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Abstract

Multiview images are obtained by recording a scene from different viewpoints. The

additional information can be used to improve the performance of various applications

ranging from e-commerce to security surveillance. Many such applications process large

arrays of images, and therefore it is important to consider how the information is stored

and transmitted.

In this thesis we address the issue of multiview image compression. Our approach

is based on the concept that a point in a 3D space maps to a constant intensity line in

specific multiview image arrays. We use this property to develop a sparse representation

of multiview images. To obtain the representation we segment the data into layers,

where each layer is defined by an object located at a constant depth in the scene. We

extract the layers by initialising the layer contours and then by iteratively evolving them

in the direction which minimises an appropriate cost function. To obtain the sparse

representation we reduce the redundancy of each layer by using a multi-dimensional

discrete wavelet transform (DWT). We apply the DWT in a separable approach; first

across the camera viewpoint dimensions, followed by a 2D DWT applied to the spatial

dimensions. The camera viewpoint DWT is modified to take into account the structure

of each layer, and also the occluded regions.

Based on the sparse representation, we propose two compression algorithms. The

first is a centralised approach, which achieves a high compression, however requires the

transmission of all the data. The second is an interactive method, which trades-off

compression performance in order to facilitate random access to the multiview image

dataset. In addition, we address the issue of rate allocation between encoding of the
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layer contours and the texture. We demonstrate that the proposed centralised and

interactive methods outperform H.264/MVC and JPEG 2000, respectively.
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Chapter 1

Introduction

1.1 Motivation

Multiview images are obtained by recording a scene from different viewpoints using

an array of cameras. These datasets have become an important component in a wide

range of signal processing applications. In the computer graphics community, multiview

images are used to create photorealistic results with a low computational complexity.

The reason for using real datasets, as opposed to an accurate 3D representation of a

scene, stems from the fact that natural images contain many subtle properties which

are difficult to model and reproduce. Yet these properties are necessary to create a

‘realistic’ perception in the rendered scene [44]. The process of creating virtual views

from images is known as image-based rendering (IBR) [81].

In particular, IBR has been extensively researched due to its applications in free

viewpoint TV (FTV) [84] and 3D TV [49]. The latter creates a perception of depth,

whereas FTV allows the user to perceive an immersive experience by interactively

choosing their viewpoint. In FTV, IBR plays an important role; it is used to synthe-

sise novel viewpoints where no camera exists. Other examples of applications where

multiview images are commonly used include: object and feature recognition, security

surveillance, teleconferencing and remote education [49].

These applications have to process significantly more data than the traditional single

view setup. For example, in IBR a popular approach known as light field rendering [52]
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can consist of 1000 images with an uncompressed data size of ∼1GB [96]. Therefore,

in order to make these applications practical, it is important to develop methods which

efficiently compress this type of data.

Multiview images are highly redundant in that they contain very similar content

in each view. This property is due to the fact that in a multiview image array the

cameras are commonly very closely spaced. As a consequence, a given object in one

of the images will also appear shifted in each of the neighbouring images. Moreover,

the shift can often be predicted and partially depends on the geometry of the array.

These properties can be taken into account when developing coding methods to achieve

a high compression.

When developing a multiview compression method, it is important to consider the

type of application the algorithm is designed for. If the data is encoded offline and stored

on a hard disk, we can design a complex encoding method with a high compression

efficiency. However, in an interactive communication system [21], we must consider

other aspects in addition to this property. An interactive communication setup consists

of a server and remote clients. The remote clients connect to the server and request

certain images from the dataset. An advantage of this method is that only the requested

views are transmitted as opposed to the complete dataset. In this setup, the ability to

transmit certain images without decoding the dataset is significantly more important

than compression efficiency. This property is known as random access. In addition,

other factors such as decoding complexity and scalability should be taken into account.

Scalability is a general term which defines whether a single bit stream can be decoded

multiple times according to different distortion or resolution levels (spatial or temporal)

[64].

In compression, we must also carefully consider how the coding parameters are

chosen to optimise the method. Typically, the parameters are selected using a rate-

distortion (RD) formulation where the goal is to minimise the distortion for a given

bit budget (complexity and other factors can also be taken into account [4]). For

example in subband coding [89] the goal is to select a set of quantisers which minimise

the distortion for a given rate constraint. The number of free parameters in a coding
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setup is typically large and optimisation techniques must be employed to solve these

problems. A popular framework applied in image and video coding is Lagrangian

minimisation [83]. Here, the constrained optimisation problem is transformed into an

unconstrained one by jointly minimising the rate and distortion. This framework can

be applied in an operational sense by encoding the data points or by modelling the RD

using a certain class of signals, such as a Gaussian random process [25] or piecewise

polynomial signals [80].

1.2 Problem Statement

In this thesis, we address the issue of multiview image compression. The input dataset

is a 2D array of images. We assume that the cameras are evenly spaced on a 2D grid,

and that the viewing direction of the cameras is perpendicular to the location plane.

We also consider a calibrated setup, such that the camera locations are known. In

addition, we assume that the scene is stationary; this allows us to capture a dataset

using a conventional camera by changing its viewpoint to different locations on the

array. Without a loss of generality, we encode only the monochromatic component of

the images.

The coding schemes that we propose are based on a sparse representation of multi-

view images. A sparse representation is a decomposition, where the original signal can

be approximated well using a small number of transform coefficients [12]. The repre-

sentation that we develop is unique to multiview images. It is based on analysing how

the data in multiview images is structured, and it is related to the idea that multiview

images are highly redundant.Two of the underlying assumptions which are necessary

to obtain the sparse representation are that the scene is Lambertian and that it can

be analysed as a set of constant depth planes. In a Lambertian scene the luminance

of an object (light ray intensity) appears the same when it is observed from different

viewpoints.

Based on the sparse representation we propose two coding schemes. The first is a

centralised approach and it achieves a high compression performance in comparison to
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the state-of-the-art. The aim of this method is to minimise the distortion for a given

bit budget constraint, where the distortion is measured in terms of the mean squared

error (MSE). MSE is a conventional metric for multiview images, and has the desirable

convexity and differentiability properties [91]. We optimise the method in the RD

sense to ensure an efficient performance. In addition, we show that for certain classes

of signals there exist closed-form solutions for the rate allocation, which minimises the

distortion.

However, the joint encoding method requires that all of the data is transmitted to

the user. As outlined in the introduction, this type of coding scheme is not appropriate

for certain applications, such as an interactive communication system. We address this

issue in the second algorithm, by showing that we can trade-off compression perfor-

mance with random access capabilities.

1.3 Thesis Outline

The outline of this thesis is as follows. In Chapter 2 we overview IBR and show that

multiview images can be characterised using a single function known as the plenoptic

function [3]. The main aim of this chapter is to show that multiview images are

structured and redundant. Specifically, we show that an object located at a constant

depth in the scene, shifts by the same number of pixels in each frame (under some

conditions). Based on this analysis, we present the layer-based representation. We

show that multiview images can be analysed as a set of layers, where each layer is

related to an object in the scene. This chapter is concluded by presenting a number of

multiview image compression methods.

In Chapter 3, we outline our approach to obtain a sparse decomposition of multiview

images. The method consists of two main stages. First, we segment the multiview

image array into a set of layers. To extract the layers, we pose the segmentation as an

optimisation problem. The segmentation of each layer is initialised and then iteratively

evolved using the level-set method [78]. In order to obtain a sparse representation, we

remove the redundancy in the second stage of the method by using a multi-dimensional
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discrete wavelet transform (DWT). We apply the transform in a separable approach

across the camera viewpoint dimensions, followed by the spatial (image) dimensions.

We evaluate the sparsity of the method, and also show that the representation can be

used to denoise multiview images.

In Chapter 4, we present the joint compression method based on the proposed sparse

decomposition. To encode multiview images we transmit the texture and also the con-

tours of the layer-based representation. We present our approach to encode both these

features. This chapter also deals with the RD optimisation of the proposed method.

We show how the total bit budget can be correctly distributed between encoding the

texture and the layer contours. To solve this problem, we derive the RD behaviour

by appropriately modelling the data. We model the transform coefficients as Gaussian

random variables and the contours as piecewise linear signals. The RD function is

then minimised given a rate constraint using the Lagrangian multiplier optimisation

method.

In Chapter 5, we evaluate the proposed centralised compression algorithm. We show

that our approach outperforms the state-of-the-art H.264/AVC [92] coding scheme. We

use a number of real datasets with varying number of images, spatial resolution and

scene complexity. In addition, we evaluate the proposed RD model and also the rate

allocation strategy.

In Chapter 6, we show that the proposed joint coding algorithm can be modified

to support random access by trading off compression efficiency. We call it an interac-

tive compression method, as it is suitable for an interactive communication setup. In

addition, we derive a RD model for the proposed method by assuming that the input

images are globally smooth 2D α-Lipschitz signals [61]. Our analysis shows that the

proposed method has the same rate of decay as an independent coding scheme (such

as JPEG 2000 [24]), but with different scaling constants.

The thesis is concluded in Chapter 7. Here, we overview the presented results and

outline possible directions for future work.
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1.4 Original Contributions and Publications

The main contribution of this thesis is the development of the centralised and interactive

compression methods and the derivation of the RD model. The design of the sparse

representation is in part based on the work in [6]. More specifically, we use the layer-

extraction method proposed in [8], which takes into account the structure of multiview

images. The remaining work on the sparse representation in Section 3.3 has been

developed by the author of this thesis.

The presented material in this thesis has resulted in the following publications:

• A. Gelman, P.L. Dragotti and V.Velisavljevic, “Multiview Image Coding using

Depth Layers and An Optimized Bit Allocation”, accepted subject to minor re-

visions to Transactions of Image Processing, January 2012.

• A. Gelman, J. Berent and P.L. Dragotti, “Layer-based sparse representation of

multiview images”, accepted to EURASIP Journal on Advances in Signal Process-

ing, July 2011.

• A. Gelman, P.L. Dragotti and V.Velisavljevic, “Interactive Multiview Image Cod-

ing”, in Proceedings of International Conference on Image Processing (ICIP),

Brussels, September 2011.

• A. Gelman, P.L. Dragotti and V.Velisavljevic, “Centralized and Interactive Com-

pression of Multiview Images”, in Proceedings of SPIE Applications of Digital

Image Processing XXXIV, San Diego, August 2011.

• A. Gelman, P.L. Dragotti and V.Velisavljevic, “Multiview Image Compression

using a Layer-Based Representation”, in Proceedings of International Conference

on Image Processing (ICIP), Hong Kong, September 2010.

• A. Gelman, P.L. Dragotti and V.Velisavljevic, “Layer-Based Multi-view Image

Compression”, in Proceedings of International Mobile Multimedia Conference

(MobiMedia), Kingston, UK, September 2009.
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Chapter 2

Multiview Data Structure and

Compression

In this chapter we start by reviewing the structure of multiview images. Specifically, we

introduce the plenoptic function and IBR. Then we show that the multiview structure

is determined by the objects in the scene and their relative depth to the camera array.

Based on this analysis we describe the layer-based representation [8]. The representa-

tion segments multiview images into layers, where each layer is related to a constant

depth in the scene. To conclude this chapter, we also review a number of existing

compression algorithms in the literature.

2.1 Plenoptic Function

In the IBR framework, multiview images form samples of a multi-dimensional signal

called the plenoptic function [3]. Introduced by Adelson and Bergen, this function

parameterises each light ray with a 3D point in space (Vx, Vy, Vz)1 and its direction of

arrival (θ, φ). Two further variables λ and t are used to specify the wavelength and

time, respectively. In total the plenoptic function is seven dimensional:

I = P7 (Vx, Vy, Vz, θ, φ, λ, t) , (2.1)

1This can also be analysed as the location of a sampling camera.
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where I corresponds to the light ray intensity.

The continuous version of the plenoptic function stores all of the information con-

tained in a scene, and any viewpoint can be synthesised by selecting the correct light

rays. In practise the plenoptic function is sampled, for example using a conventional

camera. The goal of IBR is then to synthesise an image at a novel viewpoint by esti-

mating the missing light rays from the sampled plenoptic function. This has resulted

in IBR to be analysed as a sampling problem in [15], and an interesting result is that

the spectrum is bandlimited by the maximum and minimum depth in the scene.

Due to the number of dimensions of the plenoptic function it is not easy to sample

each of the dimensions. Therefore, in practise a number of simplifications are applied

to reduce its dimensionality. Firstly, it is common to drop the λ parameter and instead

deal with either the monochromatic intensity or the red, green, blue (RGB) channels

separately. Secondly, many scenes are recorded in a static setting; this means that the

plenoptic function can be defined at a specific moment in time, thus dropping the t

parameter. The resulting object is a 5D function, and rendering using this object is

known as plenoptic modelling [62].

Based on these assumptions a popular parameterisation of the plenoptic function is

known as the light field [52] or equivalently the lumigraph [40]. Here the dimensionality

of the plenoptic function is reduced to four by restricting the camera coordinate Vz = 0.

In this representation, each light ray is defined by its intersection with a camera plane

and a focal plane:

I = P4 (Vx, Vy, x, y) , (2.2)

where as illustrated in Fig. 2.1, (Vx, Vy) and (x, y) correspond to the coordinates of the

camera plane and the focal plane, respectively.

The light field can also be analysed as a 2D array of images. For example, in Fig.

2.2 we illustrate a light field with 16 camera locations. The camera positions are evenly

spaced on a 2D grid indexed with Vx and Vy. This demonstrates the close relationship

between the plenoptic function and multiview images.

The light field can be further simplified by setting the 2D camera plane to a line.
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Figure 2.1: Light field parameterisation. Each light ray is defined by its intersection
with a camera plane (Vx, Vy) and a focal plane (x, y) [82].

Figure 2.2: Captured light field [6]. Dataset can be analysed as a 2D array of
images.

This representation is equivalent to a 1D array of images and is known as the Epipolar-

plane image (EPI) volume [11]:

I = P3 (Vx, x, y) . (2.3)

In comparison to the light field, the EPI is easier to visualise and in this thesis we use it

to illustrate a number of concepts. All of the properties are however easily generalised

to the light field. Next, we review the EPI and light field data structure and present

the layer-based representation [8].
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2.2 EPI and Light Field Structure

In this section we show that an EPI volume and a light field are structured datasets.

By structure we mean that the fundamental component of multiview images are lines

along which the pixel intensity is approximately constant; this concept is shown in

Fig. 2.3(c). This illustration is obtained by stacking an array of images into a volume

and taking a cross section through the dataset. It can be observed that pixels are

redundant along lines of varying gradients. The set of pixels along which the intensity

of the volume is constant is known as an EPI line.

In order to demonstrate why the fundamental component of multiview images are

EPI lines, consider the setup in Fig. 2.3(a). Here we show a simplified version of the

scene: the horizontal axis corresponds to the camera location line; the line parallel to

it defines the focal plane of each camera2; and the vertical axis defines the depth of the

scene. The curved line corresponds to the surface of the object.

Given this setup consider a point in space with coordinates (X, Y, Z). Assuming a

Lambertian scene3 this point will appear in each of the images (Vx) with coordinates

x =
fX

Z
− fVx

Z
, (2.4)

y =
fY

Z
, (2.5)

where f is the focal length. As illustrated in Fig. 2.3(b), the spatial coordinate x is

linearly related to the camera location Vx. The rate of change in the pixel location,

also known as the disparity gradient ∆p = f
Z , is inversely related to the depth of the

object. This analysis tell us that a point in space with coordinates (X, Y, Z), maps to

a constant intensity line in the EPI volume. Moreover, objects closer to the focal plane

(smaller Z ), correspond to lines with a steeper gradient.

The EPI lines in the volume have varying gradients (due to different objects in the

scene) and may intersect at a point. Clearly, when two lines intersect, the EPI line

corresponding to a smaller depth (larger disparity gradient) will occlude all the EPI

2Each camera in the setup is modelled by the pinhole model [41].
3Light ray intensity is constant when an object is observed from a different angle.
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lines which are related to larger depths (smaller disparity gradient) in the scene. This

principle is illustrated in Fig. 2.3(c).

The EPI line concepts can also be extended to the light field, where the camera is

allowed to move along two dimensions (Vx, Vy). In this case, a point (X, Y, Z) maps

onto a 2D plane as


X

Y

Z

→



x

y

Vx

Vy


=



(X − Vx) f/Z

(Y − Vy) f/Z

Vx

Vy


. (2.6)

(a) (b)

(c)

Figure 2.3: (a) Camera setup. The sampling camera moves along a straight line;
the direction of the camera is perpendicular to the camera location line. (b) Each
point in space maps to a line in the EPI volume. Observe that the blue object is
closer to the focal plane and therefore occludes the red object. It can be shown
using (2.4) and (2.5) that a data sample (x, y, Vx) can be mapped onto a different

viewpoint V ′
x with spatial coordinates x′ = x− f(V ′

x−Vx)
Z and y′ = y. (c) Shows a cross

section of an EPI volume. This figure is obtained by stacking a 1D array of images
into a volume and analysing a slice in the dataset. Two EPI lines which correspond
to two points in space are illustrated.
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(a) (b)

Figure 2.4: A comparison between a layer carved out in a video and an EPI volume
[6].

2.3 Layer-based representation

In the previous section we discussed the structure of multiview images. It was shown

that captured datasets such as the light field and the EPI volume consist of EPI lines

along which the pixel intensity is constant. This concept can be further extended by

grouping EPI lines with the same gradient into a single volume (we call this a layer).

A multiview array can be segmented into a set of layers, where each one corresponds to

a constant depth in the scene. We call this the layer-based representation. An example

of the representation is illustrated in Fig. 2.7.

It is intuitive to introduce the concept of layers using a standard video. Consider a

moving object in front of a stationary camera. If we track the object in each frame, the

object will carve out a volume in time [90]. A carved out synthetic volume is shown in

Fig. 2.4(a)

A carved out video volume has a close connection to a layer in a multiview image

array. Recall that camera motion and object motion are relative. For example, we can

obtain the same video dataset by having a stationary object and a moving camera;

this corresponds to a multiview image array4. By contrast in a multiview setup, the

4This is only true when there is one moving object in the scene. It is not possible to obtain the
same dataset when there are multiple objects experiencing different motion.
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camera motion is constrained (the camera can only move on a 2D array.). Therefore,

it is intuitive to deduce that multiview images will also consist of layers. In addition,

due to the constrained camera motion, a multiview layer will be more structured; a

synthetic example is shown in Fig. 2.4(b).

Next we describe in more detail the structure of the layer-based representation. We

show that the layer segmentation can be efficiently described by a set of contours on an

image taken from one viewpoint and the corresponding depth of each layer. In addition

we discuss what happens when two or more layers overlap. In videos, it is not possible

to deduce the occlusion ordering using the motion of objects. However, in multiview

images, we show that this property can be correctly inferred simply by knowing the

layer gradients (disparities).

2.3.1 Efficient boundary description and occlusions

To provide a more precise analysis, consider a set of EPI lines modelled by a constant

disparity gradient ∆pk as shown in Fig. 2.5(a). We define the layer carved out by the

EPI lines with Hk. The layer can be separated from the 3D space by its boundary Γk.

Here the subscript k corresponds to the k-th layer in the dataset.

Just as in the case of EPI lines, we know that the surface Γk will be structured. In

fact, assuming there are no occlusions, the surface Γk can be defined by a 2D contour

on one viewpoint projected5 to the remaining frames. More specifically, if we define a

contour γk (s) = [x (s) , y (s)] to be the boundary on the viewpoint (Vx = 0), we obtain

the relationship

Γk (s, Vx) =


x (s)−∆pkVx

y (s)

Vx

 , (2.7)

where s parameterises the contour γk (s). This equation outlines that the surface is

created by shifting the 2D contour onto each of the images. This concept is further

illustrated in Fig. 2.6(a) which shows an unoccluded layer from the Animal Farm

5In this setting, a projection onto a new camera location will simply be a shift along the x-axis in
spatial coordinates of the new camera location.
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(a) (b) (c)

Figure 2.5: Comparison between two layers Hk−1, Hk and their intersection [6]. The
layers are ordered in terms of depth (i.e. Hk−1 corresponds to a smaller depth than
Hk). (a) A set of EPI lines related to constant disparity gradient ∆pk. The collection
of EPI lines carve out a layer Hk. Observe that the complete segmentation of the
layer can be defined by a boundary on one viewpoint projected to the remaining
frames. (b) Hk−1 modelled by a constant disparity gradient ∆pk−1. (c) When the
two layers intersect, Hk−1 will occlude Hk as it is modelled by a smaller depth. We
define the visible volumes with HV

k−1 and HV
k .

dataset [7]. The complete segmentation is defined by the red boundary γk (s) on the

first image viewpoint shifted to the remaining frames.

Note that the above analysis does not take into account occluded/disoccluded re-

gions. In order to include these properties in the formulation, we can use the same

reasoning as in the case of EPI lines: a layer will only be occluded when it intersects

with other layers which are related to a smaller depth (larger disparity gradient) in

the scene. We illustrate this in Fig. 2.5, which shows that when two layers intersect

we obtain their visible representations6 HV
k−1 and HV

k . In this example the layers are

ordered in terms of increasing depth (i.e. Hk corresponds to an object with a larger

depth than Hk−1).

To further clarify the difference between Hk and HV
k ; layer Hk is obtained from a

contour on one viewpoint γk (s), whereas its visible representation HV
k corresponds to

the same layer, but with its occluded regions removed.

In general, the visible representation of a layer can be defined as

HV
k = Hk

⋂k−1⋃
j=1

Hj

. (2.8)

6By visible regions we mean the EPI line segments which are present in the original EPI volume.
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(a) (b)

Figure 2.6: Layer from the Animal Farm dataset. (a) The unoccluded layer Hk can
be defined using the contour γk (s) on one viewpoint projected to the remaining
frames. The 2D contour is denoted by the red curve on the first image. (b)
Occluded layer HV

k can be inferred by removing the regions which intersect with
other layers related to a smaller depth.

We illustrate the layers Hk and HV
k from the Animal Farm dataset in Fig. 2.6.

There are a number of advantages to segmenting a multiview dataset into layers.

Firstly, each layer is highly redundant in the direction of the disparity gradient ∆p.

Secondly, any occluded regions are explicitly defined by the representation. These

regions correspond to artificial boundaries, and their specific locations can be used to

design a transform which takes them into account. Thirdly, the segmentation of each

layer can be efficiently defined by a contour on one viewpoint γ (s) and its disparity

gradient ∆p. This property is important in terms of data compression, where the

segmentation of each layer must also be transmitted.

Figure 2.7: Animal Farm layer-based representation [6]. The dataset can be divided
into a set of volumes, where each one is related to a constant depth in the scene.
Observe that the layer contours at each viewpoint remain constant, unless there is
an intersection with another layer which is modelled by a smaller depth.
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2.4 Multiview Image Compression

In this section we review existing multiview image compression algorithms. A variety of

methods have been proposed which trade-off encoding/decoding complexity, scalability

and random access [81,97].

We separate the analysis into the following sections. Initially, we describe a number

of conventional methods for encoding a 2D array of images. These have been mainly

designed to reduce the storage requirements. Then, we present a number of schemes

proposed for the interactive setup. Recall that in this scenario multiview images are

stored at a central server and are transmitted to the client on request. This type of

setup places more emphasis on random access. We also present a number of innovative

solutions that approach this problem by storing different versions of the data at the

server in order to reduce the transmission rate.

2.4.1 Conventional Multiview Image Coding

Disparity Compensated Prediction

Multiview images share many similarities with traditional videos. Thus, a number

of video coding tools [92] have been applied to multiview images in the literature. A

popular approach is to use disparity compensated prediction (DCP). In DCP multiview

images are segmented into blocks and each block is predicted from previously coded

images by minimising an error metric7. Only the residual error (prediction error)

is quantised and transmitted to reduce the bit rate. The concept of DCP has been

extended to 2D multiview image arrays by applying the compensation along the two

viewing dimensions. As illustrated in Fig. 2.8, prediction-based algorithms encode

the data by partitioning the images into intra and inter frames. The intra frames are

independently encoded using traditional image compression techniques and the inter

frames are predicted from the nearest intra images [47,96]. In [57] a hierarchical DCP

coding approach was used; in this setup, the first and last images are encoded in intra

modality. Then, the middle view is coded as a prediction of the two frames. The

7Popular metrics include mean squared error and absolute error.
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Figure 2.8: Prediction-based light field encoding. The light field images are par-
titioned into inter and intra frames. The intra frames are encoded independently,
while the inter-frames are predicted from the intra frames [97].

hierarchical approach subsequently continues to encode the remaining views. These

type of methods can be further optimised by choosing different block sizes and selection

modes for each block [59] similar to H.264/AVC [92].

Although the proposed methods achieve a high compression, the prediction struc-

tures used during coding reduce random access. For example to decode one image it

may be necessary to fully decode all of the reference frames.

To resolve this issue Li and Zhang [96] used the analysis that a particular set of

coefficients has a fixed number of reference blocks. By creating a look-up table with a

set of pointers to each block in the dataset, they facilitated random access by decoding

only the necessary transform coefficients. In addition, they cached the transmitted

images to reduce the decoding time of future frames (in case the frames are reused).

In a conventional approach, random access is affected due to the large number

of possible reference frames. In [19], the authors proposed to modify the encoding

structure to deal with this problem. In their approach, they restrict the reference

frames to be the corner images. The remaining images are then predictively coded

using only these views. However, in this setup, the compression performance is limited

by the number of images in the dataset: when the number of images is large, the corner

images may be a poor predictor and hence result in a large residual error.

DCP has also been a popular approach in stereo image coding due to its applications
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in 3D TV. This is a special case of multiview images, where only two input views are

considered. The proposed methods [77, 94, 95] are similar to the ones outlined above,

where one image is encoded in intra modality and used as a prediction for the second

view.

Model-based and Wavelet Methods

A number of schemes proposed in the literature use the scene geometry (depth of the

objects in the scene) to improve the compression performance. The authors in [73]

used geometry information to predict the disparity (motion) vectors in order to reduce

the overall bit rate. The model has also been used to infer the silhouette of an object

in [18,39]; this information was then used to improve the coding efficiency by applying

a shape adaptive transform in the region of interest. In [55], the model was used to

infer appearing and disappearing objects in the images to further improve performance.

In [38,58] a different approach was used; the authors proposed to map the original

multiview images onto texture maps using the 3D model. The main idea in this method

is that texture maps are more redundant than the original images, and therefore higher

compression can be achieved. However, the transformation that maps images onto

texture maps is not invertible and this implies that it is not possible to reconstruct

the original dataset. Furthermore, estimating a 3D model in a cluttered scene is a

complicated and error prone process [49].

A popular approach to encode multiview images has also been to use the Discrete

Wavelet Transform (DWT). The DWT has been widely used in compression due to its

ability to represent natural features such as edges and smooth regions. In addition, the

representation provides a framework to support both bit-rate and spatial scalability.

These properties have resulted in the DWT being adopted in the JPEG 2000 [24]

standard. The separable properties of the DWT [61] also mean that the method can

naturally be extended to multi-dimensional datasets [20,75,86].

A natural approach to encode the light field is to extend the 2D wavelet coder

to operate on the additional camera viewpoint dimensions. This implementation was

used in [56] where a 4D DWT was applied to de-correlate the data. In this case,
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disparity compensation was not included and this resulted in a large number of high-

pass coefficients, therefore reducing compression performance. In [37], the coding gain

was increased by using a warping operator. The warping operator maps an image

onto a different viewpoint and thus increases the inter view correlation in the DWT.

In addition, the lifting implementation [27] was used to reduce the complexity of the

algorithm and ensure the transformation is invertible (even if the warping operator is

not invertible).

2.4.2 Texture and Model Rate Allocation

Many existing compression schemes rely on a 3D model of the scene to perform disparity

compensation or to map images onto different viewpoints. To correctly reconstruct the

data, the scene model must also be transmitted. Therefore, there is a trade-off in terms

of the number of bits allocated to encoding the texture and the model. One approach

is to losslessly encode the model at all bit rates [35, 55]. However, this is clearly sub-

optimal since the model itself only defines the accuracy of the disparity compensation.

At low rates it is intuitive to allocate significantly more bits to the texture (residual

error) than the 3D scene. The bit rate allocation problem between texture and scene

geometry has, for example, been studied in [60] and [26], where the geometry is defined

using a per pixel disparity map. However, in our case the model is defined by a set of

contours and this requires a different RD model to the one proposed in the literature.

An additional problem is that lossy coding of the model indirectly affects the re-

constructed multiview image distortion. For example, errors in the model introduce

errors in disparity compensation. These pixels reduce the coding efficiency and when

quantised, they contribute to the distortion. Therefore, it is difficult to develop a RD

model for optimisation. In our approach we deal with this problem by considering the

worst case distortion scenario. Using this setup we can derive a closed-form expression

for the rate allocation between the model and the transform coefficients.
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2.4.3 Interactive Compression Methods

In the interactive setup a client downloads images from a central server on request. In

this case, only a subset of the data may be required and this approach allows the user

to significantly reduce the transmission rate. For example consider a dataset which

stores all of the images for an immersive viewing experience of a museum. The total

size of the data is extremely large and it is redundant to transmit all the information,

when only a small proportion of the images is actually going to be viewed. Therefore,

the server and client interactively communicate; as the user moves around the scene he

requests the images which are needed to render a novel viewpoint.

There are a number of points which must be considered in this encoding setup.

First, the server must support random access; it is not practical to decompress the

data at the server each time there is a request from the client8. Second, the viewing

trajectory is unknown before the compression9 [21]. Therefore, the encoding method

must be able to handle this uncertainty.

There are a number of ways in which these requirements can be met. One option

would be to encode each image independently. It has been shown that in this setup

an independent coding approach can outperform a joint encoding scheme [70,71]. This

occurs because the joint scheme requires that all the dependent frames, which may

not be required for rendering are also transmitted. Although an independent method

can outperform a joint scheme, the approach is still inefficient since the inter-view

redundancy in the transmitted images is not exploited.

A different solution is to store at the server the residual signals for all the possible

combinations of the viewed images [22]. This leads to a low transmission rate, however

requires a large storage requirement at the server. If a conventional closed loop pre-

dictive coding scheme is used, the storage requirement is of the order O
(
NN

)
, where

N is the total number of images. The is due to the fact that a reconstructed image

also depends on the reference frame used [21]. For example, decoding frame 2 given

8This is only possible when the number of clients is small.
9If the viewing trajectory was known, each frame could be differentially encoded in a setup similar

to traditional video coding.
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frame 1 as reference does not give the same result as decoding frame 2 given frame 3

as reference. Therefore, to ensure there is no error propagation (drift) each possible

combination must be encoded.

To reduce the storage requirement issue, the use of Switching Predictive (SP) frames

[45] from H.264/AVC was proposed in [69]. These frames reconstruct the same image

given different reference views, and this reduces the storage size to be in the order of

O
(
N2
)
.

In general there is a trade-off between the storage at the server and the transmission

rate. This is determined by the number of independent frames and SP-frames in the

dataset. Given a certain storage and transmission requirements, this can be analysed

as a constrained optimisation problem to find the correct frame structure. A solution

to this problem based on Lagrangian multipliers was proposed in [21].

In addition to SP-frames, Distributed Source Coding (DSC) [32, 67] has been used

to support random access while reducing the transmission rate and storage require-

ments. DSC encodes each image independently and instead shifts the complexity to

the client. At the client, the data is jointly decoded using side information. In this

context, the side information is created using the previously reconstructed images. This

approach was used in [2] where the images were partitioned into intra and Wyner-Ziv

(DSC) frames. The intra frames were encoded using a conventional independent cod-

ing scheme, whereas parity bits were transmitted from the Wyner-Ziv images. The

Wyner-Ziv frames were then decoded by generating side information at the client. One

of the issues in interactive viewing of a scene is that there is an uncertainty as to which

image will be available in the cache of the user for prediction. In [23] DSC principles

were used to remove this ambiguity by encoding the Wyner-Ziv frames with respect to

the worst possible error. Thus, all frames could be correctly decoded using any side

information in the cache.
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2.5 Summary

In this chapter we discussed multiview images. It was shown that multiview images,

such as an EPI volume or a light field are structured datasets and consist of EPI lines,

along which the intensity of the pixels is constant. In addition it was shown that the

correct EPI line occlusion ordering can be inferred by the disparity gradient of each

line.

Based on the EPI line concept, we presented the layer-based representation. The

model outlines that multiview images can be analysed as a sequence of layers, where

each layer is related to an object at a constant depth in the scene. The advantages of

using this representation are as follows: each layer is redundant in the direction of the

disparity gradient; the occluded regions of each layer are known; and the segmentation

can be efficiently described using a sequence of 2D contours and a set of disparities.

In addition we outlined a number of compression algorithms which have been pro-

posed in the literature for both the interactive and the centralised setup.
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Chapter 3

Sparse Layer-based

Representation of Multiview

Images

The notion of sparsity is the idea that a signal can be defined with a small number of

significant components which contain most of the signal’s information. Sparse signal

representations are at the heart of many successful signal processing applications, such

as compression and denoising [12].

In compression, the idea is to find basis functions which closely match the data

structure. In the transform domain, this creates a decomposition with the majority

of the transform coefficients close to zero. The coefficients are then quantised and

the total bit budget can be effectively allocated among the small number of non-zero

coefficients. An example in image coding is JPEG 2000 [24] which uses a 2D DWT to

obtain a sparse decomposition. The bit budget is then allocated among the transform

coefficients using Lagrangian multipliers [85]. In this thesis, we demonstrate how a

constrained optimisation problem can be solved using Lagrangian multipliers in Section

4.3.

In denoising, a model which creates a sparse representation can be used to remove

significant amounts of noise while retaining salient signal features. The denoising is
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implemented by assuming the original signal is sparse following the transformation. If

the signal is corrupted by additive white Gaussian noise (AWGN), we can obtain an

approximation of the original sparse signal by setting the transform coefficients below

a certain threshold to zero. The denoised version of the signal is then obtained by

applying the inverse transformation.

As outlined above, a sparse decomposition is important for various signal processing

applications. In the case of images, the data is composed of smooths regions separated

by edges. This simple analysis has contributed to the development of a number of data

driven representations such as curvelets [13], contourlets [30], ridgelets [29], direction-

lets [88], bandlets [50, 51] and complex wavelets transform [5, 76]. All these represen-

tations aim to achieve a sparse decomposition of images. However, when dealing with

multiview images, the data model must take into account appearing (disocclusions) and

disappearing (occlusions) objects. This nonlinear property means that finding a sparse

representation is significantly more difficult than in the single image case.

We therefore use a hybrid method to find a sparse representation of multiview im-

ages. The fundamental component of the algorithm is the layer-based representation

highlighted in Section 2.3. Recall, that the layer-based representation partitions multi-

view images into a set of layers each related to a constant depth in the observed scene.

We review a method to extract these regions [8], which takes into account the structure

of multiview data to achieve accurate results. Then, given the extracted layers, we

obtain the sparse representation by applying a 4D DWT1 to each layer.

This chapter is organised as follows. Next we present a high-level overview of the

proposed method. In Section 3.2 we outline the layer extraction algorithm. The multi-

dimensional DWT is discussed in Section 3.3. We evaluate the sparsity of the proposed

representation in Section 3.4 and summarise the chapter in Section 3.5.

1A light field has four dimensions and therefore we use a 4D DWT. In the case of an EPI volume
we use a 3D DWT.
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3.1 High-level overview

A high-level overview of the proposed method is shown in Fig. 3.1. The input to the

algorithm is an array of multiview images. The multiview images can either correspond

to an EPI volume (1D array of images) or a light field (2D array of images).

Given the input, the first step of the method is to segment the multiview dataset

into a sequence of layers, where each layer is modelled by a constant depth in the

scene. To extract these layers, we define a cost functional2, which is initialised by a set

of layer boundaries. The boundary of each layer is then iteratively evolved to minimise

the cost. Furthermore, we take into account the camera setup and occlusion constraints

to simplify the evolution from a 4D surface to a 2D contour.

Following the layer extraction, we obtain the sparse decomposition by applying a

4D DWT in a separable fashion across the viewpoint and the spatial dimensions. We

modify the viewpoint transform to include disparity compensation and also efficiently

deal with occluded regions. Additionally, the transform is implemented using the lifting

scheme [27] to reduce the complexity and maintain invertibility.

3.2 Layer-based segmentation

Data segmentation is the first stage of the proposed algorithm. We introduce the

method by first describing a general segmentation problem. Then, we show how the

solution can be adapted to extract layers from a multiview image dataset by taking

into account the properties of the data.

3.2.1 General data segmentation

Consider a general segmentation problem shown in Fig. 3.2. The aim is to partition

a m-dimensional dataset D ⊂ Rm into subsets H and H where the boundary which

separates the two regions is defined by Γ (σ) with σ ∈ Rm−1. This type of problem

can be solved using an optimisation framework, where the boundary is obtained by

2A functional is function which takes in other functions as variables.
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Figure 3.1: High-level algorithm block diagram. The data is initially segmented
into layers where each volume is related to a constant depth in the scene. The
obtained layers are then decomposed using a 4D DWT along the viewpoint and
spatial dimensions. Additionally, we illustrate the obtained transform coefficients
at each stage of the method.

Figure 3.2: A m-dimensional dataset D is partitioned into H and H. The boundary
is a closed curve defined by Γ [6] and is a (m-1)-dimensional object.

minimising an objective function J :

Γopt = arg min{J (Γ)}. (3.1)

A popular approach in segmentation is to first initialise a boundary Γ0. The boundary

is then iteratively evolved in the direction which minimises the cost function. The

boundary evolution is modeled as a partial differential equation (PDE). By making the
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boundary a function of a time parameter τ , the evolution is defined as

∂Γ (σ, τ)
∂τ

= v (σ, τ) = F (σ, τ)n (σ, τ) , (3.2)

where v is a velocity vector, which can be expressed in terms of a scalar force F acting

at each point on the boundary. The direction of the force is in the inward normal

direction to the boundary n. Note that the force can also be negative, in which case,

the evolution would be in the outward normal direction and act to expand the surface.

The velocity vector determines the evolution of the boundary with time. For ex-

ample, given v, the boundary at time τ can be estimated using the first order Taylor

series as

Γ (σ, τ) = Γ (σ, 0) + τ
∂Γ (σ, 0)

∂τ
, (3.3)

where Γ (σ, 0) is the initialised boundary Γ0. These type of boundaries are known as

geodesic active contours [14] or snakes [46].

In order to evaluate a velocity vector which minimises the cost function, we first

need to construct the cost function itself. Next we discuss two such techniques known

as boundary-based and region-based schemes.

Boundary-based segmentation

A classical approach to define the cost in (3.1) is to sum a contribution at each point

on the boundary Γ. These are known as boundary-based methods [14]:

J (Γ) =
∫

Γ
db (x) dσ. (3.4)

The function db (x) with x ∈ Rm is known as a descriptor and it determines the weight

at each point on the boundary. We can choose the descriptor such that the cost is

minimised when the boundary lies on a perfect edge

db (x) =
1

1 + |∇I (x) |
, (3.5)
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where |∇I (x) | is the magnitude of the gradient operator. In this case, the cost will

tend to zero as the boundary approaches a perfect edge.

The velocity vector v can be derived in terms of the descriptor by making the

boundary a function of the evolution parameter and then differentiating (3.4) with

respect to τ . In this setup it has been shown [14] that the velocity vector can be

derived as

v =
[
db (x) κ (x)−∇db (x) · n

]
n, (3.6)

where κ (x) is the mean curvature of the surface at x, and · denotes the dot product.

In this equation, the first term
(
db (x) κ (x)

)
will create a positive inward force and this

acts to reduce the overall length of the boundary. For example, assuming that db (·) is

a constant, the velocity becomes proportional to the curvature. In this case, regions

on the surface with a high curvature will create a large force in the inwards normal

direction, and this causes regions of high curvature to contract. If this process continues,

the surface would eventually become a multi-dimensional sphere and continue shrinking

to an empty set. In the process, the cost would also reduce to zero.

The second term
(
−∇db (x) · n

)
in (3.6) also creates a force which acts to reduce

the overall cost function. We know from standard calculus that −∇db (x) is a vector3

which points in the direction of the largest decrease in the value of the descriptor.

Thus, intuitively, we would like to evolve each point of the boundary in this direction.

However, recall that the evolution is fixed beforehand to be in the normal direction and

the only free parameter we can choose is the force. Therefore, if the normal direction

corresponds to the anti-gradient, the dot product will be maximised and this will result

in a positive force. On the other hand, if the inward normal points in the opposite

direction to the anti-gradient, the dot product will instead be minimised. This will

result in a negative force and evolve the point on the boundary in the direction of the

anti-gradient.

In summary, evolving the boundary by using the velocity vector in (3.6) will reduce

the cost function with each iteration. One issue with this approach is that the cost

3−∇db (x) is also known as the anti-gradient.
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function is evaluated only on the boundary. Therefore, we cannot segment the data

according to the properties inside the region. For example, instead of simply locating

an edge, we may wish to segment the data by minimising the total variance inside

the region. In addition, boundary based methods by definition only evaluate the local

features and can thus be affected by noise. Next, we describe a region-based approach,

which can be designed to segment the data according to global features.

Region-based segmentation

In region-based segmentation, the cost function is evaluated by summing the contribu-

tion in each of the regions. A typical function [43] can be defined as

J (Γ) =
∫
H

d (x,H) dx +
∫
H

d
(
x,H

)
dx +

∫
Γ

ηdσ, (3.7)

where the descriptor d (·) defines the weighting factor associated with each pixel. Note

that the descriptor is a function of the region itself; for example it could be designed such

that when x belongs to the region H, d (x,H) tends to zero and vice versa. The cost

function has an additional regularisation term η, which acts to minimise the length

of the boundary. This term is evaluated as a summation on the surface and it is a

special case of the boundary-based segmentation discussed in Section 3.2.1, where the

descriptor function is set to a constant η.

The velocity vector associated with the minimisation of this type of function can be

obtained by applying the Eulerian framework [43]. The derivative of the cost function

can be evaluated as

∂J (Γ (τ))
∂τ

=
∫

Γ(τ)

[
d
(
x,H

)
− d (x,H)− ηκ (x)

]
(v · n) dσ. (3.8)

Observe that v and n correspond to the velocity and the normal vectors in (3.2),

respectively.

The velocity vector, which evolves Γ in the steepest descent direction can hence be
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deduced using the Cauchy-Schwarz inequality as:

v =
[
d (x,H)− d

(
x,H

)
+ ηκ (x)

]
n. (3.9)

The above framework is also known as ‘competition-based’ segmentation. This is clear

from (3.9), where a point on the boundary will experience a positive force if it belongs

to the outer regionH and vice versa, hence evolving the contour in the correct direction.

In summary, the region-based approach evaluates the cost on the complete region and

is therefore more robust. We use this method in the following section to extract layers

from multiview images.

3.2.2 Multiview Image Segmentation

In the case of a light field, the goal is to extract L layers, where each volume is modeled

by a constant depth Zk or by the associated disparity gradient ∆pk. In the context of the

previous section, this is equivalent to segmenting the data into 4D layers {H1, . . . ,HL},

where the boundary of each layer is defined by {Γ1, . . . ,ΓL} (the background volume

HL is assigned the residual regions which do not belong to any other layer).

In this setup Hk corresponds to a layer which is defined by a contour on one view-

point and a disparity gradient as outlined in Section 2.3. However, due to occlusions

the complete layer will not be visible in the dataset. Therefore, we define the cost

function in terms of the visible regions HV
k , and this leads to the following:

min
{Γ1,...,ΓL,∆p1,...,∆pL}

(
L∑

k=1

∫
HV

k

dk (x,∆pk) dx

)
, (3.10)

where x = [x, y, Vx, Vy]
T . In practice, a regularisation term corresponding to each layer

is also added to the cost function. Referring to (3.9), the value of η (regularisation

constant) controls the smoothness of each layer. In our approach, we set η = 0.02 as

originally proposed in [6]. For clarity, we do not include this term in the derivation of

the velocity vector.

Recall that each layer contains EPI lines corresponding to a constant depth in the
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scene. Therefore, in the ideal setup the intensity along each EPI line is constant. We

choose a descriptor dk (x,∆pk) to take this into account as [6]:

dk (x,∆pk) = [I (x)− µ (x,∆pk)]
2 , (3.11)

where µ (x,∆pk) is the mean of the EPI line which passes through the point x and has

a disparity gradient ∆pk. Note that to evaluate µ (x,∆pk), we do not take into account

the pixels which lie outside the layer HV
k [6].

The aim of the segmentation is then to obtain the layer boundaries Γk and the

disparity gradient ∆pk for k = 1, . . . , L by minimizing (3.10). However, (3.10) has a

large number of unknown variables. In order to minimise the function, we consider the

problem of layer evolution and disparity estimation separately.

Assuming the layer disparities are known, the minimisation can be simplified to

min
{Γ1,...,ΓL}

(
L∑

k=1

∫
HV

k

dk (x,∆pk) dx

)
. (3.12)

One way to minimise (3.12) is to evolve iteratively the boundary of each layer. For

example assuming that there are three volumes H1, H2 and H3 and that we choose to

evolve the boundary of the first layer, the energy function can be expressed as

J1 =
∫
HV

1

d1 (x,∆p1) dx +
∫
HV

2

d2 (x,∆p2) dx +
∫
HV

3

d3 (x,∆p3) dx︸ ︷︷ ︸
R

HV1 dout
1 (x)dx

(3.13)

=
∫
HV

1

d1 (x,∆p1) dx +
∫
HV

1

dout
1 (x) dx, (3.14)

where dout
1 (x) = di (x,∆pi) when x ∈ HV

i for i = 2, 3.

In general, when evolving the k -th layer, the cost function can be simplified to

Jk =
∫
HV

k

dk (x,∆pk) dx +
∫
HV

k

dout
k (x) dx. (3.15)

A possible solution would then be to evaluate the 4D velocity vector of the boundary
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corresponding to HV
k . This approach, however, would not explicitly take into account

the structure of multiview data in the minimisation. In the following we show how

(3.15) is solved by imposing the camera setup and the occlusion constraints.

Imposing camera setup and occlusion constraints

Recall that the background layer corresponds to the object with the largest depth

(smallest disparity gradient). If the boundary of this layer increases, it will automat-

ically be occluded by the remaining layers in the dataset. Therefore, the structure of

the visible layers will remain unchanged, and hence the cost must also remain the same.

When evolving the k -th layer, we model this by using the following indicator func-

tion:

Ik (x) =


0, if x ∈

k−1⋃
j=1

Hj


1, otherwise,

(3.16)

where the layers {H1, . . . ,HL} are ordered in terms of increasing depth. Incorporating

this into (3.14) allows the cost to be expressed in terms of Hk as follows:

Jk =
∫
Hk

dk (x,∆pk) Ik (x) dx +
∫
Hk

dout
k (x) Ik (x) dx. (3.17)

Observe that the integration boundsHk now correctly correspond to the layer boundary

Γk. This, therefore, allows the derivative of the cost to be defined as

dJk

dτ
=
∫

Γk

[
dout

k (x) Ik (x)− dk (x,∆pk) Ik (x)
]
(vΓk

· nΓk
) dσ. (3.18)

Note that the derivative of the cost function also includes an additive term which

corresponds to the change in the descriptor with respect to τ [43]. To simplify the

expression we assume this term is zero.

Additionally, recall that using the camera setup constraint, the boundary Γk can be

parameterised by a 2D contour γk (s) = [x (s) , y (s)] on the image viewpoint (Vx = 0).



3.2 Layer-based segmentation 59

Substituting this into (3.18) we obtain

dJk

dτ
=
∫

γk

[Dout
k (s)−Dk (s,∆pk)] (vγk

· nγk
) ds, (3.19)

where vγk
and nγk

now correspond to the velocity and the outward normal vector of the

2D boundary. In addition, the new objective functions Dk (·) and Dout
k (·) are defined

as

Dk (s,∆pk) =
∫ ∫

dk (x,∆pk) Ik (x) dVxdVy (3.20)

Dout
k (s) =

∫ ∫
dout

k (x) Ik (x) dVxdVy, (3.21)

where

x =



x (s)−∆pkVx

y (s)−∆pkVy

Vx

Vy


.

Note that the new descriptors Dout
k (·) and Dk (·) are simply the descriptors dout

k (·) and

dk (·) integrated over the viewpoint dimensions.

The velocity vector which reduces the cost in the direction of steepest descent can

therefore be chosen as4

vγk
=
[
Dk (s,∆pk)−Dout

k (s)
]
nγk

. (3.22)

There are two main advantages in simplifying the evolution from a 4D to a 2D

contour. First, the approach ensures that the layer boundary remains consistent across

the views. Secondly, the complexity is reduced from evolving a 4D hypersurface to a

2D contour. We show a comparison between an unconstrained and constrained bound-

ary evolution in Fig. 3.3. Observe that by imposing the camera setup and occlusion

constraints in Fig. 3.3(b) we obtain a segmentation which is consistent with the EPI

4Note that in practise we also include a regularisation term to constrain the evolution according to
the curvature of the boundary.



60 Chapter 3. Sparse Layer-based Representation of Multiview Images

(a) (b)

Figure 3.3: 2D EPI volume cross section showing unconstrained and constrained
boundary evolution [6]. (a) Unconstrained boundary evolution. (b) Constrained
boundary evolution. The segmentation is defined using a contour γ(s) on image
viewpoint (Vx = 0) and a disparity gradient ∆p.

structure. In summary, (3.22) defines a velocity vector, which evolves the layer bound-

ary γk (s) towards the desired segmentation for each layer.

Disparity Gradient and Number of Layers Estimation

In the previous section we presented an approach to derive the velocity vector for each

layer. However, the knowledge of the disparities is required in order to evaluate the

correct evolution. We evaluate these parameters by assuming the 2D layer contours

{γ1, . . . , γL} are constant. In this case, the objective function can be simplified to:

min
{∆p1,...,∆pL}

L∑
k=1

∫
HV

k

dk (x,∆pk) dx. (3.23)

In contrast to the optimisation of the layer contours, this problem is significantly sim-

pler. A solution can be obtained in an iterative approach by estimating the disparity

gradient of each layer assuming the remaining disparity gradients are constant. For each

disparity gradient, we find the value which minimises (3.23). The parameter is chosen

by using the fminsearch function in MATLAB, where (3.23) is empirically evaluated

during optimisation.

In addition, observe that we require the knowledge of the number of layers L. In our

approach we initialise this value using a stereo matching algorithm [48]. Alternatively,
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Figure 3.4: The level-set method models the 2D boundary as the zero-th level-set
of a 3D surface. As the surface evolves, the boundary can implicitly change its
topology [6].

one could estimate the number of layers using the spectral properties of the light field

[15] as proposed in [9].

Level-set method for the boundary evolution

We defined a 2D velocity vector for each layer in Section 3.2.2. In practise, the evolution

is implemented on a number of discrete points on the boundary. However, this approach

is limited when the boundary needs to experience topological changes, such as splitting

or merging. Although ad-hoc schemes can be used to solve this problem, they are not

efficient.

In our approach we deal with this problem by modeling the boundary of each layer

using the level-set method [78]. This method models the 2D boundary by a 3D surface.

Given the surface, the 2D boundary is implicitly defined by an intersection of the

surface with the xy-plane (as shown in Fig. 3.4). In this setup, as surface evolves the

intersection with xy-plane can split or merge, and no ad-hoc schemes are required.

The original velocity vector only corresponds to the 2D boundary. To evolve the

surface we must also derive the corresponding surface velocity vector. We define the



62 Chapter 3. Sparse Layer-based Representation of Multiview Images

higher dimensional surface with z = φ (x, y, τ). The original boundary is then obtained

as the zero-level of the new function

γ (s, τ) = arg {φ (x, y, τ)}

such that φ (x, y, τ) = 0, (3.24)

where s parameterises the (x, y) coordinates.

The surface velocity vector is derived by applying two conditions which must be

satisfied. The first is that if you move along the 2D boundary (increment s), we must

remain on the zero-th level-set of the surface. This implies that the partial derivative

of the surface with the respect to s must be zero. Therefore

∂φ (x, y, τ)
∂s

= 0

∴
∂φ

∂x

∂x

∂s
+

∂φ

∂y

∂y

∂s
= 0.

Rewriting this in terms of the dot product we obtain

∇φ · ∂γ

∂s
= 0, (3.25)

where ∇φ =
[

∂φ
∂x , ∂φ

∂y

]
is the gradient operator on the surface φ and ∂γ

∂s =
[

∂x
∂s , ∂y

∂s

]
is a

tangent vector on the original 2D boundary (as shown in Fig. 3.5).

From (3.25) we observe that at each point on the boundary, the tangent ∂γ
∂s must

be orthogonal to the gradient ∇φ on the surface. This implies that −∇φ must be in

the same direction as the inward normal vector n of the original 2D boundary:

n = − ∇φ

|∇φ|
, (3.26)

where we divide by |∇φ| to obtain a unit vector.

When the surface is evolved, the zero-th level-set must always be the same as the

original 2D boundary evolved with the same velocity vector. This implies that the

property φ (x (τ, s) , y (τ, s) , τ) = 0 must always be satisfied. Differentiating both sides
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Figure 3.5: Level-sets of a surface. The original boundary γ defined by the solid
line is the zero-th level-set. Observe that the surface gradient is orthogonal to the
tangent vector on the 2D boundary.

with respect to τ we obtain the second condition:

∂φ

∂τ
+

∂φ

∂x

∂x

∂τ
+

∂φ

∂y

∂y

∂τ
= 0

∴
∂φ

∂τ
+∇φ · v = 0, (3.27)

where v =
[

∂x(s)
∂τ , ∂y(s)

∂τ

]
corresponds to the velocity vector of the original 2D boundary.

The intuition here is that the partial change of x and y with respect to τ , defines the

evolution of that point with respect to time. By definition, this is the same as the

velocity vector.

Combining (3.27) and (3.26) we obtain the level-set evolution equation [78]

∂φ (x, y, τ)
∂τ

= F (x, y) |∇φ|. (3.28)

This implies that the evolution of the surface is also modeled by a PDE and in com-

parison to the original evolution of the boundary there is an additional scaling factor

|∇φ|. The force, F (x, y) is then obtained in the same way as in the region competition
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to give [6]

∂φ (x, y, τ)
∂τ

=
[
Dk (x, y, ∆pk)−Dout

k (x, y) + ηκφ (x, y)
]
|∇φ|, (3.29)

where κφ (x, y) now corresponds to the curvature of the surface.

We can verify that this equation is intuitively correct. Consider that the force

F is positive everywhere on the surface. Due to (3.28), this would have an effect of

‘lifting’ the whole surface and hence causing zero-th level-set to shrink. Therefore,

this corresponds to the original 2D velocity vector, where a positive force would act to

reduce the size of the 2D boundary.

Although the level-set method effectively models topological changes, a drawback

in the approach is an increase in complexity. To evolve the surface, the velocity must be

evaluated at each point on the surface. In our approach, we deal with this problem by

using the narrowband implementation [42], where only a region around the boundary

is evolved to reduce the complexity.

Layer segmentation algorithm overview

An overview of the complete layer extraction method is shown in Algorithm 1. First,

the 2D contours and the disparity gradient of each layer are initialised using a stereo

matching algorithm [48]. The algorithm evaluates the disparity gradient of each layer

and then iteratively evolves the boundaries5 using the velocity vector in (3.22). This

process continues for a certain number of iterations or until the change in the overall

cost is below a predefined threshold. An example of the extracted layers is shown in

Fig. 2.7. In addition, in Fig. 3.6 we show a comparison between an initialised layer

boundary using a stereo matching algorithm and the obtained layer contour.

5Note that the background layer HV
L is automatically assigned all of the regions which do not belong

to the remaining layers and is therefore not evolved.
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(a) (b) (c)

Figure 3.6: (a) Tsukuba dataset. (b) Initialised layer contour using a stereo match-
ing algorithm [48]. (c) Layer contour after running Algorithm 1. The extraction
algorithm improves the accuracy of the layer-based representation.

Algorithm 1 Layer extraction algorithm
STEP 1: Initialise the 2D boundary of each layer {γ1, γ2, . . . , γL} using a stereo
matching algorithm (Algorithm [48] in our implementation).
STEP 2: Estimate the disparity gradient of each layer {∆p1,∆p2, . . . ,∆pL} by
minimizing the squared error along the EPI lines.
STEP 3: Reorder the layers in terms of increasing depth.
STEP 4: Iteratively evolve the layer boundaries assuming the remaining layers are
constant:
for k = 1 to L-1 do

Evaluate the velocity vector vγk
of the k -th layer.

Evolve the boundary γk according to the velocity vector.
end for
STEP 5: Return to STEP 2 or exit algorithm if the reduction in the cost (3.10) is
below a predefined threshold.

3.3 Data Decomposition

The extracted multiview image layers shown in Fig. 2.7 are highly redundant in the

direction of the disparity gradient. We also explicitly know the locations of any occluded

regions in each layer. Here, we outline an approach to obtain a sparse representation

which takes this information into account. The representation is obtained by applying

a multi-dimensional DWT in a separable fashion across the inter-view and the spatial

coordinates of each layer. To maximise the sparsity, the inter-view DWT is applied

in the direction of the disparity gradient, and we modify the transform when filtering

across occlusions. Next we describe the inter-view and spatial transforms in more detail.
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3.3.1 Inter-view 2D DWT

The input to this stage are the extracted layers. Recall that in the case of a light field,

each extracted layer consists of a 2D array of images. Only the regions that belong

to the layer are visible (the rest of the pixels are set to zero). Thus, we implement

the inter-view 2D DWT on each layer in two steps: first by applying a 1D disparity

compensated DWT across the row images (Vy) followed by the column images (Vx) as

illustrated in Fig. 3.7. The process is iterated on the low-pass components to obtain a

multiresolution decomposition.

(a) (b) (c)

Figure 3.7: Inter-view 2D DWT implemented in a separable approach by filtering
the image rows (Vy) followed by the image columns (Vx) using the 1D disparity
compensated DWT. (a) Extracted layer: 2×2 light field. (b) Transform coefficients
following 1D disparity compensated DWT across each row. (c) Transform coeffi-
cients following 1D disparity compensated DWT across each column. Note that
the background has been labeled grey and is outside the boundary of the layer.

In our implementation of the inter-view 1D DWT we use the disparity compensated

Haar transform. This is motivated by the fact that the light field intensity along the

EPI lines is approximately constant. Therefore, a wavelet with one vanishing moment is

theoretically enough to set the wavelet coefficients to zero [61]. The transform is applied

by modifying the standard lifting equations [27] and including a warping operator W

as follows:

Lo [n] =
Po [n]−W{Pe [n]}

2
, (3.30)

Le [n] = Pe [n] +W{Lo [n]}, (3.31)

where, Po [n] and Pe [n] represent 2D images with spatial coordinates (x, y) located

at odd (2n + 1) and even (2n) camera locations, respectively. Following (3.30) and
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(a) (b)

Figure 3.8: (a) By introducing the warping operator W we can apply the Haar
transform in the direction of the disparity gradient denoted by the red arrow. Using
this approach, the filtering is applied along the EPI lines, where the pixel intensity
is approximately constant. This results in the majority of the wavelet coefficients
to be approximately zero. (b) Extracted layers contain occluded regions. Filtering
across the artificial boundary will create high pass coefficients and reduce the
sparsity efficiency. We modify the inter-view DWT to be shape-adaptive in order
to take occlusions into account.

(3.31), Le [n] contains the 2D low-pass subband and Lo [n] the high-pass subband.

Assuming that W is invertible and the images are spatially continuous, the above

transform can be shown to be equivalent to the standard DWT applied along the

motion trajectories [75]. This concept is further illustrated in Fig. 3.8(a), which shows

that by effectively choosing the warping operator W, the Haar transform is applied in

the direction of disparity gradient.

In both the prediction (3.30) and update steps (3.31), we choose warping operator

W to maximize the inter-image correlation. This is achieved by using a projective

operation that maps one image onto the same viewpoint as its odd/even complement

in the lifting step. Using (2.4) and the fact that the layers are modeled by a constant

disparity gradient, we define the warping operation from viewpoint n1 to n2 along the

Vx dimension as:

Wn1→n2{P [n1]} (x, y) = P [n1] (x + ∆p (n2 − n1) , y) , (3.32)

where ∆p corresponds to the layer’s disparity gradient.

Note that the projection operator W is not invertible if it corresponds to a non-

integer pixel shift. A non-integer shift means that neighbouring pixels must be inter-

polated and this corresponds to low pass filtering. However, using the lifting scheme,

we can still recover the original signal. Rearranging (3.30) and (3.31), the inverse
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transform is obtained using

Pe [n] = Le [n]−W{Lo [n]}, (3.33)

Po [n] = 2Lo [n] +W{Pe [n]}. (3.34)

Note that the inverse transform in (3.33) and (3.34) does not require W−1, and this is

a powerful result of the lifting scheme. It allows lossless signal reconstruction without

the need to use invertible operators in the forward transform. In addition, a further

advantage is that the lifting scheme has lower complexity than the traditional imple-

mentation [27].

In the forward transform, we must also take into account occlusions. Recall, that

the segmentation of the layers is known and thus we explicitly know the occluded region

locations (we show an occluded layer in Fig. 3.8(b)). If the transform is not modified,

the DWT leads to filtering across an artificial boundary and thus results in a reduced

sparsity efficiency. To prevent this, we use the concept proposed in [53] to create a

‘shape-adaptive’ transform in the view domain. The transform in (3.30) and (3.31) is

modified whenever a pixel at an even or odd location is occluded such that

Le [n] =

 Pe [n] , occlusion at 2n + 1

Ŵ{Po [n]}, occlusion at 2n
, (3.35)

and the high pass coefficient in Lo [n] is set to zero. In (3.35), the warping operator

Ŵ is set to an integer pixel precision to ensure invertibility and is set to be the ceiling

of the disparity in (3.32). This concept is further illustrated in Fig. 3.9, where we

demonstrate our approach if a pixel at an odd or even image location is occluded.

Note also that the Haar transform in (3.30) and (3.31) is not orthonormal. Orthono-

mality plays an important role, since it implies that the squared error in the transform

domain is equal to the error in the image domain (this will be further discussed in the

evaluation section). In order to approach orthonomality we re-scale the coefficients by

the length6 of the basis functions [85].

6By length we imply the `2 vector norm.
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(a) (b)

Figure 3.9: Circles correspond to the pixels which lie along an EPI line. The
disparity direction is denoted by the red arrow. The occluded pixels in the EPI
line are denoted with a cross. In (a) the occluded pixel is at the odd image location.
Thus, the low pass coefficient Le [0] is set to Pe [0] and the high pass is zero. In (b),
the occluded pixel is at the even image location. The low pass is set to Ŵ{Po [0]}
and the high pass is again set to zero.

3.3.2 Spatial shape-adaptive 2D DWT

Following the inter-view transform we reduce the spatial redundancy using a 2D DWT.

However, prior to applying the 2D DWT on each image, we recombine the transform

coefficients into a single layer. This is done to increase the number of decompositions

which can be applied by the spatial transform. A comparison between the original

and recombined layers is illustrated in Fig. 3.10. Note that due to occlusions and

the way in which the inter-view transform is implemented, two or more layers may

overlap in each subband. When two layers overlap, the transform coefficients of the

layer with the smallest disparity gradient are removed and transmitted separately. A

spatial transform is then also applied to these coefficients. However, we emphasize

that since the segmentation is known prior to encoding, no additional overhead bits are

required for encoding the location and segmentation of these overlapping pixels.

The overlapped pixels are commonly bounded by an irregular (non-rectangular)

shape. For this reason, the standard 2D DWT applied to the entire spatial domain is

inefficient due to the boundary effect. We therefore use the shape-adaptive DWT [33,53]

within arbitrarily shaped objects. The method reduces the magnitude of the high

pass coefficients by symmetrically extending the texture whenever the wavelet filter is

crossing the boundary. The 2D DWT is built as a separable transform with linear-

phase symmetric wavelet filters (9/7 or 5/3 [87]), which, together with the symmetric

signal extensions, leads to critically sampled transform subbands.
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(a) (b)

Figure 3.10: (a) Tsukuba transform coefficients following the inter-view transform.
Each of the three transformed layers is composed of one low-pass subband and three
high frequency images. (b) Recombined layers. The view subbands from each layer
are grouped into a single image to increase the number of decompositions that can
be applied by the spatial transform. In each subband two or more layers may
overlap. We apply a separate shape-adaptive 2D DWT to the overlapped pixels.

3.4 Evaluation

In this section we evaluate the performance of the proposed sparse representation using

its N -term nonlinear approximation (NLA) properties. In addition we present denoising

results based on the decomposition.

3.4.1 N -term nonlinear approximation

To obtain the N -term NLA, we keep the N largest coefficients in the transform domain

according to their magnitude and set the remaining ones to zero. The N -term NLA is

then obtained by applying the inverse transform. We evaluate the performance of the

decomposition by analysing the decay of the mean squared error (MSE) with respect

to N. The faster the decay of the MSE, the sparser the representation.

The aim of NLA is to minimise the MSE error by selecting N coefficients in the

transform domain. In fact, any combination of the coefficients can be used7. In practise

it is not possible to evaluate the MSE for each possible combination. However, in

the case of an orthonormal decomposition, the error in the transform domain directly

corresponds to the error in the image domain [61]. We assume our decomposition to be

approximately orthonormal and therefore, it suffices to select the N largest coefficients

7The total number of combinations is M !
N !(M−N)!

, where M is the total number of transform coeffi-
cients.
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to minimise the MSE.

Our results show that the proposed layer-based representation offers superior ap-

proximation properties when compared to a typical multi-dimensional DWT8. We

demonstrate this in Fig. 3.11 on three datasets: Tsukuba light field [272× 368× 4× 4],

Teddy EPI [368× 352× 4] and Doll EPI [368× 352× 4] (all from [74]), which vary in

terms of scene complexity, number of images and spatial resolution. We show that in

each case our approach achieves a sparser representation across the complete range of

retained coefficients, with Peak Signal to Noise Ratio (PSNR) gains of up to 7dB on

the Tsukuba light field. The Tsukuba light field has a larger PSNR improvement than

the respective Teddy and Doll EPI volumes due to the additional viewing dimension.

This means that there exists more redundant information and this is fully exploited

by our representation. We also show that the PSNR curves correspond to a subjective

improvement in Fig. 3.12, 3.13 and 3.14.

3.4.2 Denoising

Here we present denoising results based on the proposed sparse representation in the

presence of additive white Gaussian noise (AWGN). Note that the aim of this section is

not to compare the results to the state-of-the-art in multiview denoising techniques but

to demonstrate that the sparse representation can be used for denoising applications.

We implement the denoising by soft thresholding the wavelet coefficients in each

subband (except the low-pass). As outlined in the introduction, thresholding reduces

the noise components by assuming that the underlying signal is sparse in the decom-

position. However, by thresholding we not only set the noise components to zero, but

also the original signal9. This trade-off must be taken into account when selecting the

threshold. If the original signal was available, the optimal threshold could be directly

chosen by minimising the MSE of the reconstructed signal. However, this would defeat

the purpose of denoising. We solve this problem by instead using the Stein’s Unbiased

Risk Estimate (SURE) of the MSE [31]. The advantages of this approach is that we do

8This multi-dimensional DWT has the same decomposition structure as our method, however no
disparity compensation is applied.

9Recall that the transform coefficients are not exactly zero in the sparse decomposition.
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(a) Tsukuba light field. (b) Teddy EPI.

(c) Doll EPI.

Figure 3.11: N -term NLA of the layer-based representation in comparison to a
standard multi-dimensional DWT. Note that the percentage of retained coefficients
is evaluated as N

M × 100, where N is the number of retained coefficients and M is
the number of coefficients in the original dataset.

not need to know the original signal or its statistics. In fact, the estimate is obtained

by using only the corrupted signal and the standard deviation of the noise σ [31].

We consider two scenarios for our proposed method: the case when the layers are ex-

tracted from the noise-corrupted images and the case when they are extracted from the

original dataset and the noise is added after the extraction. Note that in the presence

of noise, the intensity along each EPI line is no longer constant, and this can introduce

errors in the segmentation stage. In our case, we deal with this problem by denoising

each image independently using [10] prior to extracting the layers. This removes sig-

nificant amounts of noise and improves the layer extraction accuracy. Following the

segmentation stage, we perform the denoising on the original noise corrupted images10.

In Figs. 3.15 and 3.16 we show that our approach outperforms the competitive

10Independent denoising removes signal information which can be recovered by our method. There-
fore, better results are achieved by denoising the original dataset.
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(a) Proposed method - PSNR 29.62dB with
1.18% of coefficients retained.

(b) Standard 3D DWT - PSNR 26.6dB with
1.20% of coefficients retained.

(c) Original dataset.

Figure 3.12: N -term NLA comparison between (a) sparse layer-based representa-
tion and (b) standard 3D DWT on Teddy EPI. (c) Original Teddy EPI dataset.

SURE-LET OWT denoising method [10]. We use Teddy EPI [368× 352× 4] and Doll

EPI [544× 608× 4] datasets (both from [74]) in the simulation. In the case when the

layers are extracted on the original dataset our method outperforms SURE-LET OWT

by up to 0.9dB. It is evident that extracting the layers in the presense of noise incurs

a small performance loss in comparison to the original layers. However, in this setup

our method still outperforms SURE-LET OWT denoising.

The subjective results are illustrated in Figs. 3.17 and 3.18. These clearly show

that the proposed sparse representation attains more visually pleasing results than the

SURE-LET OWT method.
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(a) Proposed method - PSNR 31.77dB with
1.33% of coefficients retained.

(b) Standard 3D DWT - PSNR 25.91dB
with 1.47% of coefficients retained.

(c) Original dataset.

Figure 3.13: N -term NLA comparison between (a) sparse layer-based represen-
tation and (b) standard 4D DWT on Tsukuba Light Field. (c) Original Tsukuba
light field dataset.

3.5 Summary

In this chapter we outlined an approach to obtain a sparse decomposition of multiview

images. The algorithm is composed of two main stages. Firstly, we segment the mul-

tiview images into a set of layers, where each one is related to a constant depth in the

scene. Each layer contains EPI lines corresponding to the same depth and thus they

are redundant in the direction of the disparity gradient.

We outlined the layer extraction algorithm based on the work in [8]. The method

segments the layers by minimising the total variance along the EPI lines. Also the

structure of multiview images is taken into account to achieve more accurate results

and the evolution of each layer is simplified from a surface to a 2D contour.

In the second stage we remove the redundancy in the segmented layers. The layers
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(a) Proposed method - PSNR 30.65dB with
0.69% of coefficients retained.

(b) Standard 3D DWT - PSNR 25.91dB
with 1.47% of coefficients retained.

(c) Original dataset.

Figure 3.14: N -term NLA comparison between (a) sparse layer-based representa-
tion and (b) standard 3D DWT on Doll EPI. (c) Original Doll EPI dataset.

are decomposed using a 4D DWT applied in a separable fashion. First we apply a

2D DWT along the camera viewpoint dimensions followed by the spatial coordinates.

We modify the viewpoint transform to efficiently deal with occlusions and depth vari-

ations. Following the inter-view DWT we recombine the layer to increase the number

of decompositions which can be applied by the spatial transform.

Simulation results based on NLA have shown that the sparsity of our representation

is superior to a multi-dimensional DWT with the same decomposition structure, but

without disparity compensation. In addition, we have shown that the sparse repre-

sentation can be used for denoising. We considered two scenarios: (a) the layers are

extracted on the noisy images and (b) from the original images. Although, extracting

the layers on the noisy dataset incurs a small loss in performance, we showed that both

schemes outperform SURE-LET OWT [10] applied to each image independently.
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Figure 3.15: Denoising evaluation on Teddy EPI. We consider two scenarios: the
setup when the layer extraction is implemented on the original dataset (without
noise) and when the layers are extracted using the noisy images. In the latter case,
we denoise the images independently prior to extracting the layers. Our results
show that extracting the layers in the presence of noise incurs a loss in performance.
However, our method still outperforms SURE-LET OWT.

Figure 3.16: Denoising evaluation on Doll EPI. We consider two scenarios: the
setup when the layer extraction is implemented on the original dataset (without
noise) and when the layer contours are extracted on the noisy images.



3.5 Summary 77

(a) Noisy Input (PSNR 22.11 dB). (b) Proposed Method (PSNR 30.70 dB).

(c) Proposed Method Oracle Layer Extraction
(PSNR 31.12 dB).

(d) SURE-LET OWT (PSNR 30.39 dB).

Figure 3.17: Subjective evaluation of the proposed denoising method on Doll EPI.
(a) Input dataset with AWGN. (b) Denoised image using proposed method (layers
extracted using noisy images). (c) Denoised image using proposed method (layers
extracted using original dataset). (c) SURE-LET OWT applied to each image
independently.

As discussed in this chapter, NLA is a good indicator for coding performance.

However, a sparse decomposition is not a sufficient condition. To achieve a good RD

performance, we must also correctly allocate the bit budget among the transform co-

efficients. In addition, we must encode the locations of the transmitted coefficients in

order to correctly reconstruct the data. In the following chapter we discuss these issues

in more detail.
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(a) Noisy Input (PSNR 22.11 dB). (b) Proposed Method (PSNR 29.89 dB).

(c) Proposed Method Oracle Layer Ex-
traction (PSNR 30.26 dB).

(d) SURE-LET OWT (PSNR 29.53 dB).

Figure 3.18: Subjective evaluation of the proposed denoising method on Teddy
EPI. (a) Input dataset with AWGN. (b) Denoised image using proposed method
(layers extracted using noisy images). (c) Denoised ’image using proposed method
(layers extracted using original dataset). (c) SURE-LET OWT applied to each
image independently.
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Chapter 4

Multiview Image Compression

In Chapter 3 a layer-based decomposition of multiview images was proposed and it

was shown that a small number of transform coefficients in the sparse decomposition

give a good approximation of the original dataset. Here we present a multiview image

compression method based on this decomposition.

A sparse representation by itself does not guarantee efficient compression in a RD

sense. Recall, that in NLA the MSE was evaluated by selecting the N largest coeffi-

cients. To compress the data, we must also encode the selected coefficients and their

locations. In addition, we must consider how the bit budget should be allocated among

the transform coefficients. For example allocating bits to certain coefficients will re-

duce the MSE significantly more compared to others. Thus, to achieve an efficient

compression, it is important to find the correct distribution which minimises the total

MSE.

In the proposed method, we must transmit both the transform coefficients and the

layers contours. The layer contours are required in order to apply the inverse inter-view

and spatial DWT. We encode the contours by approximating them as piecewise linear

segments. The transform coefficients are coded using conventional quantisation and

entropy coding [36].

To ensure an efficient RD performance, we also address the problem of rate allo-

cation between the layer contours and the transform coefficients. Given a target bit
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budget, the problem lies in finding the correct ratio which will minimise the output

distortion. We show that a closed form solution can be obtained when the contours are

piecewise linear. In the more general case of non-piecewise linear contours, the theo-

retical analysis is combined with an empirical approach to find the correct allocation.

This chapter is organised as follows. Next we present a high-level overview of the

compression algorithm. In Section 4.2 we outline our method to encode the layer

contours and the texture. We present the RD model to find the rate allocation in

Section 4.3. The chapter is summarised in Section 4.4.

4.1 High-level compression algorithm overview

The high-level layout of the proposed compression algorithm is shown in Fig. 4.1. The

input data is initially segmented to obtain the layer-based representation. Each layer is

assigned a global disparity gradient, which is losslessly encoded and transmitted. The

layers are then passed to the coding stage where a disparity compensated 4D DWT

is applied to remove the redundancy. The transform coefficients at this stage directly

correspond to the sparse representation outlined in Chapter 3. This is followed by

quantisation and entropy coding of the transform coefficients. In order to reconstruct

the texture at the decoder, the layer contours are also encoded in a lossy or lossless

modality and transmitted.

Observe that for a given total bit budget, there exists a trade-off between the number

of bits allocated to encode the layer contours and the texture. This problem is solved

in the RD control stage, which prior to encoding, correctly distributes the bits between

the texture and the layer contours to maximise the output fidelity of the images. The

encoding method is also outlined in Algorithm 2.

4.2 Texture and Contour Encoding

In this section, we describe the contour and texture encoding blocks from Fig. 4.1.

We denote with Rs and Rx the bits allocated for encoding the contours and texture,
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Algorithm 2 Compression algorithm overview
STEP 1: Segment the multiview images to obtain the layer-based representation.
STEP 2: For a given bit budget Rt, find the correct rate allocation to encode the
layer contours Rs and texture Rx such that Rx + Rs = Rt.
STEP 3: Given the rate constraint Rs, encode the layer-contours in a lossy or
lossless modality.
STEP 4: If the layer contours are encoded in a lossy modality, update the layer-
based representation such that it corresponds to the encoded version.
STEP 5: Given the target bit rate Rx encode the texture in each layer.

Figure 4.1: High-level algorithm layout. Layers are extracted in the layer-based
segmentation block, and each layer is transformed using a 4D DWT in the tex-
ture coding stage. The layer contours are encoded in a lossy or lossless modality
and transmitted to the decoder. The method includes a RD control stage, which
correctly distributes the bit budget between the layer contours and the texture to
maximise the output fidelity.

respectively.

4.2.1 Encoding of the contours

The contour encoding block transmits the segmentation needed to correctly decode

each layer. Recall, from the properties of multiview data outlined in Section 2.3 that

the segmentation of a 4D/3D layer can be defined by a contour on one of the image

viewpoints and the layer’s disparity gradient. Therefore, the input to the layer contour

encoding algorithm is an array of binary images (one for each layer) and a target bit

budget Rs. A typical binary layer is illustrated in Fig. 4.2(a).

The 2D contours can be encoded in a lossless or lossy modality. The lossless method

is used for Rs larger than the required lossless bit budget. The problem of lossless

contour encoding has been extensively studied with the majority of the work based on

Freeman chain codes [34]. Here we use the algorithm proposed in [54], which encodes the
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(a) (b)

Figure 4.2: (a) Original layer contour from Tsukuba dataset [74]. (b) Quadtree
prune-join piecewise linear approximation obtained using the algorithm proposed
in [80].

contour as follows: Each pixel on the boundary is connected to a neighbouring vertex,

where for a given pixel there are eight possible connections. A sequence of symbols is

then obtained by evaluating the relative angle with respect to a neighbouring reference

vertex. Assuming the original boundary is smooth, the symbol probabilities are non-

uniform. A Huffman dictionary is hence constructed and used to entropy code the

symbols.

In the case when the given Rs is below the lossless encoding rate, a piecewise linear

approximation of the layer contours is used. We use a 2D quadtree model to capture

and quantise these linear segments. In this representation each block of the quadtree

is approximated by a {0, 1} or intermediate tile. The intermediate tile is a binary

image with an edge modelled by a linear function. These quadtree coefficients are also

quantised and entropy coded. The type of tile for an arbitrary block is chosen by

minimising the cost Dp (Rp) + λsRp subject to the rate constraint Rs, where Dp (Rp)

and Rp are the distortion associated to the p-th tile and the corresponding encoding

rate, respectively.

To encode the segmentation, we use a bottom-up approach where the quadtree is

pruned whenever the sum of the cost of the leaves is higher than the cost of their parent.

The merging process iteratively continues as long as the Lagrangian cost decreases or

the complete image is represented by a single tile. In addition, a joining scheme is
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used as proposed in [80], where the neighbouring blocks that cannot be pruned within

the quadtree representation are joined to improve the compression performance. Fig.

4.2 shows a comparison between an original layer contour and its quadtree prune-join

representation.

The output rate of the coding algorithm is controlled by the parameter λs, which

defines the trade-off between rate and distortion. To achieve the specified total target

bit budget Rs, a bisection search [79] for the correct λs is applied.

4.2.2 Texture quantisation and entropy coding

Following the 4D/3D DWT, the transform coefficients are quantised and entropy coded.

Our codec uses context adaptive arithmetic coding [63, 93] to attain bit rates close to

the entropy of the source.

For a given bit budget constraint Rx, the optimal bit allocation among the trans-

form coefficients is achieved using a method similar to EBCOT [85]. Initially, the co-

efficients are partitioned into blocks of size [64× 64]. Each block is losslessly encoded

by bit-plane to obtain the operational RD curves using a context adaptive arithmetic

coder. Then, given a Lagrangian multiplier λx, a bit allocation R∗ for each block is

chosen such that the cost function J is minimised, where

J = D (Ri) + λxRi, (4.1)

and (Ri, D (Ri)) is the operational RD pair associated to each block. To meet the

allowed bit budget
∑

l

R∗
l = Rx a bisection search [79] for the correct multiplier λx is

applied. Here, R∗
l corresponds to the chosen bit allocation in the l -th block. We note

that since the operational RD curves are known, this process is not computationally

expensive. Once the optimal values R∗
l are evaluated, the encoded bit streams are

truncated and transmitted.
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4.3 Rate-distortion modeling and optimisation

We now study the correct distribution of the bit budget between encoding the layer

contours and the DWT coefficients so that the overall RD performance is improved.

The problem is defined as follows: given a target bit budget Rt, the goal is to find an

allocation which will minimise the output distortion:

[Rs,Rx] = argmin {D (Rs,Rx)}

such that Rs + Rx ≤ Rt, (4.2)

where Rs and Rx are the number of bits allocated to the layer contours and texture,

respectively. The distortion is measured in terms of the sum of squared differences

(SSD) between the input and the output.

Note that the distortion D (Rs,Rx) is jointly dependent on the contour and tex-

ture encoding. A lossy contour encoding modifies the layer segmentation. In turn,

this means that certain pixels will be allocated to an incorrect layer. During coding,

these pixels will reduce the coding efficiency and will highly contribute to the texture

distortion.

To solve this optimisation problem, we first upper bound the distortion due to the

lossy encoding of the layer contours. Then, we approximate the total distortion as the

sum of the distortion due to encoding the texture and the upper bound of the distortion

of the layer contours. In the following, we derive the RD models for the layer contours

and the texture.

4.3.1 RD Texture Modeling

To model the texture, we assume the obtained transform coefficients are independent

Gaussian variables with the RD relation [25]:

D (R) = σ22−2R, (4.3)
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where σ2 is the variance. Therefore, the total distortion due to encoding the texture is

modeled by:

Dx (Rx) =
L∑

j=1

Kj∑
i=1

CjNijσ
2
ij2

−2Rij
x , (4.4)

where Rij
x is the rate allocated to each transform coefficient, σ2

ij is the variance of

the coefficients and Nij is the number of transform coefficients in each subband. The

subscript ij corresponds to the parameter of the i -th subband in the j -th layer. L

denotes the total number of layers and Kj is the number of subbands in the j -th layer.

The shape-adaptive feature of the inter-view DWT assumes that the complete layer

is visible, and this can lead to an incorrect rate allocation. Therefore, we scale the

distortion by a factor 0 < Cj ≤ 1 to model occlusions. It is defined as the number of

pixels in the visible layer HV
j divided by the number of the pixels in the layer Hj (a

layer obtained using a contour on one image viewpoint and a disparity gradient). Note

that the parameters Cj and σ2
ij can be estimated using the original data and transform

coefficients, respectively. Also recall that

Rx =
L∑

j=1

Kj∑
i=1

NijR
ij
x , (4.5)

is the total bit budget allocated to the texture.

4.3.2 RD Layer Contour Modeling

The operational RD function of the layer contours is modeled by computing the upper

bound of the distortion for a given bit budget.

To obtain the RD bound, first, recall that the contour of a layer at each image view-

point is constant unless occluded. Using this property, we upper bound the distortion

on a 2D image and scale it to evaluate the distortion in a 3D/4D layer.

Consider a 2D slice of a layer L1 as shown in Fig. 4.3(a). Assume that the contour is

piecewise linear and has a fixed number of vertices (also known as a polygonal model).
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(a) (b)

Figure 4.3: (a) 2D Slice of a layer with a piecewise constant segmentation. Here,
x represents the original vertices and x̂ the location of a quantised vertex. The
shaded region denotes the error due to quantising the vertex x1. (b) Shaded region
outlines the error in a 3D layer, which is obtained by propagating the error from
the first viewpoint.

The distortion can be upper bounded by quantizing the locations of the vertices:

e2 ≤ T 2V ζ22−
Rs
2V , (4.6)

where V is the number of vertices, T is the size of the bounding image, ζ = max{L1} ≤

255 is the maximal amplitude of the texture and Rs is the number of bits allocated

to encode the contour. The derivation of this bound is shown in Appendix A.1. As

illustrated in Fig. 4.3(b), the error which is denoted by the shaded region can be scaled

by the total number of images to compute the distortion in a 3D layer. The total

distortion due to encoding L layers can therefore be upper bounded by:

Ds (Rs) ≤
L∑

j=1

T 2
j VjMζ2

j Cj2
− R

j
s

2Vj , (4.7)

where M is the total number of images and the subscript j denotes the parameter

corresponding to the j -th layer. Furthermore,

Rs =
L∑

j=1

Rj
s, (4.8)

is the total encoding rate of the layer contours.
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Note that the model in (4.7) is evaluated by upper bounding the number of coeffi-

cients affected by the quantisation of the layer contours. During coding, these pixels are

associated to an incorrect layer and therefore create high-pass transform coefficients.

In turn, this will add to the texture distortion when the coefficients are quantised. We

model this distortion by scaling the number of pixels by ζj . In the worst case scenario,

it is the maximal value of the texture pixels equal to 255. At high bit rate, however, ob-

serve that the rate allocation between the texture and the layer contours is independent

of the scaling ζj and only determined by the exponent of the RD functions [25].

Note also that the analysed upper bound of the distortion in (4.7) does not rely

on the quadtree algorithm used in Section 4.2.1. However, as shown in [80], the RD

performance of the quadtree algorithm is accurately modeled by our analysis, especially

at high bit rates. In the continuation, the derived RD relations are used to find the

optimal bit budget distribution between the layer contours and texture encoding.

4.3.3 RD Optimisation - Piecewise linear layer contours

We use Lagrangian multipliers [83] to find the bit rate distribution between the layer

contours and the texture. Consider approximating the total distortion as the summa-

tion of the texture (4.4) and layer contours distortion (4.7):

D (Rx,Rs) ∼ Dx (Rx) + Ds (Rs)

=
L∑

j=1

Cj

 Kj∑
i=1

Nijσ
2
ij2

−2Rij
x + T 2

j VjMζ2
j 2

− R
j
s

2Vj

 , (4.9)

where Rx and Rs are defined in (4.5) and (4.8), respectively. For a given bit budget

Rt, the encoding rate must satisfy the following inequality:

Rx + Rs ≤ Rt. (4.10)

The above problem can be solved using the reverse water-filling algorithm [25] based

on Lagrangian multipliers. Assuming a high rate analysis, which implies that all the
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rates are positive, we obtain the following solutions:

Rx =
L∑

j=1

Kj∑
i=1

Nij

(
1
2

log2

[
2 ln (2)Cjσ

2
ij

]
+

β

2

)
(4.11)

and

Rs =
L∑

j=1

(
2Vj log2

[
ln (2)CjMT 2

j ζ2
j

2

]
+ 2Vjβ

)
, (4.12)

where the constant β is defined by:

β =

0
@

LX
j=1

2
4

KjX
i=1

Nij

2
+ 2Vj

3
5
1
A
−10
@Rt −

LX
j=1

2
4

KjX
i=1

Nij

2
log2

�
2 ln (2) Cjσ

2
ij

�
+ 2Vj log2

ln (2) CjMT 2
j ζ2

j

2

3
5
1
A .

The derivation of these rate distribution equations is shown in Appendix A.2.

The above RD analysis assumes the layer contours are piecewise linear. The closed-

form solutions in (4.11) and (4.12), therefore, depend on the number of vertices. Next,

we generalise the rate allocation for encoding arbitrary layer contours.

4.3.4 RD optimisation - arbitrary layer contours

The bit allocation strategy in (4.11) and (4.12) requires the knowledge of the number

of vertices Vj in each contour. Given a set of arbitrary contours (non-piecewise linear)

this parameter also depends on the target bit budget. For example, at low rates only a

coarse approximation should be used and this corresponds to a small number of vertices,

whereas at high rates an accurate reconstruction is required.

To find the correct allocation for non-piecewise linear contours we use the following

approach: first we obtain a number of piecewise linear approximations of the layer

contours for different error margins. We illustrate two versions of the resulting ap-

proximations in Fig. 4.4(a) and Fig. 4.4(b). These approximations are obtained using

a fast algorithm proposed in [42]. The approach initialises a vertex at each point on

the contour, which are then iteratively removed until a maximum allowed distortion

is achieved. The distortion is measured as the perpendicular error from a vertex to

the linear approximation, and is evaluated at each point on the original boundary to

evaluate the maximal distortion.
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(a) (b)

(c) (d)

Figure 4.4: Two piecewise linear approximations of a layer in the Tsukuba dataset
[74] and the corresponding rate allocation curves for each model. (a) Approxima-
tion obtained using a maximal perpendicular error of 1 pixel. (b) Approximation
obtained using a maximal perpendicular error of 3 pixels. (c) Two closed-form rate
allocation curves corresponding to each approximation obtained using (4.11) and
(4.12). Here, the x-axis corresponds to the total bit budget Rt and the y-axis to
the rate allocated to the segmentation Rs. (d) The obtained PSNR curves using
the rate allocation curves in (c).

For each approximation we obtain a different Vj and use it to evaluate the closed-

form rate allocation curves in (4.11) and (4.12). The resulting rate allocation curves

are illustrated in Fig. 4.4(c). Here, one rate allocation curve is due to the number of

vertices in Fig. 4.4(a) and the other to the Vj obtained from Fig. 4.4(b).

We also show in Fig. 4.4(d) the PSNR achieved by the complete compression

algorithm when the approximations in Fig. 4.4(a) and Fig. 4.4(b) are used to infer

the bit allocation. The figure shows that the bit allocation obtained using the coarse

approximation leads to better overall performance at low rates, and vice versa at high

rates. Therefore, the problem is to choose the right approximation and thus the right
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(a) (b)

Figure 4.5: Proposed approach to obtain the rate allocation curve for arbitrary
layer contours. (a) A number of total bit budgets are chosen and the points which
lie on the closed-form rate allocation curves are encoded. For each bit budget, the
allocation which corresponds to the least distortion is retained. (b) The interme-
diate points are subsequently interpolated.

number of vertices given the total bit budget. To solve this, a small number of bit

rates are tested and for each of these rates various approximations are considered. The

corresponding bit allocations, obtained using (4.11) and (4.12), are encoded using the

complete compression algorithm. The operational points with the least distortion are

retained and the intermediate bit budgets interpolated. This process is illustrated in

Fig. 4.5. In this example (see Fig. 4.5(a)) three bit budgets are chosen (i.e., 0.03bpp,

0.07bpp and 0.11bpp), and, since there are two possible rate allocation curves, we end

up with six operational points. For each point the complete compression algorithm is

executed leading to six PSNR values (D1, D2, . . . , D6) shown on the plot. We pick D1

because D1 > D2, similarly D3 and D6 are chosen since D3 > D4 and D6 > D5. The

complete bit allocation strategy is obtained by linear interpolation of the three rate

allocations related to D1, D3 and D6. This is shown in Fig. 4.5(b).

4.4 Summary

In this chapter we presented a multiview image coding method based on the sparse

representation outlined in Chapter 3. The layer contours are encoded in a lossy or

lossless modality given a rate constraint Rs. In the lossless case, the contour of each

layer is coded using a differential Freeman method. In the lossy scenario we approximate
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each layer using a piecewise linear contour in the quadtree prune-join representation.

Following the multi-dimensional DWT, we quantise and entropy code the coefficients

using a bit-plane coding method similar to EBCOT [85]. The rate allocation among

the transform coefficients is allocated in the RD sense given a target bit budget Rx.

In addition, given a total bit budget Rt, we outlined a method to find the correct

rate allocation among the layer contours Rs and the transform coefficients Rx. In

the case when the layer contours are piecewise linear, we derived a closed-form rate

allocation solution. The problem was solved by upper bounding the distortion due to

layer contour encoding. The upper-bound of the texture and layer contour distortion

was then minimised given a rate constraint using Lagrangian multipliers. For arbitrary

layers (non-piecewise linear), we outlined an empirical method to find the rate allocation

based on the proposed model. This approach requires that a small number of operating

points are used in the compression algorithm. The obtained rate allocation curve can

then be reused to encode the dataset for an arbitrary bit budget.
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Chapter 5

Multiview Compression

Experimental Results

In this chapter we evaluate the performance of the proposed multiview compression

method. Next we verify the proposed RD model and the rate allocation strategy be-

tween the layer contours and the texture. The performance of the complete compression

method is presented in Section 5.2, where we compare our method to the state-of-the-

art H.264/AVC and its multiview coding (MVC) extension. The chapter is summarised

in Section 5.3.

5.1 RD modeling evaluation

In this section, the performance of the RD optimisation strategy in bit rate allocation

between the layer contours and the texture is analysed. First we verify distortion

model of Section 4.3.3 and then the proposed rate allocation scheme of Section 4.3.4

for arbitrary layer contours.

5.1.1 Piecewise-linear RD model evaluation

Recall that the derived rate allocation model assumes that the input layer contours are

piecewise linear. To analyse the model we use a synthetic dataset shown in Fig. 5.1.

The dataset consists of one layer and a background. The layer contains 79 vertices and
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Figure 5.1: Synthetic dataset consisting of one layer and a background. The layer
contour is piecewise linear and contains 79 vertices. The vertices are labeled with
blue crosses.

Figure 5.2: Experimental and theoretical RD performance when encoding a syn-
thetic dataset [512× 512× 4] with one layer and a backround shown in Fig. 5.1.

the texture is linear with an additive Gaussian signal.

For an input bit budget Rt, we use the closed-form solutions in (4.11) and (4.12) to

evaluate the texture rate Rx and layer contour encoding rate Rs. The dataset is then

encoded using these parameters. We evaluate the MSE of the decoded dataset and

compare it to the minimised upper bound of the distortion1. The experimental and

theoretical RD curves are shown in Fig. 5.2. These results show that the distortion

model closely matches the experimental results.

5.1.2 Arbitrary layer contours model evaluation

To verify the rate allocation strategy when encoding arbitrary (non-piecewise linear)

layer contours we operate as follows. First we encode the dataset using the outlined

1We obtain the minimised upper bound by substituting the values Rx and Rs into (4.9).
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approach. Referring to Section 4.3.4 we use three piecewise approximations and five

bit budgets to derive the rate allocation curves for each dataset. The overall RD

performance is then compared to an exhaustive scheme where all possible combinations

are considered. A RD comparison of the proposed approach and an exhaustive search

is shown in Table 5.1. It is shown that our method essentially matches the performance

of the exhaustive search.

Table 5.1: RD performance comparison between the proposed rate allocation
method and an exhaustive search.

Dataset Tsukuba [74] Teddy [74]
Rate/bpp 0.05 0.1 0.2 0.3 0.056 0.1 0.2 0.3

Proposed method/dB 26.65 29.63 33.17 35.32 27.93 29.98 33.01 34.83
Exhaustive search/dB 26.73 29.63 33.17 35.32 28.05 30.05 33.01 34.85

In addition we also show a comparison of proposed allocation strategy and the

lossless scenario in Fig. 5.3. In the lossless case, the segmentation is encoded using

the modified Freeman algorithm at all bit rates. Observe that at a PSNR of 29dB

the proposed approach provides a bit rate saving of 20% when encoding Teddy. We

note that due to the layer contours being more irregular and the representation having

a larger number of layers, the improvement of the proposed approach is higher on

Teddy than Tsukuba. We also compare the proposed approach to a block-based coding

strategy. In this case the layer contours are encoded using the quadtree prune-join

scheme where the smallest block size is [8× 8] pixels and can only be represented using

a 0 or 1 tile (with no intermediate tiles). The representation is then losslessly encoded

over all of the bit rates. This type of approach is simpler but less effective than our

solution since there is no optimisation between the texture and the layer contours.

In summary, the presented results in Fig. 5.3 and Table 5.1 support the proposed

rate allocation strategy.
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(a) Tsukuba EPI (b) Teddy

Figure 5.3: A comparison of the proposed allocation strategy with the lossless and
block-based coding of the layer contours. In the lossless case the layer contours
are encoded using the Freeman algorithm. In the block-based approach the layer
contours are encoded using the quadtree prune-join scheme, where the minimal
block size is set to [8× 8] pixels and no intermediate tiles are used. In (a) the
Tsukuba layer-based representation is simple and requires fewer bits. Therefore,
beyond a bit rate of 0.12bpp the proposed method encodes the layer contours in
the lossless modality and the two curves converge.

5.2 Compression Evaluation

We now evaluate the performance of our compression method. To comprehensively

test the algorithm, four EPI datasets are used as shown in Fig. 5.4: Animal Farm

[232× 624× 16] from [8], Tsukuba [284× 382× 4], Teddy [368× 352× 4] and Doll

[544× 608× 4] (the last three from [74]). In addition, to show that the proposed

method naturally scales to the additional viewpoint dimension, we also present the

Tsukuba light field [272× 368× 4× 4] results. Note that the datasets vary in geometric

and texture complexity. Teddy has a wide range of disparities, whereas Animal Farm

can be well approximated using a small number of depth planes. The number of

extracted layers for each dataset are noted in the caption of Fig. 5.4. In addition, the

data vary in terms of the number of views and the spatial resolution. Without loss of

generality, only the monochromatic components of the images are encoded.

We compare our encoding method to the state-of-the-art H.264/AVC [1, 92]. To

encode the data, the multiview images are treated as a set of video frames along the

temporal dimension and they are compressed using the High Profile. We use the 2 pass

encoding mode with the hexagonal search and quarter-pixel precision motion estimation

settings. All macro-block partitions are considered and the trellis RD optimisation is
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(a) Animal Farm [232× 624× 16] (b) Teddy [368× 352× 4]

(c) Tsukuba EPI
[284× 382× 4]

(d) Doll [544× 608× 4]

Figure 5.4: Multiview image analysis datasets. The data is segmented into the
following number of layers: (a) 13 layers, (b) 12 layers, (c) 10 layers, (d) 5 layers
and (e) 13 layers.

applied during the final encoding of a macro block. In addition the early SKIP and

coefficient thresholding on P-frames settings have been disabled [1]. We specify the

number of B-frames used in each dataset in Fig. 5.5. Note that although H.264/AVC

is specialised for temporal data, the algorithm has a wide range of tools and is RD

optimised. Therefore, this makes the method a good compression benchmark even

when encoding multiview images. A quantitative comparison of the proposed method

and H.264/AVC is shown in Fig. 5.5. In addition to the proposed rate allocation

strategy, we include the results of a fixed allocation, where a constant 10% of the

total bit rate is allocated to encode the layer contours. Note that the fixed allocation

strategy has a lower complexity and is an approximation to the proposed method. In

this scheme, the number of bits used to encode the segmentation is set to Rs = 0.1Rt,

and this is an approximation of a typical curve obtained in Fig.4.5(b).

The results show that at low bit rates the proposed codec achieves a better RD
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performance on all datasets. The gains are different and they are influenced by the

accuracy of the layer segmentation algorithm outlined in Section 3.2. For example, in

the Tsukuba EPI dataset, our proposed algorithm achieves an improvement of almost

3dB at a bit rate of Rt = 0.05bpp, whereas, in case of Teddy, this gain is around 2dB.

Moreover, observe that the performance of the alternative allocation strategy is similar

to the proposed approach, with a maximal PSNR reduction of 0.13dB and 0.2dB in

case of Tsukuba EPI and Teddy, respectively. To show that the proposed algorithm

naturally scales to an additional viewpoint dimension, we present the Tsukuba Light

Field results in Fig. 5.5(e). In this case, to obtain a fair evaluation, we compare

our results to the H.264/MVC implementation specialized for multiview video. In

comparison our method attains a bit rate saving of 40% at a PSNR of 30dB. The

qualitative results are shown in Fig. 5.6.

Regarding high rate encoding, it is shown that the proposed algorithm is competi-

tive with H.264/AVC and MVC. Analysing Animal Farm and Tsukuba, the proposed

codec achieves better RD performance over the complete range of bit rates. In these

cases, the layer based representation captures the 3D scene efficiently and the segmen-

tation is accurate. Indeed, the data fits our designed representation and seems to truly

consist of layers. Additionally, there are a large number of occluded regions, which our

algorithm deals with efficiently. On the other hand, H.264/AVC attains better results

when encoding Teddy at higher rates. In this case, the 3D structure of the scene is

complicated with a large number of disparities which are not captured effectively by the

layer-based representation. Hence, the segmentation errors create high-pass transform

coefficients, which degrade the performance of our method.

To illustrate the side information overhead, we show the total rate distribution

between texture, segmentation, and side information in Fig. 5.7 (Tsukuba EPI). It is

shown that at low rate, the side information cost is 9% of the total bit budget. However,

as the total bit budget increases to 0.1bpp, the overhead reduces to 3%. Note that side

information includes the cost to encode the following parameters: disparity gradients,

a list of SKIP symbols which specifies whether a block of transform coefficients is

transmitted, largest bit plane and the number of bytes allocated to each block.
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Regarding the complexity of the proposed method, we note that the most compu-

tationally intensive stage is the layer-based extraction. This process, however, can be

implemented offline with the obtained layer contours being used to compress the data

for different bit budgets. The complexity of the encoding method itself is determined

by the separable wavelet transform which is O(N), where N is the total number of

pixels in the dataset.

5.3 Summary

Here we evaluated our multiview image compression algorithm proposed in Chapter

4. We first verified the proposed RD model and the rate allocation scheme between

the layer contours and the texture. Given a piecewise linear contour, we showed that

the closed-form rate allocation expressions correspond to a distortion which is closely

related to the operating distortion. In the case of non-piecewise linear contours, it

was shown that our approach is competitive to an exhaustive search while having a

significantly lower complexity.

In addition, the presented results have shown that the proposed method achieves an

improved RD performance at low rates and is competitive at high rates in comparison

to H.264/AVC and MVC.
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(a) Tsukuba EPI (b) Teddy

(c) Doll (d) Animal Farm

(e) Tsukuba Light Field

Figure 5.5: Quantitative comparison of the proposed algorithm with H.264/AVC
and MVC. In (a), (b) and (c) H.264/AVC encodes the dataset with one I-frame,
two P-frames, and one B-frame. In (d) one I-frame, eight P-frames and seven B-
frames are used. Regarding the proposed method, we apply a maximal number of
decompositions in the inter-view DWT.



5.3 Summary 101

(a) (b)

(c) (d)

Figure 5.6: Qualitative comparison of the proposed algorithm with H.264/AVC and
MVC. (a) Animal Farm encoded using H.264/AVC at 0.024bpp (PSNR 28.93dB).
(b) Animal Farm encoded using the proposed algorithm at 0.021bpp (PSNR
32.14dB). (c) Tsukuba Light Field encoded using H.264/MVC at 0.056bpp (PSNR
27.53dB). (d) Tsukuba Light Field encoded using proposed algorithm at 0.052bpp
(PSNR 29.77dB).
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(a) Tsukuba EPI (b) Teddy

Figure 5.7: Bit rate distribution between texture, segmentation and side informa-
tion when encoding Tsukuba EPI. (a) Total bit budget 0.022bpp (PSNR 24.1dB).
(b) Total bit budget 0.1bpp (PSNR 29.65dB).
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Chapter 6

Interactive Compression

In this chapter we present a compression algorithm for an interactive communication

system. In this setup the images are stored at a central server and are transmitted to

the user on request. This allows the user to download only a fraction of the dataset by

requesting only the images which are going to be viewed.

One approach to implement this kind of system is to use a coding scheme which

supports random access. Recall that random access is the ability to decode a single

image without decoding the complete dataset. In this way, only the relevant information

can be transmitted without decoding the complete dataset. However, the concept of

random access conflicts with the idea of efficient compression. In compression, we aim

to remove any redundant information, and this introduces interdependencies between

images, thus limiting random access.

Here, we outline how the centralised compression algorithm proposed in Chapter

4 can be modified to support random access. The main idea of the method is to use

DSC in place of the multi-dimensional DWT. By using DSC we support random access

while still reducing the redundancy of the transmitted information.

This chapter is organised as follows. Next we give a brief overview of DSC and

outline how the method is used in our coding system. In Section 6.2 we outline the

proposed compression algorithm and present the RD model in Section 6.3. The com-

pression algorithm and the RD model are verified in Section 6.4 and we summarise in
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Section 6.5.

6.1 Distributed Source Coding

A conventional coding setup usually assumes a high complexity encoder and a low

complexity decoder. For example, in traditional video coding, a GOP is jointly coded

by using past frames as a prediction for the current frame. This method requires a

complex motion estimation process to find an accurate prediction. At the decoder, the

frames are reconstructed with low complexity using the transmitted motion vectors.

In certain applications it is not possible to have this kind of setup. For example, in a

remote multi-sensor network, the sensors have a limited power supply. This constraint

means that the sensors are not allowed to communicate, and therefore it is not possible

to design a joint coding scheme which removes the data redundancy.

The theory of DSC outlines that under certain conditions, a proper separate coding

of each source can in fact achieve the same performance as a joint coding scheme (if

decoding is performed jointly). This process involves knowing the correlation between

the sources and shifting the complexity from the encoder to the decoder. We refer

to [67] for an in depth overview of DSC. To give an intuitive example of the coding

scheme consider the following setup: Assume we wish to transmit the reading from two

sources S1 = 23 and S2 = 25. The values are uniformly distributed in the range [0, 31].

In addition, the maximum difference between S1 and S2 (worst case error) is upper-

bounded by |S1 − S2| ≤ 3. We can encode the two symbols using DSC as follows. The

first symbol S1 is encoded independently using log2 (32) = 5 bits and is transmitted

to the decoder. Then, to correctly reconstruct the second symbol we only need to

transmit the three least significant bits (LSB) from S2. Denote this with S3
2 = {001}.

By receiving this information, the decoder can infer that the possible values of S2 are

{. . . , 9, 17, 25, 33, . . .}1. Then, to decode S2 we simply choose the closest value to S1

from the set of possible solutions. Thus, we correctly deduce that S2 = 25. This

approach is known as decoding with side-information2. Therefore, using this approach

1This set is created by adding different combinations of most significant bits to the received LSB.
2This example is interesting because we do not need to know the exact value of S1 to correctly
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we use in total 8 bits to encode the data.

Note that if the two sources were encoded independently, we would require 2 ×

log2(32) = 10 bits. Also, in this particular case, a centralised scheme would use the

same number of bits as the DSC approach. In the joint setup we would encode S1

independently followed by the residual error of S2. This approach would also use

log2(32) + log2(3) + 1 = 8 bits (the additional 1 bit is required to specify the sign of

the residual error).

In above example, DSC allows us to encode each source independently while re-

ducing the redundancy at the decoder. The approach supports random access, and

requires fewer bits than conventional independent coding of each source.

We can use the same coding principles to compress multiview images. Instead of

S1 and S2 being scalar values, we can analyse them as images. Then, we can encode

the image S1 using an independent coding scheme and S2 using DSC. In a typical

multiview image dataset we encode more than two images, and this means that there

is more uncertainty in the side information at the decoder. However, using DSC we

can still take this into account by changing the correlation. In the above example, this

would be equivalent to increasing the worst case error between the sources.

6.2 Proposed Algorithm

The structure of the centralised and interactive schemes is very similar. They both rely

on the layer-based representation to improve the compression performance. The biggest

difference in the interactive method is that we apply DSC to the spatial transform

coefficients3.

The overview of the proposed interactive method is shown in Fig. 6.1. In the first

stage we obtain the layer-based representation which is followed by a pre-processing

stage applied to each layer. Then, we reduce the intra-view redundancy using a shape-

adaptive 2D DWT applied to each image in the obtained layers. This is followed by

DSC applied to the quantised subband coefficients along the inter-view domain. We

reconstruct S2. For example we would obtain the same answer with S1 = 26.
3We apply the intra-view spatial DWT prior to inter-view DSC.
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Figure 6.1: Interactive compression method block diagram.

then optimise the coefficients in the RD sense and entropy code the resulting data.

In addition, we losslessly encode and transmit the layer contours and the disparity

gradient of each layer. Next, we discuss in more detail each of the encoding steps.

6.2.1 Layer pre-processing and Spatial Transform

The input to this stage are the extracted layers shown in Fig. 2.7. The aim is to

increase the inter-view correlation so that the compression efficiency of the DSC stage

is improved. We implement the pre-processing stage by disparity compensating the

images of each layer onto a common viewpoint using (2.6). Additionally, any occluded

regions are interpolated using the mean along the EPI lines. The interpolation implies

that during reconstruction, certain layer regions will overlap. However, as discussed

in Section 2.3, we can infer the correct occlusion ordering by using the associated

depth/disparity gradient of each layer. We show an example of the pre-processing in

Fig. 6.2.

Following the layer pre-processing, we apply to each image a spatial shape-adaptive

2D DWT. Recall that the contour of each layer has an arbitrary shape. For this reason

we use the shape-adaptive implementation, since filtering with a conventional 2D DWT

would result in large magnitude wavelet coefficients and reduce the coding gain.

6.2.2 Quantisation of Transform Coefficients

In this stage we quantise the obtained transform coefficients. We overview this for one

layer; the same process is then applied to each of the extracted layers.
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(a) (b)

Figure 6.2: (a) Due to occlusions, the extracted layers may contain discontinuities
along the EPI lines. (b) Pre-processing is implemented by disparity compensating
each image onto a common viewpoint and interpolating the occluded pixels using
the mean along the EPI lines. The layer contour outlined with the red curve is
efficiently encoded using a modified version of the Freeman algorithm [54] and
transmitted.

We select the first image from the layer and partition the transform coefficients

into blocks of size [64× 64]. For each block we then choose a quantisation step-size by

minimising the operational RD cost Di + λRi, where (Di, Ri) corresponds to the RD

point associated with the i -th quantisation step-size.

To reduce the complexity, we obtain the operational RD curve using an embedded

bit-plane coder [85]. Using this approach, the block only needs to be coded once to

obtain all the possible operational RD points. The method encodes the bit-planes of

the block starting from the most significant bit (MSB). This is equivalent to choosing

a quantisation step-size according to the bit-planes, i.e
{
2(N−1), 2(N−2), . . . , 20

}
where

N corresponds to the MSB.

In our approach we quantise the blocks in the remaining images of that layer by

using the quantisation step-size from the first view. For example the low-pass subbands

in each image (of the same layer) are quantised using the same step-size.

6.2.3 Inter-view Distributed Source Coding

In this stage we reduce the inter-view redundancy in the transform coefficients using

DSC principles. Consider the quantised low-pass transform coefficients from three

images of one layer as illustrated in Fig. 6.3.
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When encoding each block, we assume that one of the blocks will be available in the

cache of the user as side information. There is an uncertainty as to which one will be

available; this is why we cannot simply encode the residual signal. For example, when

encoding the transform coefficients in Fig. 6.3(a), the encoder does not specifically

know whether the cache of the user will contain transform coefficients from Fig. 6.3(b)

or 6.3(c). However, by using DSC principles, this uncertainty can be removed as follows.

Consider the model:

y = x + n, (6.1)

where y is the transform coefficient requested by the user, x is the side information

available in the cache and |n| ≤ ε is the residual signal. We can correctly reconstruct y

using DSC by transmitting a minimum of dlog2 (2ε + 1)e LSB from y. Therefore, when

encoding each block in Fig. 6.3, we take the worst case scenario where any image can

be used as side information. For example, in the sequence {55, 51, 53}, the worst case

error ε ≤ 4, and this requires that we transmit dlog2 9e = 4 LSB from each coefficient.

(a) (b) (c)

Figure 6.3: Quantised low-pass subbands from three images of one layer. Observe
that the blocks are correlated across the views.

This method is then applied to each set of transform coefficients across the views

to determine the number of LSB which must be transmitted.

6.2.4 RD Optimisation and Entropy Coding

Observe that the outlined DSC approach described in the previous section is inefficient

when the transform coefficients across the views are the same except for one image.

For example to encode {55, 55, 57} we have to transmit 3 LSB from each coefficient.

Intuitively, at low rates a better solution would be to set 57 to 55, so that zero LSB are

encoded. We solve this problem in an RD sense as follows: for each set of transform
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coefficients, we find the value which corresponds to the largest error and set it to the

median of the set. Then, we evaluate the change in distortion ∆D and estimate change

in rate ∆R. Using a greedy approach, if

∆D + λ∆R < 0 (6.2)

we make the substitution and iterate the process until (6.2) is positive. The trade-

off between rate and distortion is set using λ, which is chosen when evaluating the

quantisation step-size.

The server subsequently encodes the data using a bit-plane context adaptive arith-

metic coder to attain rates close to the entropy of the source. The number of retained

LSB is also encoded and transmitted along with the data. Note that for a set of blocks

across the views, the number of transmitted LSB is the same. Thus, we only transmit

this information once prior to decoding. This information is stored by the user for

future reference. In addition, the number of transmitted LSB also provides a bit-plane

significance map. This is further exploited by the entropy coder to reduce the encoding

rate.

6.3 Theoretical Modeling

In this section we present a theoretical model of our encoding scheme. The aim of

the model is to show that the proposed algorithm can achieve improved compression

performance over independent coding. First, we present a synthetic data model which

is a good approximation of real multiview images, then we evaluate the RD relation of

the independent and the proposed DSC algorithm for this class of signals.
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6.3.1 Data Modeling

2D α-Lipschitz model

Consider an extracted layer. We model each image in the layer using a globally smooth

2D α-Lipschitz function fα (x, y) [61], which satisfies the following condition:

| fα (x1, y1)− fα (x2, y2) |≤ K
(
| x1 − x2 |2 + | y1 − y2 |2

)α/2
, (6.3)

where K > 0. This type of signal has a property that when it is transformed using a

2D wavelet having at least bα + 1c vanishing moments, the wavelet coefficients in each

scale will have the following decay [61]:

|dj | ≤ A2−j(α+1), (6.4)

where j is the wavelet scale and constant A > 0. A linear compression scheme [89]

based on (6.4) can be designed by choosing a constant quantisation step-size across

all the subbands [61]. It can be shown that at high rate, such a method yields the

following RD function:

D (R) ≤ cR−α, (6.5)

where R is the total number of bits allocated to encoding the signal and c > 0 is

constant. The analysis [61] also shows that the constant c ∝ A2.

Contour Model

In practice, the layers are outlined by a segmentation and are therefore not globally

α-Lipschitz smooth. An example of an α-Lipschitz smooth signal bounded by the layer

contours is shown in Fig. 6.4. To obtain the decay in (6.5), we transmit the contours

and encode the texture using a shape-adaptive scheme. This supports the proposed

layer-based coding method. We model the contour of the texture as a piecewise linear

curve having V vertices. The RD function due to quantising the location of the vertices
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Figure 6.4: Synthetic dataset. The texture is globally α-Lipschitz smooth in the
bounds of the contour.

can be upper bounded as:

D (R) ≤ Mζ2T 2V 2−R/2V , (6.6)

where ζ is the maximal magnitude of the texture and T is the maximal length of a side

of the bounding box. M is the number of images in the layer. Note that the model

is evaluated by upper bounding the number of pixels affected by quantising the vertex

locations and then scaling this number by the amplitude of the texture to obtain the

distortion. The derivation of this bound is shown in Appendix A.1.

Multiview Image Model

Using the analysis in Section 2.3, the layer images are modeled as a shifted version of

the first image and an additional 2D α-Lipschitz error term. The error corresponds to

either lighting changes, layer extraction errors or non-Lambertian surfaces. Therefore,

fi (x, y) = f1 (x + (i− 1) ∆p, y) + εi
α (x, y) , (6.7)

where ∆p corresponds to the layer’s disparity gradient and i is the image location.
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6.3.2 Independent Encoding

In the independent encoding setup, the 2D α-Lipschitz texture in each view is coded

independently of the remaining views. The layer contour is coded once and transmitted

prior to decoding the texture. Therefore, assuming all of the images are decoded, the

total distortion due to encoding the texture and the contour is bounded by:

Dind (Rt) ≤
M∑
i=1

ci

(
Ri

x

)−α + Mζ2T 2V 2−Rs/2V , (6.8)

where Ri
x and Rs represent the rate allocated to the α-Lipschitz texture in the i -th

view and the contour encoding rate, respectively. Therefore, the total bit rate can be

shown to be:

Rt =
M∑
i=1

Ri
x + Rs. (6.9)

The correct rate allocation which minimises the distortion for a total bit budget

can be solved using Lagrangian multipliers. A high rate analysis yields:

Ri
x ≈ Rt

(
M∑
l=1

(
cl

ci

) 1
α+1

)−1

, (6.10)

and

Rs = 2V log2

(
Mζ2T 2 ln (2)

2V αc1

)
+ 2V (α + 1) log2 R1

x. (6.11)

The derivation of these results are shown in Appendix A.3. The minimised RD function

in terms of the total rate can be obtained by substituting (6.10) and (6.11) into (6.8).

6.3.3 Proposed Algorithm

To model the proposed interactive method, we assume that the first image is transmit-

ted in intra modality and the remaining ones are coded using DSC. During decoding,

the first image is then used as side information to reconstruct the remaining images in

the dataset.

Recall that using the layer model in (6.7), we assume that images with locations

Vx = {2, 3, . . . ,M} (we call these the residual frames) are a shifted version of the first
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image with an additional 2D α-Lipschitz error term. This implies that we can model

the wavelet coefficients in the residual views as:

dj
i = d̂j

1 + dj
ε , (6.12)

where d̂j
1 denote the wavelet coefficients of the first view disparity compensated onto the

i -th viewpoint, and j corresponds to the wavelet scale. This is true for each subband if

the disparity is a multiple of 2N [89], where N is the number of spatial decompositions

applied by the 2D DWT. Then, based on (6.12) we can encode dj
i by transmitting a

certain number of LSB corresponding to the noise component dj
ε (assuming that the

side information d̂j
1 is available at the decoder).

We can analyse this problem as though we are only transmitting the error compo-

nent from the DSC frames [16,17] . Recall that the α-Lipschitz error is upper bounded

by

|dj
ε | ≤ Aε2−j(α+1), (6.13)

and the constant Aε is significantly smaller than in the independent coding setup. Since

Aε only determines the constant c in (6.5), it is reasonable to deduce that encoding

the α-Lipschitz error term using DSC has the same RD behaviour as the original

independent setup in (6.5), but with a different scaling constant [16].

In practise the side information in (6.12) will be quantised and this will also con-

tribute to the reconstruction error. We use the analysis in [16] to model the total

distortion in a DSC frame as:

D (R1, R2) = D1 (R1) + D2 (R2) , (6.14)

= c1R
−α
1 + c2R

−α
2 , (6.15)

where D1 (R1) corresponds to the side information distortion and D2 (R1) is the quan-

tisation distortion in the α-Lipschitz error term. The parameters R1 and R2 denote the

number of bits allocated to encoding the side information and DSC frame, respectively.

Hence, the distortion due to encoding the complete dataset using the proposed
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scheme is

DDSC (Rt) ≤ Mc1R
1
x
−α +

M∑
i=2

ĉi

(
Ri

x

)−α + Mζ2T 2V 2−Rs/2V , (6.16)

where we have used ĉi to distinguish the constants from the independent coding setup.

Note that the total RD due to encoding the dataset using the proposed method is

identical to (6.8) but with different scaling constants, and this leads to the same form

of rate allocation equations. We validate this behaviour in the following section.

6.4 Simulation Results and algorithm analysis

We begin by analysing the RD model and then evaluate the compression efficiency of

the proposed interactive compression method.

6.4.1 RD model evaluation

We validate the RD model by encoding an α = 1.5 Lipschitz multiview image array

consisting of four images. We use a synthetic α-Lipschitz signal. First, we create the

reference frame by adding zero mean Gaussian noise to each subband and then scaling

the noise components to ensure the decay in (6.4) is satisfied. The subsequent frames

are obtained by shifting the first image by the disparity and adding an α = 1.5 Lipschitz

error term.

To estimate the scaling constants ci and ĉi we encode each image a number of times

to obtain a set of operating RD points. Then, the scaling constants are evaluated by

minimising the error between the theoretical and operating RD points. We consider

two scenarios: the setup where all of the images are encoded using the intra modality

(to evaluate ci) and the proposed method where the first image is coded in intra mode

and the remaining ones using DSC (to evaluate ĉi).

The evaluated scaling constants are then used to find the rate allocation in (6.10)

and (6.11), which minimise the upper bound of the distortion for a given total bit budget

Rt. We encode the data set using the optimised parameters. The resulting operating
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and theoretical RD curves are shown in Fig. 6.5. Observe that the performance of the

proposed algorithm is better in both the theoretical and practical results. In addition,

the RD curves validate our analysis that the independent and proposed methods have

the same rate of decay, but with different scaling constants.

Figure 6.5: Practical and theoretical RD performance when encoding an α = 1.5
Lipschitz signal. The proposed algorithm achieves an improved performance in
both practical and theoretical cases. Observe that the rate of decay in the theo-
retical and practical cases is the same. Here, the x-axis corresponds to the total
bit budget in terms of bits per object pixels (bop).

6.4.2 Interactive method

We validate the performance of the proposed compression method on real data using

Tsukuba light field [272× 368× 4× 4] and Animal Farm EPI [232× 624× 16] datasets.

We initialise the proposed interactive method by independently encoding the first

image of each layer. Then, the remaining images are randomly chosen and transmitted

using the DSC strategy until all the images are decoded. The side information in

the cache is always set to the previously decoded image. We compare the method

to independent coding of the images using JPEG 20004, which has the same random

access capabilities as the proposed approach.

We illustrate a quantitative comparison of the proposed method with JPEG 2000 in

Fig. 6.6. Observe that the proposed method achieves PSNR gains of up to 3dB. This

is due to the fact that our approach reduces the inter-view redundancy whereas JPEG

4We modify JPEG 2000 to have the same entropy coding as our approach.
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(a) Tsukuba light field. (b) Animal Farm EPI volume.

Figure 6.6: Quantitative comparison between the proposed interactive method,
JPEG 2000 and the centralised scheme presented in Chapter 4. (a) Tsukuba light
field. (b) Animal Farm EPI volume.

2000 encodes each image independently. The improvement can also be seen in terms

of subjective performance in Fig. 6.7. In addition, to show the performance reduction

due to the random access feature, we also include a comparison with respect to the

centralised method from Chapter 4. The DSC approach incurs a cost of 3dB at low

rates, and this is due to the fact that in the interactive method any image can be used

as side information. This implies that we encode the dataset with respect to the worst

case error, and this requires additional parity bits to be transmitted.

6.5 Summary

We presented a compression method for an interactive communication scenario. In this

setup, the images are stored at a central server and are transmitted to the user when

a request is made.

The requested views are typically correlated and our scheme takes this into account

by encoding the images using DSC principles. DSC allows us to reduce the redundancy

of the images at the client by using the previously decoded image as the side infor-

mation. Furthermore, the scheme facilitates random access by encoding each image

independently.

In our approach, we use the layer-based representation to exploit the correlation

between the requested images, and this reduces the number of parity bits which must
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(a) (b)

(c) (d)

Figure 6.7: Qualitative comparison of the proposed interactive algorithm with
JPEG 2000. (a) Animal Farm encoded using JPEG 2000 at 0.07bpp (PSNR
31.33dB). (b) Animal Farm encoded using the proposed interactive method at
0.07bpp (PSNR 33.76dB). (c) Tsukuba light field encoded using JPEG 2000 at
0.13bpp (PSNR 26.83dB). (d) Tsukuba light field encoded using the proposed in-
teractive method at 0.134bpp (PSNR 29.44dB).
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be transmitted when the images are coded using DSC. The DSC is implemented in

the DWT transform domain. We assume the worst case correlation model, and this

approach means that any image in the dataset can be correctly decoded using any

other image as side information. We show that our method achieves an improved RD

performance with gains of up to 3dB over independent encoding.

Furthermore, we presented a RD analysis of our algorithm which demonstrates that

the proposed method can achieve a better performance in comparison to independent

coding. We showed that when encoding an α-Lipschitz smooth signal, the independent

coding of the images and the proposed method have the same MSE decay, but with

different scaling constants.
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Chapter 7

Conclusion

In this chapter we summarise the thesis, discuss which camera setup constraints can

be relaxed in the formulation and outline possible future research directions.

7.1 Summary

7.1.1 Sparse representation of multiview images

We presented an approach to obtain a sparse decomposition of multiview images. The

underlying idea is that a multiview image array can be analysed as a set of layers,

where each layer corresponds to an object located at a constant depth in the scene.

We call this the layer-based representation. After extracting the layers, we obtain the

sparse decomposition by using a multi-dimensional DWT. The DWT is applied in a

separable approach. First, we use an inter-view DWT applied to the camera viewpoint

dimensions. The DWT is implemented using the lifting implementation, and it is

applied in the direction of the EPI lines to maximise sparsity. In addition, we modify the

transform to take into account occluded regions. This is followed by a 2D DWT applied

to the spatial coordinates. Our evaluation shows that the proposed decomposition is

sparser than a conventional DWT with the same decomposition structure.
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7.1.2 Centralised compression of multiview images

We then presented a multiview image coding method based on the sparse decomposi-

tion. In this algorithm, we first encode the layer contours of the layer-based represen-

tation in a lossy or lossless modality. In the lossy case, we approximate the contours

using a piecewise linear curve obtained with a quadtree prune-join representation. In

the lossless setup, we use a variation of the Freeman method by encoding the out-

line of the layer contours. Then, following the multi-dimensional DWT we encode the

transform coefficients using a method similar to EBCOT [85]. The approach uses a

context-adaptive arithmetic coder and achieves rates close to the entropy of the source.

In addition given a total target bit budget, we find the correct rate allocation

between encoding the layer contours and the texture. We show that if the layer contours

are piecewise linear, there exists a closed-form solution. In the more general case of

arbitrary layer contours, we combine the theoretical analysis with an empirical approach

to find the correct allocation. Evaluation of the method showed that the algorithm

outperforms H.264/AVC and MVC on a number of datasets.

7.1.3 Interactive compression of multiview images

Although the proposed centralised method achieves a high compression, it does not

support random access to arbitrary images. Therefore, the approach cannot be used

for applications such as interactive communication.

To support random access, we modified the proposed method by substituting the

multi-dimensional DWT with DSC. Using this approach we encoded each image inde-

pendently and reduced the redundancy of the transmitted data at the client. To ensure

there is no drift while decoding, we used the worst case correlation error to encode the

images using DSC. Simulation results showed that the method outperforms an inde-

pendent coding of the images. In addition, we developed a RD model of the algorithm.

The model is based on the assumption that the input images are globally α-Lipschitz

smooth within the layer contours. An analysis of the model showed that independent

coding of the images has the same rate of decay as the proposed method, but with
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different scaling constants. Simulation results confirmed this analysis.

7.2 Camera setup constraints

To obtain the sparse representation and develop the compression methods, we made a

number of camera setup assumptions. Here, we outline which assumptions are essential

and which ones can be relaxed. Firstly, we constrained the cameras to be uniformly

spaced. When encoding an EPI volume, this can in fact be fully relaxed; the cameras

can be placed at arbitrary locations on a line. This is due to the fact that the disparity

between neighbouring images can be evaluated by using the camera spacing and the

disparity gradient. However, in the case of a light field, our method does require that the

cameras are uniformly spaced, and this is because the inter-view DWT is implemented

in a separable approach; first across the row images, followed by the column images.

Secondly, we constrained the cameras to be placed on a 2D plane (light field),

where the focal plane of each camera is parallel to the array. This is in fact a necessary

condition for the method to operate. If the cameras are located at arbitrary locations

(i.e. non-planar), the 2D contour of a layer on each image viewpoint would no longer

be a shifted version, and this means that the current inter-view DWT could not be

applied to the data.

However, a constraint that the focal length of each camera is the same can be

removed. In this case, the disparity gradient would be camera dependent. The pixel

disparity could then be evaluated by using the change in the camera location, the focal

length of each camera and the object depth.

7.3 Future Work

There are a number of possible future research directions which can be explored.
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7.3.1 Constant depth plane assumption

Currently each layer in the layer-based representation is modelled by a constant depth

plane. A possible extension could be to use a slanted plane. The motivation is that a

more accurate model would result in a sparser representation and hence improve the

compression performance.

7.3.2 Image-based rendering and compression

In IBR, the compressed images are used to interpolate novel viewpoints. This implies

that certain images will be used more than others. For example the images corre-

sponding to the objects of interest will be used for interpolation more often than the

background or the corner viewpoints. Therefore, a coding strategy which encodes these

images at a higher rate would result in a significantly improved performance. An in-

teresting approach would be to incorporate this into the RD model.

7.3.3 Perceptual based coding schemes

The majority of coding schemes rely on MSE to evaluate the performance and to

implement rate allocation. Although the metric leads to an objective evaluation, it

does not take into account the redundancy of the Human Visual System (HVS). For

example, detailed texture regions lead to a high MSE, but in terms of HVS they appear

stationary. An innovative scheme based on this idea in [68] proposed to remove blocks

of highly textured regions at the encoder. At the decoder, these regions are then

synthesised using image editing tools such as [66]. Although the approach leads to a

high MSE, the perceptual quality of the image is high due to the properties of the HVS.

Furthermore, since the highly textured regions are not transmitted, the method leads

to significant savings in terms of the bit rate. This type of approach can be also be

adapted to encode multiview images.
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7.3.4 Extensions to multiview video

To encode multiview videos the proposed centralised scheme could be used to compress

multiview images at each specific moment in time. Then, further redundancy could be

removed from the low-pass components corresponding to the temporal dimension. A

disadvantage of this approach is that it would be computationally expensive to extract

the layer-based representation for multiple time frames. The complexity could perhaps

be reduced by initialising the contours using the previously extracted layers or by using

a lower complexity layer extraction method, such as [65].

7.3.5 Extensions to interactive compression method

In the interactive compression method, we use the worst case error across the views

to encode the images. This means that when the size of the dataset becomes large,

the worst case error would also increase. Therefore, the performance of the method

decreases with the number of images.

A possible approach to solve this issue is to consider that the user will only request

images within a window of neighbouring views. This means that even for a large

dataset, the worst case error within neighbouring views would still be relatively low.

Finally, performance could be further improved by using more advanced DSC schemes,

such as LDPC [72] or Turbo codes [28].
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Appendix A

A.1 Proof of (4.6)

Consider a polygon, bounded by a box of size T having V vertices. The distortion

bound is derived by quantising the vertex locations for a given bit budget of R bits,

where each vertex is, therefore, allocated R
V bits. This corresponds to quantising the x

and y locations with a step-size ∆ = T2−
R
2V . The maximal quantisation error ε along

each dimension can be upper bounded by:

ε ≤ ∆
2

=
T

2
2−

R
2V . (A.1)

Therefore, using Pythagoras, the maximal distance to the original vertex can be upper

bounded by T√
2
2−

R
2V . Since each side of the polygon is bounded by T

√
2, the number

of pixels affected by quantising the vertices is bounded by T 2V 2−
R
2V .

Denote with ζ the maximal amplitude of the texture in the polygon. Assuming the

texture is set to zero in the quantisation error regions, the total distortion can be upper

bounded by:

e2 ≤ ζ2T 2V 2−
R
2V , (A.2)

which coincides with (4.6).
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A.2 Proof of (4.11) and (4.12)

Here, we prove the optimum rate distribution between segmentation and texture in

(4.11) and (4.12). The cost function to be minimised is defined by:

D (Rx,Rs) ∼ Dx (Rx) + Ds (Rs)

=
L∑

j=1

Cj

 Kj∑
i=1

Nijσ
2
ij2

−2Rij
x + MT 2

j Vjζ
2
j 2

− R
j
s

2Vj

 , (A.3)

where Rx and Rs are defined as in (4.5) and (4.8), respectively. The minimisation is

subject to a bit rate constraint:

Rt ≥ Rx + Rs (A.4)

=
L∑

j=1

Kj∑
i=1

NijR
ij
x +

L∑
j=1

Rj
s. (A.5)

The constrained optimisation can be transformed into an unconstrained one using La-
grangian multipliers, where the new objective function to be minimised is given by:

J (Rx,Rs, λ) =

LX
j=1

Cj

0
@

KjX
i=1

Nijσ
2
ij2

−2Rij
x + MT 2

j Vjζ
2
j 2
− R

j
s

2Vj

1
A+ λ

0
@

LX
j=1

KjX
i=1

NijR
ij
x +

LX
j=1

Rj
s −Rt

1
A .

(A.6)

The minimum is obtained by partially differentiating the cost function with respect to

the free variables and setting the derivative to zero:

∂J

∂Rij
x

= −2 ln (2)CjNijσ
2
ij2

−2Rij
x + λNij = 0, (A.7)

∂J

∂Rj
s

= − ln (2)
2

CjMT 2
j ζ2

j 2
−R

j
s

2Vj + λ = 0. (A.8)

Therefore,

Rij
x =

1
2

log2

[
2 ln (2)Cjσ

2
ij

]
− 1

2
log2 λ, (A.9)

Rj
s = 2Vj log2

[
ln (2)CjMT 2

j ζ2
j

2

]
− 2Vj log2 λ. (A.10)
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We can now substitute (A.9) and (A.10) into the bit rate constraint in (A.5) and solve
for log2 λ to obtain:

log2 λ = −

0
@

LX
j=1

2
4

KjX
i=1

Nij

2
+ 2Vj

3
5
1
A
−10
@Rt −

LX
j=1

2
4

KjX
i=1

Nij

2
log2

�
2 ln (2) Cjσ

2
ij

�
+ 2Vj log2

ln (2) CjMT 2
j ζ2

j

2

3
5
1
A .

(A.11)

We denote with β = − log2 λ. Substituting (A.9) and (A.10) into (4.5) and (4.8), we

obtain the following solutions:

Rx =
L∑

j=1

Kj∑
i=1

Nij

(
1
2

log2

[
2 ln (2)Cjσ

2
ij

]
+

β

2

)
, (A.12)

and

Rs =
L∑

j=1

(
2Vj log2

[
ln (2)CjMT 2

j ζ2
j

2

]
+ 2Vjβ

)
, (A.13)

which coincides with the layer contour and texture rates in (4.11) and (4.12), respec-

tively.

A.3 Proof of (6.10) and (6.11)

Here, we minimise the upper bound of the cost function

Dind (Rt) ≤
M∑
l=1

cl

(
Rl

x

)−α
+ Mζ2T 2V 2−Rs/2V , (A.14)

given the constraint

Rt =
M∑
l=1

Rl
x + Rs. (A.15)

We transform the constrained problem into an unconstrained one using Lagrangian

multipliers as follows:

J (Rt, λ) ≤
M∑
l=1

cl

(
Rl

x

)−α
+ Mζ2T 2V 2−Rs/2V + λ(

M∑
l=1

Rl
x + Rs −Rt). (A.16)
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The minimum is obtained by differentiating the Lagrangian cost with respect to the

free parameters, and setting the partial derivatives to zero:

∂J
∂R1

x
= −αc1

(
R1

x

)−(α+1) + λ = 0, (A.17)

∂J
∂R2

x
= −αc2

(
R2

x

)−(α+1) + λ = 0, (A.18)

...

∂J
∂RM

x
= −αcM

(
RM

x

)−(α+1)
+ λ = 0, (A.19)

∂J
∂Rs

= − ln 2
2V

Mζ2T 22−
Rs
2V + λ = 0. (A.20)

Substituting out λ, we can derive the following equations:

Rl
x = R1

x

(
cl

c1

) 1
α+1

, for l = 1, 2, . . . ,M. (A.21)

Rs = 2V log2

(
ln 2Mζ2T 2

2V αc1

)
+ 2V (α + 1) log2

(
R1

x

)
. (A.22)

Substituting these equations into (A.15), Rt can be expressed in terms of R1
x as follows:

Rt = R1
x

(
M∑
l=1

(
cl

c1

) 1
α+1

)
+ 2V log2

(
ln 2Mζ2T 2

2V αc1

)
+ 2V (α + 1) log2

(
R1

x

)
. (A.23)

For a high rate Rt, we obtain the approximation:

R1
x ≈ Rt

(
M∑
l=1

(
cl

c1

) 1
α+1

)−1

. (A.24)

This analysis can be generalised to obtain

Ri
x ≈ Rt

(
M∑
l=1

(
cl

ci

) 1
α+1

)−1

, for i = 1, 2, . . . ,M. (A.25)

The results in (A.25) and (A.22) coincide with (6.10) and (6.11), respectively.
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