 2D parametrisation of the light field (a), and its
EPI representation, (b). A point in (a) translates to a line in the EPI with a slope
inversely proportional to the depth of the point.

higher dimensional structures. For instance all the points at a certain depth will have

the same gradient or trajectory in the EPI. Thus a region in space, made from neigh-

bouring points, will result in a collection of trajectories in the EPI-volume [4]. Using this

observation, [15] decomposes the scene into layers and groups the resulting trajectories,

from each layer, into volumes called EPI-tubes. More generally, for higher dimensional

plenoptic representations, these volumes or hypervolumes are termed plenoptic mani-

folds [5].

2.3 Plenoptic Sampling

The discussion so far has focused on the continuous plenoptic function (or light field)

neglecting the constraints of the acquisition system (i.e. the cameras and the camera

network). The most basic constraint is that we have a finite number of cameras Nc

with a finite pixel resolution ∆v (hence a finite number of pixels Np). Consequently

we only have access to samples of the plenoptic function with which to render new

views. The quality of these rendered views depends on the how we reconstruct the

continuous plenoptic function from its samples. Plenoptic sampling, therefore, focuses

on maximising this reconstruction and in turn maximising the rendering quality. It

comprises the following problems: determining the minimum number of cameras re-

quired to reconstruct the plenoptic function; deciding how to position the cameras in
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order to maximise the reconstruction; and deciding how to combine the images such

that the best rendering quality is achieved.

The following discussion examines the state-of-the-art in plenoptic sampling. In

particular it focuses on uniform camera distribution in plenoptic sampling using a

Fourier framework, the approaches to non-uniform camera distributions in plenoptic

sampling and the reconstruction of the plenoptic function assuming either uniform or

non-uniform sampling. Note that we assume the sampling within each camera is an

intrinsic characteristic, which we cannot alter.

2.3.1 Uniform Sampling in a Fourier Framework

When the cameras are uniformly spaced, at a spacing ∆t, it is natural to analyse

plenoptic sampling within a classical Fourier framework. In such a framework, uni-

form sampling leads to spectral replication in frequency and the minimum sampling

requirement - the Nyquist density - is such that the replicas do not overlap. If these

replicas overlap then aliasing will occur. In plenoptic sampling, aliasing manifests itself

as artefacts in the rendering process [10]. As a result the plenoptic sampling problem

is reduced to determining the maximum camera spacing ∆t, such that the replicated

spectra do not overlap the original, and designing a reconstruction filter, Ψ(ωt, ωv),

that removes the replicas. With this in mind, we are interested in the properties of the

plenoptic spectrum, the Fourier transform of the plenoptic function. In particular its

spectral support which determines the Nyquist spatial sampling density.

The first spectral analysis of the plenoptic function was performed in [10]. Their

analysis involved using the structure of the EPI to map each image to a reference

position. Assuming a Lambertian scene1 with no-occlusion, the intensity of a point

in the scene, at a depth z0, is mapped to the reference image at t = 0 by p(t, v) =

1The Lambertian assumption means that the intensity of a light ray leaving a point on the scene
surface is independent of the angle the light ray leaves the surface. In other words the point looks the
same from any viewing angle.
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(a) (b)

(c) (d)

Figure 2.5: Diagrams of the plenoptic spectrum: (a) the plenoptic spectrum
bounded between ωv = ωtzmin/f and ωv = ωtzmax/f . (b) the ‘Bow-tie’ shaped
plenoptic spectrum caused by the pixel resolution, ∆v, inducing lowpass filter-
ing in ωv. (c) the optimal packing for the sampled plenoptic spectrum, where ∆t
is the camera spacing. (d) the reconstruction filter, Ψ(ωt, ωv), required for perfect
reconstruction.

p(0, v − ft/z0). Using this mapping, the plenoptic spectrum for the point at z0 is

P (ωt, ωv) = Ft,v {p(t, v)}

=

∫ ∞

−∞

∫ ∞

−∞
p(t, v) e−j(ωtt+ωvv) dtdv

=

∫ ∞

−∞

∫ ∞

−∞
p

(

0, v −
ft

z0

)

e−jωvve
−j

(

ωt−ωv
f
z0

)

t
dtdv

= P (ωv)δ

(

ωt − ωv
f

z0

)

, (2.6)

where P (ωv) is the Fourier transform of the reference image. Therefore the plenoptic

spectrum is defined along the line ωv = ωtz0/f .
2 Now, as pointed out by Chai et

al [10], if the scene has a maximum depth, zmax, and a minimum depth, zmin, then

2Note that in [10] the line is perpendicular to this due to a difference in the direction of v relative
to the camera line.
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the plenoptic spectrum is approximately bounded between the lines ωv = ωtzmin/f

and ωv = ωtzmax/f , see Figure 2.5(a). This analysis, however, implicitly assumes the

scene depth is approximately piecewise constant. This assumption is relaxed in [17,68],

allowing the authors to examine more complicated scenes.

Specifically, [17, 68] derived spectral properties for a broader range of scenes by

exploiting the equivalence between the plenoptic function and the surface light field.

This equivalence is formalised by modelling the scene with a functional surface. In this

framework, the depth of the scene surface, relative to the real world coordinate x, is

defined by the function z(x) and its texture is modelled as a bandlimited signal, g(s),

where s is the curvilinear coordinate on the surface. Now, assuming the camera line t

coincides with the x coordinate system, the authors link a light ray arriving at (t, v) to

its point of origin on the surface at (x, z(x)) using the following geometric relationship

t = x− z(x) tan(θ) = x− z(x)
v

f
, (2.7)

where f is the focal length and θ is the viewing angle. An illustration of this relationship

is shown in Figure 2.6. Provided this geometric relationship is a one-to-one mapping,

then the spatial position (x, z(x)) specifies a single curvilinear position s, which allows

the plenoptic function to be mapped to the surface light field and vice versa. The

provision of a one-to-one mapping is enforced in [17] by excluding scenes with occlusions.

Therefore z(x) is constrained such that

∣
∣z′(x)

∣
∣ <

f

vm
, (2.8)

where z′(x) is the first derivative of z with respect to x, and vm is the maximum value of

v for a camera with a finite field of view, hence v ∈ [−vm, vm]. Although this constraint

is not directly enforced in [68], a one-to-one relationship is achieved by selecting the

closest point to the scene that satisfies (2.7).

Formally, the mapping between the plenoptic function and the surface light field

is as follows. Equation (2.7) allows the mapping of the plenoptic function , p(t, v),
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to lx(x, v̄) the intensity of a light ray emitted from the spatial position (x, z(x)) at a

viewing direction defined by v̄ = v/f , i.e.

lx (x, v̄) = p (x− z(x)v̄, f v̄) . (2.9)

The surface light field, l(s, θ), is then obtained by mapping the spatial position x to

the curvilinear coordinate s and the viewing direction v̄ to the viewing angle θ, hence

l(s, θ) = lx (x(s), v̄(θ)) . (2.10)

The importance of this mapping is that spectral properties of the plenoptic function can

be derived by assuming properties of the surface light field without explicitly defining

the scene’s geometry. Therefore [17] derives the plenoptic spectrum in terms of lx(x, v̄)

and determines spectral properties based on its behaviour.

The plenoptic spectrum in question is obtained as follows: starting from its defini-

tion,

P (ωt, ωv) = Ft,v {p(t, v)}

=

∫ ∞

−∞

∫ ∞

−∞
p(t, v) e−j(ωtt+ωvv) dtdv, (2.11)

both integration variables are changed using (2.7) and v̄ = tan(θ) = v/f , which results

in a Jacobian of (1− z′(x)v̄)f . Consequently the following is obtained

P (ωt, ωv) =

∫ ∞

−∞

∫ ∞

−∞
p(x− z(x)v̄, f v̄) e−j(ωt(x−z(x)v̄)+ωvfv̄)(1− z′(x)v̄) f dxdv̄

=

∫ ∞

−∞

∫ ∞

−∞
lx(x, v̄) e

−j(ωt(x−z(x)v̄)+ωvfv̄)(1− z′(x)v̄) f dxdv̄. (2.12)

At this point two identities are introduced, the first is h(x, v̄) = lx(x, v̄)(1 − z
′(x)v̄)

and the second is Lx(x, ωv) = Fv̄ {lx(x, v̄)}. Using these identities, the integral in v̄
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Figure 2.6: General scene model showing the intersection of a light ray (t, v) with
the scene surface at (x, z(x)), where z(x) ∈ [zmin, zmax] is the depth of the surface.
Note that f is the focal length of the cameras and θ is the viewing angle.

becomes

H(x, ωv) = Fv̄ {h(x, v̄)} =

∫ ∞

−∞
h(x, v̄) e−jωv v̄ dv̄

= Lx(x, ωv)− jz
′(x)

∂Lx(x, ωv)

∂ωv
. (2.13)

Finally, inserting the above into (2.12), we obtain a general equation for the plenoptic

spectrum that is independent of the scene’s geometry:

P (ωt, ωv) = f

∫ ∞

−∞
H (x, ωvf − z(x)ωt) e

−jωtx dx. (2.14)

The first point to take from this equation is the dependency of the plenoptic spec-

trum on the slope of the surface z′(x). A dependency that was not apparent in (2.6).

Secondly, by using the fact that lx(x, v̄) = lx(x) for a Lambertian scene, [17] showed

that in frequency the following is true

Lx(x, ωv) = 0, if ωv 6= 0, (2.15)

which leads to

P (ωt, ωv) = 0, if ωvf − z(x)ωt 6= 0. (2.16)

Therefore, as z(x) ∈ [zmin, zmax], the plenoptic spectrum is precisely bounded by lines

relating to the maximum and minimum depths of the scene, see Figure 2.5(a). More-
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over, they formalised bounds for non-Lambertian scenes by assuming lx(x, v̄) is ban-

dlimited in v̄ to BL. Consequently relaxing the Lambertian assumption on the scene

results in an extended region around the plenoptic spectrum, a fact also highlighted

in [68, 70].

When considering the continuous plenoptic function, without regard to the acquisi-

tion network, the bounded spectrum defined above is band-unlimited unless the scene

surface is flat [17]. However the finite resolution of the acquisition devices induce

lowpass filtering in ωv at π/∆v, which in turn induces filtering in ωt. Therefore the

plenoptic spectrum is bandlimited in both ωv and ωt resulting in a ‘bow-tie’ shape, as

shown in Figure 2.5(b). Based on this shape, the optimal packing of the replicated

spectra at critical sampling is shown in Figure 2.5(c). To achieve this packing, without

overlap occurring, [10] derive the following maximum camera spacing

∆tC =
2π

Ωvf
(

1
zmin
− 1

zmax

) , (2.17)

where Ωv is the maximum frequency in ωv (in the worse case it is equal to π/∆v). In

terms of the reconstruction filter Ψ(ωt, ωv), a slanted rectangular window is required

to remove the replicated spectra, see Figure 2.5(d). The support of this reconstruction

filter in the frequency domain is

Rψ =

{

ωt, ωv : ωv ∈ [−Ωv,Ωv] , ωt ∈

[
ωvf

zC
−

π

∆t
,
ωvf

zC
+

π

∆t

]}

, (2.18)

where the slant of the filter is determined by f and zC, which is defined as

1

zC
=

1

2

(
1

zmax
+

1

zmin

)

. (2.19)

It is worth noting that (2.17) and (2.19) are solutions to the uniform plenoptic sam-

pling problem but only for the case of a Lambertian scene with no occlusion. Bearing

this in mind, several researchers have extended the spectral analysis of the plenoptic

function to more general situations. As noted earlier, [17,68,70] relaxed the Lambertian
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assumption on the scene surface and [68,70] examined scenes with occlusions. In both

situations the spectral support of the plenoptic function increased, hence decreasing the

camera spacing. However the structure of the reconstruction filter is not altered [70].

Finally, using the mapping introduced in [10], [13] examined the effect on the plenoptic

spectrum when the camera path is varied.

2.3.2 Non-Uniform Sampling

In general uniform plenoptic sampling is most efficient when the scene in question

is relatively constant (in either depth or texture), however, in reality, this cannot be

guaranteed. In order to avoid undersampling, the camera spacing becomes conservative

and is determined by the largest depth and the largest texture variation in the scene.

The problem of such an approach is that it may limit the sampling efficiency in certain

scenes [70]. For example if the scene is relatively constant, with only a small section

containing large variation, then uniform sampling will result in the majority of the

scene being oversampled.

The solution is to allow irregular or non-uniform camera placement that depends

on the scene (termed free-form sampling in [70]). The difficulty with sampling the

plenoptic function in such a way is that there are many possible camera configurations

to choose from. Therefore more constraints are required to determine the camera

positions. Based on the heuristics used to position the cameras, non-uniform plenoptic

sampling can be split into three categories; sample reduction (SR), active incremental

capturing (AIC) and active rearranged capturing (ARC) [70].

In SR an initial image set is generated by uniformly oversampling the scene. This

image set is then minimised based on some quantitative criteria. For example, using a

mesh model of the scene, [22] ranks each image based on the proportion of scene ele-

ments covered. The reduced image set is then generated by selecting the images with

the highest rank (i.e. those that cover the highest proportion of scene elements). In a

similar fashion, [43] filters the initial image set based on an analysis of the scene ge-

ometry. Another, slightly different approach, involves mapping the plenoptic function

to a different sampling matrix using multi-dimensional lattice theory [70]. Thus redun-
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(a) (b)

Figure 2.7: Diagrams illustrating how new images are introduced when using AIC
to non-uniformly sample the scene. In (a) a single image is introduced in a con-
centric mosaics representation [67] and in (b) multiple images are introduced in a
4D light field representation [70]. A new image is inserted between an image pair
based on the reconstruction error.

dancy in the image set is removed by non-rectangular down-sampling of the plenoptic

function. However, the main limitation of SR is that it initially requires a large number

of images to ensure the scene is oversampled and then discard those that are deemed

redundant.

A valid alternative is to use AIC to non-uniformly sample the scene. In contrast to

SR, the scene is initially undersampled uniformly and intermediate samples are added to

reduce a local reconstruction error. This is repeated until the average local reconstruc-

tion error is below a threshold. Figure 2.7 illustrates how new samples are introduced

in a concentric mosaic representation [67] and in a 4D light field representation [70].

A systematic framework for AIC was presented in [67] using the position-interval error

(PIE) as a measure of the average reconstruction error for any pair of samples. Thus

the goal is to have a uniform PIE for each pair of samples. A good estimate of the PIE

is the local colour consistency [67]. Another example of AIC is [47], in which an adap-

tive mesh is used to define the camera positions. New camera positions are introduced

on the edges of the mesh in order to reduce the estimated reconstruction error between

the nearest source images.

The final category in non-uniform plenoptic sampling is ARC. It involves reposi-

tioning a limited set of cameras in order to improve rendering quality on the fly. The

main advantage of repositioning the cameras on the fly is that ARC can sample and

render dynamic scenes. In contrast both SR and AIC methods require a two stage
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sampling process, a uniform stage followed by a selective stage, consequently both are

restricted to static scenes. An example of ARC is presented in [71], where Nc cameras

are used to render Nv views, assuming Nv > Nc. The new camera positions are de-

termined by minimising the sum of the squared rendering errors. This minimisation

is solved iteratively using the local colour consistency as an estimate of the rendering

error. The cameras are initialised on a uniform grid and then progressively moved to

new positions based on the minimisation, hence allowing the system to be applied to

dynamic scenes.

2.3.3 Reconstructing the Sampled Plenoptic Function

In the Section 2.3.1, we presented a filter for uniform reconstruction of the plenoptic

function in the frequency domain. A drawback of such a filter however is that it has

a fixed skew equal to zC/f . This is equivalent to assuming the scene has a constant

depth at zC and rendering all images accordingly. To overcome this issue [59] propose

reconstructing the plenoptic function using a set of different filter skews and then

determining the optimum for each pixel. In other words they render at several depths

and fuse the resulting images.

Alternatively, a common approach in both uniform and non-uniform sampling is

to simplify the reconstruction filter to a local interpolation [9, 14, 27, 37, 38, 58]. Using

this method, a point in the plenoptic function is calculated through the weighted inter-

polation of the K nearest samples captured by the cameras. If no depth information

is available, the interpolation is performed using the K neighbouring samples of the

plenoptic function. However, unless the multi-view image set is very dense, these neigh-

bouring samples will correspond to different points in the scene leading to rendering

artefacts occurring in the reconstruction. With access to depth information, the struc-

ture of the EPI can be used to aid the interpolation and improve the reconstruction.

The depth information allows the local interpolation to be perform along the EPI lines.

Therefore, if the depth information is correct, the K samples used in the interpolation

will correspond to the same point in the scene. For example, if K = 2, then a 2D

EPI (or 3D EPI-volume) is reconstruction using a linear interpolation along the EPI
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line. In [27,37], this linear interpolation is extended to a quadrilinear interpolation for

a 4D light field. In view of this, a simple reconstruction method for a 2D EPI (or 3D

EPI-volume) is to assume a rough depth model, such as a plane at a constant depth

z0, and then perform linear interpolation along the EPI lines using a gradient of f/z0.

Another approach, used in [70, 71], is to consider the local interpolation in terms

of light rays. Therefore, the interpolated light ray is computed using the K nearest

light rays capture by the cameras. Assuming a rough depth model of the scene, these

K light rays are chosen based on the angular difference between the captured light ray

and the interpolated light ray. Having determined these K light rays, the inverse of

their angular difference is used as the interpolation weights. Note that the weights are

normalised to ensure they sum to 1. The weights can also be design to incorporate

other aspects such as finite field of view and camera resolution [70].

Finally, in [58] the linear interpolation between two adjacent stereo images is anal-

ysed assuming inaccurate depth information. Assuming a probabilistic distribution of

depth errors, the authors present an optimised interpolation using two pixel-varying

filters, termed combining filters. A similar approach is presented in [9] for multiple

unstructured input images.

2.4 Depth Information in IBR

An interesting result from the spectral analysis in Section 2.3.1 is that the number

of images required to reconstruct the plenoptic function depends on aspects of the

scene depth. This interplay between the number of images required and the amount

of depth information available was examined in [10]. The authors observed that the

maximum camera spacing, defined in (2.17), depends on knowledge of the maximum

and minimum depths of the scene (i.e. the depth variation). Now if more depth

information is available then the scene can be decomposed into multiple depth layers

and sampled separately. This is equivalent to sampling multiple scenes with smaller

depth variation thus reducing the overall number of images required. Therefore, using
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Figure 2.8: Diagram showing the number of images, Nc, required in IBR as a
function of the depth layers, Nd, available. The minimum sampling curve, proposed
in [10], is determined from (2.20). Point A in the diagram marks the number of
images required if Nd = 1, it is determined using Equation (2.17).

depth layers, the maximum uniform spacing between adjacent cameras becomes

∆tC,d =
2πNd

Ωvf
(

1
zmin
− 1

zmax

) , (2.20)

where Nd ≥ 1 is the number of depth layers. From this expression, [10] constructed a

minimum sampling curve in terms of the number of images required against the number

of depth layers available, see Figure 2.8. Operating at a point above this line will

result in redundancy (i.e. oversampling the plenoptic function), whereas undersampling

occurs if you operate at a point below the line.

This trade-off between the number of images required and the amount of depth

information available has been described previously in [11, 34, 50, 52, 69]. For the pur-

pose of this thesis, however, IBR techniques involving depth information are roughly

classified into three groups according to the amount of depth information used.

The first group comprises techniques that use a limited amount of depth information

to render new views. An example is the uniform plenoptic sampling highlighted in

Section 2.3.1, which requires only the maximum and minimum depths of the scene.

Using slightly more depth information, techniques, such as the pop-up light field [53]

and IBR objects [25], assign a single depth value to coherent segments of the image set.
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This is equivalent to approximating the scene with a piecewise constant depth model.

In a similar fashion, [5] uses a finite number of depth layers to decompose the plenoptic

function into a series of plenoptic manifolds. Limited depth information is also present

in the lumigraph [27], and unstructured lumigraph [9], in the form of a rough depth

model.

In contrast to the first group, IBR techniques in the second classification assume

that detailed depth information is available. In this context, detailed depth information

means that each view in the image set has a corresponding depth map i.e. a per-pixel

depth as well as a per-pixel colour. Consequently new views are rendered in two steps;

in the first step the existing images are mapped to the new viewpoint and then, in

the second step, the new image is generated by blending the warped images [18]. This

process of rendering new views using per-pixel depth is known as depth IBR (DIBR),

a term coined in [19, 20]. Recently many DIBR techniques have been proposed such

as [18, 42, 54, 55, 73, 74]. In view of this, the authors in [44] analysed the rendering

quality obtained from DIBR. Their analysis focused on the distortion in an arbitrary

view caused by the IBR configuration, for example errors in the depth and intensity

information.

Finally, the last classification covers IBR techniques that use 3D scene models. For

example, the layered depth image (LDI) [49], and its extension, LDI trees [12], construct

a geometric representation of the scene using a multi-valued image. The image records

all the colour and depth information that exists along the line of sight of each pixel.

Also, by definition, this last group includes model-based rendering (MBR) techniques,

such as [66].

In general the depth information in question is computed using multi-view stereo

vision algorithms [42,48]. The disadvantage of such algorithms is that they are compu-

tationally intensive and prone to inaccuracies [18,34]. However with the recent increase

in low-cost reliable depth cameras [32], such as Microsoft’s Xbox Kinect, this depth in-

formation can be captured on-line without the additional computation. This paves the

way for multi-view systems containing both colour and depth cameras. For a state-of-

the-art on depth camera technology and active 3D scene capture see [23, 32, 57].
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2.5 Summary

IBR can be posed as the problem of sampling and reconstructing the plenoptic function.

The multi-view image set, in this scenario, represents the samples of the plenoptic

function and the rendering of a new viewpoint its reconstruction. A problem, however,

is that a large number of images are required to sample the plenoptic function. If too

few images are available, the plenoptic function is undersampled leading to artefacts

when rendering new views. Accordingly, the number of images required for artefact-

free rendering, and their optimum positioning, can be determined through sampling

analysis of the plenoptic function. In this chapter, we have presented the state-of-the-

art in plenoptic sampling analysis, in particular focusing on the optimum sampling

efficiency in both a uniform and non-uniform framework. We also examined the use

of depth information in IBR and how it can be used to compensate a reduction in the

number of images. A summary of the key points are as follows:

• In this thesis we shall use the 2D light field and 2D surface light field representa-

tions of the plenoptic function.

• Assuming uniform camera distribution, the optimal camera spacing and recon-

struction filter are determined through spectral analysis of the plenoptic function.

• The plenoptic spectrum of a Lambertian surface is precisely bounded between

lines relating to the maximum and minimum depths of the scene.

• In general, maximum sampling efficiency requires non-uniform camera placement.

This is divided into three approaches; sample reduction (SR), active incremental

capturing (AIC) and active rearranged capturing (ARC).

• Additional depth information can either be used to improve the reconstruction

of the plenoptic function or to reduce the number of images without altering the

quality.

• The additional depth information is either computed off-line using multi-view

stereo algorithms or captured using depth cameras.
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Chapter 3

Plenoptic Spectral Analysis

3.1 Introduction

In this chapter we re-examine the spectral analysis of the plenoptic function incorporat-

ing two realistic conditions: finite scene width (FSW) and cameras with finite field of

view (FFoV). The novelty of this approach is that we are able to analyse the plenoptic

spectrum for a larger class of scene geometry. In contrast, the spectral analysis reviewed

in Chapter 2 only uses FFoV in order to impose the no-occlusion constraint (2.8) on

the scene surface. It is not applied to the actual spectral analysis. Consequently, the

resulting analysis is only valid for scenes without depth variation.

Using these finite conditions, we analyse the plenoptic spectrum for a 1D slanted

plane (a simplification of a 2D planar facet for the 2D light field and 2D surface light

field parametrisations). The appeal of such a scene is two fold: first we are able to

derive exact spectral properties of its plenoptic spectrum. Second, it can be used as a

basis to construct more complicated scenes. Therefore we can apply knowledge gained

from the slanted plane to sample the plenoptic functions relating to more complicated

scenes.

It is worth noting that a spectral analysis of a slanted plane under FFoV has previ-

ously been analysed in [68]. This analysis, however, did not incorporate any constraint

on the width of the plane. As a result the derived plenoptic spectrum was indepen-

dent of ωv. Thus, to bound the spectrum in ωv, the authors assumed the approximate
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spectral bounds presented in [10], i.e. the spectral bounds relating to the maximum

and minimum depths of the scene outlined in Section 2.3.1. In contrast, our analysis

results in an exact expression for the spectrum hence allowing greater understanding

of its structure and behaviour as scene parameters alter.

In this chapter we start by formalising the scene geometry for a slanted plane in

Section 3.2. We then, in Section 3.3, examine the effects of FFoV and FSW on the

plenoptic spectrum for a slanted plane. In particular, we derive an exact closed-form

expression for the plenoptic spectrum of a Lambertian slanted plane with complex ex-

ponential texture. This spectral analysis is then extended to scenes comprising multiple

slanted planes. Using this closed-form expression, Section 3.4 examines in detail the

behaviour of the plenoptic spectrum for a slanted plane and determines a characteristic

structural model for the spectrum. In Section 3.5, as an alternative to altering the

scene, we examine the effects of rotating the camera line about a point and derive the

resulting plenoptic spectrum. We end the chapter with a summary of key points in

Section 3.6.

3.2 Scene Geometry for a Slanted Plane

In this thesis, the geometry of a scene is modelled using the framework presented

in [17, 68]. This framework uses functional surfaces and textures to model the scene.

If we assume a horizontal slice of the scene, at a fixed height y0, then the framework

comprises three functions: z(x) the depth of the scene relative to x, x(s) the mapping

of the curvilinear coordinate s onto x, and g(s) the texture signal pasted to the scene

surface. Collectively, we shall term these the scene geometry equations Gs.

For the slanted plane, illustrated in Figure 3.1, the functions z(x) and x(s) are

determined using trigonometry, and the texture signal is assumed to be bandlimited.
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Figure 3.1: Diagram illustrating the scene geometry for a slanted plane with a
texture signal, g(s), pasted to the surface. The plane is dictated by three elements;
the slant of the plane, φ, the width of the plane, T , and the starting position of the
surface, (x1, z1). The texture signal is defined in terms of a curvilinear coordinate
s ∈ [0, T ]. Notice that if φ > 0 then z2 > z1, however, if φ < 0 then z2 < z1.

Consequently the scene geometry equations are

Gs =







z(x) = (x− x1) tan(φ) + z1

x(s) = s cos(φ) + x1 for s ∈ [0, T ]

g(s)
F
→ G(ω) and G(ω) = 0 for |ω| > ωs

(3.1)

where ωs is the maximum frequency of the texture signal, φ is the angle between the

plane and the x-axis and T is the length of the plane. The spatial coordinate (x1, z1)

indicates the starting point of the plane, in other words the origin for the curvilinear

coordinate s, and, due to FSW, (x2, z2) indicates the end point of the plane. At (x2, z2)

the curvilinear coordinate is equal to the width of the plane, i.e. s = T , which leads to

the following relationship

T =
x2 − x1
cos(φ)

=
z2 − z1
sin(φ)

. (3.2)

Notice that this model of the slanted plane allows both positive and negative values

of φ to occur, leading to the following

z1 < z2 if φ > 0,

z1 > z2 if φ < 0,

z1 = z2 if φ = 0.
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The absolute magnitude of φ, however, is restricted as we impose the no-occlusion

constraint from [17] on the scene. The constraint, defined in (2.8), limits the magnitude

of the slope of the surface, z′(x), which is equal to tan(φ) for a slanted plane. The

resulting bound on φ is
∣
∣φ
∣
∣ < tan−1

(
f

vm

)

. (3.3)

In the discussion so far we have only considered a scene comprising a single object,

a single slanted plane. However, in general, a scene can consist of an arbitrary number

of such objects, each separate from one another. For such a scene, the imposition of

the no-occlusion constraint results in the objects being sufficiently far apart to avoid

occluding each other. Consequently we can treat each object independently and deter-

mine their plenoptic spectra separately. Therefore, the plenoptic spectrum of a scene,

comprising multiple separate objects, is the sum of the individual spectra correspond-

ing to each object. In view of this, we shall focus on scenes that only comprise a single

finite object. This finite object can comprise multiple slanted planes, but its surface

will be continuous. In practise, this constraint is restrictive as most real scenes contain

occlusions. However, Zhang and Chen [68] proposed a method for dealing with occlu-

sions and extended the framework in Section 2.3.1 to cover such scenes. Their method

involved modelling occlusions as masks applied to the plenoptic function and using the

properties of the Fourier transform to determine the plenoptic spectrum. Therefore,

using a similar method, we could extend any results we derive to scenes with occlusions.

3.3 Spectral Analysis under FFoV and FSW

To illustrate the effects of FFoV and FSW, we first examine the simpler case when φ = 0,

i.e. a fronto-parallel plane. We initially assume that the scene is not constrained by
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FFoV or FSW, thus the scene geometry equations are

GFPP =







z(x) = zc

x(s) = s

g(s)
F
→ G(ω) and G(ω) = 0 for |ω| > ωs

(3.4)

where zc is a constant depth. An example of a synthetic EPI generated by an un-

constrained fronto-parallel plane is illustrated in Figure 3.2(a). As highlighted in this

example, we also assume that the surface is Lambertian. This assumption, as noted

earlier, means that lx(x, v̄) = lx(x) and, when applied to (2.10), results in the following

lx(x(s)) = l(s) = g(s). (3.5)

Having defined the scene, its plenoptic spectrum is determined by introducing (3.4)

and (3.5) into the general equation defined in (2.12). Therefore the spectrum is

PFPP (ωt, ωv) =

∫ ∞

−∞
lx(x) e

−jωtx

∫ ∞

−∞
f
(
1− z′(x)v̄

)
e−j(ωvf+z(x)ωt)v̄ dv̄dx

=

∫ ∞

−∞
g(s) e−jωts ds

∫ ∞

−∞
f e−j(ωvf+zcωt)v̄ dv̄, (3.6)

since z′(x) = 0. By solving (3.6) we arrive at the result first presented in [10], namely

that the spectrum is a line in the (ωt, ωv)-domain, given by

PFPP (ωt, ωv) = G(ωt) δ

(

ωv −
zc ωt
f

)

. (3.7)

This type of plenoptic spectrum is shown in Figure 3.3(a). It is the corresponding

plenoptic spectrum for the synthetic EPI illustrated in Figure 3.2(a).

Now if we constrain the cameras to a FFoV, such that v̄ ∈ [−v̄m, v̄m] and v̄m = vm/f ,

then the second integral in (3.6) has a finite range. Intuitively, this finite range can

be viewed as applying a rectangular window function in the EPI domain. The effect

of this windowing in the EPI domain is illustrated in Figure 3.2(b) using the previous

synthetic EPI from part (a). The integral in v̄, therefore, is the Fourier transform of
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the window function, hence the spectrum becomes

PFPP (ωt, ωv) = 2vmG(ωt) sinc

(

ωvvm − ωt
zcvm
f

)

, (3.8)

where the sinc function1 is the Fourier transform of the window function. Consequently

the FFoV constraint results in spectral spreading along the ωv-axis. Figure 3.3(b)

illustrates the extent of this spectral spreading on the plenoptic spectrum corresponding

to the EPI in Figure 3.2(b).

A similar result occurs if we constrain the scene to be of finite width T , such that

s ∈ [0, T ]. In this case it is the first integral in (3.6) that has a finite range, which

can be expressed as another rectangular window function. Using the same synthetic

EPI, this new windowing in the EPI domain is shown in Figure 3.2(c). As a result, the

integral in s is the Fourier transform of the product of the two functions, the window

and the texture signal, which leads to

PFPP (ωt, ωv) = T

(

G(ωt) ∗ sinc

(
ωtT

2

)

e−jωt
T
2

)

δ

(

ωv −
zcωt
f

)

, (3.9)

where ∗ is the convolution operator. This time the spectral spreading in the plenoptic

spectrum is along the line ωv = ωtzc/f . The corresponding spectral illustration of this

effect is shown in Figure 3.3(c).

Finally if we apply both constraints, as illustrated in Figure 3.2(d), then the corre-

sponding plenoptic spectrum is a combination of the two previous cases, so we obtain

PFPP (ωt, ωv) = 2vmT sinc

(

ωvvm − ωt
zcvm
f

)(

G(ωt) ∗ sinc

(
ωtT

2

)

e−jωt
T
2

)

. (3.10)

Similar to the previous cases, the corresponding spectral illustration of (3.10) is shown

in Figure 3.3(d). The importance of this analysis is that, even assuming a constant

depth and Lambertian surface, the FFoV and FSW constraints introduce spectral

spreading in the frequency domain, which lead to a band-unlimited plenoptic spec-

trum. Consequently, if we now introduce depth variation by analysing a slanted plane,

1We use the definition sinc(h) = sin(h)/h when h ∈ R.
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we can expect the finite constraints to result in similar spectral spreading. In other

words its plenoptic spectrum will be band-unlimited as well.

3.3.1 Analysis of a Slanted Plane

Using the geometry defined in (3.1), we will now examine the plenoptic spectrum for

a slanted plane assuming FFoV and FSW. To determine an exact expression for this

spectrum, we need to specify the bandlimited signal, g(s), used to model the scene’s

texture. For example, in [17,68], the authors use a sinusoidal signal comprising a single

sine wave as texture in their analysis. This type of texture signal, however, can be

decomposed into complex exponentials. Therefore, due to the linearity of the Fourier

transform, the corresponding plenoptic spectrum is the sum of the individual spectra

relating to each complex exponential. In view of this, we assume that the texture

signal is a complex exponential, g(s) = ejωss. Under this assumption, we are able

to determine an exact closed-form expression for the plenoptic spectrum, which can

then be extended to more complicated texture signals using the linearity of the Fourier

transform. The key stages of its derivation are outlined below and the full derivation

is included as Appendix A.

Similar to the fronto-parallel case, we start with the general equation in (2.12). From

this we assume a Lambertian surface and then apply the FSW and FFoV constraints,

to obtain

P (ωt, ωv) =

∫ x=x2

x=x1

lx(x) e
−jωtx

∫ v̄= v̄m

v̄=−v̄m

(
1− z′(x)v̄

)
f e−j(ωvf−z(x)ωt)v̄ dv̄dx. (3.11)

In contrast to the case of the fronto-parallel plane, (3.6), these integrals are no longer

separable as z(x) is not a constant and z′(x) = tan(φ). Therefore we solve the integral

in v̄ first, to obtain

P (ωt, ωv) = 2vm

∫ x2

x1

lx(x)

(

sinc(ωI)− j
z′(x)vm

f
sinc′(ωI)

)

e−jωtx dx, (3.12)
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Figure 3.2: Diagram illustrating the windowing effects of FSW and FFoV in the
EPI domain for a synthetic EPI with bandlimited texture. The constraints are as
follows; (a) unconstrained EPI, (b) only FFoV, (c) only FSW, and (d) both FFoV
and FSW.
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Figure 3.3: Diagram illustrating the windowing effects of FSW and FFoV on the
plenoptic spectrum for a synthetic EPI with bandlimited texture. The constraints
are as follows; (a) unconstrained EPI, (b) only FFoV, (c) only FSW, and (d) both
FFoV and FSW. The corresponding EPI’s are shown in Figure 3.2.
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where sinc′(ωI) is the first derivative of the sinc function with respect to its argument2,

and ωI depends on x as follows

ωI = ωvvm − z(x)
ωtvm
f

.

At the moment, however, (3.12) defines the plenoptic spectrum for a general Lambertian

scene with no occlusion, in other words it is independent of scene geometry. The

expression illustrates the complex nature of the finite constraints when analysing scenes

with depth variation. For the specific case of a slanted plane with complex exponential

texture, defined in (3.1), the equation becomes

PS(ωt, ωv) =M1

∫ T

0
g(s)

[

sinc(ω̂I)− j
vm tan(φ)

f
sinc′(ω̂I)

]

e−jωt cos(φ)s cos(φ) ds

(3.13)

where M1 = 2vm e
−jωtx1 and ω̂I = ωvvm − (s sin(φ) + z1)

vm
f
ωt.

Finally, by solving the integral in s, we obtain a closed-form expression for the

plenoptic spectrum of a slanted plane. Before presenting this expression, we define the

following three quantities

a = ωvvm − ωt
z2vm
f

, b = ωvvm − ωt
z1vm
f

, and c =
ωsf − fωt cos(φ)

sin(φ)ωtvm
.

Notice that a and b depend respectively on the depths z2 and z1, shown in Figure 3.1,

and c depends on the frequency of the texture signal ωs. Consequently the expression

for the spectrum, in terms of these quantities, is

PS(ωt, ωv) =

(
j2vm
ωt

[

sinc(a) e−jT (ωt cos(φ)−ωs) − sinc(b)
]

+
j ωsf

sin(φ)ω2
t

[

ζ {jb(c− 1)}

−ζ {ja(c− 1)} − ζ {jb(c+ 1)}+ ζ {ja(c+ 1)}
]

ejbc
)

e−jωtx1 ,

(3.14)

2sinc′(h) = cos(h)/h− sin(h)/h2 when h ∈ R.
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if ωt 6= 0, else

PS(0, ωv) = 2vmT sinc

(
ωsT

2

)[

cos(φ)sinc (ωvvm)− j
sin(φ)vm

f
sinc′(ωvvm)

]

ejωs
T
2 .

The function ζ is defined as

ζ {jh} =







E1(jh) + ln |h|+ j π2 + γ if h > 0,

E∗
1(j |h|) + ln |h| − j π2 + γ if h < 0,

0 if h = 0,

where h ∈ R, γ is Euler’s constant, E1(jh) is the exponential integral [1] and E∗
1(jh)

is its complex conjugate. Figure 3.4(a) shows an example of a plenoptic spectrum

obtained using this expression. The spectrum in the figure corresponds to a slanted

plane with a texture signal g(s) = cos(ωss) = ejωss + e−jωss, hence (3.14) is calculate

for both exponentials and then combined.

To give some insight into this result, let us examine the effect of the quantities a,

b and c on the expression in (3.14). In particular, we are interested in the situations

when a = 0, b = 0, c + 1 = 0 and c − 1 = 0. Starting with a = 0 and b = 0, these

conditions occur when the following occurs in frequency

ωv = ωt
z2
f

and ωv = ωt
z1
f
,

respectively. Therefore, when applied to (3.14), each condition yields a diagonal line

in the plenoptic spectrum that relates to either z1 or z2. Given that z1 and z2 are the

limits of the plane’s depth, these diagonal lines form the basis of the ‘bow-tie’ shape

shown in Figure 2.5(b). Note, however, that the spectrum is no longer bound between

these lines. If we now consider c + 1 = 0 and c − 1 = 0, these conditions occur when

the following occurs in frequency

ωt =
ωsf

f cos(φ) + sin(φ)vm
and ωt =

ωsf

f cos(φ)− sin(φ)vm
,
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respectively. Therefore, when applied to (3.14), each condition yields a vertical line the

plenoptic spectrum. We shall examine these characteristics in more detail in Section

3.4.

On a final note, the expression defined in (3.14) is also consistent with the spectrum

for a fronto-parallel plane defined in (3.10). In other words, if we assume a complex

exponential texture in (3.10), then the following is true:

lim
φ→0

{

PS(ωt, ωv)
}

= PFPP (ωt, ωv). (3.15)

For proof of this relationship see Appendix B.1.

3.3.2 Extending to Multiple Slanted Planes

Finally, we generalise the previous spectral analysis to scenes comprising multiple

slanted planes. In this case, assuming the surface is continuous, the scene geometry

equations are the set of the individual geometry equations for each plane. Therefore,

given a scene comprising Ls slanted planes with complex exponential texture, the ge-

ometry is described as follows

GMP = Gs,i , if x ∈ [xi, xi+1] ∀ i = 1, . . . , Ls (3.16)

where xi and xi+1 are the starting and ending spatial positions of the ith plane in

the surface and Gs,i are the corresponding scene geometry equations. These individual

scene geometry equations, Gs,i, are defined as follows

Gs,i =







z(x) = (x− xi) tan(φi) + zi

x(s) = (s− si) cos(φi) + xi

g(s) = ejωss

(3.17)
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where si ∀ i = 1, . . . , Ls is an offset parameter in order to preserve the consistency in

the curvilinear coordinate. These offsets parameters are defined as

si =







0 if i = 1,

∑i−1
k=1 Tk if i = 2, . . . , Ls.

(3.18)

Consequently the overall range of the curvilinear coordinate is s ∈ [0, sLs ].

The inclusion of this offset parameter results in a phase shift occurring in the cor-

responding plenoptic spectrum. As a result, using the same procedure as detailed in

Appendix A, the plenoptic spectrum for the ith plane in the surface is

PS,i(ωt, ωv) =

(
j2vm
ωt

[

sinc(ai) e
−jT (ωt cos(φi)−ωs) − sinc(bi)

]

+
j ωsf

sin(φi)ω2
t

[

ζ {jbi(ci − 1)}

−ζ {jai(ci − 1)} − ζ {jbi(ci + 1)}+ ζ {jai(ci + 1)}
]

ejbici
)

e−j(ωtxi−siωs),

(3.19)

if ωt 6= 0, else

PS,i(0, ωv) = 2vmTi sinc

(
ωsTi
2

)[

cos(φi)sinc (ωvvm)

−j
sin(φi)vm

f
sinc′(ωvvm)

]

e
jωs

(

si+
Ti
2

)

.

The parameters ai, bi and ci in (3.19) are

ai = ωvvm − ωt
zi+1vm
f

, bi = ωvvm − ωt
zivm
f

, and c =
ωsf − fωt cos(φi)

sin(φi)ωtvm
.

Therefore, using the linear property of the Fourier transform, the overall plenoptic

spectrum for a scene comprising Ls slanted planes with complex exponential texture is

PMP (ωt, ωv) =

Ls∑

i=1

PS,i (ωt, ωv) . (3.20)
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(a) (b)

(c) (d)

Figure 3.4: Diagram (a) shows the plenoptic spectrum for a slanted plane with a
texture signal g(s) = cos(ωss). The same spectrum is shown in (b), (c) and (d) each
with different characteristics of the spectrum superimposed. These characteristics
are: (b) the diagonal lines relating to the maximum and minimum depths of the
plane, (c) the four vertical lines relating to the modulation of the texture signal
when projected onto the image plane and (d) the two quadrilateral regions enclosed,
TR1 and TR2. Note that Ωmax = ωsf/(f cos(φ) − sin(φ)vm) and Ωmin = ωsf/(f cos(φ) +
sin(φ)vm).

3.4 Behaviour of the Spectrum for a Slanted Plane

As predicted, the plenoptic spectrum for a slanted plane under FSW and FFoV is band-

unlimited. However, by analysing our closed-form expression, we can characterise the

magnitude of the spectrum. This characterisation results in a structural model of the

plenoptic spectrum that can qualitatively describe how the spectrum changes with the

properties of the scene. As most scenes have non-complex texture, we shall assume a

real, sinusoidal texture signal, comprising a positive and negative complex exponential,

when examining this structural model. Under this assumption, the structural model
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comprises two bounded regions constructed from six lines. The first two lines are

diagonal and relate to the maximum and minimum depths of the slanted plane, i.e.

ωv = ωt
zmax

f
and ωv = ωt

zmin

f
,

where zmax = max {z1, z2} is the maximum depth and zmin = min {z1, z2} is the min-

imum. In terms of the plenoptic spectrum in (3.14), these lines correspond to the

situation when a = 0 or b = 0. Using the same plenoptic spectrum as shown in Figure

3.4(a), these diagonal lines are illustrated in Figure 3.4(b).

The other four lines are vertical and relate to the modulation of the texture signal

when projected into the image plane. Using the rotational symmetry of the plenoptic

spectrum, these four form two pairs ωt = ±Ωmax and ωt = ±Ωmin, where Ωmax repre-

sents the maximum frequency of the modulated texture signal and Ωmin represents its

minimum. These quantities are defined as follows

Ωmax =
ωsf

f cos(φ)− |sin(φ)| vm
and Ωmin =

ωsf

f cos(φ) + |sin(φ)| vm
,

see Figure 3.4(c) for an illustration. Notice that these quantities correspond to c+1 = 0

and c − 1 = 0 in (3.14). In [17] this modulation of the texture signal is shown to be

equivalent to time-warping the texture signal with a scene dependent warping function.

Therefore the single sinusoidal texture pasted to the synthetic scene in Figure 3.4

is warped when projected into the image plane, thus smearing the single frequency

component into a range of frequencies.

Finally, the two bounded regions are the areas enclosed by the intersection of these

lines, see Figure 3.4(d) for an illustration. From the figure we observer that the two

quadrilaterals, marked TR1 and TR2, contain most of the energy of the plenoptic spec-

trum. Mathematically the quadrilateral regions are defined as

TR1 =

{

ωt, ωv : ωt ∈ [Ωmin,Ωmax] , ωv ∈

[

ωt
zmin

f
, ωt

zmax

f

]}

, (3.21)



76 Chapter 3. Plenoptic Spectral Analysis

and

TR2 =

{

ωt, ωv : ωt ∈ [−Ωmax,−Ωmin] , ωv ∈

[

ωt
zmax

f
, ωt

zmin

f

]}

. (3.22)

To illustrate the usefulness of this model we shall now use it to examine the effect

on the plenoptic spectrum when the following four parameters vary; the slant of the

plane φ, the maximum frequency of the texture signal ωs, the minimum depth of the

scene zmin and the field of view of the cameras (i.e. the quantity vm/f). To help

visualise these effects we introduce an example of a plenoptic spectrum corresponding

to a synthetic slanted plane, see Figure 3.5(b). This synthetic scene, with a texture

g(s) = cos(ωss), is initialised with the following parameters; x1 = 0m, zmin = 1.5m,

φ = 0.6rads, T = 2.1m, ωs = 20πrads/m and FoV = 40◦. Note that we repeat this

spectrum in Figure 3.5(e), (h) and (k) in order to highlight the effect of changing

individual scene parameters.

3.4.1 Varying the Angle of Slant

Unsurprisingly, the slant of the plane, φ, controls several aspects of the plenoptic spec-

trum. For example the maximum depth of the scene depends on the slant of the plane

as such zmax = zmin+T |sin(φ)|. Therefore varying φ will effect the diagonal line relat-

ing to the maximum depth in the spectrum. At the same time, the slant of the plane

also controls the position of Ωmax and Ωmin; an increase in φ will increase Ωmax whilst

decreasing Ωmin. Therefore a change in φ will alter the overall size of the two bounded

quadrilaterals TR1 and TR2. At its most extreme, when φ = 0, these regions disappear

entirely as Ωmax = Ωmin and zmax = zmin.

Using the synthetic example, we demonstrate the effect of varying φ on its plenoptic

spectrum in Figure 3.5(a), (b) and (c). The slant of the plane is decreased to φ = 0.1rads

in Figure 3.5(a), and increased to φ = 0.9rads in Figure 3.5(c). Notice that in both

cases we have fixed the maximum and minimum depth of the plane thus limiting the

expansion of the quadrilateral regions. A side effect of this is that the width of the

plane, T , must also vary as zmax − zmin = T |sin(φ)|. This change in T slightly alters
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(a) φ = 0.1rads
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(b) Original, φ = 0.6rads
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(c) φ = 0.9rads
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(d) ωs = 5πrads/m
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(e) Original, ωs = 20πrads/m
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(f) ωs = 38πrads/m
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(g) zmin = 0.5m
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(h) Original, zmin = 1.5m
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(i) zmin = 3.0m
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(j) FoV = 20◦
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(k) Original, FoV = 40◦
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(l) FoV = 80◦

Figure 3.5: Diagrams showing the behaviour of the magnitude of the plenoptic
spectrum for a slanted plane, |PS(ωt, ωv)|, as four scene parameters are varied. Note
that, for clarity, the magnitude of each spectrum is normalised.
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the spectral spreading in the ωt-axis.

3.4.2 Varying the Maximum Frequency of the Texture

The maximum frequency of the texture signal, ωs, is directly proportional to the quan-

tities Ωmax and Ωmin. This is to be expected as these quantities are the maximum and

minimum frequencies of the warped texture signal, respectively. As a result increasing

ωs will increase both Ωmin and Ωmax, which shifts the quadrilateral regions, TR1 and

TR2, further from the ωv-axis. The overall size of the regions also increases as they are

only bounded in ωv by the lines relating to the maximum and minimum depths of the

scene. At the other extreme, both the quadrilateral regions will merge into a point at

the origin if ωs = 0.

These effects are illustrated in Figure 3.5(d), (e) and (f) using the plenoptic spec-

trum corresponding to the synthetic scene. In the first figure the frequency is reduced

to ωs = 5πrads/m, which causes the quadrilateral regions to decrease in size and move

closer to the origin. The opposite occurs in Figure 3.5(f) when the frequency is increased

to ωs = 38πrads/m.

3.4.3 Varying the Minimum Depth of the Scene

Assuming the relative depth variation is constant, then varying the minimum depth

between the camera line and the slanted plane, zmin, controls the gradient of the two

diagonal lines illustrated in Figure 3.4(b). Therefore moving the camera line will result

in the diagonal lines rotating around the frequency origin. If zmin is decreased, i.e.

the cameras are closer to the scene, then the rotation is towards the ωt-axis whilst

increasing zmin will lead to a rotation away from the ωt-axis. As the quadrilateral

regions, TR1 and TR2, are bounded by these diagonal lines, then varying zmin will alter

their position relative to the ωt-axis and their width relative to the ωv-axis. In other

words increasing zmin will move the regions further from the ωt-axis and, at the same

time, increase their width in ωv.

We illustrate the effect of altering the minimum depth of the scene in Figure 3.5(g),

(h) and (i). The camera line is moved closer to the synthetic scene in the first figure,
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hence zmin = 0.5m, and then moved further away in the third figure so that zmin = 3m.

Note that in both cases the relative depth variation is constant. As expected, the

figures show how the diagonal lines relating to the maximum and minimum depths of

the scene are rotated around the origin. This rotation causes the quadrilateral regions

to move relative to the ωt-axis; an increase in zmin shifts the regions further from the

ωt-axis.

3.4.4 Varying the Field of View

The FoV of the camera directly controls the size of the quadrilateral regions, TR1 and

TR2; an increase in the FoV elongates the regions in the ωt-axis as Ωmax increases

and Ωmin decreases. In particular, if φ is fixed, then Ωmax will tend to infinite as the

FoV becomes large. This is due to the no-occlusion constraint placed on the scene,

i.e. as FoV increases the quantity f/vm decreases until it invalidates the inequality

in (3.3). Therefore the smaller the difference between tan(φ) and f/vm the larger the

quadrilateral regions. Notice, at the other extreme, the regions reduce to a single line

in ωt as the FoV tends toward zero (i.e. each picture consists of a single pixel).

This effect is illustrated in Figure 3.5(j), (k) and (l) using the synthetic scene. In

the first figure the cameras have a narrow FoV equal to 20◦ and in the third the cameras

have a wide FoV equal to 80◦. The figures show how the quadrilateral regions expand

in ωt as the FoV is increased. The figures also highlight how the lines ωt = ±Ωmax are

more pronounced when the FoV of the cameras is small. The reason for this is that a

narrow FoV is equivalent to a narrow window in the EPI domain, which causes more

pronounced spectral spreading along the ωv-axis.

3.5 Rotation of the Camera Line

In the discussion so far we have determined the plenoptic spectrum for a slanted plane

and examined how it reacts when parameters of the scene are changed. However,

instead of changing the scene, we could rotate the camera line around a point xr to an

angle α. This rotation of the camera line is shown in Figure 3.6. In this new scenario,
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Figure 3.6: Diagram illustrating the rotation of the camera line around a point xr
at an angle α. Note that d1 and d2 are the distances between the camera line and
plane at x1 and x2, respectively.

the scene can be redefined relative to the rotated camera line. The slant of the plane

relative to the camera line is φ−α, the perpendicular distance between the camera line

and the spatial coordinate (x1, z1) is

d1 = cos (α)
(

z1 − (x1 − xr) tan(α)
)

, (3.23)

and the perpendicular distance between the camera line and (x2, z2) is

d2 = cos (α)
(

z2 − (x2 − xr) tan(α)
)

. (3.24)

Notice that d1 = z1 and d2 = z2 when α = 0. Lastly, the no-occlusion constraint for

the scene is
∣
∣tan(φ− α)

∣
∣ <

f

vm
. (3.25)

Therefore the plenoptic spectrum for this scenario is equivalent to the spectrum corre-

sponding to a plane with a slant φ − α, a minimum depth zmin = min {d1, d2} and a

maximum depth zmax = max {d2}.

In view of this, the plenoptic spectrum for a slanted plane observed from a camera
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line rotated around a point xr at an angle α is

PSr(ωt, ωv) = e−jωtt1
(
j2vm
ωt

[

sinc(ar) e
−jT (ωt cos(φ−α)−ωs) − sinc(br)

]

+
j ωsfe

jbrcr

sin(φ− α)ω2
t

·
[

ζ {jbr(cr − 1)} − ζ {jar(cr − 1)} − ζ {jbr(cr + 1)}+ ζ {jar(cr + 1)}
])

,

(3.26)

if ωt 6= 0, else

PSr(0, ωv) = 2vmT sinc

(
ωsT

2

)[

cos(φ− α)sinc (ωvvm)

−j
sin(φ− α)vm

f
sinc′(ωvvm)

]

ejωs
T
2 ,

where t1 is the point on the camera line from which d1 is measured (see Figure 3.6),

and

ar = ωvvm − ωt
d2vm
f

, br = ωvvm − ωt
d1vm
f

, and cr =
ωsf − f cos(α− φ)ωt
ωtvm sin(φ− α)

.

A full derivation of this plenoptic spectrum is presented in Appendix C.

The main point to take from this analysis is that, as we are unlikely to be able to

alter the scene in practice, we can rotate the camera line in order to obtain a suitable

plenoptic spectrum. In particular, if we were to rotate the camera line such that α = φ

then the plenoptic spectrum would correspond to a fronto-parallel plane, which, as we

shall see in the next chapter, requires less cameras to sample.

3.6 Summary

In this chapter we have re-examined the spectral analysis for the plenoptic function gen-

erated by a slanted plane. The novelty of our approach is that we have incorporated

two realistic constraints, FSW and FFoV, directly into the spectral analysis. The im-

position of these finite constraints leads to spectral spreading in the frequency domain,

which results in band-unlimited plenoptic spectra. The nature of this spectral spreading
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is shown to be complex when dealing with scenes that have depth variation. However,

we are able to derive an exact closed-form expression for the plenoptic spectrum of a

Lambertian slanted plane with complex exponential texture. This expression can be

extended to scenes with more complicated textures, and scenes comprising multiple

slanted planes, using the linearity of the Fourier transform.

We examined the behaviour of the plenoptic spectrum for a slanted plane as scene

and camera parameters varied. We characterised this behaviour using a structural

model derived from the expression of the spectrum. The structural model comprised

six lines and two bounded quadrilateral regions. The six lines in question depended

on the maximum and minimum scene depth, the projection of the texture signal into

the image plane and the camera parameters. Finally, we showed that rotation of the

camera line around a point alters the plenoptic spectrum of a slanted plane as if altering

the scene parameters.

The key points to take from this chapter are as follows:

• The FSW and FFoV constraints result in band-unlimitedness in the plenoptic

spectrum, which is non-trivial for scenes with depth variation.

• Using the FSW and FFoV constraints, an exact closed-form expression for the

plenoptic spectrum of a Lambertian slanted plane with complex exponential tex-

ture is derived.

• Analysis of the closed-form expression allows the structure of the plenoptic spec-

trum to be characterised using a model comprising six lines and two bounded

quadrilateral regions.

• The structure of the plenoptic spectrum for a slanted plane is altered by either

varying the scene geometry directly or rotating the camera line around a point.
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Chapter 4

Uniform Plenoptic Sampling

4.1 Introduction

In this chapter we examine the uniform sampling and reconstruction of the plenoptic

function for a slanted plane with bandlimited texture. The plenoptic spectrum for the

slanted plane, however, is band-unlimited. In view of this, we utilise the concept of

the essential bandwidth proposed in [35]. This bandwidth is a region in the frequency

domain that contains approximately 90% of the signal’s energy. We choose this per-

centage because it coincides with the percentage of energy within the main lobe of the

sinc function [35]. This chapter, therefore, analyses the sampling and reconstruction of

the plenoptic function for a slanted plane assuming it to be bandlimited to its essential

bandwidth.

The idea of calculating the essential bandwidth for the plenoptic function has been

proposed in [17], however they do not use knowledge of the essential bandwidth to

sample the plenoptic function. Also, their analysis is based on fixing either t or v and

then studying the bandwidth. Consequently they determine two separate 1D essential

bandwidths, one in ωt and the other in ωv. In contrast, we determine a non-separable 2D

essential bandwidth in the (ωt, ωv)-domain using our spectral analysis of the plenoptic

function.

This chapter is organised as follows: in Section 4.2 we re-examine the plenoptic

spectrum of a slanted plane and derive its essential bandwidth using a parametric
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model. We then use this essential bandwidth in Section 4.3 to sample and reconstruct

the corresponding plenoptic function. In particular, we derive a new expression for the

maximum spacing between adjacent cameras and a new reconstruction filter. Sections

4.3.1 and 4.3.2 examine the results of using these expressions to sample and reconstruct

several synthetic EPIs. This analysis is then extended in Section 4.4, where we examine

the reconstruction of an EPI-volume consisting of real images. Section 4.4 also explores

the improvement in reconstruction quality when using different interpolating functions.

We conclude the chapter in Section 4.5 with a summary.

4.2 The Essential Bandwidth for a Slanted Plane

Using the analysis in Chapter 3, we now examine the spectral support of the plenoptic

function for a slanted plane, with bandlimited texture, in order to determine its essential

bandwidth EBS . As the plenoptic spectrum in question is a 2D object, the correspond-

ing essential bandwidth will be a 2D region in frequency that contains approximately

90% of its energy. To reduce the possible 2D regions that satisfy this criteria, we con-

strain the essential bandwidth EBS to be a compact region in the frequency domain

that is symmetrical around the origin.

Now, from the analysis of the plenoptic spectrum in Section 3.4, we observe that the

spectral energy is concentrated in the two quadrilateral regions, TR1 and TR2, shown in

Figure 3.4. Thus we further constrain the essential bandwidth EBS such that it contains

the majority of these quadrilateral regions. Consequently, we propose a parametric

model, shaped like a parallelogram, for the essential bandwidth EBS that is centred

around the origin. The model comprises four parameters: Ωv, the maximum frequency

in ωv; Ωt, the maximum frequency in ωt; zG/f , a parameter that controls the skew of

the model relative to the ωv-axis, and A, the width of the model in ωt. Consequently

the parametric essential bandwidth for the plenoptic spectrum of a slanted plane is

EBS =

{

ωt, ωv : ωt ∈ [−Ωt,Ωt] , ωv ∈

[
zG
f

(

ωt −
A

2

)

,
zG
f

(

ωt +
A

2

)]}

. (4.1)
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Figure 4.1: Diagram illustrating the parametric essential bandwidth for the plenop-
tic spectrum corresponding to a slanted plane with bandlimited texture. The es-
sential bandwidth, EBS, is superimposed on an example spectrum in which the
texture signal is g(s) = cos(ωss). The model of the essential bandwidth comprises
four parameters: Ωt and Ωv, the maximum values in ωt and ωv respectively, zG/f
the parameter that controls skew of the model relative to the ωv-axis, and A the
width of the essential bandwidth in ωt.

An illustration of this model is shown in Figure 4.1. The figure presents the essential

bandwidth superimposed on an actual plenoptic spectrum. In the following discussion

we will determine each parameter in the model.

4.2.1 The Essential Bandwidth Parameters

To determine the four parameters defined in (4.1), we first revisit the spectral analysis

of the plenoptic function for a slanted plane. In the previous chapter we focused on

deriving an exact closed-form expression for this spectrum assuming the texture was

a complex exponential. It could, therefore, be extended to more complicated texture

using the linear property of the Fourier transform. However, in this situation, we are

interested in determining an expression for the plenoptic spectrum in terms of the

Fourier transform of the bandlimited texture signal. It is not necessary that this new

expression be closed-form.

In view of this, we start with the equation for the plenoptic spectrum given in

(3.13). If we impose the finite integration limits with the following rectangular window
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function

rect

(
s

T
−

1

2

)

=







1, if 0 ≤ s ≤ T

0, else,

(4.2)

then the plenoptic spectrum in (3.13) becomes

PS(ωt, ωv) =M1 cos(φ)

[∫ ∞

−∞
rect

(
s

T
−

1

2

)

g(s) sinc (ω̂I) e
−jωt cos(φ)s ds

−j
vm tan(φ)

f

∫ ∞

−∞
rect

(
s

T
−

1

2

)

g(s) sinc′(ω̂I) e
−jωt cos(φ)s ds

]

, (4.3)

where M1 = 2vm e
−jωtx1 and ω̂I = ωvvm − (s sin(φ) + z1)

vm
f
ωt.

We now combine the rectangular function with the texture signal as follows

h(s) = rect

(
s

T
−

1

2

)

g(s), (4.4)

hence the plenoptic spectrum becomes

PS(ωt, ωv) =M1 cos(φ)

∫ ∞

−∞
h(s)

[

sinc(ω̂I)− j
vm tan(φ)

f
sinc′(ω̂I)

]

e−jωt cos(φ)s ds.

(4.5)

At this point, we define H(Ω) as the Fourier transform of h(s) with Ω as its frequency

variable. Therefore H(Ω) is the Fourier transform of the texture signal convolved with

a sinc function. By expressing h(s) in terms of H(Ω), we can rearrange (4.5), as shown

in Appendix A.2, to obtain the following expression for the plenoptic spectrum

PS(ωt, ωv) =M2

∫ ∞

−∞
H(Ω)

fΩ

sin(φ)ω2
t

rect

(
Ωf − ωt cos(φ)f

2 sin(φ)vmωt

)

e
−jΩ

(

z1
sin(φ)

− ωvf
sin(φ)ωt

)

dΩ

(4.6)

where

M2 = e
−jωt

(

x1−
z1

tan(φ)

)

e
−jωv

(

f
tan(φ)

)

. (4.7)
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Having derived (4.6), we now want to determine the parameters for the essential

bandwidth EBS . From the definition of EBS in (4.1), we observe that the four parame-

ters we require are not independent. In particular Ωv is related to the other parameters

as follows:

Ωv =
zG
f

(

Ωt +
A

2

)

.

Therefore, the problem we are trying to solve is multidimensional and non-separable.

In view of this, to simplify the problem, we analyse the bandwidth of (4.6) along certain

slices in frequency to obtain the values of Ωt and Ωv. As Ωv is related to the other

parameters, we first determine Ωt and then use the result to obtain Ωv. Given these

values and the accompanying bandwidth analysis, we then determine the remaining

parameters, A and zG. The derivation of each parameter is as follows.

Note that we assume φ > 0 for this analysis, hence zmax = z2 and zmin = z1.

This assumption does not, however, result in a loss of generality due to the symmetry

property of the plenoptic spectrum presented in Appendix B.2.

Determining the Ωt Parameter

To determine the maximum value in ωt, we examine the bandwidth of (4.6) along one

of the two diagonal lines highlighted in Section 3.4. Assuming the worse case in ωv, we

select the line relating to the maximum depth of the scene, hence

ωv = ωt
zmax

f
.

The resulting 1D plenoptic spectrum created by restricting (4.6) to this line is

PS

(

ωt, ωt
zmax

f

)

= e−jωtx2
∫ ∞

−∞
H(Ω)

fΩ

sin(φ)ω2
t

rect

(
Ωf − ωt cos(φ)f

2 sin(φ)vmωt

)

e−jΩT dΩ.

(4.8)
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From the definition of the rect function, the above integrand is only non-zero when the

following inequality is true

−
1

2
≤

Ωf − ωt cos(φ)f

2 sin(φ)vmωt
≤

1

2
. (4.9)

Therefore, if H(Ω) is bandlimited to a frequency Ωs, then (4.9) can be rearranged to

show that PS(ωt, ωv) is zero outside the range

−
Ωsf

f cos(φ)− vm sin(φ)
≤ ωt ≤

Ωsf

f cos(φ)− vm sin(φ)
, (4.10)

hence we have a bound on ωt.

A problem, however, is that H(Ω) is not bandlimited since its definition involves a

convolution with a sinc function. In view of this, we assume thatH(Ω) is approximately

bandlimited to its essential bandwidth. The essential bandwidth of H(Ω) is determined

as follows; first we use the property that the essential bandwidth of a signal constructed

from a convolution is equal to the sum of the individual essential bandwidths relating

to the input signals. Secondly, the essential bandwidth of a sinc function is equal to

the width of its main lobe [35]. Therefore given a function sinc(kΩ), where k ∈ R is a

constant, its essential bandwidth is

{

Ω : |Ω| ≤
π

k

}

. (4.11)

In view of this, the essential bandwidth for H(Ω) is

EBH =

{

Ω : |Ω| ≤ ωs +
2π

T

}

, (4.12)

which means

Ωs = ωs +
2π

T
. (4.13)

As a result we obtain the following maximum limit in ωt

Ωt =
Ωsf

f cos(φ)− vm |sin(φ)|
=

f

f cos(φ)− vm |sin(φ)|

(

ωs +
2π

T

)

. (4.14)
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The absolute of sin(φ) is introduced so that (4.14) is valid for planes with φ < 0.

Determining the Ωv Parameter

We now determine Ωv by examining the bandwidth of (4.6) along the line ωt = Ωt.

Using (4.14), we set

ωt ,
Ωsf

kφ
,

where kφ = f cos(φ)− vm sin(φ), and substitute the definition into (4.6) to give

PS

(
Ωsf

kφ
, ωv

)

=

∫ ∞

−∞
Ωrect

(
Ωkφ

2vmΩs sin(φ)
−

f

2vm tan(φ)

)

H(Ω) e
jΩ

(

ωvkφ
Ωs sin(φ)

−
zmin
sin(φ)

)

dΩ

·
k2φ

sin(φ)Ω2
s

e
j
(

zmin
tan(φ)

−x1
)

Ωsf
kφ e

−jωv
f

tan(φ) . (4.15)

The integral in this equation is the inverse Fourier transform of the product of two

functions. Therefore it can be expressed in terms of a convolution. If we name the

integral I1, this convolution is

I1 = F
−1
Ω

{
H(Ω)

}
∗ F−1

Ω

{

Ωrect

(
Ωkφ

2vmΩs sin(φ)
−

f

2vm tan(φ)

)}

, (4.16)

where the variable for each inverse Fourier transform is

ωvkφ
sin(φ)Ωs

−
zmin

sin(φ)
. (4.17)

As a result, the overall essential bandwidth is the sum of the individual bandwidths

corresponding to each term in the convolution.

We start by determining the essential bandwidth for the first term in (4.16). Using

the identity in (4.4), the solution to the first inverse Fourier transform is

F−1
Ω

{
H(Ω)

}
= 2πg

(
ωvkφ

sin(φ)Ωs
−

zmin

sin(φ)

)

rect

(
ωvkφ

T sin(φ)Ωs
−

zmin

T sin(φ)
−

1

2

)

. (4.18)

The presence of the rect function means that this solution is bounded in frequency.
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Therefore it allows us to derive the following bounds on ωv

zmin

f

Ωsf

f cos(φ)− vm sin(φ)
≤ ωv ≤

zmax

f

Ωsf

f cos(φ)− vm sin(φ)
. (4.19)

We now require the essential bandwidth for the second Fourier transform in I1.

Using the derivative identity of the Fourier transform, we obtain the following closed-

form expression for this transform

F−1
Ω

{

Ωrect

(
Ωkφ

2vmΩs sin(φ)
−

f

2vm tan(φ)

)}

=M3

[

f cos(φ)sinc

(

ωvvm − zmin
Ωsvm
kφ

)

−jvm sin(φ)sinc′
(

ωvvm − zmin
Ωsvm
kφ

)]

e
j f
tan(φ)

(

ωv−zmin
Ωs
kφ

)

, (4.20)

where

M3 = 2vm sin(φ)

(
Ωs
kφ

)2

.

The essential bandwidth is determined by examining the corresponding Energy Spectral

Density (ESD) for this expression. The ESD for (4.20) is

ESD(ωv) =M2
3

[

f cos(φ)sinc

(

ωvvm − zmin
Ωsvm
kφ

)]2

+M2
3

[

vm sin(φ)sinc′
(

ωvvm − zmin
Ωsvm
kφ

)]2

. (4.21)

From this expression, we observe that the ESD is the weighted combination of a squared

sinc function and a squared derivative of a sinc function. The weighting of each func-

tion is dependent on the value of φ. If φ is very small then the ESD is approximately

equal to the sinc function, and, if φ is equal to π/2, the opposite occurs. Given this

structure, we could assume the worse case and approximate the essential bandwidth of

(4.20) using the largest bandwidth of the two functions, which would be the bandwidth

of the derivative. However, the size of φ is restricted by the no-occlusion constraint. For

instance, a FoV of 45◦ would limit φ to just under π/4 rads. Therefore, to avoid over-

estimating the essential bandwidth of (4.20), we propose a region that is the weighted

combination of the individual essential bandwidths that belong to each function.
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We weight each essential bandwidth based on the amount of energy contributed by

that function to the total energy of (4.20). If we term Esinc as the energy contribution

related to the sinc function and Edsinc as the corresponding contribution for the deriva-

tive of the sinc function, then the weights for the sinc function and the derivative sinc

function are
(

Esinc

Esinc + Edsinc

)

and

(
Edsinc

Esinc + Edsinc

)

, (4.22)

respectively. The energies Esinc and Edsinc are defined as follows

Esinc =M2
3 (f cos(φ))

2 π

vm

and

Edsinc =M2
3 (vm sin(φ))2

π

3vm
.

Having determined the weights, we require the essential bandwidth for the derivative

of a sinc function. This essential bandwidth is estimated in Appendix D and results in

the following for the derivative of the sinc function defined in (4.20)

{

ωv : ωv ∈

[

zmin
Ωs
kφ
−

3.5π

vm
, zmin

Ωs
kφ

+
3.5π

vm

]}

. (4.23)

Therefore, the complete essential bandwidth for (4.20) is

EB1 =

{

ωv : ωv ∈

[

zmin
Ωs
kφ
− n(φ, v̄m)

π

vm
, zmin

Ωs
kφ

+ n(φ, v̄m)
π

vm

]}

, (4.24)

where

n(φ, v̄m) =
3 cos2(φ) + 3.5 (v̄m sin(φ))2

3 cos2(φ) + (v̄m sin(φ))2
. (4.25)

This essential bandwidth gives the following bound on ωv

zmin
Ωs
kφ
− n(φ, v̄m)

π

vm
≤ ωv ≤ zmin

Ωs
kφ

+ n(φ, v̄m)
π

vm
. (4.26)

Validation of this essential bandwidth is shown in Figure 4.2 using a synthetic scene

with parameters zmin = 1.5m and ωs = 1600π rad/m, and assuming cameras with
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Figure 4.2: Graph validating the essential bandwidth for the signal expressed in
(4.20). It shows the percentage of the signal’s energy that is contained within the
region defined in (4.26) as the angle φ varies. The angle increases from zero to just
under the no-occlusion constraint.

a FFoV ≈ 19◦. The figure shows that approximately 90% of the energy of (4.20) is

within the region (4.26) as the angle φ increases from zero to just under the no-occlusion

constraint.

Finally, by adding (4.26) to (4.19), we obtain the following overall bound on ωv for

the plenoptic spectrum in (4.15)

zminΩs
f cos(φ)− vm |sin(φ)|

− n(φ, v̄m)
π

vm
≤ ωv ≤

zmaxΩs
f cos(φ)− vm |sin(φ)|

+ n(φ, v̄m)
π

vm

Ωt
zmin

f
− n(φ, v̄m)

π

vm
≤ ωv ≤ Ωt

zmax

f
+ n(φ, v̄m)

π

vm
, (4.27)

where the second inequality follows from the definition of Ωt in (4.14). Taking the

maximum of this bound, we obtain

Ωv = Ωt
zmax

f
+ n(φ, v̄m)

π

vm
. (4.28)

Notice that n(φ, v̄m) ∈ [1, 1.625), since n(φ, v̄m) = 1 when φ = 0◦ and approaches 1.625

as φ approaches the limit caused by the no-occlusion constraint.
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Determining the zG Parameter

The parameter zG is determined as follows. From the definition of the parametric model

in (4.1), if we set ωt = Ωt and ωv = Ωv we obtain the following

Ωv = Ωt
zmax

f
+ n(φ, v̄m)

π

vm
=
zG
f

(

Ωt +
A

2

)

. (4.29)

Now, if we still assume ωt = Ωt but set ωv equal to the lower bound expressed in (4.27),

we obtain

Ωt
zmin

f
− n(φ, v̄m)

π

vm
=
zG
f

(

Ωt −
A

2

)

. (4.30)

Therefore, by solving these equations, the parameter zG is

zG =
zmax + zmin

2
. (4.31)

Determining the A Parameter

In a similar fashion, the parameter A is also determined from (4.30) and (4.29). By

subtracting (4.30) from (4.29) we obtain

Ωt
f

(zmax − zmin) + n(φ, v̄m)
2π

vm
= A

zG
f
. (4.32)

Therefore the parameter is

A =
∆z

zG
Ωt + n(φ, v̄m)

2πf

vmzG
, (4.33)

where ∆z = zmax − zmin = T |sin(φ)| is the depth variation of the plane.

4.2.2 Validation of the Essential Bandwidth EBS

Having defined each parameter for the essential bandwidth in (4.1), we want to verify

that the region always contains approximately 90% of the signal’s energy. For this

validation, we use a synthetic scene comprising a single slanted plane with bandlimited

texture. From Section 3.4, we observe that φ and ωs have the greatest effect on the
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Figure 4.3: Graphs illustrating the bandlimited signal used as texture for the
synthetic scenes. The signal in graph (a) has a maximum frequency of ωs = 40π
rad/m whereas the signal in graph (b) has a maximum frequency of ωs = 50 rad/m.
In both cases the signals are plotted against a curvilinear coordinate s ∈ [0, 3.5m].

structural model of the plenoptic spectrum. Therefore, the validation is performed by

varying φ and ωs whilst the other parameters remain fixed. The angle φ varies from

0 rads to just under the limit imposed by (3.3), and ωs from 0 rad/m to 600 rad/m.

Figure 4.3 illustrates an example of the texture signal for two different values of ωs.

The fixed parameters are x1 = 0m, z1 = 1.5m, T = 3.5m, and cameras with a focal

length of 32mm and a FoV = 40◦.

The results of the validation are shown in Figure 4.4. The figure presents a 2D plot

of the percentage of energy inside the essential bandwidth, EBS , as the angle φ varies

along the y-axis and ωs along the other axis. The validation shows that for all values

of ωs and φ the essential bandwidth defined in (4.1) always contains at least 89% of

the energy of the plenoptic function, and that above 90% is achieved when φ > 0 rads
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Figure 4.4: Graph showing the variation in the percentage of energy within the
essential bandwidth for the plenoptic spectrum generated by a slanted plane with
bandlimited texture. Changes in the angle of slant of the plane, φ, are illustrated
along the y-axis and changes in the maximum frequency of the texture signal, ωs,
along the x-axis. The other parameters are as follows; x1 = 0m, zmin = 1.5m and
T = 3.5m. The cameras have a focal length of 32mm, corresponding to a FoV ≈ 40◦.

and ωs > 0 rads/m. The figure also illustrates that the essential bandwidth is very

conservative for larger parameter values.

4.3 Sampling and Reconstructing the Plenoptic Function

In order to sample and reconstruct, we assume the bandwidth of the plenoptic function

for a slanted plane is given by the parametric model defined in (4.1). By approximating

the bandwidth in this way, we can determine an expression for the maximum spacing

between adjacent cameras and a new parametrisation of the reconstruction filter.

Starting with the sampling process, the maximum camera spacing is inversely pro-

portional to the Nyquist sampling density in the spatial domain (i.e. the density of the

cameras). If we assume the bandwidth of the plenoptic function is equal to (4.1), then

this Nyquist camera density is equivalent to A - the width of the (4.1) in ωt. Therefore

the expression for the maximum spacing between the cameras for a slanted plane is

∆tG =
2π

A
=

2π zGvm
vmΩt∆z + 2π n(φ, v̄m)f

. (4.34)
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This expression differs from that presented by Chai et al [10]. Using (4.28) as the

maximum value in ωv, their equivalent expression for the maximum camera spacing of

a slanted plane is

∆tC =
2πzmaxzminvm

∆z(vmzmaxΩt + π n(φ, v̄m)f)
. (4.35)

To reconstruct the sampled plenoptic function, we use a filter similar to that pre-

sented in [10]. This filter comprises three elements: the width of the filter in ωt, which

is determined by the spacing between each camera ∆t; the width of the region in ωv,

which is determined by the finite pixel resolution of the cameras ∆v; and skew of the

filter ztilt/f . In frequency this filter is defined as follows

Ψ(ωt, ωv) =







1, if ωt, ωv ∈ Rψ

0, else,

(4.36)

where Rψ is the region of support in frequency given by

Rψ =

{

ωt, ωv : ωv ∈
[

−
π

∆v
,
π

∆v

]

, ωt ∈

[
ωvf

ztilt
−

π

∆t
,
ωvf

ztilt
+

π

∆t

]}

. (4.37)

Our filter differs from Chai et al’s [10], however, in the value of the parameter ztilt.

In their analysis ztilt is set equal to zC, which is defined in (2.19). In our case, as we

approximate the bandwidth of the plenoptic function with its essential bandwidth, ztilt

is determined by the parametric model in (4.1). Therefore we set ztilt equal to zG and

obtain a new parametrisation for the corresponding reconstruction filter.

Having determined this camera spacing and this reconstruction filter, we now assess

their validity by analysing the reconstruction of six synthetic EPIs at differing camera

densities. The synthetic EPIs in question correspond to six scenes. The scenes are gen-

erated from a combination of three different geometries and two different textures. The

three geometries are all related to a single slanted plane with the following parameters

in common; x1 = 0m, zmin = 2.1m and T = 3.5m. The difference between the three

is the angle of slant. The first plane has a slant of φ = 3◦, the second a slant of φ =

30◦ and, finally, the third has φ = 60◦. For the texture signals, one is bandlimited to
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Figure 4.5: Diagrams showing the synthetic EPIs and plenoptic spectra for three
different slanted planes. The EPIs, p(t, v), are shown in (a), (c) and (e), and their
plenoptic spectra, |PS(ωt, ωv)|, in (b), (d) and (f), respectively. The three planes
have the following parameters in common; x1 = 0m, zmin = 2.1m, T = 3.5m and
ωs = 50 rads/m. In (a) and (b) φ = 3◦, (c) and (d) φ = 30◦, and (e) and (f) φ = 60◦.
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(b) |PS(ωt, ωv)| when φ = 3◦
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Figure 4.6: Diagrams showing the synthetic EPIs and plenoptic spectra for three
different slanted planes. The EPIs, p(t, v), are shown in (a), (c) and (e), and their
plenoptic spectra, |PS(ωt, ωv)|, in (b), (d) and (f), respectively. The three planes
have the following parameters in common; x1 = 0m, zmin = 2.1m, T = 3.5m and
ωs = 125 rads/m. In (a) and (b) φ = 3◦, (c) and (d) φ = 30◦, and (e) and (f) φ = 60◦.
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ωs = 50 rad/m and the other to ωs = 125 rad/m. They are both illustrated in Figure

4.3. Note that the texture bandwidth is uniform, i.e. it is the same for the entire

scene. The cameras are defined with a focal length equal to 32mm and a FoV ≈ 40◦.

The synthetic EPIs generated when ωs = 50 rads/m are shown in Figure 4.5. Likewise,

Figure 4.6 shows the synthetic EPIs generated when ωs = 125 rads/m. Both figures

also show the corresponding plenoptic spectrum for each EPI.

The PSNR curves for the reconstruction of these synthetic EPIs are shown in Figure

4.7 and Figure 4.8. The graphs in Figure 4.7 and 4.8 correspond respectively to the low

and high frequency textures. The slant of the plane, and in turn the depth variation ∆z,

ascends from the smallest in graph (a) to the largest in (c) for each figure. Lastly, there

are two PSNR curves plotted in each graph: the first, the solid blue line, represents the

PSNR curve obtained using our reconstruction filter with a skew zG/f . The second,

the red dashed line, is the PSNR curve generated using the filter proposed in [10] with a

skew zC/f . In the following sections we analyse these graphs in terms of the maximum

camera spacing and the reconstruction filter.

4.3.1 Analysing the Maximum Camera Spacing

The minimum number of cameras predicted by (4.34) and (4.35) are respectively NG

and NC. These two values are indicated by vertical dashed lines in Figures 4.7 and

4.8. Comparing NG to NC, we see that our approach results in a more conservative

sampling when the depth variation is small, see Figures 4.7(a) and 4.8(a). However

this relationship is reversed as the depth variation ∆z increases. The reason for this

is that NG is constrained by the FFoV of the cameras. Consequently, for small depth

variation, NG is restricted such that there are enough cameras to cover the entire scene.

In contrast, NC is not constrained in this manner thus it can tend to 1 as the depth

variation tends to 0m. For larger depth variation, our estimation of the bandwidth of

the plenoptic function is less conservative than that proposed in [10], hence NG is less

than NC.

With the exception of the scenes where φ = 3◦, the figures show that our prediction

of the Nyquist number of cameras, NG, occurs approximately at the ‘elbow’ of each
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PSNR curve and that the PSNR at this point is high. In these cases, therefore, (4.1)

represents a good approximation of the bandwidth for the plenoptic function. However,

in Figures 4.7(a) and 4.8(a), NG is slightly too small resulting in low PSNR values

for the reconstruction of the EPIs. This suggests that a larger approximation of the

bandwidth is required when the depth variation is small. It is worth noting, however,

that this PSNR is better than that given by NC in the same situation. As a result,

our maximum camera spacing, ∆tG, offers a more accurate prediction of the critical

sampling point than ∆tC in all cases.

4.3.2 Analysing the Reconstruction Filter

The graphs in Figure 4.7 and Figure 4.8 also compare the performance of two filters

when reconstructing the synthetic EPIs. The filters both have the same parametric

shape defined in (4.36). They differ, however, in their skew: our filter has a skew

of zG/f and the filter proposed in [10] has a skew of zC/f . With the exception of

Figures 4.7(a) and 4.8(a), our reconstruction filter outperforms that proposed in [10]

for all camera densities. The gain in performance, moreover, increases with the depth

variation within the scene. In Figures 4.7(a) and 4.8(a), the depth variation is so small

that zG ≈ zC. As a result, the PSNR curves are equivalent in these figures.

To explore the effect of the filter skew, we extend our analysis to examine the

reconstruction of the plenoptic functions for a wider range of filter skew values. Using

the three geometries defined earlier with the high frequency texture signal shown in

Figure 4.3(a), we reconstruct the corresponding synthetic EPIs using a filter with a

skew that varies from zmin/f to zmax/f . The results of this filter analysis are shown

in Figure 4.9. The figure presents three 2D plots in which the number of cameras

varies along the x-axis and the filter skew varies along the y-axis. The intensity in

each image represents the difference in PSNR when that reconstruction is compared to

the reconstruction achieved using zG/f . Therefore a negative value indicates that our

reconstruction filter, with skew zG/f , outperforms any other filter. The slant of the

plane, and in turn the depth variation ∆z, ascends from the smallest in image (a) to

the largest in (c).
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(a) φ = 3◦ and ∆z = 0.18m
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(b) φ = 30◦ and ∆z = 1.75m
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(c) φ = 60◦ and ∆z = 3.03m

Figure 4.7: Graphs comparing the PSNR curves for the reconstruction of three
EPIs using two different reconstruction filters. Each EPI relates to a slanted plane
with the following parameters in common; x1 = 0m, zmin = 2.1m, T = 3.5m and
ωs = 50 rads/m. In (a) φ = 3◦, (b) φ = 30◦ and (c) φ = 60◦. The filters differ in their
skew; the first has a skew of zG/f and the second zC/f . NG and NC are the number
of cameras required to achieve Nyquist sampling for each reconstruction method.
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(a) φ = 3◦ and ∆z = 0.18,m
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(b) φ = 30◦ and ∆z = 1.75m
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(c) φ = 60◦ and ∆z = 3.03m

Figure 4.8: Graphs comparing the PSNR curves for the reconstruction of three
EPIs using two different reconstruction filters. Each EPI relates to a slanted plane
with the following parameters in common; x1 = 0m, zmin = 2.1m, T = 3.5m and
ωs = 125 rads/m. In (a) φ = 3◦, (b) φ = 30◦ and (c) φ = 60◦. The filters differ in their
skew; the first has a skew of zG/f and the second zC/f . NG and NC the number of
cameras required to achieve Nyquist sampling for each reconstruction method.
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(a) φ = 3◦ and ∆z = 0.18m

(b) φ = 30◦ and ∆z = 1.75m

(c) φ = 60◦ and ∆z = 3.03m

Figure 4.9: Graphs comparing the reconstruction of three EPIs as the skew of
the reconstruction filter varies from zmin/f to zmax/f . The intensity in each image
represents the difference in PSNR relative to the reconstruction when the skew
is zG/f . Each EPI relates to a slanted plane with the following parameters in
common; x1 = 0m, zmin = 2.1m, T = 3.5m and ωs = 125 rads/m.
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(a) (b)

Figure 4.10: The set-up and data acquisition for the EPI-volume corresponding to
a scene with a single slanted plane. Diagram (a) illustrates the bird’s eye view of
the scene geometry and (b) shows the data acquisition. The resulting EPI-volume
consists of 133 images spaced 1 cm apart. Each image is 3008 by 1888 pixels.

Figure 4.9 shows that across all three scenes our filter parametrisation is one of

the best for most of the camera densities. However the figure also illustrates that

oversampling will compensate a poor choice of filter skew. For instance when the

depth variation is 0.18m, as shown in Figure 4.9(a), our filter is optimum up to 30

cameras after which oversampling compensates and there is little distinction between

the filters. There is also little distinction when the scenes are undersampled. This

is apparent in Figures 4.9(b) and 4.9(c) where the depth variation in the scene is

greater. These figures also highlight an exception in which our filter is sub-optimal.

This exception occurs when the camera density is high; above 150 cameras in Figure

4.9(b) and above 500 cameras in 4.9(c). In these cases the optimum filter skew is very

close to or equal to zmax/f . The reason this skew is optimal is that the width of the

filter in frequency, 2π/∆t, approaches 2Ωt. Therefore a square reconstruction filter is

preferable to a skewed filter. In practise, however, we aim to use fewer cameras hence

our parametrisation of the reconstruction filter is the best in such cases.
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4.4 Rendering Real Images

In Section 4.3 we determined a new expression for the maximum camera spacing for a

slanted plane and a new parametrisation of the reconstruction filter. These expressions

were then analysed using synthetic scenes. In this section we extend our analysis to

real scenes. As such we examine the sampling and reconstruction of an EPI-volume

generated from 133 images, each 3008 by 1888 pixels in size. The images are captured

at 1cm intervals along the camera line. The scene in question comprises a single slanted

plane with the following parameters; x1 = 1.15m, zmin = 1.65m, T = 1.246m and φ =

57.5◦. An urban picture is used as the texture pasted to the plane. The images are

acquired using a camera with 70mm focal length, which corresponds to a FoV ≈ 20◦.

Figure 4.10 illustrates a bird’s eye view of the scene geometry and data acquisition

set-up used to obtain the images. This real scene is constrained such that the depth

only varies with x, hence the EPI-volume can be treated as a set of 2D EPIs stacked

together. Consequently we reconstruct the EPI-volume in 2D slices using symmetric

extension.

Figure 4.11(a) compares the reconstruction of the whole EPI-volume using our filter

and the reconstruction achieved using the filter proposed in [10]. The figure shows that

our filter still outperforms the other for all camera densities, however the gain in PSNR

is smaller than that shown in the results for the synthetic EPIs. A similar result is

obtained when comparing a wider range of filter skews, see Figure 4.11(b). In a similar

manner to Figure 4.9, the image in Figure 4.11(b) plots the difference in PSNR when

that reconstruction of the EPI-volume is compared to the reconstruction achieved using

zG/f . Both figures also illustrate the Nyquist number of cameras relating to ∆tG and

∆tC for the EPI-volume. For this EPI-volume NC = 41 cameras and NG = 35 cameras.

So far, in all of the results we have examined, the reconstruction filter has the

following expression in the EPI domain

ψ(t, v) = η
( π

∆t
t
)

η

(
π

∆v

(

v +
f

zG
t

))

, (4.38)
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Figure 4.11: Graph (a) shows the PSNR curves for the reconstruction of an EPI-
volume, relating to a slanted plane, using a filter skew of zG/f and zC/f . Graph
(b) compares the reconstruction of the same EPI volume as the skew of the re-
construction filter varies from 25.7 to 37.1. The intensity in each image represents
the difference in PSNR relative to the reconstruction when the skew is zG/f . The
parameters for this slanted plane are; x1 = 1.15m, zmin = 1.65m, T = 1.246m and
φ = 57.5◦. The cameras have a focal length of 70mm, which corresponds to a FoV
≈ 20◦. The Nyquist number of cameras required for ∆tG and ∆tC are indicated
with NG and NC, respectively.

where the interpolation function η is the sinc function. However the sinc function has

infinite support and decays very slowly. Therefore Gibbs effects occur when reconstruct-

ing a signal with discontinuities. In terms of reconstructing an EPI, we highlighted in

Section 2.2.2 the inherent structure caused by mapping a point in the scene to a line in

the EPI. Consequently, reconstructing the EPI with a constant filter skew is equivalent

to assuming all the lines have the same gradient. As a result trajectories within the



4.4 Rendering Real Images 107

−4 −3 −2 −1 0 1 2 3 4
−0.25

0.00

0.25

0.50

0.75

1.00

Time

A
m

p
lit

u
d
e

 

 

Cardinal O−MOMS

Sinc Function

(a)

−4 −3 −2 −1 0 1 2 3 4
−0.25

0.00

0.25

0.50

0.75

1.00

Time

A
m

p
lit

u
d
e

 

 

I−MOMS

Sinc Function

(b)

Figure 4.12: Graph (a) compares a 2nd order cardinal O-MOMS to the sinc func-
tion. Graph (b) compares a 3rd order I-MOMS to the sinc function. Notice that
the O-MOMS has infinite support and discontinuities, whereas the I-MOMS is of
compact support.

EPI relating to different depths are incorrectly reconstructed. The by-product of this

incorrect reconstruction is the occurrence of ringing artefacts in rendered images. The

solution to this problem is to use an interpolating function that decays more quickly

than the sinc function.

The optimum function fitting this criteria is constructed from a class of functions

known as Maximal-Order-Minimal-Support (MOMS) [6]. MOMS are functions that

have minimal support for a given accuracy or approximation order. They are made

from a weighted combination of a B-spline and its derivatives. Therefore a MOMS of

order M has the highest approximation order, M +1, for the smallest possible support

size (the size of the support is M + 1). Its definition is

ϕ
{M}
MOMS(x) =

M+1∑

n=0

λn
dn

dxn

{

βM (x)
}

, (4.39)

where λn are the weights and βM (x) is a B-spline of order M . For a detailed survey

of the properties of B-splines see [61]. Depending on the value of the weights, multiple

MOMS functions can be constructed from this definition. Notice that if λ0 = 1 and

λn = 0 ∀ n > 0 then we are left with a B-spline, hence B-splines themselves are also

MOMS.
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In [6], Blu et al. derived a set of weights that minimised the L2 error between an

arbitrary function and its interpolation. They called the resulting MOMS function the

Optimal MOMS (O-MOMS). Therefore, assuming a compact support ofM+1, theM th

order O-MOMS is the optimum interpolator in terms of the L2 error. The O-MOMS,

however, are designed to interpolate a function from a set of coefficients, which may

not necessarily be equal to its samples. Consequently we alter the O-MOMS such that

the coefficients always coincide with the samples. This altered O-MOMS is known as

its cardinal. The cardinal O-MOMS is thus

η
{M}
O (x) = C

{

ϕ
{M}
O (x)

}

, (4.40)

where C is the cardinal operator, see Appendix E for details. A drawback of (4.40) is

that it now has infinite support. To fix this, Blu et al. derived a MOMS of compact

support that required the coefficients to be equal to the samples of the function, termed

the Interpolating MOMS (I-MOMS). The trade off in designing the I-MOMS, however,

is that it is a suboptimal interpolator when compared to the O-MOMS.

In view of this, we now compare the reconstruction of EPI-volume presented earlier

using a 2nd order cardinal O-MOMS and a 3rd order I-MOMS. The cardinal O-MOMS

is defined as follows

η
{2}
O (x) = C

{

β2(x) +
1

60

d2

dx2

{

β2(x)
}}

, (4.41)

and the I-MOMS is

η
{3}
I (x) = β3(x)−

1

6

d2

dx2

{

β3(x)
}

. (4.42)

The two interpolating functions are illustrated in Figure 4.12 together with the sinc

function. The figure highlights that the cardinal O-MOMS is discontinuous (a feature

of even ordered O-MOMS) and has infinite support although it decays much more

rapidly than the sinc function. In contrast the I-MOMS has compact support and is

continuous.

The PSNR curves for the reconstructed EPI-volume generated by these functions
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Figure 4.13: Graph (a) compares the PSNR curves for the reconstruction of the
EPI-volume obtained using a reconstruction filter with a 3rd order I-MOMS, a 2nd

order cardinal O-MOMS and a sinc function. The skew of the filter is zG/f in all
three cases. The graph also includes the PSNR curve obtained using the baseline
algorithm with a constant depth of zG. Graph (b) shows the PSNR curves for
the reconstruction of the same EPI-volume using the I-MOMS but with differing
filter skews, zG/f and zC/f . The graph also shows the PSNR curve for the baseline
algorithm. The parameters for this slanted plane are; x1 = 1.15m, zmin = 1.65m,
T = 1.246m and φ = 57.5◦. The cameras have a focal length of 70mm, which
corresponds to a FoV ≈ 20◦.

are shown in Figure 4.13(a). Using a filter skew of zG/f , the figure illustrates that

the reconstruction achieved using the two MOMS functions outperforms that achieved

using the sinc function. The gain in performance is approximately 1dB for all camera

densities. Comparing just the two MOMS functions, we see that the 3rd order I-MOMS

marginally outperforms the 2nd order O-MOMS. To put these results in perspective,

we also reconstruct the EPI-volume using a baseline algorithm and include the results
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in Figure 4.13(a). This algorithm uses the linear interpolation method, outlined in

Section 2.3.3, to reconstruct the EPI-volume. In other words, it simply performs linear

interpolation along the EPI lines assuming a constant depth of zG. Figure 4.13(a) shows

that the reconstruction achieved using either of the MOMS functions outperforms the

baseline algorithm. However, the algorithm is an improvement on the reconstruction

achieved using the sinc function. This is to be expected as the baseline algorithm uses

linear interpolation so does not suffer from Gibbs effects like the sinc function.

We illustrate the visually difference between the four reconstruction methods in

Figure 4.14. The figure presents a section of an image rendered using the three different

interpolating functions and the baseline algorithm. The original image is shown in

Figure 4.14(a), its rendering using a sinc function in Figure 4.14(b), using the baseline

algorithm in Figure 4.14(c), using the 2nd order O-MOMS in Figure 4.14(d) and the

3rd order I-MOMS in Figure 4.14(e). The images are rendered using only 34 of the

original cameras and the corresponding PSNR values, for the whole rendered image,

are (b) 23.6dB, (c) 23.9dB (d) 24.1db and (e) 24.2dB. Therefore, as predicted, the

rendered images show that the MOMS interpolators suppress the ringing artefacts,

thus improving the reconstruction results. The suppression, however, is slightly better

when using the I-MOMS due to its compact support hence the slight gain in PSNR.

The baseline algorithm also suppresses some of the ringing artefacts. Notice that, in all

four cases, the ringing artefacts are worse on the right half of the rendered image. This

effect is caused by the scene depth increasing as you move from the left to the right in

the image. In the left side of the image, the scene is at a depth zG; hence the choice of

zG as a rendering depth (or zG/f as a filter skew) matches the scene depth. However,

the mismatch between the scene depth and the rendering depth gradually gets worse

as you move to the right, which results in worse artefacts.

To complete this analysis, we compare zG/f to zC/f when using the MOMS inter-

polators. The results are presented in Figure 4.13(b) along with the baseline algorithm.

They show that our filter skew results in a better reconstruction than zC/f when using

the I-MOMS. To illustrate the degradation in performance caused by using zC/f , Fig-

ure 4.15 re-renders the images shown Figure 4.14 with zC/f as the filter skew. In this
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(a) Original

(b) Sinc Function, PSNR = 23.6dB (c) Baseline Algorithm, PSNR = 23.9dB

(d) 2nd Order O-MOMS, PSNR = 24.1dB (e) 3rd Order I-MOMS, PSNR = 24.2dB

Figure 4.14: An example of a rendered image from the EPI-volume using four
different reconstruction methods. The original image is shown in (a), it’s rendering
using a sinc function in (b), using the baseline algorithm in (c), using a 2nd order
O-MOMS in (d) and lastly, using a 3rd order I-MOMS in (e). The filter skew in
each case is zG/f . Each image is rendered using 34 cameras.

case the corresponding PSNR values for the whole rendered image are now (b) 22.4dB,

(c) 22.9dB, (d) 23.1db and (e) 23.2dB. Consequently, the incorrect choice of the filter

skew results in larger ringing artefacts in the rendered images.
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(a) Original

(b) Sinc Function, PSNR = 22.4dB (c) Baseline Algorithm, PSNR = 22.9dB

(d) 2nd Order O-MOMS, PSNR = 23.1dB (e) 3rd Order I-MOMS, PSNR = 23.2dB

Figure 4.15: An example of a rendered image from the EPI-volume using four
different reconstruction methods. The original image is shown in (a), it’s rendering
using a sinc function in (b), using the baseline algorithm in (c), using a 2nd order
O-MOMS in (d) and lastly, using a 3rd order I-MOMS in (e). The filter skew in
each case is zC/f . Each image is rendered using 34 cameras.

4.5 Summary

In this chapter we have studied the uniform sampling and reconstruction of the plenop-

tic function for a slanted plane with bandlimited texture. To perform this analysis, we
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assume the plenoptic function is approximately bandlimited to its essential bandwidth

(a region in frequency containing approximately 90% of the signal’s energy). We defined

this essential bandwidth using a parametric model derived from the plenoptic spectral

analysis presented in Chapter 3. The model comprised four parameters; the maximum

value in ωt, the maximum value in ωv, the width of the region in ωt and the skew of

the region in frequency. Using this parametric model, we were able to derive a new

expression for the maximum spacing between two cameras when sampling a slanted

plane. We also determined a new filter skew for the reconstruction filter.

Using synthetic and real scenes, we showed that our expression for the maximum

camera spacing offered a more accurate prediction of the Nyquist camera density than

that proposed in [10]. By comparing the reconstruction of the data sets using differ-

ing filter skews, we showed that our filter skew consistently outperformed the other

skews. Therefore our filter skew is the most effective when reconstructing the plenoptic

function for a slanted plane. Lastly, we showed that the PSNR of the reconstructed

EPI-volume is improved when using a MOMS interpolator instead of the sinc func-

tion. We demonstrated that this improvement was caused by reducing the ringing

artefacts within the rendered images. The optimum reconstruction of the EPI-volume

was achieved using a 3rd order I-MOMS.

The key points to take from this chapter are as follows:

• We sample and reconstruct the plenoptic function for a slanted plane with ban-

dlimited texture assuming it is bandlimited to its essential bandwidth.

• The essential bandwidth for the plenoptic function of a slanted plane can be

expressed using a 2D model comprising four parameters.

• Using the parametric essential bandwidth, we derived a new expression for the

maximum camera spacing relating to a slanted plane and a new value for the

skew of the corresponding reconstruction filter.

• Our expression for the maximum camera spacing results in a more accurate

Nyquist sampling density for both synthetic and real scenes than that proposed
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in [10].

• Our new value for the skew of the reconstruction filter performs better than

alternative skews on both synthetic and real EPI data sets.

• The reconstruction of the plenoptic function is improved using MOMS interpola-

tors, such as O-MOMS and I-MOMS, instead of the sinc function.
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Chapter 5

Non-Uniform Plenoptic Sampling

5.1 Introduction

In general most scenes encountered in IBR comprise a more complicated scene geometry

than a slanted plane. Therefore, in order to avoid undersampling, a conservative camera

spacing is employed when uniformly sampling the scene. This increases the likelihood

that non-uniform sampling will offer a distinct improvement in the reconstruction of

the plenoptic function and thus the rendering quality. In view of this, we examine

non-uniform plenoptic sampling of scenes in this chapter.

We focus our analysis on a general class of scene that has a smoothly varying sur-

face, with no-occlusions, and bandlimited texture. Note that the texture bandwidth is

uniform across the entire scene. For such scenes, we develop a novel framework that

combines the theoretical results from uniform plenoptic spectral analysis with adap-

tive camera placement. The basis of this framework is that we can model the local

geometric complexity of the scene using a sequence of slanted planes. Then, if we as-

sume the texture on each plane has a constant bandwidth (equal to the scene’s texture

bandwidth), we can uniformly sample each plane in the model using the analysis pre-

sented in Chapters 3 and 4. Therefore, the end result is a piecewise constant sampling

of the smoothly varying scene. The adaptive element comes from how we model the

scene surface using the sequence of slanted planes. Using this framework, we present

an algorithm that non-uniformly positions cameras by optimising the planar model of
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the scene surface. The novelty of this algorithm is that the position of the cameras

adapts depending on the local geometry of the scene and the total number of cameras

available. Note that it belongs in the ARC category of non-uniform plenoptic sampling

outlined in Section 2.3.2.

We structure this chapter as follows: in Section 5.2 we determine the framework to

evaluate different planar models of the scene surface. This involves deriving a metric

for the distortion caused in the EPI domain when sampling and reconstructing the

plenoptic function assuming a certain geometry and a finite number of cameras. Us-

ing this framework, we present in Section 5.3 an adaptive sampling algorithm for the

plenoptic function of a scene with a smoothly varying surface. This algorithm is based

on optimising the planar model of the surface using a binary-tree. In Sections 5.4 and

5.5 we validate and analyse the adaptive sampling algorithm using synthetic and real

scenes, respectively. Finally, we end with a summary of the chapter in Section 5.6.

5.2 Evaluating the Model of the Scene Surface

To determine a model of the scene surface, we require a distortion metric for the re-

construction of the plenoptic function. This distortion metric must take into account

that we are trying to reconstruct the plenoptic function using incorrect geometric in-

formation (i.e. the planar model of the scene) and that we also have a limited number

of cameras available. If we assume the worse case scenario, we can treat these two

elements as independent sources of error in plenoptic domain. Therefore, using this

assumption, we formulate the distortion metric as the sum of the two errors, which we

call the geometric error and the aliasing error. We define these errors as follows.

The geometric error is caused by approximating the scene surface with a sequence

of slanted planes. It is the difference between the actual plenoptic function and that

corresponding to a scene made of a sequence of slanted planes. For a smoothly varying

scene surface, with no-occlusions, the geometric error can be defined for the ith plane
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in the sequence as follows

γi =

∫ ∫

︸ ︷︷ ︸

t,v∈Pi

|p(t, v)− p̃i(t, v)|
2 dtdv, (5.1)

where p̃i(t, v) is the plenoptic function corresponding to the ith plane in the sequence

and Pi is its support in the EPI domain.

The aliasing error is caused by undersampling the plenoptic function that corre-

sponds to a slanted plane. We estimate this error using the worse case scenario - twice

the energy outside the reconstruction filter [8]. Therefore, like the geometric error, it

can be defined for the ith plane in the sequence as follows

Λi(Ni) = 2

∫ ∫

︸ ︷︷ ︸

ωt,ωv /∈Rψ,i

∣
∣
∣P̃S,i(ωt, ωv)

∣
∣
∣

2
dωtdωv, (5.2)

where P̃S,i(ωt, ωv) is the plenoptic spectrum for the ith plane, Ni is the number of

cameras used to reconstruct the corresponding plenoptic function and Rψ,i is the sup-

port of the reconstruction filter. The aliasing error is related to the number of cameras

Ni through the support of the reconstruction filter. In the frequency domain, this

relationship is

Rψ,i =

{

ωt, ωv : ωv ∈
[

−
π

∆v
,
π

∆v

]

, ωt ∈

[
ωvf

zG,i
−

π

∆ti
,
ωvf

zG,i
+

π

∆ti

]}

, (5.3)

where zG,i is the local version of zG for the ith plane and

∆ti =
trange
Ni

. (5.4)

The parameter trange is the overall support of Pi in t. For the ith slanted plane in the

sequence it is

trange = x2,i − x1,i + (z2,1 + z1,i) v̄m. (5.5)

Having defined (5.1) and (5.2), the expression for the distortion caused by sampling
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and reconstructing the plenoptic function, using a planar model of the scene surface

that comprises Ls planes, is

DT =

Ls∑

i=1

γi + Λi(Ni). (5.6)

At the moment, this distortion does not take into account sampling the plenoptic func-

tion with a limited number of cameras, Nc. We imposes this constraint by restricting

the set of Ni such that
Ls∑

i=1

Ni = Nc. (5.7)

A consequence of this constraint is that we are implicitly assuming each camera can

only sample one plane. This assumption means that our calculation of the overall

aliasing error of a scene will be quite conservative. However, we want to optimise

both errors jointly to determine the best model of the scene and in turn the best

camera placement. Therefore, the advantage of this assumption is that we can treat

the distortion for each plane independently, hence simplifying the joint optimisation.

Accordingly, by restricting (5.6) with (5.7), we formulate the distortion caused by

sampling and reconstructing the plenoptic function using Nc cameras and a model of

the scene comprising Ls planes.

Unfortunately, an exact knowledge of the actual plenoptic function is required to

determine both of the errors in (5.6) precisely. In view of this, we now estimate each

error assuming only knowledge of the scene geometry and the maximum frequency of

the texture signal.

5.2.1 Estimating the Geometric Error

Starting with the geometric error, we rewrite p(t, v) and p̃i(t, v) in terms of the actual

curvilinear coordinate, s(t, v), and the curvilinear coordinate for the ith plane, s̃i(t, v).

Therefore, we have p(t, v) = p(s(t, v)) and p̃i(t, v) = p(s̃i(t, v)). We now assume that

the curvilinear coordinate for the ith plane can be written as s̃i(t, v) = s(t, v)+ ei(t, v),

where ei(t, v) is an error term. Then, using Taylor series expansion, we obtain the
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following approximation

p(s̃i(t, v)) ≈ p(s(t, v)) +
(

s̃i(t, v)− s(t, v)
) ∂

∂s̃i(t, v)

{

p(s̃i(t, v))
}

. (5.8)

Substituting the above into (5.1), we obtain the following estimate for the geometric

error

γ̃i =

∫ ∫

︸ ︷︷ ︸

t,v∈Pi

|s(t, v)− s̃i(t, v)|
2

∣
∣
∣
∣

∂

∂s̃i(t, v)

{

p(s̃i(t, v))
}
∣
∣
∣
∣

2

dtdv. (5.9)

This expression, however, still contains a partial derivative that depends on the actual

plenoptic function. Consequently, we assume the worst case scenario for this partial

derivative - its maximum value - and approximate it as ωsmax|p̃(t, v)|. As a result the

estimate of the geometric error becomes

γ̃i = ω2
s max|p̃(t, v)|2

∫ ∫

︸ ︷︷ ︸

t,v∈Pi

|s(t, v)− s̃i(t, v)|
2 dtdv. (5.10)

5.2.2 Estimating the Aliasing Error

From (5.2), the aliasing error is defined as twice the energy of the plenoptic spectrum

outside the support of the reconstruction filterRψ,i. To estimate this energy, we use the

structural model of the spectrum presented in Section 3.4 and illustrated in Figure 3.4.

We observe that the ESD of the spectrum decays as 1/ω2 along each of the six lines that

comprise the structural model. Therefore we partition the frequency domain outside

the filter’s support into three regions - two where the ESD decays as 1/ω2 and a third

where it decays as 1/ω4. We then approximate the energy within each region using

these decay characteristics. The three frequency regions in question are illustrated in

Figure 5.1 using a filter with support Rψ,i. Their definitions are as follows:

Oa =

{

ωt, ωv : ωv /∈
[

−
π

∆v
,
π

∆v

]

, ωt ∈

[
ωvf

zG,i
−

π

∆ti
,
ωvf

zG,i
+

π

∆ti

]}

, (5.11)
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Figure 5.1: Diagram illustrating the regions Oa, Ob and Oc used to approximate
the energy of the plenoptic spectrum that resides outside the support of the re-
construction filter Rψ,i.

in which the ESD decays like 1/ω2;

Ob =

{

ωt, ωv : ωv /∈
[

−
π

∆v
,
π

∆v

]

, ωt /∈

[
ωvf

zG,i
−

π

∆ti
,
ωvf

zG,i
+

π

∆ti

]}

, (5.12)

in which the ESD decays like 1/ω4; and

Oc =

{

ωt, ωv : ωv ∈
[

−
π

∆v
,
π

∆v

]

, ωt /∈

[
ωvf

zG,i
−

π

∆ti
,
ωvf

zG,i
+

π

∆ti

]}

, (5.13)

where the ESD decays like 1/ω2. The approximate amount of energy within each region

is determined as follows.

First, we note that, due to (5.4), all of these regions are dependent on the number of

cameras Ni used to reconstruct the plenoptic function. However, the combined amount

of energy within Oa and Ob is constant regardless of the number of cameras (i.e. it is

a systematic error due to the finite pixel resolution of the cameras). In view of this,

we estimate the combined energy by assuming the plenoptic function is sampled at the

Nyquist density. This means that ∆ti in (5.11) and (5.12) is given by ∆ti = 2π/Ai,

where Ai is the width of the essential bandwidth defined in (4.33). Based on this
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assumption, we can safely model the decay of the ESD for Oa and Ob as 1/ω
2
v and

1

ω2
v

(

ωt − ωv
f
zG,i

)2 ,

respectively. Using these models, the amount of energy within region Oa is

Ea = Ki

∫ ∞

π
∆v

∫ ωvf
zG,i

+
Ai
2

ωvf
zG,i

−
Ai
2

1

ω2
v

dωtdωv +Ki

∫ − π
∆v

−∞

∫ ωvf
zG,i

+
Ai
2

ωvf
zG,i

−
Ai
2

1

ω2
v

dωtdωv

=
2AiKi∆v

π
, (5.14)

and corresponding amount in Ob is

Eb = Ki

∫ ∞

π
∆v

1

ω2
v






∫ ∞

ωvf
zG,i

+
Ai
2

dωt
(

ωt −
ωvf
zG,i

)2 +

∫ ωvf
zG,i

−
Ai
2

−∞

dωt
(

ωt −
ωvf
zG,i

)2




dωv

+Ki

∫ − π
∆v

−∞

1

ω2
v






∫ ∞

ωvf
zG,i

+
Ai
2

dωt
(

ωt −
ωvf
zG,i

)2 +

∫ ωvf
zG,i

−
Ai
2

−∞

dωt
(

ωt −
ωvf
zG,i

)2




dωv

=
8Ki∆v

Aiπ
. (5.15)

The parameter Ki in both (5.14) and (5.15) is a scaling factor and will be quantified

once we have the whole approximation.

In contrast to the combined energy in Oa and Ob, the energy in region Oc depends

on the number of cameras and must be finite for all values of Ni. As a result, we model

the decay of the ESD within this region using the following Lorentzian function

Γi
(

ωt − ωv
f
zG,i

)2
+ Γ2

i

,

where Γi controls the width of the function. We choose this function because it decays

like 1/ω2 for large ω but has a finite maximum value of Γi. The amount of energy
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within Oc, therefore, is

Ec = Ki

∫ π
∆v

− π
∆v

∫ ∞

ωvf
zG,i

+ π
∆ti

Γi
(

ωt − ωv
f
zG,i

)2
+ Γ2

i

dωtdωv

+Ki

∫ π
∆v

− π
∆v

∫ ωvf
zG,i

− π
∆ti

−∞

Γi
(

ωt − ωv
f
zG,i

)2
+ Γ2

i

dωtdωv

=
4Kiπ

∆v
tan−1

(
trangeΓi
πNi

)

, (5.16)

where the last step follows from solving the integration and using (5.4). In conclusion,

the total approximate energy within the three regions is

Ea + Eb + Ec = Ki

[
2Ai∆v

π
+

8∆v

Aiπ
+

4π

∆v
tan−1

(
trangeΓi
πNi

)]

. (5.17)

Having determined the energy in (5.17), we now determine the scale factor Ki and

width factor Γi. Starting with Ki, at critical sampling, we assume 90% of the signal’s

energy resides within the reconstruction filter, hence

0.9ET,i = Ki

∫ π
∆v

− π
∆v

∫ ωvf
zG,i

+
Ai
2

ωvf
zG,i

−
Ai
2

Γi
(

ωt − ωv
f
zG,i

)2
+ Γ2

i

dωtdωv

=
4Kiπ

∆v
tan−1

(
Ai
2Γi

)

, (5.18)

where ET,i is the total energy for plenoptic function corresponding to the ith plane in

the sequence. Directly following from (5.18), 10% of the energy must be outside the

filter at critical sampling. Therefore, using (5.17), we obtain a second expression

0.1ET,i = Ea + Eb + Ec

=
2AiKi∆v

π
+

8Ki∆v

Aiπ
+

4Kiπ

∆v
tan−1

(
trangeΓi
πNi

)

=
2AiKi∆v

π
+

8Ki∆v

Aiπ
+

4Kiπ

∆v
tan−1

(
2Γi
Ai

)

, (5.19)

where the last step follows from trange/Ni = ∆ti = 2π/Ai at critical sampling. Now as
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Figure 5.2: Diagram showing a piecewise quadratic scene, which consists of three
quadratic pieces.

both Ai and Γi are greater than zero, the following is true

tan−1

(
2Γi
Ai

)

=
π

2
− tan−1

(
Ai
2Γi

)

. (5.20)

Thus, by applying the above expression to (5.19) and substituting (5.18), we obtain

Ki =
ET,iAi∆vπ

2A2
i∆v

2 + 8∆v2 + 2π3Ai
. (5.21)

Using this definition of Ki, the width factor Γi is given by

Γi =
Ai
2

cot

(

0.9
(
A2
i∆v

2 + 4∆v2 + π3Ai
)

2πAi

)

. (5.22)

Note that with this definition of Ki and Γi the approximate energy outside the recon-

struction filter, defined in (5.17), tends to ET,i as Ni tends to zero.

Finally, assuming the worst case, our estimate of the aliasing error is

Λ̃i(Ni) =
4AiKi∆v

π
+

16Ki∆v

Aiπ
+

8Kiπ

∆v
tan−1

(
trangeΓi
πNi

)

, (5.23)

where Ki is defined in (5.21) and Γi is (5.22).
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5.2.3 Behaviour of the Distortion Metric

Using (5.10) and (5.23), the estimate of the distortion caused by sampling and recon-

structing the plenoptic function, using Nc cameras and a Ls plane model of the scene

surface, is

D̃T =

Ls∑

i=1

γ̃i + Λ̃i(Ni), (5.24)

where
Ls∑

i=1

Ni = Nc.

Qualitatively, the expression in (5.24) behaves as follows; the distortion caused by the

geometric error decreases as the planar model of the surface becomes more accurate. In

contrast, the aliasing element of the distortion decreases as more cameras are allocated

to each plane. However, as the sequence of slanted planes is unlikely to be uniform,

an equal distribution of the cameras across the sequence is inefficient. An efficient

approach would be to optimally allocate the cameras by minimising (5.24). Therefore,

assuming Nc cameras and Ls slanted planes, this minimisation is defined as follows

min

{
Ls∑

i=1

γ̃i + Λ̃i(Ni)

}

s.t. Nc =

Ls∑

i=1

Ni. (5.25)

We solve this minimisation using a Lagrangian multiplier λ. For the ith plane in the

sequence the expression for this multiplier is

λ = −
d

dNi

{

Λ̃i(Ni)
}

=

(
8πKi

∆v

)(

πΓitrange,i
π2N2

i + Γ2
i t

2
range,i

)

, (5.26)

which can be rearranged to give

Ni =

√

8KiΓitrange,i
∆vλ

−

(
Γitrange,i

π

)2

. (5.27)

The above expression determines the camera allocation per plane but requires knowl-

edge of λ. Using the finite camera constraint defined in (5.7), we obtain the following
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expression in which λ is the only unknown

Nc =

Ls∑

i=1

√

8KiΓitrange,i
∆vλ

−

(
Γitrange,i

π

)2

. (5.28)

Therefore, by determining λ from (5.28), we can optimally allocate the Nc cameras

across Ls slanted planes using (5.27). Note that, as we uniformly sample each plane,

this allocation results in a piecewise constant sampling of the scene.

To analyse the minimum distortion caused by this camera allocation and to examine

the effect of Ls, we calculate the distortion for a synthetic piecewise quadratic surface,

shown in Figure 5.2, as the planar model of the surface becomes more accurate. The

amount of distortion as a function of the number of planes in the model is shown

in Figure 5.3(a). The figure plots the distortion for 20 cameras, 40 cameras and 80

cameras. The geometric and aliasing elements of each distortion curve are shown in

Figure 5.3(b) and 5.3(c), respectively. Note that we set the cameras to have FoV = 20◦,

f = 32mm and ωs = 125 rads/m.

First, the graphs confirm that increasing the number of cameras available decreases

the overall distortion. Next, the graphs show that, for all three values of Nc, the

distortion initially decreases to a minimum around 28 planes but it then rises as Ls

increases beyond 30 planes. Figure 5.3(b) shows that this increase is due to the aliasing

element of the distortion. In contrast, the geometric error shown in Figure 5.3(c)

decreases for all values of Ls as the model becomes more accurate.

To understand why the aliasing error increases as the scene model becomes more

accurate, first remember that the analysis in Chapters 3 and 4 predicted higher camera

densities when the slant of a plane is large and that the gradient of a plane is equal

to |tan(φ)|. Now, consider the gradient of the planar model in relation to the gradient

of the scene’s surface. As the model comprises a sequence of slanted planes and each

plane within the model has a constant gradient, the model has a piecewise constant

gradient that changes depending on Ls. In particular, as Ls increases, the gradient of

the model changes to match the gradient of the scene’s surface more accurately (i.e.

the model changes to match the surface). This change results in the gradient of some
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Figure 5.3: Graph (a) plots the estimated distortion for the plenoptic function
as the number of planes used to model the surface increases from 5 to 150. The
plenoptic function relates to the surface shown in Figure 5.2. The graph compares
the distortion for 20, 40 and 80 cameras. Graphs (b) and (c) show respectively the
amount of aliasing and geometric error that comprises the distortion in (a). Note
that the cameras have a FoV = 20◦, in which f = 32mm, and ωs = 125 rads/m.



5.3 Adaptively Sampling a Smoothly Varying Scene 127

planes increasing, which means an increase in their angle of slant. From the analysis

in Chapter 3 and 4, we now require more cameras to avoid aliasing in these planes.

Therefore, if we have a fixed number of cameras, increasing Ls will increase the aliasing

error.

Using the scene in Figure 5.2 as an example, if Ls = 1 then the model of this scene

will comprise a single slanted plane. This plane joins each end of the scene’s surface

together and has a slant of approximately 17◦. If we now increase Ls to 2, thus split

the first plane in half, we obtain a new model comprising two planes with approximate

slants of 43◦ and −16◦, respectively. From the analysis in Chapter 3 and 4, we observe

that a higher camera density is required for a plane with a slant of 43◦ than a plane

with a slant of 17◦. Therefore, even though the scene model is more accurate, we will

require more cameras to avoid aliasing.

5.3 Adaptively Sampling a Smoothly Varying Scene

To sample the plenoptic function of a smoothly varying surface with bandlimited tex-

ture, we want to position Nc cameras optimally based on the local geometry of the scene

surface. In Section 5.2.3, we positioned these cameras non-uniformly, in a piecewise

uniform pattern, by solving (5.25) for a given planar model of the surface. Therefore,

given a planar model of the surface, we determined the optimum camera placement by

minimising the aliasing error. This camera placement will change, however, depending

on how we model the surface. For instance, if the model adapts to capture the local

geometry of the scene, the camera positions will adapt as well. In view of this, we

extend the minimisation from the previous section to allow the planar model of the

scene surface to vary. We minimise the distortion caused in the plenoptic function by

determining the optimal planar model of the surface and the optimum allocation of the

cameras. Therefore, we are jointly minimising the geometric and aliasing error. In the

following we outline the optimisation of the planar model of the surface and present

the adaptive sampling algorithm based on this optimisation. Finally we examine the

reconstruction of the plenoptic function from adaptive sample positions.
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5.3.1 The Surface Optimisation

Taking inspiration from rate-distortion theory, we determine the optimum planar model

of the scene using a binary tree framework. In this framework each leaf in the tree

represents a plane in the model. The act of pruning leaves within the tree corresponds

to merging planes in the model of the surface. Therefore, starting from an initial, fine-

grain, model of the surface, we repeatedly prune the leaves of the tree until the overall

distortion D̃T is minimised. This pruning of the tree and its effects on the planar model

of the surface are illustrated in Figure 5.4. Note that this framework can be scaled to

a quad-tree allowing us to model 2D surfaces using a set of planar facets. Therefore

our adaptive sampling algorithm can be scaled to sample 4D light fields, in which a

quad-tree framework is more efficient.

The benefit of this framework is that the minimisation defined in (5.25) is reduced

to a binary search in λ. In other words we search for the Lagrangian multiplier λ that

minimises the overall distortion for the optimum planar model of the surface whilst

obeying the constraint of Nc cameras. Therefore the process of pruning the binary tree

is repeated many times, each time with a different value of λ, as we search for this

optimum solution. Note that λ is progressively determined using bisection.

5.3.2 The Adaptive Sampling Algorithm

Drawing all the above together, the complete algorithm for adaptively sampling the

plenoptic function of a smoothly varying surface is summarised as follows:

Step 1. Initially model the smoothly varying surface, z(x), with a sequence of Ls

slanted planes. The slanted planes are generated by joining Ls + 1 equidistant

points (xi, z(xi)) where i = 1, . . . Ls + 1. The points are equidistant in the x-

axis. The number of planes, Ls, is equal to the largest power of two such that

x2 − x1 > zminvm/f .

Step 2. Given the initial planar model of the surface, minimise the distortion defined

in (5.25). In doing so determine the starting value of the Lagrangian multiplier,

λ, by solving (5.28).
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Figure 5.4: Diagram showing how the model of the scene surface, using a sequence
of slanted planes, is optimised within a binary tree framework. Note that each leaf
node in the tree represent a plane in the sequence, hence pruning the tree means
merging two planes into one.
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Figure 5.5: Diagrams illustrating the non-uniform placement of 20 cameras using
a piecewise constant sample density in t. Graph (a) shows the piecewise constant
sample density for the scene as a function of t. Graph (b) shows the warping
function generated from the sample density. The function is constructed by inte-
grating the sampling density, hence it is piecewise linear. The graph also shows
how uniform sampling in the warped domain is converted to non-uniform sampling
in t.

Step 3. Generate the binary-tree with Ls initial leaf nodes, one for each plane in the

model. Using λ, determine the sample allocation, from (5.27), and local distortion

for each node in the tree. Attempt to prune each pair of leaf nodes. Pruning is

performed if the local distortion of the parent node is less than the joint local

distortions of the leaves. This process is repeated until no possible merges occur.

Step 4. Calculate the total number of allocated cameras for the refined model of the

surface, Na, and compare to the constraint of Nc cameras. If the constraint is

satisfied: Na = Nc, stop. If the constraint is not satisfied, adjust λ and repeat

Step 3. λ is determined using bisection. The direction of the search is as follows:

• If Na < Nc, reduce λ.

• If Na > Nc, increase λ.

Step 5. Determine the placement of the cameras to sample the scene. The process

for determining these positions is illustrated in Figure 5.5. First, calculate a

piecewise constant sample density for the scene using the optimal model from Step

4. An example density is shown in Figure 5.5(a). Once this density is obtained,

construct a warping function by integrating the sampling density. Figure 5.5(b)
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shows the corresponding warping function for the density in Figure 5.5(a). Finally,

position the cameras by converting a set of uniform positions in the warped

domain to positions in t, as shown in Figure 5.5(b) using 20 cameras. Note that,

as the warping function is piecewise linear, the positions in t will be piecewise

uniform in nature.

Therefore, the output of this algorithm is a set of camera positions distributed in

a piecewise uniform pattern. These camera positions adapt depending on the total

number of cameras available and the local geometric complexity of the scene. Note

that, if the number of uniform pieces is greater than one, the global distribution of the

cameras is non-uniform.

5.3.3 Reconstruction from Adaptive Sample Locations

In order to reconstruct the plenoptic function from these camera locations, we require

adaptive filters. We, therefore, interpolate the plenoptic function using a warped ver-

sion of the 3rd order I-MOMS presented in Section 4.4. This interpolation has to be

performed in the EPI domain as the warping is camera specific, hence we have a set

of warped reconstruction filters. In view of this, we incorporate the depth information

obtained from modelling the scene surface using a sequence of planes. The resulting

set of reconstruction filters are defined as follows:

φi,k(t, v) = η
{3}
I

( π

∆t

(
W(t)− t̂i

))

η
{3}
I

(
π

∆v

(

v − vk +
f

z(t, v)
(t− ti)

))

, (5.29)

where vk = k∆v ∀ k = 1, . . . , Np are the set of pixel locations, ti ∀ i = 1, . . . , Nc are the

set of camera positions, W(t) is the warped camera line generated using the warping

function W, and t̂i are the warped camera positions. Notice that the actual camera

positions and the warped positions are related as follows t̂i = W(ti). The varying

depth information is introduced using the 2D variable z(t, v), which is the depth of

scene corresponding to the light ray (t, v). This 2D variable, z(t, v), is obtained using

the planar model of the surface generated by our adaptive sampling algorithm. In terms

of the discussion on depth information in Section (2.4), we are operating in the second
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group as we have access to per pixel depth information. However, we use the depth

information to reconstruct the whole plenoptic function rather than rendering single

views.

To illustrate how the filter defined in (5.29) differs from a uniform filter, we examine

the reconstruction of a sampled synthetic EPI. The synthetic EPI corresponds to the

piecewise quadratic scene shown in Figure 5.2. This EPI is sampled uniformly and

adaptively using our algorithm. Note that 30 cameras are used in both cases and each

camera has FoV = 20◦ and f = 70mm. Using this set up, we plot four different

reconstruction filters in Figure 5.6. Each plot in the figure is constructed as follows.

First, to indicate what the filter is trying to reconstruct, we have a low contrast version

of the complete EPI. Then, on top of this low contrast EPI, we have the samples

obtained from the cameras. Note that we focus on a small piece of the EPI, hence only

samples from 5 cameras are visible. The position of the cameras, and the associated

samples, are indicated in each plot. Finally, superimposed as the top most layer, we

have the EPI structure of the filter.

The difference between the four plots in Figure 5.6 are as follows. In Figure 5.6(a),

the filter has a constant skew of f/zG and the cameras are uniformly placed to sample

the EPI. Therefore, the structure of the filter is constant regardless of the camera or

pixel position. In Figure 5.6(b), the camera placement is still uniform but the filter

has a varying skew of f/z(t, v). Accordingly, the structure of the filter is no longer

constant as its skew varies depending on the camera and pixel position. Consequently,

the filter structure is deformed by the varying depth information. In Figure 5.6(c), we

introduce adaptive camera placement but fix the skew of the filter at f/zG. The figure,

therefore, illustrates the warping of the filter in order to reconstruct from adaptive

samples. Finally, in Figure 5.6(d), the EPI is adaptively sampled but the filter has

a varying skew of f/z(t, v). Consequently, the structure of the filter is warped due

to the sampling and deformed due to the depth information. Note that Figure 5.6(d)

illustrates the one of the set of filters defined by (5.29).
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(a) Uniform sampling and constant filter skew (b) Uniform sampling and varying filter skew

(c) Adaptive sampling and constant filter skew (d) Adaptive sampling and varying filter skew

Figure 5.6: Graphs illustrating four different reconstruction filters for a sampled
synthetic EPI. The EPI corresponds to the quadratic scene in Figure 5.2. It is
sampled uniformly in (a) and (b), and adaptively in (c) and (d) using the algorithm
in Section 5.3.2. Accordingly, in (a) the filter is uniform with a constant filter skew
of f/zG. In (b) the filter corresponds to uniform sampling but it has a varying
filter skew of f/z(t, v). In (c) the filter is adaptive but with a fixed filter skew of
f/zG. Finally, in (d) the filter is adaptive with a varying skew of f/z(t, v). Note
that in all of the graphs the filter is superimposed on the synthetic EPI and the
actual sample are highlighted.
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5.4 Results and Simulations for Synthetic Scenes

In this section we analyse and validate the proposed adaptive sampling algorithm using

a synthetic scene. The scene comprises 5 quadratic pieces with bandlimited texture

pasted to the surface. It is illustrated in Figures 5.7, 5.8 and 5.9. To sample this scene

we use cameras with a focal length of 70mm and a FoV ≈ 20◦. For the following

analysis, we initialise the binary tree with 16 planes.

5.4.1 Analysis of Camera Locations

Using this scene, we analyse the placement of the cameras by our algorithm as the

maximum frequency of the texture signal varies. The camera placement is illustrated

in Figures 5.7, 5.8 and 5.9 for ωs = 60 rads/m, 120 rads/m and 300 rads/m, respectively.

Each figure shows the camera locations, along the x-axis, and the planar model of the

surface when there are 20, 50 and 90 cameras in total. We also plot, just below each

scene, the relative sampling density as a function of x that corresponds to the camera

placement. The sampling density is relative to the density achieved using uniform

sampling. In other words a value greater than 1 indicates oversampling relative to

uniform sampling whereas below 1 indicates undersampling.

The figures show that the maximum frequency of the texture affects the number of

planes used to model the scene surface. For a low frequency texture, as in Figure 5.7,

the number of planes in the model increases from 5, to 8 and then 10 for the respective

20, 50 and 90 cameras available. However, when ωs = 120 rads/m, Figure 5.8 shows

that the number of planes decreases from 8 to 6 as the number of cameras increased

from 20 to 50. The model then remain constant as the number of cameras increased

from 50 to 90. Finally, Figure 5.9 shows that for ωs = 300 rads/m the number of planes

in the model is fixed at 10 regardless of the number of cameras.

The reason for this behaviour is that both the geometric error, defined in (5.10), and

the aliasing error, defined in (5.23), depend on ωs. The geometric error is proportional

to ω2
s hence, for a large ωs, the error is reduced by making the model more accurate.

For the aliasing error, a large value of ωs leads to more cameras being required to



5.4 Results and Simulations for Synthetic Scenes 135

0

0.5

1

1.5

2

2.5

3

3.5

D
e
p
th

 (
m

e
te

rs
)

 

 

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5

1

1.5

x (meters)

R
e
la

tiv
e
 S

a
m

p
lin

g
D

e
n
s
ity

Actual Surface

Model of Surface

Camera Position

(a) Nc = 20 Cameras and Ls = 5 Planes
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(b) Nc = 50 Cameras and Ls = 8 Planes
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(c) Nc = 90 Cameras and Ls = 10 Planes

Figure 5.7: Diagrams showing the position of Nc cameras generated by the adaptive
sampling algorithm for a piecewise quadratic surface, comprising 5 pieces, with
texture bandlimited to 60 rads/m. The positions of the cameras are indicated
along the x-axis and, below each surface, is the corresponding sampling density as
a function of x. The sampling density is relative to uniform sampling. Each graph
also shows the planar model of the surface generated by the algorithm.
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(a) Nc = 20 Cameras and Ls = 8 Planes
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(b) Nc = 50 Cameras and Ls = 6 Planes
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(c) Nc = 90 Cameras and Ls = 6 Planes

Figure 5.8: Diagrams showing the position of Nc cameras generated by the adaptive
sampling algorithm for a piecewise quadratic surface, comprising 5 pieces, with
texture bandlimited to 120 rads/m. The positions of the cameras are indicated
along the x-axis and, below each surface, is the corresponding sampling density as
a function of x. The sampling density is relative to uniform sampling. Each graph
also shows the planar model of the surface generated by the algorithm.
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(a) Nc = 20 Cameras and Ls = 10 Planes
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(b) Nc = 50 Cameras and Ls = 10 Planes
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(c) Nc = 90 Cameras and Ls = 10 Planes

Figure 5.9: Diagrams showing the position of Nc cameras generated by the adaptive
sampling algorithm for a piecewise quadratic surface, comprising 5 pieces, with
texture bandlimited to 300 rads/m. The positions of the cameras are indicated
along the x-axis and, below each surface, is the corresponding sampling density as
a function of x. The sampling density is relative to uniform sampling. Each graph
also shows the planar model of the surface generated by the algorithm.
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sample the scene. In Figure 5.7 the value of ωs is small, hence the algorithm focuses

on the aliasing error. Accordingly, the planar model of surface gradually becomes more

accurate as the number of cameras increases. However, in Figure 5.9, the value of ωs

is very large and too few cameras are available. Therefore the algorithm generates a

more accurate model of the scene to reduce the geometric error regardless of the aliasing

error. The point at which the algorithm switches from one to the other depends on the

value of ωs and it is this point that is captured in Figure 5.8.

If we now examine the algorithm’s camera placement, the figures highlight three

factors that contribute to high camera densities. The first factor is the gradient of

the scene surface; the greater the gradient the higher the camera density, as shown

in Figures 5.9(b) and 5.9(c). The reason for this is that the frequency content of the

texture signal increases as the gradient of the surface increases, hence more cameras

are required (especially if ωs is high). The second factor is the distance between the

scene and camera line; the closer the scene the higher the camera density due to the

FFoV. This effect explains the differing camera densities for similar surface gradients

in Figure 5.9(c). The third factor is the planar model of the surface itself. The cameras

are allocated across the model using the minimisation in (5.25). Therefore, in situations

where coarse models of the surface are generated, for example low frequency texture,

the cameras will be allocated depending onto the size of the planes. This factor is seen

at work in Figures 5.7(a) and 5.7(b), where the highest camera densities coincide with

a large plane, which is not the steepest plane in the surface model.

5.4.2 Validating the Adaptive Sampling Algorithm

Using this synthetic scene, we validate the algorithm by comparing the reconstruction

achieved using its non-uniform samples and the filters defined in (5.29) to uniform

reconstruction. The PSNR curves for the reconstruction of the synthetic EPIs are

shown in Figure 5.10. The figure compares the reconstruction using the two sampling

schemes as the maximum frequency of the texture signal varies from ωs = 60 rads/m

to ωs = 120 rads/m and then ωs = 300 rads/m.

The figures show that adaptive sampling using our algorithm results in a higher
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(b) ωs = 120 rads/m
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(c) ωs = 300 rads/m

Figure 5.10: Graphs comparing the PSNR curves for the reconstruction of three
synthetic EPIs when sampled uniformly and adaptively. The adaptive sample po-
sitions are determined using our sampling algorithm. The EPIs correspond to a
piecewise quadratic surface, comprising 5 pieces, with texture bandlimited to (a)
60 rads/m, (b) 120 rads/m and (c) 300 rads/m. Note that the cameras have a focal
length equal to 70mm and a FoV ≈ 20◦.
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Figure 5.11: The set-up and data acquisition for the EPI-volume corresponding to
the planar scene. Diagram (a) illustrates the bird’s eye view of the scene geometry
and (b) shows the data acquisition. The resulting EPI-volume consists of 253
images spaced 1 cm apart. Each image is 3008 by 1888 pixels.

PSNR than uniform sampling for the same number of cameras. This gain in perfor-

mance is most noticeable when the scene’s texture has a high frequency content (i.e.

ωs is large). For example, in Figure 5.10(c) the minimum gain in PSNR using our

algorithm is 7 dB. In contrast, when ωs = 60 rads/m as shown in Figure 5.10(a), our al-

gorithm only just outperforms uniform sampling. The reason for this behaviour is that

more cameras are required for adequate uniform sampling as the maximum frequency

of the texture signal increases. Therefore the scene is undersampled in Figures 5.10(b)

and 5.10(c) when using a uniform sampling scheme. Our algorithm, however, positions

the cameras in order to reduce undersampling, hence the reconstruction is improved.

Note that this also occurs in Figure 5.10(a) but only when there are 25 cameras.

5.5 Results and Simulations for Real Scenes

Having verified the algorithm using synthetic data, we examine the sampling and re-

construction of two EPI-volumes generated from real scenes. The first scene comprises

three planar facets with real texture pasted to the surface. The second scene com-

prises a smoothly varying surface with similar real texture pasted to the surface. Both

scenes are constrained such that the depth only varies with x. To reconstruct the EPI-
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volume we use the 3rd order I-MOM interpolator presented in Section 4.4. Also, similar

to Section 4.4, we reconstruct the uniformly sampled EPI-volumes using the baseline

algorithm to give perspective to our results.

5.5.1 Analysis of the Piecewise Planar Scene

A bird’s eye view of the planar scene surface is illustrated in Figure 5.11(a). From this

scene, we generated an EPI-volume comprising 253 images, each 3008 by 1888 pixels

in size. The images are captured at 1 cm intervals along the camera line with a camera

that has a focal length of 70mm and a FoV ≈ 20◦. The data acquisition set-up used

to obtain the images is shown in Figure 5.11(b).

The PSNR curves for the reconstruction of the entire EPI-volume are shown in

Figure 5.12. It compares the reconstruction achieved using adaptive sampling to that

achieved using two types of uniform sampling and reconstruction; interpolation with I-

MOMS and reconstruction with the baseline algorithm. The figure shows that adaptive

sampling of the EPI-volume results in a higher PSNR than both uniform sampling

methods for all camera densities. To highlight this gain in reconstruction, Figure

5.13 presents images rendered using each method. The original is shown in Figure

5.13(a), its rendering using uniform sampling in Figure 5.13(b), its rendering using the

baseline algorithm in Figure 5.13(c), and its rendering using adaptive sampling in Figure

5.13(d). In all cases the rendered images are generated using 37 original images. The

corresponding PSNR values for the rendered images are (b) 19.0 dB, (c) 20.6 dB and

(d) 23.5 dB. Therefore our algorithm results in a 3.5 dB increase in rendering quality

relative to uniform sampling and a 2.9 dB relative to the Baseline algorithm. More

examples of rendered images are shown in Appendix F.

5.5.2 Analysis of the Smoothly Varying Scene

In this new scenario, we capture both colour images and depth images of the smoothly

varying surface. The depth images are obtained using Microsoft’s Xbox Kinect. From

this depth data, we determine the bird’s eye view of the surface shown in Figure 5.14(a).

The EPI-volume generated from this scene comprises 73 colour images, each 3008 by
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Figure 5.12: Graph comparing the PSNR curves for the reconstruction of a EPI-
volume. The curves correspond to adaptive sampling, uniform sampling and uni-
form sampling with the baseline algorithm. The EPI-volume relates to the three
plane scene shown in Figure 5.11. The adaptive samples are determined using our
sampling algorithm. The cameras have a focal length of 70mm, which corresponds
to a FoV ≈ 20◦.

(a) Original (b) Uniform Sampling, PSNR = 19.0 dB

(c) Baseline Algorithm, PSNR = 20.6 dB (d) Adaptive Sampling, PSNR = 23.5 dB

Figure 5.13: An example of a rendered image from a EPI-volume using three
different sampling and reconstruction methods. The EPI-volume relates to the
three plane scene shown in Figure 5.11. The original image is shown in (a), it’s
rendering using uniform sampling in (b), it’s rendering using the baseline algorithm
uniform in (c), and it’s rendering using adaptive sampling in (d). Each image is
rendered using 37 cameras.



5.5 Results and Simulations for Real Scenes 143

−0.5 0 0.5 1 1.5
0.0

0.5

1.0

1.5

2.0

x (meters)

D
e
p
th

 (
m

e
te

rs
)

(a) (b)

Figure 5.14: The set-up and data acquisition for the EPI-volume corresponding
to the smoothly varying scene. Diagram (a) illustrates the bird’s eye view of the
scene geometry. Diagram (b) shows the twin data acquisition of both colour and
depth images using a standard camera and Microsoft’s Xbox Kinect. The resulting
EPI-volume consists of 73 images spaced 1 cm apart. Each image is 3008 by 2000
pixels. We also obtain 73 depth images spaced 1 cm apart, but at a resolution of
374 by 248 pixels.

2000 pixels in size. Again, the images are captured at 1 cm intervals along the camera

line but with a camera that has a focal length 34mm and a FoV ≈ 39◦. At the same

time as the colour images, we also capture 73 depth images, each 374 by 248 pixels.

The twin camera rig used for data acquisition is shown in Figure 5.14(b).

Figure 5.15 compares the reconstruction of the whole EPI-volume using adaptive

sampling to that achieved using uniform. Again, we compare two types of uniform

reconstruction, the first with I-MOMS and the second using the baseline algorithm.

Similar to the piecewise planar scene, the adaptive sampling of the EPI-volume results

in a higher PSNR than both uniform sampling methods for all camera densities. A

comparison of rendered images from the EPI-volume is shown in Figure 5.16. The

original is shown in Figure 5.16(a), its rendering using uniform sampling in Figure

5.16(b), its rendering using the baseline algorithm in Figure 5.16(c), and its rendering

using adaptive sampling in Figure 5.16(d). The images are rendered using 10 original

images and the corresponding PSNR values are (b) 21.0 dB, (c) 21.1dB and (d) 22.0

dB. Similar to Section 5.5.2, more examples of rendered images are shown in Appendix

G.
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Figure 5.15: Graph comparing the PSNR curves for the reconstruction of a EPI-
volume. The curves correspond to adaptive sampling, uniform sampling and
uniform sampling with the baseline algorithm. The EPI-volume relates to the
smoothly varying scene shown in Figure 5.14. The adaptive samples are deter-
mined using our sampling algorithm. The cameras have a focal length of 34mm,
which corresponds to a FoV ≈ 39◦.

(a) Original (b) Uniform Sampling, PSNR = 21.0 dB

(c) Baseline Algorithm, PSNR = 21.1 dB (d) Adaptive Sampling, PSNR = 22.0 dB

Figure 5.16: An example of a rendered image from a EPI-volume using three
different sampling and reconstruction methods. The EPI-volume relates to the
smoothly varying scene shown in Figure 5.14. The original image is shown in
(a), it’s rendering using uniform sampling in (b), it’s rendering using the baseline
algorithm in (c), and it’s rendering using adaptive sampling in (d). Each image is
rendered using 10 cameras.
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5.6 Summary

In this chapter we examined the non-uniform sampling of the plenoptic function. We ap-

proached this problem by proposing a novel framework that combines uniform plenoptic

sampling with adaptive camera placement. We proposed modelling the geometric com-

plexity of the scene using a sequence of slanted planes. Once this model is acquired,

the cameras are then positioned using our uniform sampling result for a slanted plane.

Therefore the placement of the cameras adapts depending on the planar model of the

surface.

Based on this framework, we presented an adaptive plenoptic sampling algorithm

for a scene with a smoothly varying surface and bandlimited texture. The algorithm

operates by determining the best planar model of the scene and positions the cam-

eras accordingly. The best planar model is determined by minimising the distortion in

the plenoptic function. This distortion comprises the geometric error, in the plenoptic

function, caused by modelling the scene incorrectly and the aliasing error caused by

undersampling the function. The minimisation was performed in a binary tree frame-

work. To reconstruct the non-uniformly sampled plenoptic function, we presented an

adaptive filter in the EPI-domain using 3rd order I-MOMS. Using this filter, we demon-

strated that the adaptive sampling algorithm outperforms uniform sampling for both

synthetic and real scenes.

The key points to take from this chapter are as follows:

• We present a framework that combines the theoretical results from uniform plenop-

tic sampling with adaptive camera placement.

• Within the framework, the scene geometry is modelled with a sequence of slanted

planes and the cameras positioned based on our uniform plenoptic sampling of a

slanted plane.

• Using this framework, we present an adaptive sampling algorithm that deter-

mines camera positions based on the scene geometry and the number of cameras

available.
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• The algorithm operates by determining a planar model of the surface that min-

imises the distortion in the plenoptic function. The distortion comprises the geo-

metric and aliasing error caused when sampling and reconstructing the plenoptic

function.

• We propose an adaptive filter in order to reconstruct the plenoptic function from

non-uniform camera positions.

• Our algorithm results in improved reconstruction and rendering for both synthetic

EPIs and real EPI-volumes when compared to uniform sampling.
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Chapter 6

Conclusions

6.1 Summary of Thesis Achievements

The concept of the plenoptic function provides a natural framework for examining

multi-view image processing algorithms. In particular, it allows image-based rendering

to be posed in terms of sampling and reconstruction. The multi-view image set, in

this scenario, represents the samples of the plenoptic function and the rendering of a

new view its reconstruction. The minimum number of images required in IBR, and

their optimum placement, can therefore be determined through sampling analysis of

the plenoptic function. In this thesis we have explored plenoptic sampling in both a

uniform and non-uniform framework with the aim of determining the optimum camera

placement.

The core achievements of our thesis are summarised as follows. We derived theo-

retical results for uniform plenoptic sampling that improved the reconstruction of the

plenoptic function. We designed a state-of-the-art adaptive plenoptic sampling algo-

rithm that outperformed uniform plenoptic sampling. We proposed a new reconstruc-

tion filter for uniform plenoptic sampling and derived an adaptive version to handle

non-uniform camera placement. In more detail, we expand upon each of these achieve-

ments in the following discussion.

In Chapter 3, we derived an exact closed-form expression for the plenoptic spectrum

of a Lambertian slanted plane with complex exponential texture. This expression was
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generalised to a slanted plane with bandlimited texture in Section 4.2.1. The novelty

of our spectral analysis is that we incorporated two realistic conditions: finite scene

width and cameras with a finite field of view. The imposition of these conditions leads

to a band-unlimited plenoptic spectrum. Accordingly, in Section 3.4, we defined a

structural model to characterise the plenoptic spectrum. The model comprised two

quadrilateral regions bounded by six lines. Using this model, we studied the behaviour

of the plenoptic spectrum when scene and camera parameters vary.

Assuming uniform camera placement, in Chapter 4, we derived a new expression for

the maximum spacing between adjacent cameras for a slanted plane with bandlimited

texture. This expression is derived assuming the plenoptic function for a slanted plane

is adequately sampled using its essential bandwidth (a region in frequency containing

at least 90% of the signal’s energy). We defined this essential bandwidth using a 2D

parametric model. The parameters of the model are determined from the plenoptic

spectral analysis in Section 4.2.1 and the structural model defined in Section 3.4. The

spatial Nyquist camera density is determined using this parametric model and leads to

our expression for the maximum camera spacing. Using synthetic and real scenes, we

showed that our expression results in a more accurate Nyquist camera density than the

current state-of-the-art for a slanted plane.

In Chapter 5, we designed a novel algorithm to adaptively sample the plenop-

tic function for a smoothly varying surface with bandlimited texture. The algorithm

adaptively positions cameras by using a slanted plane as an elementary element to

construct more complicated scenes. Therefore the scene surface is modelled using a

sequence of slanted planes and the cameras positioned using our spectral analysis of

a slanted plane from Section 4.2.1. The algorithm functions by determining the best

sequence of planes given the local geometric complexity of the scene and the number

of cameras available. Therefore it determines the model of the surface that minimises

the distortion in the plenoptic function. This distortion is caused by sampling and

reconstructing the plenoptic function with a limited number of cameras and assuming

a certain geometry. We defined this distortion as the combination of the geometric

error - caused by modelling the scene incorrectly - and the aliasing error - caused by
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undersampling the plenoptic function. The minimisation is performed in a binary tree

framework. Using synthetic and real scenes, we showed that the non-uniform camera

positioning generated by our algorithm outperforms uniform camera positioning for all

camera densities.

Finally, we presented a new filter that improved the reconstruction of real and syn-

thetic EPIs when compared to the current state-of-the-art. The parametrisation of the

filter is based on the model of the essential bandwidth defined in Chapter 4. We showed

that this change in parametrisation alone leads to a slight improvement in reconstruc-

tion when compared to the state-of-the-art. However, we further improved the filter by

incorporating 3rd order I-MOMS in Section 4.4. Using an EPI-volume corresponding

to a real scene, we showed that inclusion of these interpolators, as opposed to a sinc

function, suppresses ringing artefacts when rendering new views. For the non-uniform

plenoptic sampling in Chapter 5, we derived an adaptive version of these filters that

also incorporated varying depth information. The depth information is determined

from the planar model generated by our adaptive sampling algorithm.

6.2 Future Research

To conclude, we discuss some open questions and possible directions for future research.

We split this discussion into two parts: direct extensions to the research presented in

this thesis and research leading beyond this thesis.

6.2.1 Extensions to Presented Research

The possible extensions to the research presented in this thesis are as follows:

• Extension to 4D Light Fields: Throughout this thesis we restricted our anal-

ysis to a 2D light field representation. As a result we analysed the 2D plenoptic

spectrum for a 1D slanted plane and used this analysis to adaptively sample

plenoptic functions for 1D surfaces. In the instances when we examined real

scenes, the depth of the scene had only one degree of freedom in the x-axis. An

extension to this research, therefore, is to consider the full 4D light field obtained
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from a 2D scene surface. For example one could analyse the plenoptic spectrum

for a 2D planar facet and use the results to develop a 2D extension to our adaptive

sampling algorithm. Therefore the aim of the algorithm would be to model the

2D scene surface with a set of planar facets and non-uniformly position cameras

on the 2D camera plane to reconstruct the light field.

• 2D Camera Paths: In the 2D light field representation, the spatial positions

of the cameras are restricted to a 1D camera path, parallel to the scene, and

their orientations are fixed such that they are perpendicular to this camera path.

We derived in Section 4.3 the maximum camera spacing along this line for a

slanted plane and showed it to be inversely proportional to the depth variation

in the scene. In Section 3.5, however, we pointed out how rotation of the camera

line could be used to reduce the depth variation in the scene. Future research,

therefore, could be to consider 2D camera paths with the aim of reducing the

number of cameras required to sample the plenoptic function. A possible solution

to this problem would be a camera path that minimised the depth variation in

the scene. However the problem becomes more difficult as occlusions would need

to be taken into account. Aside from this consideration, the scenario also poses

the following open questions: How should we reconstruct the plenoptic function

in this situation? How should we assess the reconstruction? For instance, should

we compare the reconstruction of the plenoptic function to that obtained from a

1D parallel camera path?

6.2.2 Beyond Our Research - Multi-View Depth Cameras

In Section 2.4 we highlighted the pivotal role of depth information in IBR and how

such information is normally generated - off-line using multi-view stereo vision algo-

rithms [42, 48]. Recent advances in sensing technologies, however, make large-scale

deployment of 3D cameras using active depth sensing a distinct possibility. For ex-

ample Micorsoft’s Xbox Kinect and, more recently, the compressive depth acquisition

camera (CODAC) framework presented in [30,31] - which promises low cost, high reso-
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lution, depth acquisition using compressive sampling theory. This proliferation of depth

cameras, therefore, leads to multi-view systems that contain both types of camera.

Such dual camera systems are starting to emerge in IBR and can be split into three

categories: single depth and single colour camera systems [16, 46], single depth and

multiple colour camera systems [36,72], and multiple depth and multiple colour camera

systems [29, 39, 64]. For example, in Section 5.5, we used a single depth and single

colour camera system to sample a smoothly varying scene. The emergence of these

systems, therefore, offers the prospect of analysing multi-view depth images as well as

multi-view colour images.

For example we proposed in [26] analysing multi-view depth images using a frame-

work akin to the plenoptic function, which we term the pantelic function1. Within

this framework, the multi-view depth images represent samples of the pantelic func-

tion. Therefore, using this pantelic function, we presented an initial spectral analysis

on multi-view depth images. However the following open questions remain: How many

depth cameras are necessary to infer the scene geometry? How do the number of depth

cameras relate to the number of colour cameras? Can an excess of one be used to

compensate a reduction of the other? How does the current low resolution of depth

cameras affect this scenario?

1The word pantelic is derived from a slight abuse of the Greek παν meaning all, and τηλǫ meaning
distance.





153

Appendix A

The Plenoptic Spectrum for a

Slanted Plane

In this appendix we first derive the plenoptic spectrum for a slanted plane with complex

exponential texture and then extend this to the more general case when the texture

is bandlimited. The initial phase of both derivation is as follows: starting from the

general equation in (2.12), we apply our finite constraints, FSW and FFoV, to the

scene and assume the surface is Lambertian. Therefore x ∈ [x1, x2], v̄ ∈ [−v̄m, v̄m],

where v̄m = vm/f , and lx(x, v̄) = lx(x), which results in

P (ωt, ωv) =

∫ x=x2

x=x1

lx(x) e
−jωtx

∫ v̄= v̄m

v̄=−v̄m

(
1− z′(x)v̄

)
f e−j(ωvf−z(x)ωt)v̄ dv̄

︸ ︷︷ ︸

I2

dx. (A.1)

In order to solve I2, the integral in v̄, we define the FFoV constraint as a rectangular

windowing function, as follows

rect

(
f

2vm
v̄

)

=







1 , if |v̄| ≤ vm
f

0 , else

(A.2)
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whose corresponding Fourier transform is

Fv̄

{

rect

(
f

2vm
v̄

)}

= 2
vm
f

sinc

(
vm
f
ωv

)

.

By defining this window function, we evaluate I2 as follows

I2 = f

∫ ∞

−∞

(
1− z′(x)v̄

)
rect

(
f

2vm
v̄

)

e−j(ωvf−z(x)ωt)v̄ dv̄

(i)
= fFv̄

{

rect

(
f

2vm
v̄

)}

− jfz′(x)
∂

∂ωv

{

Fv̄

{

rect

(
f

2vm
v̄

)}}

= 2vmsinc (ωI)− j2
z′(x)v2m

f
sinc′(ωI) , (A.3)

where step (i) follows from properties of the Fourier transform, sinc′(ωI) is the first

derivative of the sinc function with respect to ωI , and

ωI = ωvvm − z(x)
ωtvm
f

.

Substituting the above expression into (A.1), we obtain

P (ωt, ωv) = 2vm

∫ x=x2

x=x1

lx(x)

(

sinc(ωI)− j
z′(x)vm

f
sinc′(ωI)

)

e−jωtx dx, (A.4)

noting that ωI is dependent upon x. At this point we use the scene geometry equations,

(3.1), to change the variable of integration from x to the curvilinear coordinate s, and

the Lambertian assumption to switch to the texture signal, i.e. l(s) = g(s). Thus we

obtain

PS(ωt, ωv) =M1

∫ T

0
g(s)

[

sinc(ω̂I)− j
vm tan(φ)

f
sinc′(ω̂I)

]

e−jωt cos(φ)s cos(φ) ds

where

ω̂I = ωvvm − (s sin(φ) + z1)
vm
f
ωt, z′(x) = tan(φ), and M1 = 2vm e

−jωtx1 .

At this point we need to define the texture signal, therefore the two derivations diverge.
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A.1 Complex Exponential Texture

Assuming the texture signal is a complex exponential, g(s) = ejωss, then the plenoptic

spectrum becomes

PS(ωt, ωv) =M1

∫ T

0

[

sinc(ω̂I)− j
vm tan(φ)

f
sinc′(ω̂I)

]

e−js(ωt cos(φ)−ωs) cos(φ) ds.

(A.5)

From here we change the variable of integration from s to ω̂I , thus

s =
ωvf − z1ωt
sin(φ)ωt

− ω̂I
f

sin(φ)ωtvm
, ds = dω̂I

−f

sin(φ)ωtvm
,

and the limits of integration become

s = 0 ↔ ω̂I = ωvvm − ωt
z1vm
f

= b,

s = T ↔ ω̂I = ωvvm − ωt
z2vm
f

= a.

Consequently, (A.5) becomes

PS(ωt, ωv) =M1




−f e

−j(ωt cos(φ)−ωs)
(

ωvf−z1ωt
sin(φ)ωt

)

tan(φ)ωtvm





∫ a

b
sinc(ω̂I) e

−jω̂I

(

ωsf−ωt cos(φ)f
sin(φ)ωtvm

)

dω̂I

+ jM1
sin(φ)vm

f




f e

−j(ωt cos(φ)−ωs)
(

ωvf−z1ωt
sin(φ)ωt

)

sin(φ)ωtvm





∫ a

b
sinc′(ω̂I) e

−jω̂I

(

ωsf−ωt cos(φ)f
sin(φ)ωtvm

)

dω̂I .

(A.6)

Note that change of variable is only valid for ωt 6= 0; the case when ωt = 0 is addressed

below. To aid in the following manipulations, we define a new variable as

c =
−fωt cos(φ) + ωsf

sin(φ)ωtvm
.
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As a result, (A.6) can be rewritten as

PS(ωt, ωv) =
jM1

ωt
ejbc

∫ a

b
sinc′(ω̂I) e

−jcω̂I dω̂I −
fM1e

jbc

tan(φ)ωtvm

∫ a

b
sinc(ω̂I) e

−jcω̂I dω̂I

(i)
=
jM1e

jbc

ωt

[

sinc(a) e−jac − sinc(b) e−jbc
]

−M1

(
c

ωt
+

f

tan(φ)ωtvm

)

ejbc
∫ a

b
sinc(ω̂I) e

−jcω̂I dω̂I

=
jM1e

jbc

ωt

[

sinc(a) e−jac − sinc(b) e−jbc
]

−

(
M1ωsf

vm sin(φ)ω2
t

)

ejbc
∫ a

b
sinc(ω̂I) e

−jcω̂I dω̂I , (A.7)

where (i) follows from integration by parts. The final step of the derivation is to

rearrange the integral in (A.7) into four separate integrals as follows

∫ a

b
sinc(ω̂I) e

−jcω̂I dω̂I =
1

2j

(
∫ a

b

1− e−j(c+1)ω̂I

ω̂I
dω̂I −

∫ a

b

1− e−j(c−1)ω̂I

ω̂I
dω̂I

)

=
1

2j

(
∫ ja(c+1)

0

1− e−ω̂I

ω̂I
dω̂I −

∫ jb(c+1)

0

1− e−ω̂I

ω̂I
dω̂I

−

∫ ja(c−1)

0

1− e−ω̂I

ω̂I
dω̂I +

∫ jb(c−1)

0

1− e−ω̂I

ω̂I
dω̂I

)

=
1

2j

(

ζ {ja(c+ 1)} − ζ {jb(c+ 1)}

−ζ {ja(c− 1)}+ ζ {jb(c− 1)}
)

. (A.8)

Using identities from [1], the solution to ζ is

ζ {jh} =







E1(jh) + ln |h|+ j π2 + γ if h > 0,

E∗
1(j |h|) + ln |h| − j π2 + γ if h < 0,

0 if h = 0.

where h ∈ R, γ is Euler’s constant, E1(jh) is the exponential integral (see [1]) and

E∗
1(jh) is its complex conjugate.

Therefore, the expression for the plenoptic spectrum of a finite slanted plane with
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complex exponential texture, assuming ωt 6= 0, is

PS(ωt, ωv) =

(
j2vm
ωt

[

sinc(a) e−jT (ωt cos(φ)−ωs) − sinc(b)
]

+
j ωsf

sin(φ)ω2
t

[

ζ {jb(c− 1)}

−ζ {ja(c− 1)} − ζ {jb(c+ 1)}+ ζ {ja(c+ 1)}
]

ejbc
)

e−jωtx1 .

(A.9)

If ωt = 0, the integral in (A.5) may be evaluated directly to obtain

PS(0, ωv) = 2vmT sinc

(
ωsT

2

)[

cos(φ)sinc (ωvvm)− j
sin(φ)vm

f
sinc′(ωvvm)

]

ejωs
T
2 .

A.2 Bandlimited Texture

Now assuming the texture signal is bandlimited, the spectrum for a slanted plane is

derived as follows: we start from the equation for the plenoptic spectrum defined in

(A.5) and represent both the texture signal, g(s), and the finite limits of the integral

with the function

h(s) = rect

(
s

T
−

1

2

)

g(s) =







g(s), if 0 ≤ s ≤ T

0, else.

(A.10)

Therefore we obtain the following equation for the plenoptic spectrum

PS(ωt, ωv) = M1 cos(φ)

∫ ∞

−∞
h(s)

[

sinc

(

ωvvm − (s sin(φ) + z1)ωt
vm
f

)

−j
vm tan(φ)

f
sinc′

(

ωvvm − (s sin(φ) + z1)ωt
vm
f

)]

e−jωt cos(φ)s ds.

(A.11)

At this point, we define the Fourier transform of h(s), with a frequency variable Ω, as

follow

H(Ω) = Fs
{
h(s)

}
=

∫ ∞

−∞
h(s) e−jΩs ds, (A.12)
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which leads to the following inverse transform

h(s) = F−1
Ω

{
H(Ω)

}
=

1

2π

∫ ∞

−∞
H(Ω) ejΩs dΩ. (A.13)

By substituting this inverse transform into (A.11) the plenoptic spectrum becomes

PS(ωt, ωv) =
M1

2π
cos(φ)

∫ ∞

−∞

[∫ ∞

−∞
H(Ω) ejΩsdΩ

] [

sinc

(

ωvvm − (s sin(φ) + z1)ωt
vm
f

)

−j
vm tan(φ)

f
sinc′

(

ωvvm − (s sin(φ) + z1)ωt
vm
f

)]

e−jωt cos(φ)s ds. (A.14)

From here we change the order of integration and define two new integrals,

K1(ωt, ωv,Ω) =

∫ ∞

−∞
sinc

(

ωvvm − (s sin(φ) + z1)
vm
f
ωt

)

e−jωt cos(φ)sejΩs ds, (A.15)

and

K2(ωt, ωv,Ω) =

∫ ∞

−∞
sinc′

(

ωvvm − (s sin(φ) + z1)
vm
f
ωt

)

e−jωt cos(φ)sejΩs ds, (A.16)

thus the plenoptic spectrum in (A.14) becomes

PS(ωt, ωv) =
M1

2π
cos(φ)

∫ ∞

−∞
H(Ω)

[

K1(ωt, ωv,Ω)− j
tan(φ)vm

f
K2(ωt, ωv,Ω)

]

dΩ.

(A.17)

The integrals K1(ωt, ωv,Ω) and K2(ωt, ωv,Ω) are solved by rearranging them into

Fourier transforms in which Ω is the frequency variable.

Starting with K1(ωt, ωv,Ω), we rearrange the integral to obtain

K1(ωt, ωv,Ω) =

∫ ∞

−∞
sinc

(
sin(φ)vmωt

f

[

s−
z1

sin(φ)
+

ωvf

sin(φ)ωt

])

ejωt cos(φ)se−jΩs ds,

(A.18)

which is equivalent to

K1(ωt, ωv,Ω) =
1

2π
Fs

{

sinc

(
sin(φ)vmωt

f

[

s−
z1

sin(φ)
+

ωvf

sin(φ)ωt

])}

∗Fs

{

ejωt cos(φ)s
}

.

(A.19)
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Using properties of the Fourier transform, we have

Fs

{

sinc

(
sin(φ)vmωt

f

[

s−
z1

sin(φ)
+

ωvf

sin(φ)ωt

])}

=
fπ

sin(φ)vmωt
rect

(
Ωf

2 sin(φ)vmωt

)

e
−j

(

z1
sin(φ)

− ωvf
sin(φ)ωt

)

Ω
, (A.20)

and

Fs

{

ejωt cos(φ)s
}

= δ (Ω− ωt cos(φ)) , (A.21)

where δ is the delta Dirac. As a result (A.19) becomes

K1(ωt, ωv,Ω) =
fπ

sin(φ)vmωt
rect

(
Ωf − ωt cos(φ)f

2 sin(φ)vmωt

)

e
−j

(

z1
sin(φ)

− ωvf
sin(φ)ωt

)(
Ω−ωt cos(φ)

)

.

(A.22)

If we now examine K2(ωt, ωv,Ω), it too is rearranged into a Fourier transform to

give

K2(ωt, ωv,Ω) =

∫ ∞

−∞
sinc′

(
sin(φ)vmωt

f

[

s−
z1

sin(φ)
+

ωvf

sin(φ)ωt

])

ejωt cos(φ)se−jΩs ds.

(A.23)

Therefore, similar to K1(ωt, ωv,Ω), we have

K2(ωt, ωv,Ω) =
1

2π
Fs

{

sinc′
(
sin(φ)vmωt

f

[

s−
z1

sin(φ)
+

ωvf

sin(φ)ωt

])}

∗Fs

{

ejωt cos(φ)s
}

.

(A.24)

The first Fourier transform in this case is

Fs

{

sinc′
(
sin(φ)vmωt

f

[

s−
z1

sin(φ)
+

ωvf

sin(φ)ωt

])}

(i)
=

(
f

sin(φ)vmωt

)∫ ∞

−∞
sinc′(ŝ) e

−j Ωf
sin(φ)vmωt

ŝ
dŝ e

−j
(

z1
sin(φ)

− ωvf
sin(φ)ωt

)

Ω

= jπ

(
f

sin(φ)vmωt

)2

Ω rect

(
Ωf

2 sin(φ)vmωt

)

e
−j

(

z1
sin(φ)

− ωvf
sin(φ)ωt

)

Ω
, (A.25)

where step (i) follows from a change of variable. Substituting (A.21) and (A.25) into
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(A.24) we obtain

K2(ωt, ωv,Ω) = jπ

(
f

sin(φ)vmωt

)2
(
Ω− ωt cos(φ)

)
rect

(
Ωf − ωt cos(φ)f

2 sin(φ)vmωt

)

· e
−j

(

z1
sin(φ)

− ωvf
sin(φ)ωt

)(
Ω−ωt cos(φ)

)

. (A.26)

Finally, if we substitute (A.22) and (A.26) into (A.17), we obtain

PS(ωt, ωv) =
M1

2

∫ ∞

−∞
H(Ω)

[

f

tan(φ)vmωt
+

sin(φ)vm
f

(
f

sin(φ)vmωt

)2
(
Ω− ωt cos(φ)

)

]

· rect

(
Ωf − ωt cos(φ)f

2 sin(φ)vmωt

)

e
−j

(

z1
sin(φ)

− ωvf
sin(φ)ωt

)(
Ω−ωt cos(φ)

)

dΩ. (A.27)

Therefore, rearranging the above, the plenoptic spectrum for a slanted plane with

bandlimited texture is

PS(ωt, ωv) =

∫ ∞

−∞
H(Ω)

fΩ

sin(φ)ω2
t

rect

(
Ωf − ωt cos(φ)f

2 sin(φ)vmωt

)

e
−jΩ

(

z1
sin(φ)

− ωvf
sin(φ)ωt

)

dΩ

· e
−jωt

(

x1−
z1

tan(φ)

)

e
−jωv

(

f
tan(φ)

)

. (A.28)
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Appendix B

Properties of the PS(ωt, ωv)

In this appendix we determine two properties of the plenoptic spectrum for a slanted

plane with complex exponential texture. The first is that the plenoptic spectrum

for a slanted plane, PS(ωt, ωv), tends to the spectrum for a fronto-parallel plane,

PFPP (ωt, ωv), in the limit as φ tends to zero, which we term the consistency prop-

erty. The second is that, assuming a maximum and minimum depth of zmax and zmin

respectively, then the magnitude of the plenoptic spectrum for a slanted plane is inde-

pendent of the sign of φ. This second relationship is termed the symmetry property.

B.1 The Consistency Property

This property states that the plenoptic spectrum for a slanted plane, PS(ωt, ωv), tends

to the spectrum for a fronto-parallel plane, PFPP (ωt, ωv), in the limit as φ tends to

zero, i.e.

lim
φ→0

{

PS(ωt, ωv)
}

= PFPP (ωt, ωv). (B.1)
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To proof this statement we start from (A.6), and take the limit as φ tends to zero,

hence

lim
φ→0

{

PS(ωt, ωv)
}

= lim
φ→0

{
j

ωt

[

sinc(a) e−jac − sinc(b) e−jbc
]

ejbc

−

(
ωsf

vmω2
t

)

ejbc
∫ a

b

sinc(ω̂I)

sin(φ)
e−jcω̂I dω̂I

}

(i)
=

j

ωt
sinc(b)

[

e−jT (ωt−ωs) − 1
]

−

(
ωsf

vmω2
t

)

lim
φ→0

{

ejbc
∫ a

b

sinc(ω̂I)

sin(φ)
e−jcω̂I dω̂I

}

, (B.2)

where (i) follows from the fact that a tends to b when φ tends to zero. Now the

argument of the limit in (B.2) can be rearranged as follows

ejbc
∫ a

b

sinc (ω̂I)

sin(φ)
e−jω̂Ic dω̂I =

1

2j sin(φ)

∫ a

b

ejω̂I − e−jω̂I

ω̂I
e−jω̂Ic+jbc dω̂I

=
1

2j sin(φ)

[
∫ a

b

e−jω̂I(c−1)+jbc

ω̂I
dω̂I −

∫ a

b

e−jω̂I(c+1)+jbc

ω̂I
dω̂I

]

=
1

2j sin(φ)

[
∫ j(a−b)c−ja

−jb

e−ωB

ωB + jbc
dωB −

∫ j(a−b)c+ja

jb

e−ωB

ωB + jbc
dωB

]

,

(B.3)

where the last step follows from the substitution ωB = jω̂I(c − 1) − jbc and ωB =

jω̂I(c+1)− jbc in the second integral. If we expand the following quantities (a− b)c =

−T (ωs − ωt cos(φ)) and

(
1

sin(φ)

)(
1

ωB + jbc

)

=
vmωt

ωBωtvm sin(φ) + jb (ωsf − fωt cos(φ))
,

and then set φ = 0, (B.3) becomes

(
vmωt
2j

)[∫ −j(ωs−ωt)T−jb

−jb

e−ωB

jbf (ωs − ωt)
dωB −

∫ −j(ωs−ωt)T+jb

jb

e−ωB

jbf (ωs − ωt)
dωB

]

= −
vmωt

2bf (ωs − ωt)

[

ejb − e−jT (ωt−ωs)+jb − e−jb + e−jT (ωt−ωs)−jb
]

= −
vmωt

2bf (ωs − ωt)

(

e−jT (ωt−ωs) − 1
)(

e−jb − ejb
)

. (B.4)
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Substituting (B.4) into (B.2), results in

lim
φ→0

{

PS(ωt, ωv)
}

=
[

e−jT (ωt−ωs) − 1
](

sinc(b)
j

ωt
+

ωs
2b (ωs − ωt)ωt

(

e−jb − ejb
))

= sinc(b)
[

e−jT (ωt−ωs) − 1
] [ j

ωt
+

jωs
ωt(ωt − ωs)

]

=
2T sinc(b)

2j (ωt − ωs)T

[

1− e−jT (ωt−ωs)
]

= T sinc(b) sinc

(
T (ωt − ωs)

2

)

e−j
T
2
(ωt−ωs)

= PFPP (ωt, ωv). (B.5)

B.2 The Symmetry Property

Consider two slanted planes that are almost identical except for the sign of φ. In other

words they have the same minimum and maximum depths, zmin and zmax respectively,

the same spatial positions, x1 and x2, and the same texture g(s) = ejωss, however one

has an angle of slant φ = |φ1| and the other has an angle φ = − |φ1|. Therefore the

symmetry property states that the magnitude of the plenoptic spectra relating to both

scenes is the equivalent, i.e.

∣
∣ PS(ωt, ωv)
︸ ︷︷ ︸

when φ=−|φ1|

∣
∣ =

∣
∣PS(ωt, ωv)
︸ ︷︷ ︸

when φ=|φ1|

∣
∣. (B.6)

To prove this statement let us examine the plenoptic spectra for both scenes. Start-

ing with the plane that has a positive angle of slant, its plenoptic spectrum is

PS(ωt, ωv)
︸ ︷︷ ︸

when φ=|φ1|

=

(
j2vm
ωt

[

sinc(a1) e
−j(a1−b1)c1 − sinc(b1)

]

+
j ωsf

sin |φ1|ω2
t

[

ζ {jb1(c1 − 1)}

−ζ {ja1(c1 − 1)} − ζ {jb1(c1 + 1)}+ ζ {ja1(c1 + 1)}
]

ejb1c1
)

e−jωtx1 , (B.7)

where the parameters a1, b1 and c1 are defined as

a1 = ωvvm − ωt
zmaxvm
f

, b1 = ωvvm − ωt
zminvm
f

, and c1 =
ωsf − fωt cos |φ1|

sin |φ1|ωtvm
.
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Moving to the second scene, its plenoptic spectrum is obtained by substituting φ =

− |φ1| and switching a1 with b1 to give

PS(ωt, ωv)
︸ ︷︷ ︸

when φ=−|φ1|

=

(
j2vm
ωt

[

sinc(b1) e
j(b1−a1)c1 − sinc(a1)

]

−
j ωsf

sin |φ1|ω2
t

[

ζ {−jb1(c1 − 1)}

−ζ {−ja1(c1 − 1)} − ζ {−jb1(c1 + 1)}+ ζ {−ja1(c1 + 1)}
]

e−ja1c1
)

e−jωtx1 .

(B.8)

Now taking the absolute value of (B.8) we obtain

∣
∣ PS(ωt, ωv)
︸ ︷︷ ︸

when φ=−|φ1|

∣
∣ =

∣
∣
∣
∣
−
j2vm
ωt

[

sinc(a1)− sinc(b1) e
j(b1−a1)c1

]

−
j ωsf

sin |φ1|ω2
t

[

ζ {−jb1(c1 − 1)}

−ζ {−ja1(c1 − 1)} − ζ {−jb1(c1 + 1)}+ ζ {−ja1(c1 + 1)}
]

e−ja1c1
∣
∣
∣
∣

=

∣
∣
∣
∣

2vm
ωt

[

sinc(a1) e
ja1c1 − sinc(b1) e

jb1c1
]

+
ωsf

sin |φ1|ω2
t

[

ζ {−jb1(c1 − 1)}

−ζ {−ja1(c1 − 1)} − ζ {−jb1(c1 + 1)}+ ζ {−ja1(c1 + 1)}
]
∣
∣
∣
∣
. (B.9)

At this point, using [1], we note that

ζ {−jh} = ζ∗ {jh} , (B.10)

which leads to the following relationships

∣
∣PS(ωt, ωv)
︸ ︷︷ ︸

when φ=−|φ|

∣
∣ =

∣
∣P ∗
S(ωt, ωv)
︸ ︷︷ ︸

when φ=|φ|

∣
∣ =

∣
∣PS(ωt, ωv)
︸ ︷︷ ︸

when φ=|φ|

∣
∣, (B.11)

hence the symmetry property of the plenoptic spectrum for a slanted plane.
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Appendix C

The Plenoptic Spectrum with

Rotated Camera Line

In this appendix we derive the plenoptic spectrum for a slanted plane when the camera

line is rotated around a point xr at an angle α. To determine this spectrum we require

a relation similar to (2.7), i.e. a relationship between the point a light ray leaves the

scene surface at (x, z(x)) and arrives at (t, v). Figure C.1 illustrates a light ray fulfilling

this relationship for a rotated camera line. The relationship is determined as follows:

first we define the depth of the rotated camera line relative to the x-axis, which is

zt(x) = (x− xr) tan(α). (C.1)

Using this expression, the point the light ray intersects the camera line, t, is define as

follows

t =
x

cos(α)
−
(

z(x)− zt(x)
) sin(β)

sin(π/2− θ)

=
x

cos(α)
−
(

z(x)− (x− xr) tan(α)
)sin(β)

cos(θ)
, (C.2)

where β is the angle the light ray leaves the surface relative to the z-axis, see Figure

C.1. The expression in (C.2), however, does not include the pixel coordinate v. To
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Figure C.1: Diagram illustrating a light ray travelling from the scene to a camera
at position t. The camera line is rotated around a point xr at an angle α. Note
that θ is the viewing angle and v is the relating pixel position.

introduce v, we notice that β = θ − α, thus the following is true

sin(β)

cos(θ)
= tan(θ) cos(α)− sin(α) =

v cos(α)

f
− sin(α), (C.3)

where tan(θ) = v/f . As a result (C.2) becomes

t =
x

cos(α)
−
(

z(x)− (x− xp) tan(α)
)( v

f
cos(α)− sin(α)

)

=
x

cos(α)
+ z(x) sin(α)− (x− xp)

sin2(α)

cos(α)
−
v

f

(

z(x) sin(α)− (x− xp) sin(α)
)

.

(C.4)

Notice that if α = 0 then (C.4) reverts back to the geometric relationship stated in

(2.7).

Having determined the relationship in (C.4), the plenoptic spectrum for a slanted

plane when the camera line is rotated is derived as follows. Starting from the definition

of the plenoptic spectrum

P (ωt, ωv) = Ft,v {p(t, v)}

=

∫ ∞

−∞

∫ ∞

−∞
p(t, v) e−j(ωtt+ωvv) dtdv, (C.5)

we use the geometric relationship in (C.4) to change the variable of integration from t



167

to x. The Jacobian generated from this change of variable is

dt =

(
1− sin2(α)

cos(α)
+ z′(x) sin(α)

)

dx+
v

f

(

sin(α)− z′(x) cos(α)
)

dx. (C.6)

At the same time we also switch from v to v̄ using v̄ = v/f . As a result we are able to

relate p(t, v) to lx(x, v̄). Consequently (C.5) becomes

P (ωt,ωv)=

∫ ∞

−∞

∫ ∞

−∞
lx(x, v̄)e

−jωt

[

x
cos(α)

+z(x) sin(α)−(x−xr)
sin2(α)
cos(α)

−v̄
(
z(x) cos(α)−(x−xr) sin(α)

)]

· e−jωv v̄f
[(

1− sin2(α)

cos(α)
+ z′(x) sin(α)

)

+ v̄
(

sin(α)− z′(x) cos(α)
)]

f dxdv̄.

(C.7)

Now, assuming a Lambertian scene and applying the finite constraints, then lx(x, v̄) =

lx(x), x ∈ [x1, x2] and v̄ ∈ [−v̄m, v̄m], which results in the following

P (ωt, ωv) = f

∫ x=x2

x=x1

lx(x) e
−j

(

x
cos(α)

+z(x) sin(α)−(x−xr)
sin2(α)
cos(α)

)

ωt

·

∫ v̄= v̄m

v̄=−v̄m

[
1− sin2(α)

cos(α)
+ z′(x) sin(α) + v̄

(

sin(α)− z′(x) cos(α)
)]

· e
−j

(

ωvf−ωt
(
z(x) cos(α)−(x−xp) sin(α)

))

v̄
dv̄dx. (C.8)

In order to solve (C.8), we start by defining the FFoV constraint as the following

rectangular windowing function

rect

(
f

2vm
v̄

)

=







1 , if |v̄| ≤ vm
f

0 , else

(C.9)

whose corresponding Fourier transform is

Fv̄

{

rect

(
f

2vm
v̄

)}

=
2vm
f

sinc

(
vm
f
ωv

)

.
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Using this definition, the integral in v̄ can be evaluated as follows

I3 = f

∫ ∞

−∞
rect

(
f

2vm
v̄

)[

v̄
(

sin(α)− z′(x) cos(α)
)

+
1− sin2(α)

cos(α)

+z′(x) sin(α)

]

e
−j

(

ωvf−ωt
(
z(x) cos(α)−(x−xp) sin(α)

))

v̄
dv̄

(i)
= f

[

1− sin2(α)

cos(α)
+ z′(x) sin(α)

]

Fv̄

{

rect

(
f

2vm
v̄

)}

+ jf

[

sin(α)− z′(x) cos(α)

]

∂

∂ωv

{

Fv̄

{

rect

(
f

2vm
v̄

)}}

= 2vm

(

1− sin2(α)

cos(α)
+ z′(x) sin(α)

)

sinc(ωr) + j
v2m
f

(

sin(α)− z′(x) cos(α)
)

sinc′(ωr),

(C.10)

where step (i) follows from properties of the Fourier transform, sinc′(ωr) is the first

derivative of the sinc function with respect to ωr, and

ωr = ωvvm − ωtvm

(
z(x) cos(α) + (x− xr) sin(α)

f

)

.

Substituting the solution for I3 into (C.8), we obtain

P (ωt, ωv) =M4

∫ x2

x1

lx(x)

[(
1

cos(α)
+ sin(α)

(

z′(x)− tan(α)
))

sinc(ωr)

+
jvm
f

(

sin(α)− z′(x) cos(α)
)

sinc′(ωr)

]

e
−j

(

x
cos(α)

+z(x) sin(α)−x
sin2(α)
cos(α)

)

ωt
dx,

(C.11)

where

M4 = 2vm e
−jxrωt sin(α) tan(α).

Now, using the scene geometry equations (3.1), we change the variable of integration

in (C.11) from x to the curvilinear coordinate s and substitute z′(x) = tan(φ), resulting
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in

PSr(ωt, ωv) =M4

∫ T

0
g(s) cos(φ)

[(
1

cos(α)
+ sin(α)

(

tan(φ)− tan(α)
))

sinc(ωr)

+
jvm
f

(

sin(α)− tan(φ) cos(α)
)

sinc′(ωr)

]

· e
−j

[

s

(

cos(φ)
cos(α)

+sin(φ) sin(α)−
cos(φ) sin2(α)

cos(α)

)

+
x1

cos(α)
+z1 sin(α)−x1

sin2(α)
cos(α)

]

ωt
ds,

(C.12)

where g(s) = l(s) = lx(x) and

ωr = ωvvm −
ωtvm
f

(

s sin(φ− α) + z1 cos(α)− x1 sin(α) + xr sin(α)
)

.

This integral can be simplified using the following trigonometric identities







sin(α)− tan(φ) cos(α) = sin(α−φ)
cos(φ) ,

sec(α)− sin(α) tan(φ)− sin2(α)
cos(α) = cos(α−φ)

cos(φ) ,

cos(φ)
cos(α) + sin(α) sin(φ)− cos(φ) sin2(α)

cos(α) = cos(α− φ),

sec(α)− sin2(α)
cos(α) = cos(α).

Therefore, using the above and substituting g(s) = ejωss, (C.12) becomes

PSr(ωt, ωv) =M4

∫ T

0

[

cos(α− φ) sinc(ωr) +
jvm
f

sin(α− φ) sinc′(ωr)

]

· ejωss e−j(s cos(α−φ)+x1 cos(φ)+z1 sin(α))ωt ds. (C.13)

In order to solve (C.13), we change the variable of integration from s to ωr. As such

we have the following substitution and Jacobian

s =
ωvf − z1 cos(α)ωt + x1 sin(α)ωt − xr sin(α)ωt

ωt sin(φ− α)
− ωr

f

ωtvm sin(φ− α)
,
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and

ds =
−f

ωtvm sin(φ− α)
dωr.

Under this change of variable, the limits of integration become

s = 0←→ ωr = ωvvm −
ωtvm
f

(

z1 cos(α)− x1 sin(α) + xr sin(α)
)

= br,

s = T ←→ ωr = ωvvm −
ωtvm
f

(

z1 cos(α)− x1 sin(α) + xr sin(α) + T sin(φ− α)
)

= ar.

Final, to accompany this substitution, we define the following parameter

cr =
ωsf − f cos(α− φ)ωt
ωtvm sin(φ− α)

,

and point out the following relationship

brcr = − (cos(α− φ)− ωs)

(
ωvf − z1ωt cos(α) + x1ωt sin(α)− xr sin(α)ωt

ωt sin(φ− α)

)

.

Therefore, applying this change of variable to (C.13), we obtain

PSr(ωt, ωv) =

∫ ar

br

(
−M5f

ωtvm sin(φ− α)

)[

cos(α− φ)sinc(ωr) +
jvm
f

sin(α− φ)sinc′(ωr)

]

· e
−j(cos(α−φ)ωt−ωs)

[

ωvf−z1 cos(α)ωt+x1 sin(α)ωt−xr sin(α)ωt
ωt sin(φ−α)

−ωr
f

ωtvm sin(φ−α)

]

dωr

=M5

∫ ar

br

[(
−f

ωtvm tan(φ− α)

)

sinc(ωr) +
j

ωt
sinc′(ωr)

]

ejbrcre−jcrωr dωr

(i)
= M5

(
j

ωt

[

sinc(ar) e
−jarcr − sinc(br) e

−jbrcr
]

ejbrcr

−

(
f

vmωt tan(φ− α)
+
cr
ωt

)

ejbrcr
∫ ar

br

sinc(ωr) e
−jωrcr dωr

)

.

(C.14)

where (i) follows from integration by parts and

M5 =M4e
−j(xmin cos(α)+zmin sin(α))ωt = 2vme

−jωt
(
x1 cos(α)+z1 sin(α)−x1 sin(α) tan(α)

)

.
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Finally, using (A.8), the plenoptic spectrum for a slanted plane observed from a

camera line rotated around a point xr at an angle α is

PSr(ωt, ωv) = e−jωtt1
(
j2vm
ωt

[

sinc(ar) e
−jT (ωt cos(φ−α)−ωs) − sinc(br)

]

+
j ωsfe

jbrcr

sin(φ− α)ω2
t

·
[

ζ {jbr(cr − 1)} − ζ {jar(cr − 1)} − ζ {jbr(cr + 1)}+ ζ {jar(cr + 1)}
])

,

(C.15)

if ωt 6= 0, else

PSr(0, ωv) = 2vmT sinc

(
ωsT

2

)[

cos(φ− α)sinc (ωvvm)

−j
sin(φ− α)vm

f
sinc′(ωvvm)

]

ejωs
T
2 ,

where t1 = x1 cos(α) + z1 sin(α) + xr sin(α) tan(α).
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Appendix D

Determining the Essential

Bandwidth for sinc′(ω)

In this appendix we determine an estimate of the essential bandwidth for the first

derivative of a sinc function. This estimate is calculated numerically as follows: given

sinc′(ω), we first assume the essential bandwidth is symmetric around origin. The

problem, therefore, can be reduced to determining a parameter W that satisfies

arg
W

{∫ W

−W

∣
∣sinc′(ω)

∣
∣2 dω = 0.9.

∫ ∞

−∞

∣
∣sinc′(ω)

∣
∣2 dω

}

. (D.1)

To solve the above, we calculate the overall energy of sinc′(ω) as follows

∫ ∞

−∞

∣
∣sinc′(ω)

∣
∣2 dω = lim

W→∞

{∫ W

−W

∣
∣sinc′(ω)

∣
∣2 dω

}

= lim
W→∞

{
2

3
Si(2W ) +

cos(2W )(W 2 + 1)− 3W 2 − 2W sin(2W )

3W 3

}

=
π

3
, (D.2)

where Si(W ) is the Sine integral, see [1]. Using this value, we numerically compute

the left-hand integral in (D.1) and determine the percentage of the overall energy as a

function of W . This is illustrated in Figure D.1. The figure shows the ESD of sinc′(ω)

in Figure D.1(a) and the percentage of energy as a function of W in Figure D.1(b).
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Figure D.1: Graph (a) illustrates the Energy Spectral Density (ESD) for sinc′(ω).
The percentage of the overall energy within a bandwidth W as a function of W is
shown in (b).

From this figure, we choose W = 3.5π as an approximate solution to (D.1). Using this

estimate, the essential bandwidth for sinc′(ω) is

{ω : |ω| ≤ 3.5π} . (D.3)

Although this essential bandwidth contains slightly more energy than necessary, 91.3%,

it also corresponds to a zero crossing in sinc′(ω). Therefore it has a nice consistency

when compared with the essential bandwidth for a sinc function.
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Appendix E

The Cardinal Operator

Given an arbitrary MOMS interpolator, the cardinal operator C constructs a cardinal

basis. This cardinal basis allows the interpolation of an arbitrary function from its

samples rather than a set of coefficients relating to the MOMS interpolator. The basis

is known as the cardinal version of the MOMS. In this appendix we define the cardinal

operator and show how the cardinal MOMS is constructed. This definition is based on

the construction of the cardinal B-spline presented in [61].

Starting with a MOMS interpolator of order M , we sample at integer values to

obtain its discrete version:

d
{M}
MOMS(i) = ϕ

{M}
MOMS(x)

∣
∣
∣
x=i

, (E.1)

where i ∈ Z. The corresponding Z-transform of d
{M}
MOMS(i) is

D
{M}
MOMS(z) = Zi

{

d
{M}
MOMS(i)

}

=
∑

i∈Z

d
{M}
MOMS(i)z

−i. (E.2)

From this Z-transform, we define the following function

ξ
{M}
MOMS(i) = Z

−1
z

{

1

D
{M}
MOMS(z)

}

. (E.3)
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Finally, using this function, the cardinal MOMS of order M is

η
{M}
MOMS(x) = C

{

ϕ
{M}
MOMS(x)

}

=
∑

i∈Z

ξ
{M}
MOMS(i)ϕ

{M}
MOMS(x− i). (E.4)

In the Fourier domain this cardinal MOMS has the following frequency response

Fx

{

η
{M}
MOMS(x)

}

=
Φ
{M}
MOMS(ω)

D
{M}
MOMS(e

jω)
, (E.5)

where Φ
{M}
MOMS(ω) is the Fourier transform of ϕ

{M}
MOMS(x).



177

Appendix F

Rendered Images for the Planar

Scene

In this appendix, we present six examples of rendered images from the EPI-volume of

a planar scene. The EPI-volume is described in Section 5.5.1, and the planar scene is

shown in Figure 5.11. For each example, we render the target image using three different

sampling and reconstruction methods: uniform sampling and reconstruction using a 3rd

order I-MOMS; uniform sampling and reconstruction using the baseline algorithm; and

adaptive sampling and reconstruction using our adaptive sampling algorithm. The six

target images and their renderings are shown in Figures F.1, F.2, F.3, F.4, F.5 and F.6.

Similar to Section 5.5.1, each figure shows the original (target) image in part (a), its

rendering using uniform sampling with I-MOMS in (b), its rendering using the baseline

algorithm in (c) and its rendering using adaptive sampling in (d). The figures also show

the corresponding PSNR for each rendered image. Note that, in all of the figures, the

rendered images are generated using 37 original images.
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(a) Original (b) Uniform Sampling, PSNR = 11.3 dB

(c) Baseline Algorithm, PSNR = 11.7 dB (d) Adaptive Sampling, PSNR = 20.8 dB

Figure F.1: Rendered image 1.

(a) Original (b) Uniform Sampling, PSNR = 11.4 dB

(c) Baseline Algorithm, PSNR = 11.7 dB (d) Adaptive Sampling, PSNR = 24.4 dB

Figure F.2: Rendered image 2.
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(a) Original (b) Uniform Sampling, PSNR = 18.3 dB

(c) Baseline Algorithm, PSNR = 18.5 dB (d) Adaptive Sampling, PSNR = 20.9 dB

Figure F.3: Rendered image 3.

(a) Original (b) Uniform Sampling, PSNR = 19.0 dB

(c) Baseline Algorithm, PSNR = 19.1 dB (d) Adaptive Sampling, PSNR = 21.5 dB

Figure F.4: Rendered image 4.
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(a) Original (b) Uniform Sampling, PSNR = 22.6 dB

(c) Baseline Algorithm, PSNR = 22.8 dB (d) Adaptive Sampling, PSNR = 25.5 dB

Figure F.5: Rendered image 5.

(a) Original (b) Uniform Sampling, PSNR = 19.8 dB

(c) Baseline Algorithm, PSNR = 19.9 dB (d) Adaptive Sampling, PSNR = 25.9 dB

Figure F.6: Rendered image 6.
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Appendix G

Rendered Images for the

Smoothly Varying Scene

In this appendix, we present six examples of rendered images from the EPI-volume

of a smoothly varying scene. The EPI-volume is described in Section 5.5.2, and the

smoothly varying scene scene is shown in Figure 5.14. For each example, we render

the target image using three different sampling and reconstruction methods: uniform

sampling and reconstruction using a 3rd order I-MOMS; uniform sampling and recon-

struction using the baseline algorithm; and adaptive sampling and reconstruction using

our adaptive sampling algorithm. The six target images and their renderings are shown

in Figures G.1(d), G.2, G.3, G.4, G.5 and G.6. Similar to Section 5.5.2, each figure

shows the original (target) image in part (a), its rendering using uniform sampling with

I-MOMS in (b), its rendering using the baseline algorithm in (c) and its rendering us-

ing adaptive sampling in (d). The figures also show the corresponding PSNR for each

rendered image. Note that, in all of the figures, the rendered images are generated

using 10 original images.
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(a) Original (b) Uniform Sampling, PSNR = 20.3 dB

(c) Baseline Algorithm, PSNR = 20.5 dB (d) Adaptive Sampling, PSNR = 21.7 dB

Figure G.1: Rendered image 1.

(a) Original (b) Uniform Sampling, PSNR = 21.5 dB

(c) Baseline Algorithm, PSNR = 21.6 dB (d) Adaptive Sampling, PSNR = 25.2 dB

Figure G.2: Rendered image 2.
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(a) Original (b) Uniform Sampling, PSNR = 19.4 dB

(c) Baseline Algorithm, PSNR = 19.6 dB (d) Adaptive Sampling, PSNR = 25.5 dB

Figure G.3: Rendered image 3.

(a) Original (b) Uniform Sampling, PSNR = 19.4 dB

(c) Baseline Algorithm, PSNR = 19.5 dB (d) Adaptive Sampling, PSNR = 22.1 dB

Figure G.4: Rendered image 4.
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(a) Original (b) Uniform Sampling, PSNR = 19.5 dB

(c) Baseline Algorithm, PSNR = 19.6 dB (d) Adaptive Sampling, PSNR = 21.9 dB

Figure G.5: Rendered image 5.

(a) Original (b) Uniform Sampling, PSNR = 19.1 dB

(c) Baseline Algorithm, PSNR = 19.7 dB (d) Adaptive Sampling, PSNR = 23.9 dB

Figure G.6: Rendered image 6.
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