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Abstract

Multiview images are obtained by recording a scene from different viewpoints. The
additional information can be used to improve the performance of various applications
ranging from e-commerce to security surveillance. Many such applications process large
arrays of images, and therefore it is important to consider how the information is stored
and transmitted.

In this thesis we address the issue of multiview image compression. Our approach
is based on the concept that a point in a 3D space maps to a constant intensity line in
specific multiview image arrays. We use this property to develop a sparse representation
of multiview images. To obtain the representation we segment the data into layers,
where each layer is defined by an object located at a constant depth in the scene. We
extract the layers by initialising the layer contours and then by iteratively evolving them
in the direction which minimises an appropriate cost function. To obtain the sparse
representation we reduce the redundancy of each layer by using a multi-dimensional
discrete wavelet transform (DWT). We apply the DWT in a separable approach; first
across the camera viewpoint dimensions, followed by a 2D DW'T applied to the spatial
dimensions. The camera viewpoint DW'T is modified to take into account the structure
of each layer, and also the occluded regions.

Based on the sparse representation, we propose two compression algorithms. The
first is a centralised approach, which achieves a high compression, however requires the
transmission of all the data. The second is an interactive method, which trades-off
compression performance in order to facilitate random access to the multiview image

dataset. In addition, we address the issue of rate allocation between encoding of the
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layer contours and the texture. We demonstrate that the proposed centralised and

interactive methods outperform H.264/MVC and JPEG 2000, respectively.
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Chapter 1

Introduction

1.1 Motivation

Multiview images are obtained by recording a scene from different viewpoints using
an array of cameras. These datasets have become an important component in a wide
range of signal processing applications. In the computer graphics community, multiview
images are used to create photorealistic results with a low computational complexity.
The reason for using real datasets, as opposed to an accurate 3D representation of a
scene, stems from the fact that natural images contain many subtle properties which
are difficult to model and reproduce. Yet these properties are necessary to create a
‘realistic’ perception in the rendered scene [44]. The process of creating virtual views
from images is known as image-based rendering (IBR) [81].

In particular, IBR has been extensively researched due to its applications in free
viewpoint TV (FTV) [84] and 3D TV [49]. The latter creates a perception of depth,
whereas FTV allows the user to perceive an immersive experience by interactively
choosing their viewpoint. In FTV, IBR plays an important role; it is used to synthe-
sise novel viewpoints where no camera exists. Other examples of applications where
multiview images are commonly used include: object and feature recognition, security
surveillance, teleconferencing and remote education [49].

These applications have to process significantly more data than the traditional single

view setup. For example, in IBR a popular approach known as light field rendering [52]
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can consist of 1000 images with an uncompressed data size of ~1GB [96]. Therefore,
in order to make these applications practical, it is important to develop methods which
efficiently compress this type of data.

Multiview images are highly redundant in that they contain very similar content
in each view. This property is due to the fact that in a multiview image array the
cameras are commonly very closely spaced. As a consequence, a given object in one
of the images will also appear shifted in each of the neighbouring images. Moreover,
the shift can often be predicted and partially depends on the geometry of the array.
These properties can be taken into account when developing coding methods to achieve
a high compression.

When developing a multiview compression method, it is important to consider the
type of application the algorithm is designed for. If the data is encoded offline and stored
on a hard disk, we can design a complex encoding method with a high compression
efficiency. However, in an interactive communication system [21], we must consider
other aspects in addition to this property. An interactive communication setup consists
of a server and remote clients. The remote clients connect to the server and request
certain images from the dataset. An advantage of this method is that only the requested
views are transmitted as opposed to the complete dataset. In this setup, the ability to
transmit certain images without decoding the dataset is significantly more important
than compression efficiency. This property is known as random access. In addition,
other factors such as decoding complexity and scalability should be taken into account.
Scalability is a general term which defines whether a single bit stream can be decoded
multiple times according to different distortion or resolution levels (spatial or temporal)
[64].

In compression, we must also carefully consider how the coding parameters are
chosen to optimise the method. Typically, the parameters are selected using a rate-
distortion (RD) formulation where the goal is to minimise the distortion for a given
bit budget (complexity and other factors can also be taken into account [4]). For
example in subband coding [89] the goal is to select a set of quantisers which minimise

the distortion for a given rate constraint. The number of free parameters in a coding
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setup is typically large and optimisation techniques must be employed to solve these
problems. A popular framework applied in image and video coding is Lagrangian
minimisation [83]. Here, the constrained optimisation problem is transformed into an
unconstrained one by jointly minimising the rate and distortion. This framework can
be applied in an operational sense by encoding the data points or by modelling the RD
using a certain class of signals, such as a Gaussian random process [25] or piecewise

polynomial signals [80].

1.2 Problem Statement

In this thesis, we address the issue of multiview image compression. The input dataset
is a 2D array of images. We assume that the cameras are evenly spaced on a 2D grid,
and that the viewing direction of the cameras is perpendicular to the location plane.
We also consider a calibrated setup, such that the camera locations are known. In
addition, we assume that the scene is stationary; this allows us to capture a dataset
using a conventional camera by changing its viewpoint to different locations on the
array. Without a loss of generality, we encode only the monochromatic component of
the images.

The coding schemes that we propose are based on a sparse representation of multi-
view images. A sparse representation is a decomposition, where the original signal can
be approximated well using a small number of transform coefficients [12]. The repre-
sentation that we develop is unique to multiview images. It is based on analysing how
the data in multiview images is structured, and it is related to the idea that multiview
images are highly redundant.Two of the underlying assumptions which are necessary
to obtain the sparse representation are that the scene is Lambertian and that it can
be analysed as a set of constant depth planes. In a Lambertian scene the luminance
of an object (light ray intensity) appears the same when it is observed from different
viewpoints.

Based on the sparse representation we propose two coding schemes. The first is a

centralised approach and it achieves a high compression performance in comparison to
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the state-of-the-art. The aim of this method is to minimise the distortion for a given
bit budget constraint, where the distortion is measured in terms of the mean squared
error (MSE). MSE is a conventional metric for multiview images, and has the desirable
convexity and differentiability properties [91]. We optimise the method in the RD
sense to ensure an efficient performance. In addition, we show that for certain classes
of signals there exist closed-form solutions for the rate allocation, which minimises the
distortion.

However, the joint encoding method requires that all of the data is transmitted to
the user. As outlined in the introduction, this type of coding scheme is not appropriate
for certain applications, such as an interactive communication system. We address this
issue in the second algorithm, by showing that we can trade-off compression perfor-

mance with random access capabilities.

1.3 Thesis Outline

The outline of this thesis is as follows. In Chapter 2 we overview IBR and show that
multiview images can be characterised using a single function known as the plenoptic
function [3]. The main aim of this chapter is to show that multiview images are
structured and redundant. Specifically, we show that an object located at a constant
depth in the scene, shifts by the same number of pixels in each frame (under some
conditions). Based on this analysis, we present the layer-based representation. We
show that multiview images can be analysed as a set of layers, where each layer is
related to an object in the scene. This chapter is concluded by presenting a number of
multiview image compression methods.

In Chapter 3, we outline our approach to obtain a sparse decomposition of multiview
images. The method consists of two main stages. First, we segment the multiview
image array into a set of layers. To extract the layers, we pose the segmentation as an
optimisation problem. The segmentation of each layer is initialised and then iteratively
evolved using the level-set method [78]. In order to obtain a sparse representation, we

remove the redundancy in the second stage of the method by using a multi-dimensional
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discrete wavelet transform (DWT). We apply the transform in a separable approach
across the camera viewpoint dimensions, followed by the spatial (image) dimensions.
We evaluate the sparsity of the method, and also show that the representation can be
used to denoise multiview images.

In Chapter 4, we present the joint compression method based on the proposed sparse
decomposition. To encode multiview images we transmit the texture and also the con-
tours of the layer-based representation. We present our approach to encode both these
features. This chapter also deals with the RD optimisation of the proposed method.
We show how the total bit budget can be correctly distributed between encoding the
texture and the layer contours. To solve this problem, we derive the RD behaviour
by appropriately modelling the data. We model the transform coefficients as Gaussian
random variables and the contours as piecewise linear signals. The RD function is
then minimised given a rate constraint using the Lagrangian multiplier optimisation
method.

In Chapter 5, we evaluate the proposed centralised compression algorithm. We show
that our approach outperforms the state-of-the-art H.264/AVC [92] coding scheme. We
use a number of real datasets with varying number of images, spatial resolution and
scene complexity. In addition, we evaluate the proposed RD model and also the rate
allocation strategy.

In Chapter 6, we show that the proposed joint coding algorithm can be modified
to support random access by trading off compression efficiency. We call it an interac-
tive compression method, as it is suitable for an interactive communication setup. In
addition, we derive a RD model for the proposed method by assuming that the input
images are globally smooth 2D «-Lipschitz signals [61]. Our analysis shows that the
proposed method has the same rate of decay as an independent coding scheme (such
as JPEG 2000 [24]), but with different scaling constants.

The thesis is concluded in Chapter 7. Here, we overview the presented results and

outline possible directions for future work.
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1.4 Original Contributions and Publications

The main contribution of this thesis is the development of the centralised and interactive
compression methods and the derivation of the RD model. The design of the sparse
representation is in part based on the work in [6]. More specifically, we use the layer-
extraction method proposed in [8], which takes into account the structure of multiview
images. The remaining work on the sparse representation in Section 3.3 has been
developed by the author of this thesis.

The presented material in this thesis has resulted in the following publications:

e A. Gelman, P.L. Dragotti and V.Velisavljevic, “Multiview Image Coding using
Depth Layers and An Optimized Bit Allocation”, accepted subject to minor re-

visions to Transactions of Image Processing, January 2012.

e A. Gelman, J. Berent and P.L. Dragotti, “Layer-based sparse representation of
multiview images”, accepted to EURASIP Journal on Advances in Signal Process-

ing, July 2011.

e A. Gelman, P.L. Dragotti and V.Velisavljevic, “Interactive Multiview Image Cod-
ing”, in Proceedings of International Conference on Image Processing (ICIP),

Brussels, September 2011.

e A. Gelman, P.L. Dragotti and V.Velisavljevic, “Centralized and Interactive Com-
pression of Multiview Images”, in Proceedings of SPIE Applications of Digital
Image Processing XXXIV, San Diego, August 2011.

e A. Gelman, P.L. Dragotti and V.Velisavljevic, “Multiview Image Compression
using a Layer-Based Representation”, in Proceedings of International Conference

on Image Processing (ICIP), Hong Kong, September 2010.

e A. Gelman, P.L. Dragotti and V.Velisavljevic, “Layer-Based Multi-view Image
Compression”, in Proceedings of International Mobile Multimedia Conference

(MobiMedia), Kingston, UK, September 2009.
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Chapter 2

Multiview Data Structure and

Compression

In this chapter we start by reviewing the structure of multiview images. Specifically, we
introduce the plenoptic function and IBR. Then we show that the multiview structure
is determined by the objects in the scene and their relative depth to the camera array.
Based on this analysis we describe the layer-based representation [8]. The representa-
tion segments multiview images into layers, where each layer is related to a constant
depth in the scene. To conclude this chapter, we also review a number of existing

compression algorithms in the literature.

2.1 Plenoptic Function

In the IBR framework, multiview images form samples of a multi-dimensional signal
called the plenoptic function [3]. Introduced by Adelson and Bergen, this function
parameterises each light ray with a 3D point in space (Vz, Vy, V2)! and its direction of
arrival (0, ¢). Two further variables A\ and ¢ are used to specify the wavelength and

time, respectively. In total the plenoptic function is seven dimensional:

I:P7 (Vz"/;,/a‘/z’97¢7)‘7t)a (21)

IThis can also be analysed as the location of a sampling camera.
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where I corresponds to the light ray intensity.

The continuous version of the plenoptic function stores all of the information con-
tained in a scene, and any viewpoint can be synthesised by selecting the correct light
rays. In practise the plenoptic function is sampled, for example using a conventional
camera. The goal of IBR is then to synthesise an image at a novel viewpoint by esti-
mating the missing light rays from the sampled plenoptic function. This has resulted
in IBR to be analysed as a sampling problem in [15], and an interesting result is that
the spectrum is bandlimited by the maximum and minimum depth in the scene.

Due to the number of dimensions of the plenoptic function it is not easy to sample
each of the dimensions. Therefore, in practise a number of simplifications are applied
to reduce its dimensionality. Firstly, it is common to drop the A parameter and instead
deal with either the monochromatic intensity or the red, green, blue (RGB) channels
separately. Secondly, many scenes are recorded in a static setting; this means that the
plenoptic function can be defined at a specific moment in time, thus dropping the ¢
parameter. The resulting object is a 5D function, and rendering using this object is
known as plenoptic modelling [62].

Based on these assumptions a popular parameterisation of the plenoptic function is
known as the light field [52] or equivalently the lumigraph [40]. Here the dimensionality
of the plenoptic function is reduced to four by restricting the camera coordinate V, = 0.
In this representation, each light ray is defined by its intersection with a camera plane
and a focal plane:

I =Py (Vy,Vy,z,y), (2.2)

where as illustrated in Fig. 2.1, (V;,V,)) and (z,y) correspond to the coordinates of the
camera plane and the focal plane, respectively.

The light field can also be analysed as a 2D array of images. For example, in Fig.
2.2 we illustrate a light field with 16 camera locations. The camera positions are evenly
spaced on a 2D grid indexed with V, and V,,. This demonstrates the close relationship
between the plenoptic function and multiview images.

The light field can be further simplified by setting the 2D camera plane to a line.
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T

Figure 2.1: Light field parameterisation. Each light ray is defined by its intersection
with a camera plane (V,,V,) and a focal plane (z,y) [82].

Wy

Figure 2.2: Captured light field [6]. Dataset can be analysed as a 2D array of
images.
This representation is equivalent to a 1D array of images and is known as the Epipolar-
