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Abstract

This thesis introduces novel wavelet-based semi-parametric centralized and distributed

compression methods for a class of piecewise smooth functions. Our proposed compres-

sion schemes are based on a non-conventional transform coding structure with simple

independent encoders and a complex joint decoder.

Current centralized state-of-the-art compression schemes are based on the conven-

tional structure where an encoder is relatively complex and nonlinear. In addition, the

setting usually allows the encoder to observe the entire source. Recently, there has been

an increasing need for compression schemes where the encoder is lower in complexity

and, instead, the decoder has to handle more computationally intensive tasks. Fur-

thermore, the setup may involve multiple encoders, where each one can only partially

observe the source. Such scenario is often referred to as distributed source coding.

In the first part, we focus on the dual situation of the centralized compression where

the encoder is linear and the decoder is nonlinear. Our analysis is centered around a

class of 1-D piecewise smooth functions. We show that, by incorporating parametric

estimation into the decoding procedure, it is possible to achieve the same distortion-

rate performance as that of a conventional wavelet-based compression scheme. We also

present a new constructive approach to parametric estimation based on the sampling

results of signals with finite rate of innovation.

The second part of the thesis focuses on the distributed compression scenario, where

each independent encoder partially observes the 1-D piecewise smooth function. We

propose a new wavelet-based distributed compression scheme that uses parametric esti-
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mation to perform joint decoding. Our distortion-rate analysis shows that it is possible

for the proposed scheme to achieve that same compression performance as that of a

joint encoding scheme.

Lastly, we apply the proposed theoretical framework in the context of distributed

image and video compression. We start by considering a simplified model of the video

signal and show that we can achieve distortion-rate performance close to that of a joint

encoding scheme. We then present practical compression schemes for real world signals.

Our simulations confirm the improvement in performance over classical schemes, both

in terms of the PSNR and the visual quality.
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εn i.i.d. additive Gaussian noise

εq
n Quantization noise of ȳn
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CHAPTER 1
Introduction

1.1 Background

Compression technologies have become a vital part in our modern-day multimedia

and visual communication systems. Over the last two decades, a considerable

amount of research has been carried out in an attempt to determine an efficient digital

representation of images and videos [26, 51, 58, 24]. The vast number of applications

includes digital broadcast, internet video streaming, media storage and many more. A

number of international standards for image and video coding have been established

since the 1990s; these include, for example, the JPEG [69] and JPEG-2000 [61] (by

the Joint Photographic Experts Group), the MPEG-1/2/4 [50, 58] (by the Moving Pic-

ture Experts Group) and the H.261/3/4 [36] (by the International Telecommunication

Union).

The basic problem of compression or source coding is to convey the source data

with the highest possible fidelity within an available bit budget where the fundamental

trade-off is made between the bit rate and the fidelity. The efficiency or the distortion-

rate performance of a coding system is the measure of how well this trade-off can be

made [13]. In many practical applications, however, the issues of complexity must

also be taken into account. One can, therefore, state that the design objective of

a compression system is to achieve an optimal distortion-rate performance given the

maximum allowed complexity. Therefore, in the context of compression, optimality
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means that the achieved distortion, which is usually measured as the mean-squared

error, is minimum for a given rate.

Over the last two decades, transform coding has emerged as the dominating strategy

for compression due to its efficiency and simplicity [26]. In order to obtain a good

compression result, one needs to reduce the spatial and temporal redundancies contained

in the observed signal. The use of the transform allows the encoder to achieve this

task efficiently. Even though the transform is linear, the process of selecting which

transform coefficients to encode is usually highly adaptive and nonlinear in nature. In

addition, for video compression, the increase in computational capability of computers

has made possible the inclusion of sophisticated joint encoding techniques such as motion

compensated prediction (MCP), which further reduces the temporal redundancy of the

signal. Thus, the encoding process of today’s conventional compression schemes is highly

complex while the decoding process is much less computationally intensive.

In recent years, the growth in the area of sensor network and uplink-rich media

applications based on mobile devices has given rise to a new paradigm in compression

known as distributed source coding [41, 24]. An example of such applications is the

capturing of a scene with an array of cameras. In contrast to the centralized setting,

the source is partially observed by a number of independent encoders, which are not

able to communicate to one another. The observations, however, can be jointly decoded.

Moreover, in some cases, there is a limit on the computational power of the acquisition

device. Therefore, such scenarios impose a new set of requirements for compression,

which are low-complexity encoder, robustness and high compression efficiency. While

important results and optimality conditions have been provided for the classical cen-

tralized case, this new paradigm present new challenges in compression technology and

many questions remain largely open. Here, optimality refers to the minimization of the

total distortion for a given total rate used by every independent encoder.

1.2 Problem Statement and Motivations

The core structure of transform coding consists of three elements, namely, the linear

transform, quantization and lossless entropy code. Given an observed source vector f ∈
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(a) (b)

Figure 1.1: Illustration of the wavelet transform of an image. (a) original image; (b) the
corresponding Haar wavelet transform with two decomposition levels.

L2(R), the linear transform exploits the redundancy contained within f by decomposing

it over the basis B = {gm} of L2(R). A quantizer then maps the value of the transform

coefficients to some discrete set I and the entropy code performs a reversible mapping of I

to a bit stream. This process is then simply reversed at the decoder. One can, therefore,

state that the design objective of any transform code is to optimize each stage of the

encoding and decoding processes, given the knowledge of the source and the complexity

constraint, such that the distortion of the reconstructed signal is minimized for a given

rate.

One of the most important transforms in image compression is the wavelet transform,

which is used in state-of-the-art image compression standards such as the JPEG-2000

[61]. Figure 1.1 shows an example of the wavelet transform of an image. The theoretical

study of the performance of wavelets in compression is usually based on a class of

piecewise smooth functions, which is used as a simplified model of a row (or column)

of an image [11]. For a conventional centralized transform coding setting, it has been

shown that a wavelet-based compression strategy that employs a nonlinear encoder and

a linear decoder produces the best distortion-rate performance. The problem of finding

the best strategy for a wavelet-based distributed source coding, however, remains largely

open.

For the purpose of investigating the impact of the structural change in complex-

ity, it is natural to first ask the following question: given the same observation of the

source, can we still achieve the same distortion-rate performance by using an encoder
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that is linear and, instead, a decoder that is nonlinear? This scenario represents the

dual situation of the traditional one. In order to obtain a distortion-rate analysis that

is comparable to the centralized case (see [11]), we consider the same piecewise smooth

model of the signal. One possibility is to include a form of nonlinear parametric esti-

mation technique in the decoding process to allow the decoder to partially predict the

structure of the signal. This study gives us new insights into the problem and repre-

sents a new approach to wavelet-based compression, which can also be applied to the

distributed coding scenario.

The second problem that follows is how to apply the concept of nonlinear decoding

in the distributed source coding setting. In order to solve the problem, one needs to first

find an appropriate model that describes the difference between each observed signal.

For images and videos, one of the possible candidates is the geometric transformation.

This is analogous to the use of MCP algorithm in video compression, where blocks of

previously decoded frames are shifted to form the prediction of the current frame. More

precisely, given an observed 2-D signal fi at the i-th encoder, the function fi can be

predicted from the reference observation, say f1, as

fi(x, y) = f1(Ti(x, y)) + εi(x, y), i 6= 1, x, y ∈ R,

where εi(x, y) is the prediction error. The transformation matrix Ti can represent, for

example, a simple translation, shearing, rotation and re-scaling. This model also fits

in well with the concept of joint decoding with parametric estimation as Ti can be

estimated at the decoder. Since each encoder does not have access to the reference

observation f1, the next challenge is to find an appropriate quantization strategy to

encode the prediction error.

In order to gain a deeper understanding of the wavelet-based distributed compression

problem, it is logical to start the analysis from the simplified signal model, which is the

1-D piecewise smooth function. Lastly, we apply the new theoretical framework in the

context of practical distributed images and video compression. This also includes the

problem of finding an appropriate constructive parametric estimation algorithm that

4



1.3 Previous Related Work

can be employed by the decoder.

1.3 Previous Related Work

The problem of the classical centralized transform coding has been well studied in the

literature over the last two decades [26]. The results obtained can be divided into two

categories based on stationarity of the source. For stationary sources, some of the most

well-known results include the optimality of the Karhunen-Loève transform (KLT) for

Gaussian sources [30].

For non-stationary piecewise smooth signals, recent research has demonstrated that

the wavelet transform is the best transform and that the best compression strategy is

based around nonlinear approximation strategies [66, 11, 34]. A number of important

wavelet-based image compression algorithms have been proposed since the 1990s [48, 43,

60, 61]. Their new insights have established the potential of wavelets in compression.

Many articles and books are available for an in-depth review of the wavelet theory

[67, 56, 66, 65, 34].

Following the developments of wavelet theory, which focuses on the projection of

a signal onto an approximation subspace under the multiresolution framework, a new

sampling theory has emerged [68, 14, 49]. The new sampling theory allows a perfect

reconstruction of a class of signals called signals with Finite Rate of Innovation (FRI),

which also includes some non-bandlimited signals. One of the main characteristics of

FRI signals is that they can be completely described by a parametric representation,

which has a finite degree of freedom. This development has given us new insights into the

connection between the scaling coefficients of the wavelet transform and the parametric

representation of the signal. This sampling theory has also been applied in the field of

image registration, which is also based around parametric estimation [7].

Recently, the study of distributed KLT of stationary Gaussian sources has been pro-

posed in [20]. The authors demonstrated that the KLT is still the optimal transform,

however, the structure of the transform needs to be modified in order to achieve optimal-

ity. With the inspiration from the theoretical results obtained by Slepian and Wolf [52]

and by Wyner and Ziv [71], many practical distributed compression schemes for non-
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stationary sources such as images and videos have also been proposed [41, 2, 24, 28, 15].

These practical designs modify the way transform coefficients are quantized by applying

the concept of advanced channel codes [1, 44, 40, 19, 53]. Practical schemes that use

the wavelet transform together with channel coding techniques are presented in [9, 18].

1.4 Thesis Outline

The overall research described in this thesis starts with a set of theoretical results of

the wavelet-based compression of 1-D piecewise smooth functions under a new set of

requirement imposed by the distributed source coding problem. We then investigate

the potential applications of our findings in the context of distributed image and video

compression.

Chapter 2 reviews the theoretical foundations of centralized and distributed trans-

form coding. Firstly, the well-known results and optimality conditions of each element

in the centralized transform coding structure are presented. This is then followed by an

overview of the theoretical results from Slepian and Wolf for lossless distributed coding,

and Wyner and Ziv for lossy distributed coding. We then review the recent develop-

ments in practical distributed transform coding schemes, which includes the distributed

KLT for Gaussian sources as well as other practical distributed compression schemes

for images and videos.

The review of the wavelet theory is then given in Chapter 3. In particular, we

focus on the linear and nonlinear approximation results of piecewise smooth functions

and their relation to the compression performance. We also give an overview of the

practical wavelet-based image and video compression algorithms.

Chapter 4 presents a review of the sampling theory of FRI signals. In particular,

we focus on the polynomial reproduction properties of the sampling kernels. Three

sampling schemes that allow perfect reconstruction of non-bandlimited signals by means

of parametric estimation are then presented. The extension of the theory to 2-D cases

is also included.

In Chapter 5, we present a novel centralized wavelet-based compression scheme that

employs a linear encoder and a nonlinear decoder. We start by presenting our model
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of the piecewise smooth function. The new semi-parametric method for compression is

then proposed. We show, using the distortion-rate analysis, that by including parametric

estimation in the decoding process, the distortion-rate performance of the proposed

scheme can be comparable to that of a conventional scheme with a nonlinear encoder.

This finding is confirmed with simulation results. In this chapter, we also present

a practical parametric estimation based on the results from sampling theory of FRI

signals.

Chapter 6 extends the results of the centralized scenario to the case where a piecewise

smooth function is observed by a number of multiple independent encoders. We start

by presenting the model that describes the disparity between each observed signal. A

distributed semi-parametric compression scheme is then proposed, where the decoder

employs a parametric estimation algorithm in order to perform joint decoding. The

distortion-rate analysis of the proposed scheme is then given. In particular, we show

that the distortion-rate function of the proposed scheme can be comparable to that of

a joint encoding scheme.

The work in Chapter 7 focuses on the application of the proposed theoretical frame-

work in the context of distributed image and video compression. In order to gain

a deeper understanding, we first look at a case study where we develop a distributed

compression algorithm for a simple synthetic video sequence. We then extend the model

to include a real object whose motion can be described by an affine transform. Here, we

present a compression scheme whose decoder can estimate the affine transform param-

eter by using the results of the sampling theory of FRI signals. Finally, we propose two

practical distributed compression schemes for a set of images obtained from an array of

cameras and a real video sequence with a fixed background.

Finally, the thesis is concluded in Chapter 8, where we also presents some ideas and

remarks for future work.

1.5 Original Contribution

The main contribution of this thesis is the development of the new semi-parametric

approach to the wavelet-based centralized and distributed compression. The original
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research work presented in Chapter 5, 6 and 7 of this thesis has led to the following

publications:

• V. Chaisinthop and P.L. Dragotti, “Distributed video coding based on sampling of

signals with finite rate of innovation,” Proceedings of SPIE Conference on Wavelet

Applications in Signal and Image Processing, Wavelets XII, vol. 6701, San Diego,

CA, USA, August 2007.

• V. Chaisinthop and P.L. Dragotti. “A new approach to distributed video coding

using sampling of signals with finite rate of innovation,” Proceedings of Picture

Coding Symposium (PCS), Lisbon, Portugal, November 2007.

• V. Chaisinthop and P.L. Dragotti. “Distributed transform coding”, in Distributed

Source Coding: Theory, Algorithms, and Applications, Academic Press, January

2009.

• V. Chaisinthop and P.L. Dragotti. “Semi-parametric compression of piecewise

smooth functions,” Proceedings of European Conference on Signal Processing (EU-

SIPCO), Glasgow, UK, August 2009.

• V. Chaisinthop and P.L. Dragotti. “Centralized and distributed semi-parametric

compression of piecewise smooth functions,” IEEE Transactions on Signal Pro-

cessing, to be submitted.
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CHAPTER 2
Theoretical Foundations of Centralized

and Distributed Transform Coding

2.1 Introduction

Compression or source coding is undeniably one of the most important problems

in modern signal processing and communications. Due to its high efficiency and

low complexity, transform coding has emerged as the dominating compression strategy.

Thus, it is not surprising that transform coders are present in most of today’s compres-

sion standards. Over the last three decades, many important results and optimality

conditions have been derived for a classical centralized scenario where the source can

be observed by a single encoder (see [26] for an overview of this topic). For example,

it is now well known that when the source is Gaussian, the Karhunen-Loève Transform

(KLT) is the optimal transform [30, 26].

Recently, a new paradigm in compression called Distributed Source Coding (DSC)

has emerged as a result of a fast growing number of sensor networks seen in today’s

applications. In contrast to the centralized scenario, the source is partially observed

by independent encoders, which are required to perform compression locally. It is then

natural to wonder how the classical centralized transform coding strategy is going to

change under this new scenario. In order to provide a precise set of answers, one needs

to first reconsider each module in the transform coding architecture; this includes the
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2.2 Foundations of Centralized Transform Coding

transform itself, quantization and bit allocation strategies as well as the entropy code.

Recent research has provided us with some precise answers. For example, when

the source is Gaussian, it has been shown that the KLT is still the best transform

and it is optimal in some cases [20]. Other optimality conditions for transforms in

high bit-rate regimes have also been proved [18, 42]. If, however, the Gaussian and

high bit rate assumptions are relaxed then the problem of distributed transform coding

remains largely open. Current designs of distributed transform coders for non-Gaussian

sources are usually based on heuristics. Moreover, most of the modification occurs in the

quantization and entropy coding stages but not in the local transform. For example,

in distributed video coding, the structure of the discrete cosine transform (DCT) [4]

remains unchanged but the transform coefficients are quantized differently in order to

exploit the redundancies in the correlated information available at the decoder. While

the strategy is effective and can be generalized, it is not necessarily optimal. For a more

in-depth coverage of the recent development in DSC, we refer to [15].

In this chapter, we review the theoretical foundations of centralized and distributed

compression methods. We primarily focus on sources which are statistically stationary.

The review is divided into two parts: in Section 2.2, we discuss the foundations of cen-

tralized transform coding, then, in Section 2.3, a brief overview of distributed transform

coding is presented. A summary is then given in Section 2.4.

2.2 Foundations of Centralized Transform Coding

For the first part of our review, we look into each key element in a transform coding

architecture. We refer to [26, 34] for an excellent overview of this topic.

2.2.1 Transform Coding Overview

Figure 2.1 shows a typical compression scheme based on transform coding structure.

The goal of the encoder is to map the input x to a bitstream of finite length. First,

the transform decomposes a signal in a basis and quantizes the transform coefficients.

This is followed by a lossless entropy coder that maps the quantized coefficients to a

bit stream. Such modularization of the encoding process allows ‘simple coding’, which
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2.2 Foundations of Centralized Transform Coding

Figure 2.1: Transform coding structure. A typical compression scheme consists of three ele-
ments: linear transform, quantization and entropy coding.

means the use of a scalar quantizer and a scalar entropy encoder, to be used with high

efficiency. Given a source vector x ∈ RN , the simplicity of a transform coder enables

x with a large value of N to be encoded. This is one of the main reasons that make

transform codes the most widely used source codes.

The decomposition of x over basis B = {gm}0≤m<N of RN can be written as follows:

x =
N−1∑

m=0

ymgm, (2.1)

where the transform coefficients ym are given by

ym = 〈x, g̃m〉 =
N−1∑

n=0

xng̃m,n.

Here, 〈., .〉 is the inner product operator and g̃m is the dual of gm. More precisely, g̃m is

such that 〈g̃m,gn〉 = δm,n with δm,n denoting the Kronecker’s delta function. When the

basis B is orthogonal, g̃m = gm. The decomposition of x in its transform coefficients y

can be written in matrix form as

y = Tx,

where the rows of the N×N matrix T correspond to the dual-basis vectors {g̃m}1≤m≤N .

The motivation behind the transform is to exploit the redundancy within x. A quantizer

then maps y ∈ RN to some discrete set I and, finally, the lossless entropy encoder

performs a reversible mapping from I to a bit stream. The decoder essentially reverses
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the encoding process to obtain the approximation of the source given by

x̂ =
N−1∑

m=0

ȳmgm,

where ȳm denotes the quantized coefficients. In matrix form, this can be written as

x̂ = U ȳ,

where the columns of U correspond to the basis vectors {gm}1≤m≤N . In the orthogonal

case, we have that U = TT.

Quantization is a lossy process, which introduces error into the compression scheme.

The quality of a lossy encoder is normally measured by the mean-squared error (MSE)

distortion given by

D = E
[‖x− x̂‖2

]
= E

[
N−1∑

n=0

(xn − x̂n)2
]

,

where E[·] is the expectation operator. In order to gauge the performance of the com-

pression scheme, the distortion D is measured against the rate R, which is the expected

number of bits produced by the encoder divided by the length N of x. This is referred

to as the rate-distortion performance. One transform code is said to be better than

the other in a rate-distortion sense if, at a given R, the former can achieve a lower

distortion.

2.2.2 Entropy code

Entropy coding is a form of reversible lossless compression, which can only be applied

to discrete sources. Consider a random source X that produces a finite set of K values:

A = {xk}1≤k≤K . Let pk = Pr{X = xk} denote the probability of occurrence of xk. A

unique codeword or a binary representation b(xk) is assigned to each value by the entropy

encoder. The goal is to minimize the expected length of the binary representation of

X:

E[l(X)] =
K∑

k=1

pklk,
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where lk is the length of b(xk).

In order to preserve the invertibility of entropy coding, it is required that no code-

word can be a prefix of another. This is so that the entire sequence can be decoded

without any punctuation to tell the decoder where each codeword begins and ends. An

entropy code is said to be optimal if it is a prefix code that minimizes E[l(X)]. Huffman

codes and arithmetic codes (see [31, 13]) are examples of optimal entropy codes. The

lower bound of E[l(X)] of a prefix code is given by the Shannon entropy:

Theorem 1 [47]: Let X be a random source with symbols {xk}1≤k≤K with probability

{pk}1≤k≤K where pk = Pr{X = xk}. The expected length of a prefix code satisfies

E[l(X)] ≥ H(X) = −
K∑

k=1

(pk) log2(pk),

where H(X) is called the entropy of X. In addition, there exists an optimal entropy

code such that

H(X) ≤ E[l(X)] ≤ H(X) + 1. (2.2)

2.2.3 Scalar Quantization

Quantization is a lossy process that maps the continuous values in RN to a finite set

of alphabet or a reproduction codebook C = {x̄k}k∈I ⊂ RN , where I is a finite set of

indices. Usually, each component of the source x is quantized individually (N = 1) and

the quantizer is called scalar quantizer. A more sophisticated form of quantization that

operates on a group of components (N > 1) is called vector quantization. For a detailed

treatment of vector quantization, we refer to [22].

Assuming x takes arbitrary real values in [a, b], a scalar quantizer divides [a, b] into

K intervals {[wk−1, wk]}1≤k≤K with w0 = a and wK = b. The width of each interval

can be variable or fixed. We denote with x̄ = Q(x), the approximation of x by a scalar

quantizer Q, where Q(x) = xk, ∀x ∈]wk−1, wk]. The width of each interval ]wk−1, wk] is

referred to as the step size denoted by ∆k. Given that the quantizer outputs K different

values, we need R = dlog2(K)e bits to represent each value with a fixed length binary

code. The quantizer is then said to have rate R.
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2.2 Foundations of Centralized Transform Coding

Most of today’s compression schemes employ a simple uniform scalar quantizer,

where the step sizes are constant i.e. ∆k = ∆. The output x̄ is usually derived from the

nearest integer multiple of ∆ that is closest to x i.e. x̂ = [x/∆]. A common alternative

is to shift both the intervals and the output by half a step size.

By adding entropy codes, one can convert a fixed-rate quantizer into a variable-rate

quantizer where R is given by the expected code length. Furthermore, from (2.2), we

know that the performance of an optimal entropy code is bounded by the entropy. Thus,

the use of a variable-rate quantizer with an optimal entropy code is also referred to as

entropy-constrained quantization.

High-resolution quantization

Consider a random source X with a probability density p(x), the mean-square quanti-

zation error is given by

D = E
[
(X − X̄)2

]
=

∫ +∞

−∞
(x−Q(x))2 p(x)dx.

A high-resolution quantizer is one where p(x) is approximately constant in each quan-

tization bin. This is true if ∆k is sufficiently small relative to the rate of change of

p(x). Let us denote with pk the probability Pr{X ∈]wk−1, wk]}. It then follows that

p(x) ' pk/∆k, ∀x ∈]wk−1, wk]. The following result can be obtained under the high-

resolution hypothesis:

Theorem 2 [34]: For a high-resolution quantizer, the distortion D measured as the

MSE is minimized by setting xk = (wk + wk+1)/2, which yields

D =
1
12

K∑

k=1

pk∆2
k.

The distortion of a high-resolution uniform quantizer is, therefore, given by D = ∆2

12 .
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2.2 Foundations of Centralized Transform Coding

2.2.4 Distortion rate of scalar quantization

While the optimal design of a quantizer (see [17, 27, 26]) is beyond the scope of this

thesis, we can say that an optimal quantizer is the one that minimizes the distortion

D for a given rate R (or minimizes R for a given D). The fundamental result in rate-

distortion theory provides us with the lower bound on the achievable R for a given D,

which is the information rate distortion function R(D).

Theorem 3 [13]: The information rate distortion function R(D) for a discrete source

x with distortion measure d(x, x̂) is defined as

R(D) = min
p(x̂|x):

∑
x,x̂ p(x)p(x̂|x)d(x,x̂)≤D

I(x, x̂), (2.3)

where I(x, x̂) = H(x) − H(x|x̂) is the mutual information and the minimization is

over all conditional distribution p(x̂|x) = p(x)p(x̂|x) that satisfy the expected distortion

constraint.

The bound given in above theorem is also known as the Shannon rate-distortion bound,

which is monotonically decreasing convex function.

Unfortunately, in practice, the function R(D) is known only for a few cases. One

remarkable example is given by the Gaussian source. Consider a source that produces

independent and identically distributed (i.i.d.) Gaussian variables with variance σ2. Its

Shannon distortion-rate bound subject to the MSE is given by [13, 27]

D(R) = σ22−2R. (2.4)

Let us now investigate how close the performance of a scalar quantizer is to the

bound in (2.4). Using high-resolution analysis (i.e. assuming large R) for a fixed-rate

quantizer, the optimal quantizer for a Gaussian source is non-uniform with [26]

D(R) =
√

3π

2
σ22−2R. (2.5)

In comparison to the bound in Equation (2.4), the distortion is higher by ∼ 4.35dB,

equivalent to a rate loss of ∼ 0.72 bits per symbol.
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2.2 Foundations of Centralized Transform Coding

Interestingly, high-resolution analysis of an entropy-constrained quantization shows

that the optimal quantizer in this case is uniform [25]. The corresponding distortion-rate

bound D(R) is

D(R) ≈ 1
12

22Hd(X)2−2R, (2.6)

where

Hd(X) = −
∫ +∞

−∞
fX(x) log2 fX(x)dx

is the differential entropy of the source. For a Gaussian random variable, it follows that

D(R) =
πe

6
σ22−2R.

The distortion is now ∼ 1.53dB higher than the bound and the redundancy is ∼ 0.255

bits per symbol, which is a significant improvement when compared to Equation (2.5).

In summary, at high-bit rates, one can conclude that the best quantization strategy

is to use a uniform quantizer followed by an entropy encoder, which would result in

a fairly simple lossy compression scheme whose performance is given in (2.6). In the

case of Gaussian source, the achievable D(R) function is very close to that of the best

possible performance bound.

2.2.5 Bit Allocation

In a typical transform coding structure, each transform coefficient is separately scalar

quantized. Hence, the total number of bits (or the bit budget) has to be split among the

coefficients in some way. Bit allocation problem refers to the question of how the bits

should be allocated. Consider a set of quantizers whose D(R) functions are as follows

(from Equation (2.6)):

Dm = cmσ2
m2−2Rm with Rm ∈ Rm and m = 1, 2, ..., N, (2.7)

where cm is a constant, σm ∈ R and Rm = [0,∞[ is a set of available rates. The aim of

bit allocation is to minimize the average distortion D = 1
N

∑N
m=1 Dm for a given rate

R = 1
N

∑N
m=1 Rm. This is a constrained optimization problem, which can be solved
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2.2 Foundations of Centralized Transform Coding

using Lagrange multipliers i.e. by minimizing

L(R, D) = D + λR =
N∑

m=1

(Dm + λRm). (2.8)

We refer to [38, 57, 26] for detailed treatments on bit-allocation in image and video

compression.

Intuitively, the initial bit allocation is not optimal if the average distortion can be

reduced by taking bits away from one coefficient and giving them to another. Therefore,

from (2.7), one necessary condition for an optimal bit allocation requires

∂D

∂Ri
=

∂D

∂Rj
, i, j = 1, 2, ..., N. (2.9)

Indeed, solving (2.8) leads to the condition in (2.9). By applying (2.9) to (2.7) and

ignoring the fact that all the rates must be nonnegative, the optimal bit allocation is

given by [26]

Rm = R +
1
2

log2


 cm(∏N

m=1 cm

)1/N


 +

1
2

log2


 σ2

m(∏N
m=1 σ2

m

)1/N


 .

With the optimal bit allocation, all the distortion are equal such that Dm = D,

m = 1, 2, ..., N and the resulting D(R) is [26]

D =

(
N∏

m=1

cm

)1/N (
N∏

m=1

σ2
m

)1/N

2−2R. (2.10)

Clearly, each Rm must be nonnegative for the above solution to be valid. At lower

rates, the Kuhn-Tucker conditions give the components with smallest cm · σ2
m no bits

and the remaining components are given correspondingly higher allocations. For a

uniform quantizer, the bit allocation determines the step size ∆m for each component.

The equal-distortion property also implies that optimality can be achieved when all the

step sizes are equal.
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2.2 Foundations of Centralized Transform Coding

2.2.6 Optimal Transform for Gaussian Sources

Let us now consider the problem of compressing sources with block memory. Given a

source x ∈ RN that consists of statistically dependent samples, it would be inefficient to

scalar quantize each element independently since we would not exploit the dependency

of the samples. It is for this reason that a transform coder decomposes the signal over a

basis B of RN prior to quantization. In order to achieve the best possible decorrelating

performance, the choice of the basis or the transform needs to be optimal for a given

source.

Let x be a jointly Gaussian zero-mean source with covariance matrix Σx = E
[
xxT

]

and assume that the transform T is orthogonal. Similarly, we denote the covariance

matrix of the transform coefficients y with Σy. Orthogonality means the Euclidean

lengths are preserved, which gives D = E
[‖x− x̂‖2

]
= E

[‖y − ȳ‖2
]
. A KLT is an

orthogonal transform that diagonalizes Σx as follows:

Σy = E
[
yyT

]
= TΣxTT = diag(λ2

0, ..., λ
2
N−1).

Hence, the resulting transform coefficients are uncorrelated. Furthermore, the Gaussian

assumption implies that the coefficients {ym}0≤m<N are independent Gaussian variables

with variances {λ2
m}0≤m<N . We can, therefore, compress each coefficient independently.

Under these assumptions, with any rate allocation, one can show that the KLT is an

optimal transform [26].

From (2.6), we have that the m-th component of y contributes a distortion

Dm(Rm) = cλ2
m2−2Rm , (2.11)

where Rm is the rate allocated to ym and c is a constant whose values depends on the

type of quantizer used. The overall D(R) is then given by

D(R) = E
[‖x− x̂‖2

]
= E

[‖y − ȳ‖2
]

=
1
N

N∑

m=1

Dm.

Our aim is then to minimize D(R) subject to R = 1
N

∑N
m=1 Rm. With optimal bit
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2.3 Distributed Transform Coding

allocation, it follows directly from (2.10) that the distortion simplifies to

D(R) = E
[
‖y − ȳ‖2

]
= c

(
N∏

m=1

λ2
m

)1/N

2−2R. (2.12)

Hence, the optimal transform is the one that minimizes the geometric mean of λ2
m given

by
(∏N

m=1 λ2
m

)1/N
and it is well known that the KLT minimizes this geometric mean.

Theorem 4 [26, 34]: Given a transform coder whose quantization error of each trans-

form coefficient is described by Equation (2.11), there is a Karhunen-Loève basis that

minimizes the geometric mean of λ2
m.

By applying Hadamard’s inequality to Σy, we have that

N∏

m=1

λ2
m ≥ det (Σy) = det(T ) det (Σx) det

(
TT

)
.

Since det(T ) = 1, the right-hand side of this inequality is invariant to the choice of T .

Equality is achieved when the KLT is used. Hence, the KLT minimizes the distortion.

In the case where the source is stationary but non-Gaussian, the KLT still decor-

relates the components of x but does not provide independent components. The same

bit allocation under high-resolution analysis can be applied as shown earlier. How-

ever, while the approach tends to give good results, we are not guaranteed that the

performance is optimal.

2.3 Distributed Transform Coding

This section provides an overview of the recent development in distributed source coding

(DSC). First, the foundations of DSC based on Slepian-Wolf [52] and Wyner-Ziv [71]

theorems are studied. We then give the key results of the distributed KLT for Gaussian

sources [20], which emphasizes the structural changes in the KLT under the distributed

scenario. Lastly, we briefly review the Wyner-Ziv based transform coding schemes for

non-Gaussian sources.
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2.3 Distributed Transform Coding

2.3.1 Foundations of Distributed Coding

The foundation of distributed coding dates back to the information theoretic results of

Slepian and Wolf [52] and Wyner and Ziv [71] in the 1970s. First, let us consider a

case where we have two discrete correlated sources X and Y with a joint probability

distribution given by pX,Y (x, y). In the case of joint encoding, where both sources are

available at the encoder, the minimum rate required to losslessly encode X and Y is

given by the joint entropy. That is R = RX + RY ≥ H(X, Y ), where

H(X,Y ) = −
N∑

n=1

M∑

m=1

pX,Y (xn, ym) log2 pX,Y (xn, ym).

In the distributed source coding scenario, the two sources are separate and are

encoded independently by two separate encoders but jointly decoded. Slepian and Wolf

showed that one can achieve noiseless encoding with the following rates [52]:

RX ≥ H(X|Y ),

RY ≥ H(Y |X),

RX + RY ≥ H(X,Y ),

where H(X|Y ) = H(X,Y ) − H(Y ) is the conditional entropy of X given Y . This

surprising result tells us that we can still achieve lossless encoding of X and Y at the

same total rates as joint encoding even though the encoders are separated. Figure 2.2

shows the plot of the achievable rate region derived by Slepian and Wolf [52].

The counterpart to the Slepian and Wolf’s theorem is the work of Wyner and Ziv

on lossy source coding with side information [71]. This is a special case of Slepian-Wolf

coding where the rate point is at (RX , RY ) = (H(X|Y ),H(Y )) i.e. the top corner of

the graph in Figure 2.2. In [71], the Wyner-Ziv rate-distortion function is given for

a problem of encoding X assuming that the lossless version of Y is available only at

the decoder as side information. We denote with RWZ
X|Y (D), the lower bound of the

achievable bit-rate for a given distortion and let RX|Y (D) denote the rate required if Y
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2.3 Distributed Transform Coding

Figure 2.2: Slepian-Wolf achievable rate region for distributed compression of two statistically
dependent i.i.d. sources [52].

is available at the encoder as well. Unsurprisingly, it was shown that [71]

RWZ
X|Y (D)−RX|Y (D) ≥ 0.

If, however, X and Y are statistically dependent Gaussian sources and if the distortion

D is measured as the expected MSE such that D = E[‖X − X̂‖2] then RWZ
X|Y (D) −

RX|Y (D) = 0. That is, there is no rate loss or performance loss whether the side

information Y is available only at the decoder or at both the encoder and the decoder.

Lossless DSC is often referred to as Slepian-Wolf coding whereas lossy DSC with

side information at the decoder is referred to as Wyner-Ziv coding. Due to the success

of the transform coding strategy in the classical centralized case, it is now a common

practice in today’s practical DSC schemes to also apply a transform at each encoder.

This is often referred to as distributed transform coding.

2.3.2 Distributed Karhunen-Loève Transform

In [20], Gastpar et al. considered the DSC problem where there are L independent

encoders, each partially observing a jointly Gaussian source vector x. This setup is

depicted in Figure 2.3 (a), where the first encoder observes the first M1 components

of x denoted by x1, the second encoder observes the next M2 components x2 and so

on. The l-th encoder then produces kl-dimensional approximation of xl by applying a

kl × Ml local transform Tl. The central decoder receives the transform coefficients y

21



2.3 Distributed Transform Coding

(a) (b)

Figure 2.3: Distributed KLT problem setups: (a) L-terminals scenario where Encoder l has
access to the subvector xl and the reconstruction of is performed jointly; (b) Two-terminals
scenario where Encoder 2 applies a fixed known transform T2 to the observed vector x2 and the
decoder receives a noisy version y2 = T2x2 + z2.

where

y = Tx =




T1 0 · · · 0

0 T2 · · · 0
...

...
. . .

...

0 0 · · · TL




x.

The decoder estimates x from y and the estimator is given by [20]

x̂ = E[x|y] = E[x|Tx] = ΣxTT(TΣxTT)−1Tx,

where Σx is the covariance matrix of x. The corresponding MSE is

D = E
[‖x− x̂‖2

]
= trace

(
Σx − ΣxTT(TΣxTT)−1TΣx

)
. (2.13)

The goal is then to find a set of local transform Tl and a quantization strategy that

minimize the distortion in (2.13).

For simplicity, we consider the case presented in [20] where there are only two en-

coders as illustrated in Figure 2.3 (b). Encoder 1 has access to x1, which is the first M

components of x, and the second encoder observes x2 containing the last N −M com-

ponents. The covariance matrices are denoted with Σ1 = E[x1xT
1 ], Σ2 = E[x2xT

2 ] and

Σ12 = E[x1xT
2 ]. It is assumed that the transform T2 is fixed and known at both encoders.

The decoder receives a set of noisy coefficients y2 = T2x2 + z2, where z2 is a zero-mean
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jointly Gaussian vector independent of x2. The aim is to minimize D = E
[‖x− x̂‖2|y2

]

by devising an optimal local transform T1 and a compression strategy given that y2 is

only available as side information at the decoder.

The assumption that x and z2 are Gaussian means that there exists constant ma-

trices A1 and A2 such that

x2 = A1x1 + A2y2 + v,

where A1x1 +A2y2 is the linear approximation of x2 and v is a Gaussian random vector

independent of x1 and y2, which represents the uncertainty that cannot be estimated

from x1 and y2. Using the same argument, we can also write




IM

A1


x1 = B2y2 + w,

where B2 is a constant matrix, IM is the M -dimensional identity matrix and w is a

Gaussian random vector independent of y2 with correlation matrix Σw. It was then

shown in [20] that the optimal local transform T1 is given by

T1 = QT




IM

A1


 .

Here, QT is an N×N matrix that diagonalizes Σw = Qdiag(λ2
1, λ

2
2, ..., λ

N
1 )QT, where the

eigenvalues λ2
i , i = 1, 2, ..., N , are in nonincreasing order. Optimality is then achieved

by keeping k1 largest coefficients related to the largest eigenvalues of Σw and the corre-

sponding MSE can be simplified to

D = E
[‖x− x̂‖2|y2

]
=

N∑

m=k1+1

λ2
m + E

[‖v‖2
]
.

The transform T1 is known as the local KLT [20]. Notice that the local KLT is now

different from the centralized one.

In terms of compression, it was shown in [20] that the optimal encoding strategy

is to compress each component of y1 independently after applying T1. The rate allo-
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cation depends on the eigenvalues of Σw, where the components related to the largest

eigenvalues get more rates. This strategy appears to be similar to the centralized case,

however, there are some major differences. First, the rate allocation depends on the

side information available at the decoder, which affects the matrix Σw. Second, while a

standard scalar quantizer is optimal for the centralized scenario, it is not necessary the

case for the distributed scenario where a more complex quantization scheme based on

Wyner-Ziv coding principles may be required.

Finally, consider the case where y2 = x2. That is, the exact observation of Encoder

2 is available at the decoder so that the matrices A1 = 0 and Σw = Σ1 − Σ12Σ−1
2 ΣT

12.

The matrix Σw and the local KLT T1 have size M ×M and T1 is called the conditional

KLT [20]. For a more detailed explanation of distributed KLT and a generalization to

multi-terminal scenario, we refer to [20].

2.3.3 Practical Distributed Transform Coding with Side Information

In many practical situations, the assumption that the source is Gaussian may not hold

and, in fact, the problem of properly modeling real-life signals such as images and videos

remains largely open. Hence, the KLT is rarely used in practice and is often replaced

by the DCT or the discrete wavelet transform (DWT). This section briefly describes

how the concept of source coding with side information is combined with the standard

model of transform coding to form a practical distributed transform coding scheme.

Practical Slepian-Wolf coding

The first practical coding technique for DSC with side information was the Distributed

Source Coding Using Syndromes (DISCUS) [40] introduced in 1999 by Pradhan and

Ramchandran. As we will see, DISCUS and other DSC schemes are highly influenced

by channel coding techniques. In order to gain the intuition behind the use of channel

codes in DISCUS, we first study the example presented in [40].

Let X and Y be two correlated 3-bit binary words such that the Hamming distance

between them is at most one. If Y is available at both the encoder and the decoder then

we can describe X using only 2 bits. This is achieved by transmitting the modulo-two
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binary sum of X and Y , which can take four values i.e. {000, 001, 010, 100}. If, however,

Y is only available at the decoder as side information; can we still transmit X using

only 2 bits?

The intuition here is that it is wasteful for the encoder to allocate any bits in order

to differentiate between X = 000 and X = 111. This is because the Hamming distance

between these two words is three and since the decoder has access to Y , it can resolve

this uncertainty by picking the word that is closest to Y . We can, therefore, divide the

space of all the possible values of 3-bit binary word into 4 sets such that the Hamming

distance between each word in the set is 3 i.e. {000, 111}, {001, 110}, {010, 101} and

{100, 011}. These sets are called the cosets of the 3-bit repetition channel code. Thus,

by transmitting only the index of the coset that X belongs to, which only requires 2

bits, the decoder can retrieve X perfectly by observing Y .

This example can be generalized using (n, k) linear channel codes. In fact, the

correlation between the sources can be modeled by a virtual noisy channel where X is

the input and Y is the output of the channel with conditional distribution P (Y |X). In

the language of channel coding, each coset has a unique syndrome given by sx = HxT,

where H is the parity-check matrix of a binary linear code. Given sx, the decoder

can correct the errors (up to 1 bit in the above example) introduced by the channel

and reconstruct X from Y . Thus, the problem of DSC in this case can be seen as the

problem of finding a channel code that is matched to the correlation distance (or noise)

between X and Y in the virtual channel model. This approach can also be extended

to convolutional codes [1, 44, 40, 19, 53]. Also, [21] presented a distributed coding

technique based on linear channel codes that allow a flexible allocation of transmission

rates between each independent encoder.

Practical Wyner-Ziv transform coding

A Wyner-Ziv encoder essentially consists of a quantizer followed by a Slepian-Wolf en-

coder. In practical distributed compression of images and videos, a Wyner-Ziv encoder

is added to the standard transform coding structure. Figure 2.4 shows a typical setup

for a distributed transform coding, where x ∈ RN is a continuous random vector and
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Figure 2.4: Practical distributed transform coding scheme. A Wyner-Ziv encoder, which
consists of a quantizer followed by a Slepian-Wolf (S-W) encoder, replaces the quantizer and the
entropy encoder in the standard transform coding structure.

a random vector y is available at the decoder as the side information. As with the

centralized case, the transform coefficients x′ = Tx are still independently quantized

but a Wyner-Ziv encoder is used instead of a scalar quantizer followed by an entropy

coder. The decoder then uses y as side information to recover the quantized transform

coefficients x̄′ and the final estimate of the original source vector is obtained as x̂ = U x̄′.

Examples of practical distributed video coding schemes are the Wyner-Ziv video

codec in [24, 2, 6] and PRISM (Power-efficient, Robust, hIgh-compression, Syndrome-

based Multimedia coding) [41]. Both schemes employ the standard, unmodified, block-

based DCT. The quantized transform coefficients are then fed into a sophisticated

channel encoder. A Rate Compatible Punctured Turbo (RCPT) coder was used in

[2] whereas Syndrome-encoding with a trellis channel coder was used in [41]. It is worth

noting that distributed coding can also be applied to enhance or protect the broadcast

of video stream from errors introduced in the transmission channel [39, 3].

A wavelet-based distributed coding of multi-view video sequences was proposed in

[18], where a network of camera observed and encoded a dynamic scene from different

view points. Their scheme uses a motion compensated spatiotemporal wavelet trans-

form (see Chapter 3) followed by a Wyner-Ziv encoder. Here, the decoder obtained the

side information from one video signal, which was encoded with a conventional trans-

form coder. Other video signals are then coded using Syndrome coding. Interestingly,

it was shown that, at high rates, the motion-compensated Haar wavelet is the optimal

transform. In [9], the wavelet-based Slepian-Wolf coding was used to encode hyper-

spectral images, which are highly correlated within and across neighboring frequency
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bands. The authors also presented a method to estimate the correlation statistics of the

wavelet coefficients. We refer to [24, 28, 15] for further details and a complete overview

of recent advancement in DSC.

2.4 Summary

This chapter has provided a review of centralized and distributed transform coding.

Each building block in the classical centralized transform coding structure was discussed

in Section 2.2. We also presented the rate-distortion analysis of scalar quantization with

optimal bit allocation and stated that the most efficient quantization strategy is the one

that uses a uniform scalar quantizer followed by an entropy coder. We also showed that

the KLT is the optimal transform for Gaussian sources.

Section 2.3 then reviewed the recent development in distributed transform coding.

The theoretical foundations of DSC based on Slepian-Wolf and Wyner-Ziv theorems

were given. We provided an overview of the distributed KLT for Gaussian sources

and emphasized the changes in the structure of the transform in comparison to the

centralized case. Finally, a brief overview of practical DSC schemes was then given. In

such schemes, the transform is no different from the centralized case but the quantization

strategy is modified by using the Wyner-Ziv coding strategy.

27



CHAPTER 3
State-of-the-Art Compression Methods

with Wavelets

3.1 Introduction

So far, we have been mostly concentrating on the centralized and distributed trans-

form coding of stationary sources. We have shown that when the source is station-

ary the optimal transform is the KLT. In such cases, the encoding process is linear and

the KLT basis is chosen a priori. Real life signals are, however, non-stationary in nature.

For example, images are often modeled with non-stationary piecewise smooth functions.

In this case, it is desirable for the encoding process to be adaptive and source-dependent.

In this chapter, we will, therefore, depart from the compression of stationary sources

and focus on the compression of deterministic piecewise regular sources.

Wavelet theory has had a profound impact on modern signal processing, particularly

in the area of signal approximation and compression. Due to its high compression

performance, the discrete wavelet transform (DWT) is now a predominant transform in

image compression applications such as JPEG-2000 [5, 61, 64]. In addition, the inherent

multiresolution property of wavelets makes the DWT a transform of choice for scalable

compression schemes [46, 37, 45]. Recent studies have also clarified that the wavelet

transform is the best transform for the approximation and compression of piecewise

smooth signals [66, 11, 34].
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3.2 The Wavelet Transform

In the next section, we give a brief overview of the wavelet transform. An important

concept of Lipschitz regularity of a smooth function is described in Section 3.3. Section

3.4 then presents the approximation results of piecewise smooth signals. Wavelet-based

compression schemes including the key distortion-rate results are then discussed in Sec-

tion 3.5. A summary is then given in Section 3.6. For a more detailed treatment on

wavelet theory, we refer to [67, 56, 66, 65, 34].

3.2 The Wavelet Transform

Consider a wavelet function ψ(t) whose set of dilated and shifted versions

ψj,n(t) = 2−j/2ψ(2−jt− n), j, n ∈ Z,

forms a basis of L2(R) where L2(R) is the space of all square-integrable functions. The

wavelet transform decomposes a finite energy continuous function f(t) ∈ L2(R) over a

basis {ψj,n(t)}j,n∈Z as

f(t) =
∞∑

j=−∞

∞∑
n=−∞

dj,nψj,n(t) (3.1)

and the resulting wavelet coefficients dj,n are given by the inner products

dj,n = 〈f(t), ψj,n(t)〉 ,

where we are assuming, for simplicity, that {ψj,n(t)}j,n∈Z is an orthogonal basis of

L2(R).

The multiresolution structure of the wavelet transform is reflected in (3.1), where

the coefficients dj,n measure the local variation of f(t) at resolution 2j . Let us denote

with Wj a subspace whose basis is given by {ψj,n(t)}n∈Z. Equation (3.1) means that

we can decompose L2(R) into mutually orthogonal subspaces:

L2(R) =
∞⊕

j=−∞
Wj .

It then follows that an approximation of f(t) at coarser resolution 2J+1 is represented
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3.2 The Wavelet Transform

by the following equation:

fJ+1(t) =
∞∑

j=J+1

∞∑
n=−∞

dj,nψj,n(t). (3.2)

The approximation function fJ+1(t) resides in a coarse subspace VJ ⊂ L2(R) whose

basis is formed by {ϕJ,n(t)}n∈Z, which is a set of dilated and shifted versions of a

different function ϕ(t) called the scaling function. We can, therefore, write

fJ+1(t) =
∞∑

n=−∞
cJ,nϕJ,n(t) (3.3)

with ϕJ,n(t) = 2−J/2ϕ(2−J t− n) and cJ,n = 〈f(t), ϕJ,n(t)〉. The scaling coefficients cJ,n

measure the regularity of f(t) at scale 2J . Since the basis {ψj,n(t)}j,n∈Z is complete, by

adding details of fJ+1(t) at finer scales, the function f(t) can be recovered. Indeed, we

have that

L2(R) =
J⊕

j=−∞
Wj ⊕ VJ .

where Vj−1 = Vj ⊕Wj . Thus, the wavelet transform in (3.1) can be written in terms of

(3.2) and (3.3) as

f(t) =
∞∑

n=−∞
cJ,nϕJ,n(t) +

J∑

j=−∞

∞∑
n=−∞

dj,nψj,n(t), (3.4)

where the first sum represents the coarse version of f(t) and the double sum contains

the missing finer details.

The wavelet function and the scaling function are intimately linked and many prop-

erties of the wavelet function can be inferred directly from the scaling function. We

say that the function ϕ(t) is an admissible scaling function of L2(R) if it satisfies the

following three conditions [67, 56, 34, 65]:

1. Riesz basis criterion

A ≤
∑

n∈Z
|Φ(ω + 2πn)|2 ≤ B,

where Φ(ω) is the Fourier transform of ϕ(t);
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3.2 The Wavelet Transform

2. Two scale relation

ϕ

(
t

2

)
=
√

2
∑

k∈Z
h[k]ϕ(t− k);

3. Partition of unity
∑

k∈Z
ϕ(t− k) = 1.

These conditions ensure that there exists a corresponding wavelet function ψ(t), which

can be expressed as a linear combination of shifted versions of ϕ(t):

ψ(t) =
√

2
∑

n∈Z
g[n]ϕ(2t− n),

such that ψ(t) generates a basis of L2(R). Here, the terms h[k] and g[n] represent the

coefficients of the filters in the two-channel filterbank structure. We refer to [67, 56, 34]

for a detailed treatment on wavelets and filterbanks.

Vanishing moments

One of the most well known properties of the wavelet transform is the vanishing moments

property. The wavelet transform is said to have (P +1) vanishing moments if its analysis

wavelet ψ̃(t) (the dual function of ψ(t)) suppresses polynomials up to order P , i.e.

∫ ∞

−∞
tpψ̃(t)dt = 0, ∀p ∈ {0, 1, ..., P}. (3.5)

There is also a direct relationship between the number of vanishing moments and the

order of approximation of the scaling function. More precisely, we say that a scaling

function ϕ(t) has a (P + 1)-th order of approximation if it reproduces polynomials of

maximum degree P , that is

∑

n∈Z
c(p)
n ϕ(t− n) = tp, ∀p ∈ {0, 1, ..., P}, (3.6)

for a proper choice of the coefficients c
(p)
n . The standard result in wavelet theory states

that if the scaling function ϕ(t) has (P + 1)-th order of approximation, then the corre-
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sponding analysis wavelet ψ̃(t) has (P + 1) vanishing moments.

Intuitively, this is because the polynomials {tp}0≤p≤P reside in the subspace V0

with a basis {ϕ(t − n)}n∈Z, which is perpendicular to the subspace W̃0 spanned by

{ψ̃(t − n)}n∈Z. The polynomial suppression property of the wavelet transform gives a

sparse representation of a smooth signal since the wavelet coefficients will essentially be

zero.

3.3 Lipschitz Regularity

We have seen that the local regularity and singularity (i.e. smoothness and variation)

of a function are measured by the scaling and wavelet coefficients respectively. This

follows from the properties shown in (3.5) and (3.6). In order to characterize the singular

structures of a function, the regularity is normally quantified with a Lipschitz exponent

(also known as the Hölder exponent) [34].

A formal definition of uniform Lipschitz regularity is given as follows [34]:

Definition 1 : A function f(t) is uniformly Lipschitz α ≥ 0 over [a, b] if for all v ∈
[a, b] there exists K > 0 and a polynomial pv(t) of degree m = bαc such that

∀v ∈ [a, b], ∀t ∈ [a, b], f(t) = pv(t) + εv(t) with |εv(t)| ≤ K|t− v|α. (3.7)

If f(t) is uniformly α-Lipschitz then it is bαc times differentiable and the polynomial

pv(t) is the Taylor expansion of f(t) at v:

pv(t) =
bαc∑

k=0

f (k)(v)
k!

(t− v)k.

The following theorem relates the uniform Lipschitz regularity to the asymptotic decay

of the Fourier transform:

Theorem 5 [34]: A function f(t) with a Fourier transform F (ω) is bounded and uni-

formly Lipschitz α over R if

∫ +∞

−∞
|F (ω)|(1 + |ω|α)dω < ∞.

32



3.3 Lipschitz Regularity

Thus, one can measure the minimum global regularity of a function from its Fourier

transform. To locally analyze the regularity over intervals and at points, we turn to the

wavelet transform since wavelets are well localized in time.

Let us define the cone of influence of a point v in the scale-space plane as a set

of points (j, n) such that v is included in the support of ψj,n(t) = 2−j/2ψ(2−jt − n).

Suppose the wavelet ψ(t) is of compact support C, the cone of influence of v is defined

by the set

Iv = {(j, n) ∈ Z : |n2j − v| ≤ C2j}. (3.8)

The following theorem relates the wavelet coefficients decay across scale with the uni-

formly Lipschitz α condition:

Theorem 6 : Given a function f(t) ∈ L2(R) that is uniformly α-Lipschitz around v

and a wavelet ψ(t) with a compact support and at least bα + 1c vanishing moments, the

wavelet coefficients in the cone of influence of v satisfy

|dj,n| ≤ A2j(α+1/2) (3.9)

with a constant A > 0.

Proof: If f(t) = p(t) + ε(t) is uniformly α-Lipschitz and the wavelet

function ψ(t) with a compact support has at least bα+1c vanishing moments

then, for all ν ∈ [ta, tb], the wavelet coefficients are as follows [34]:

〈f(t), ψj,n(t)〉 (a)
= 〈p(t), ψj,n(t)〉︸ ︷︷ ︸

=0

+ 〈ε(t), ψj,n(t)〉

(b)

≤ K2−j/2
∫∞
−∞ |t− ν|α ψ

(
2−jt− n

)
dt

= K2j/2
∫∞
−∞

∣∣x2j + n2j − ν
∣∣α ψ (x) dx

(c)

≤ KC2j(α+1/2)

∫ ∞

−∞
(|x|+ |C|)α ψ (x) dx

︸ ︷︷ ︸
=B

= A2j(α+1/2)

where at (a), 〈p(t), ψj,n(t)〉 = 0 due to the vanishing moments property, (b)

follows from the fact that |ε(t)| ≤ K|t− ν|α and (c) from the fact that the
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wavelet has a compact support C and therefore |n2j − ν| ≤ C2j .

3.4 Linear and Nonlinear Approximation with Wavelets

Let us now present the key result of the wavelet-based linear and nonlinear approxima-

tion of piecewise smooth functions. A piecewise smooth function f(t), t ∈ [0, 1[, with

K pieces is defined as

f(t) =
K−1∑

i=0

fi(t)1[ti,ti+1[(t) (3.10)

where t0 = 0, tK = 1, fi(t) is uniformly α-Lipschitz over [ti, ti+1] and 1[ti,ti+1[(t) = 1 for

t ∈ [ti, ti+1[ and zero elsewhere.

3.4.1 Linear approximation

Given a wavelet ψ(t) and a corresponding scaling function ϕ(t), we can decompose

f(t) ∈ L2([0, 1]) as

f(t) =
2−J−1∑

n=0

cJ,nϕJ,n(t) +
J∑

j=−∞

2−j−1∑

n=0

dj,nψj,n(t) with J < 0. (3.11)

Note that there are 2−j coefficients at scale 2j . The N -term linear approximation of f(t)

can then be obtained by representing the function with only N coefficients. In linear

approximation, the choice of these N coefficients is fixed a priori and is independent

of f(t). Normally, the first N coefficients are retained. If we assume that N is large

and of the order N ∼ 2JN then the linear approximation procedure is equivalent to

keeping every coefficient in the first JN decomposition levels (also referred to as linear

multiresolution approximation). This gives us the following approximation:

fN (t) =
2−J−1∑

n=0

cJ,nϕJ,n(t) +
J∑

j=J−JN+1

2−j−1∑

n=0

dj,nψj,n(t), JN ≥ J ≥ 1 (3.12)

and the squared approximation error is

εl(N, f) = ‖f(t)− fN (t)‖2 =
J−JN∑

j=−∞

2−j−1∑

n=0

|dj,n|2.
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3.4 Linear and Nonlinear Approximation with Wavelets

Here we are assuming for the sake of clarity that the wavelet is orthonormal. Since

f(t) ∈ L2[0, 1], we have that lim
N→∞

εl(N, f) = 0.

The rate of decay of εl(N, f) as N increases is dependent on the rate at which |dj,n|
decays across scales. The following theorems provide the decay characteristic of εl(N, f)

for a uniformly α-Lipschitz function and a piecewise smooth function:

Theorem 7 [34]: If f(t) is uniformly α-Lipschitz over [0, 1] and the wavelet has at

least bα + 1c vanishing moments, then

εl(N, f) = O(‖f‖
C̃α

N−2α). (3.13)

Theorem 8 [34]: If f(t) is piecewise smooth over [0, 1] with K uniformly Lipschitz

α > 1/2 pieces and the wavelet has at least bα + 1c vanishing moments, then

εl(N, f) = O(K‖f‖2
C̃α

N−1). (3.14)

Here, ‖f‖
C̃α

denotes the homogeneous Hölder α norm, which is the infimum of the

constant K that satisfies Lipschitz condition in (3.7) over the interval [0, 1] [34]. It is

clear that the presence of singularity reduces the decay rate of εl(N, f) to N−1 and this

decay is independent of the local regularity of f(t).

Figure 3.1 illustrates the wavelet decomposition of a uniformly α-Lipschitz smooth

function and a piecewise smooth function with α-Lipschitz pieces. It is clear from Figure

3.1 (b) that the wavelet coefficients in the cone of influence of discontinuities dominate

the decay across scales. Thus, in comparison to a uniformly smooth function in Figure

3.1 (a), the N -term linear approximation fails to capture the larger set of coefficients.

This has the effect of reducing the decay rate of the approximation error from N−2α to

N−1. An adaptive approximation method is, therefore, required in order to retain the

coefficients in the cone of influence of discontinuities, which brings us to the topic of

nonlinear approximation.
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t

f(t)

cJ,n

dJ,n

dJ−1,n

dJ−2,n

(a)

t

f(t)

cJ,n

dJ,n

dJ−1,n

dJ−2,n

(b)

Figure 3.1: Wavelet decomposition: (a) a uniformly α-Lipschitz smooth; (b) a piecewise
smooth function with α-Lipschitz pieces. The N -term linear approximation error decays as
εl(N, f) ∼ N−2α in (a) whereas εl(N, f) ∼ N−1 in (b). By using an adaptive grid of nonlinear
approximation and, instead, keeping the N largest coefficients, which include the wavelet coeffi-
cients in the cone of influence of singularities, we achieve a nonlinear approximation error with
a decay of εn(N, f) ∼ N−2α.

3.4.2 Nonlinear approximation

Consider the same wavelet decomposition as shown in (3.11) as illustrated in Figure

3.1 but instead of approximating f(t) by retaining the first N coefficients, we keep the

N largest coefficients. These large coefficients include the scaling coefficients and the

wavelet coefficients in the cone of influence of singularities with slower decays (α < 1).

Hence, nonlinear approximation defines an adaptive grid with more refined approxima-

tion scale in the neighborhood of singularities.

Let IN be the index set of the N largest coefficients. The best nonlinear approxi-
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mation of f(t) is then given by

fIN
(t) =

∑

n∈IN

cJ,nϕJ,n(t) +
∑

(j,n)∈IN

dj,nψj,n(t) (3.15)

and the squared approximation error is

εn(N, f) = ‖f(t)− fIN
(t)‖2 =

∑

n/∈IN

|cJ,n|2 +
∑

(j,n)/∈IN

|dj,n|2.

Clearly, we have that εn(N, f) ≤ εl(N, f). The following theorem gives the decay rate

of εn(N, f) for a piecewise smooth function:

Theorem 9 [34]: If f(t) is piecewise smooth over [0, 1] with K uniformly Lipschitz

α > 1/2 pieces and the wavelet has at least bα + 1c vanishing moments, then

εn(N, f) = O(‖f‖2
C̃α

N−2α). (3.16)

Therefore, from (3.14) and (3.16), we realize that nonlinear approximation is superior

to linear approximation when the function is piecewise smooth.

3.5 Wavelet-Based Compression

We now review the key aspects of wavelet-based compression, starting from the key rate-

distortion results on the compression of piecewise smooth functions. This is followed by

the concept of embedded coding of wavelet coefficients. Lastly, a brief review of wavelet

compression in higher dimensions (i.e. image and video compression) is given.

3.5.1 Distortion-rate results

Essentially, one can think of compression as a process of approximation followed by

quantization. That is, the encoder only allocates bits to a certain number of coefficients

that are kept. Therefore, it is not surprising that the distortion-rate performance of

a wavelet-based coder is dependent on its approximation strategy and, hence, how the
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approximation error decays. We refer to [11] for a detailed derivation of the D(R)

functions.

Suppose that we are to compress a smooth function that satisfies a uniform α-

Lipschitz condition given in Definition 1. The following theorem gives the D(R) function

of a compression scheme based on linear approximation (see Appendix A.1 for proof):

Theorem 10 [11]: If f(t) is uniformly α-Lipschitz over [0,1] and the wavelet has at

least bα + 1c vanishing moments, the distortion-rate function of a compression scheme

that allocates the bits to the first N coefficients is

D(R) ≤ c1R
−2α. (3.17)

If N ∼ 2JN such that the coefficients in the first JN decomposition levels are kept,

from Theorem 6, this is equivalent to setting the step size of a uniform quantizer to

∆ = A2(J−JN+1)(α+1/2).

Instead, if a function is piecewise smooth as described by Equation (3.10), we know

from the previous section that nonlinear approximation gives a better approximation

result. The following theorem highlights the difference in distortion-rate performances

of linear and nonlinear approximation-based compression schemes:

Theorem 11 [11]: If f(t) is piecewise smooth over [0, 1] with K uniformly Lipschitz

α > 1/2 pieces and the wavelet has at least bα + 1c vanishing moments, the distortion-

rate function of a compression scheme that allocates bits to the first N coefficients is

D(R) ≤ c2R
−2α + c3R

−1. (3.18)

If, instead, a compression scheme allocates bits to the N largest coefficients, then

D(R) ≤ c4R
−2α + c5

√
R2−c6

√
R. (3.19)
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One can easily see that the decay of the linear and nonlinear approximation errors in

Theorems 8 and 9 directly translate to the decay characteristic of the D(R) functions

in Theorem 11. Thus, at high rates, the distortion of a nonlinear compression scheme

decays as R−2α whereas a scheme with a linear approximation strategy has a slower

decay of R−1. It is due to this difference that current state-of-the-art compression

algorithms are nonlinear.

It is worth noting that the computational complexity of a nonlinear compression

algorithm is much higher than that of a linear one. Furthermore, while a linear encoder

only uses the bits for quantization, a nonlinear encoder also needs to allocate the bits

for the indexing of the coefficients being transmitted. Therefore, in order to maximize

the rate-distortion performance of a nonlinear scheme, it is also crucial for the encoder

to employ an efficient indexing algorithm. In today’s standards, embedded coding is

the most widely used method to quantize and index wavelet coefficients.

3.5.2 Embedded coding

Current state-of-the-art image and video compression algorithms use embedded codes

to progressively enhance the quality of the reconstructed source as the decoder receives

more bits. Embedded coding algorithms are designed to organize and transmit the

coefficients by their order of magnitude with the bit-plane method. Starting with the

most significant bit plane, the encoder keeps going down to a less significant bit plane

after each iteration. Thus, the coefficients are effectively quantized with a step size

of 2n where n is iteratively decremented to progressively improve the resolution of the

received coefficients. Examples of the most well known wavelet-based embedded coding

algorithms are the Embedded Zerotree Wavelet (EZW) [48], Set Partitioning in Hier-

archical Trees (SPIHT) [43] and Embedded Block Coding with Optimized Truncation

(EBCOT) [60], which is used in JPEG-2000 standard [61].

Let us denote the 2-D transform coefficients with ym,n = 〈f, gm,n〉, m,n ∈ Z. We

define a set of indices Θk, k ∈ Z, where

Θk = {m,n : 2k ≤ |ym,n| < 2k+1}
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and a significant map bk[m,n] such that

bk[m,n] =





0 m,n /∈ Θk

1 m,n ∈ Θk.

The different steps of an embedded coding algorithm can be summarized as follows [43]:

1. Initialization: Store the index k = max(m,n) blog2 |ym,n|c;

2. Sorting pass: Store the significance map bk[m, n] for m,n /∈ Θk+1 and code the

sign of ym,n for m, n ∈ Θk;

3. Refinement pass: Store the i-th bit of the coefficients in the sets Θk for k > i

whose positions are already recorded in the previous passes;

4. Precision refinement : Decrease k by 1 and go to Step 2.

The above algorithm can be stopped at any time. In addition, the ordering informa-

tion is not transmitted. This is because both the encoder and decoder employ the same

sorting algorithm. Therefore, the encoder’s execution path is perfectly duplicated at

the decoder. Furthermore, it is not necessary to sort every coefficient and the number

of magnitude comparisons can be reduced with an appropriate sorting algorithm. For

example, SPIHT uses the set partitioning sorting algorithm based on a spatial orienta-

tion tree of wavelet coefficients (see Figure 3.2), which allows it to take advantage of

the dependencies across scales of the wavelet coefficients.

A detailed rate-distortion analysis of wavelet based transform coding including the

impact on the performance of embedded coding can be found in [35]. As we have

discussed earlier, the D(R) function for a non-Gaussian source is proportional to 2−2R

at high bit rates. However, Mallat et al [35] showed that when the bit rate is low at

R < 1 per pixel, D(R) decays like CR1−2γ , where γ is an exponent of order 1 that

varies slowly as log2 R. They also proved that the use of embedded coding improves

the performance by changing the constant C but not the exponent that determines the

decay.
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Figure 3.2: Parent-offspring dependencies in the spatial-orientation tree of wavelet coefficients
found in SPIHT algorithm [43].

3.5.3 Wavelets in scalable video compression

Let us begin with the basic concept of interframe redundancy in video coding. When the

source is an image, transforms are used to exploit the spatial or intraframe redundancy.

If, however, the source is a video sequence then the coder also has to exploit the temporal

or interframe redundancy in order to achieve good compression performance. The most

widely used technique by today’s standards is motion compensated prediction (MCP)

[23]. We refer to [51, 58, 36] overviews of current video compression standards.

Let fi(x, y) denote the i-th frame in the video sequence. In MCP, a prediction f̃i(x, y)

of fi(x, y) is generated by the encoder, usually from the previous frame. The residual

ri(x, y) = fi(x, y) − f̃i(x, y) is then coded and transmitted along with the prediction

parameters. Block-based MCP strategy is now the most established algorithm and is

implemented in every video coding standard. First, the frame fi(x, y) is divided into K

disjoint blocks {Bk}1≤k≤K , then the prediction is formed by

f̃i(x, y) = f̂i−1(x− ui,k, y − vi,k), x, y ∈ Bk, k = 1, 2, ..., K,

where f̂i−1(x, y) is the previously decoded frame and [ui,k, vi,k] is the motion vector.

In recent years, a growing demand for media-rich applications over variable band-

width channels has posed a new set of requirements in terms of spatial, temporal and

signal-to-noise ratio (SNR) scalability [37, 45]. Even though standards such as MPEG-
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x and H.26x can achieve state-of-the-art compression performance, their closed-loop

prediction structures have limited scalability. On the other hand, due to the inherent

multi-resolution feature of the wavelet transform, wavelet based video coding offers a

wide range of scalability while achieving high compression performance.

One of the most promising development in scalable video coding is motion com-

pensated temporal filtering (MCTF) [10], where a wavelet transform is applied in the

temporal axis as shown in Figure 3.3. In order to fully exploit the interframe redun-

dancy, temporal filtering is performed along the direction of motion. Loosely speaking,

this is equivalent to performing a block-based MCP on the video frames prior to tempo-

ral filtering. Current MCTF algorithms are based on the efficient implementation of the

wavelet transform using the lifting scheme [59, 8]. The MCTF algorithm is now a part

of the scalability extension to the current H.264/AVC standard [45]. Due to their low

complexity, the most widely used wavelets for this purpose are the Haar and LeGall 5/3

[33]. Indeed, the wavelet transform can also be used to decompose the frame spatially

to form a 3-D spatiotemporal wavelet transform. Examples of such video coding algo-

rithms are the 3-D SPIHT [32], the lifting-based invertible motion adaptive transform

(LIMAT) [46] and the Barbell-lifting coding scheme [72]. The rate-distortion analysis

for wavelet-based scalable video coder can be found in [70].

3.6 Summary

This chapter focussed on the wavelet transform and the approximation and compres-

sion results for piecewise smooth functions. We stated that nonlinear approximation of

piecewise smooth functions produce an error that decays as N−2α, which is better than

a linear approximation method with a decay of N−1 ([11, 34]). These results translate

directly to the distortion-rate performances of compression schemes that allocate the

rates based on linear or nonlinear approximation strategies. We show that the corre-

sponding D(R) functions decay as R−1 and R−2α respectively. A summary of embedded

coding algorithm, which is the most widely used nonlinear approximation-based rate al-

location strategy, was then presented. Finally, we gave a brief overview on the use of

wavelets in scalable video compression.
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Figure 3.3: Examples of MCTF implementation with the LeGall 5/3 lifting scheme. Three
decomposition levels are shown. The video frames are divided into even and odd frames. The
even frames are used to form the prediction of the odd frames by means of motion compensation.
Each motion compensated prediction is multiplied with the prediction coefficient and the high-
pass subband is calculated by taking the difference. Similarly, the high-pass subbands are
multiplied by the update coefficient to produce the low-pass subbands. Here, the prediction
steps are denoted with P and the update steps are denoted with U .
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CHAPTER 4
Sampling of Signals with Finite Rate of

Innovation

4.1 Introduction

Sampling theory plays a central role in the foundation of modern signal processing.

Shannon’s classical sampling theory states that it is possible to linearly reconstruct

a bandlimited signal from its samples using a kernel with infinite support i.e. an ideal

low-pass filter or a sinc function. Although the theory is very powerful, its idealization

poses too restrictive constraints for real-world acquisition devices.

With the influence from the recent development in wavelet theory, the sampling

process has been re-interpreted as an approximation of the original signal by projecting

it onto a shift-invariant subspace of bandlimited functions. This interpretation led to

the extension of the theorem to classes of non-bandlimited signal that belong to a shift-

invariant subspace [63].

Later on, Vetterli et al [68] showed that it is possible to sample and reconstruct a

class of non-bandlimited signals that do not reside in a fixed subspace. This class of

signal is called signals with Finite Rate of Innovation or FRI signals. Such signals have

finite degrees of freedom or rate of innovation. However the scheme still employed a

sampling kernel with infinite support, which cannot be realized in practice.

Recently, in [14], Dragotti et al. demonstrated that many FRI signals can be sampled
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4.2 Sampling Setup

and perfectly reconstructed using a wide range of kernels with finite support. The results

in [14] were then extended to multidimensional FRI signals in [49]. Baboulaz et al. also

applied the sampling theory of FRI signals to develop new techniques for image feature

extraction and image super-resolution [7].

Our focus for the chapter is to review the key results presented in [14]. We start by

looking at a generic 1-D sampling setup, followed by a formal definition of FRI signals.

Section 4.4 describes the basic properties of sampling kernels that reproduce polyno-

mials. Sampling schemes that sample and parametrically reconstruct non-bandlimited

FRI signals are then presented in Section 4.5. Finally, Section 4.6 shows how the theory

can be extended to a 2-D sampling scenario. The results from the sampling theory

discussed in this chapter will be used in our original work in the following chapters of

the thesis.

4.2 Sampling Setup

Let us first consider a generic 1-D sampling setup as shown in Figure 4.1. This setup

represents a good abstraction of today’s acquisition devices and can be extended to

higher dimensions. Here, a continuous time signal f(t), t ∈ R, is filtered by a (typically

low-pass) filter h(t) before being uniformly sampled with a sampling period T where

T ∈ R+. The output is a set of discrete samples {yn}n∈Z, given by the inner product

yn = 〈f(t), ϕ(t/T − n)〉 =
∫ ∞

−∞
f(t)ϕ(t/T − n)dt, (4.1)

where the sampling kernel ϕ(t) is the scaled and time-reversed version of the impulse

response h(t) of the filter.

The key problem in sampling theory is how to best reconstruct f(t) from the samples

yn. More precisely, one needs to answer the following questions: 1) What classes of

signals can be reconstructed? 2) What classes of sampling kernels can be used? 3)

What are the reconstruction algorithms involved? As mentioned earlier, our focus will

be on a class of signals called FRI signals. The work in this thesis uses a class of sampling

kernels that reproduce polynomials, which includes any valid scaling functions of the
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4.3 Signals with Finite Rate of Innovation

Figure 4.1: Generic 1-D sampling setup: a continuous signal f(t), t ∈ R, is filtered by a
sampling kernel h(t) = ϕ(−t/T ) and uniformly sampled by

∑
n δ(t − nT ) to obtain a set of

discrete samples yn = 〈f(t), ϕ(t/T − n)〉, where n ∈ Z.

wavelet transform.

4.3 Signals with Finite Rate of Innovation

Let us now formally state the notion of FRI signals as given in [68]. Given a continuous

signal f(t) that can be defined with a parametric representation, if the number of

parameters is finite then f(t) is said to have a finite degree of freedom or a finite rate

of innovation. That is, the signal f(t) can be described by the following form:

f(t) =
∑

n∈Z

K∑

k=0

an,kφk (t− tn) , (4.2)

where the coefficients an,k and the shifts tn are free parameters and the set of functions

{φk(t)}k=0,...,K is known. Let Cf (ta, tb) be the counter function that counts the number

of free parameters of f(t) over the interval [ta, tb]. The global rate of innovation is then

defined as [68]

ρ = lim
`→∞

1
`
Cf

(
− `

2
,
`

2

)
. (4.3)

The definition of an FRI signal is, therefore, given by

Definition 2 (Vetterli, Marzilliano and Blu, [68]): A signal with finite rate of innova-

tion is a signal whose parametric representation is given in Equation (4.2) with a finite

ρ as defined in Equation (4.3).

In some cases, however, it is more convenient to find a local rate of innovation with

respect to a moving window of size `. The local rate of innovation at time t is defined
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4.3 Signals with Finite Rate of Innovation

t t

(a) (b)

Figure 4.2: Examples of 1-D signals with finite rate of innovation: (a) streams of Diracs; (b)
piecewise polynomial signals.

as [68]

ρ`(t) =
1
`
Cf

(
t− `

2
, t +

`

2

)
.

There is a wide range of signals that fall under Definition 2. Interestingly, these also

include bandlimited signals. Let fB(t) be a real bandlimited signal with maximum non-

zero frequency fmax. The well known Shannon’s sampling theorem states that fB(t)

can be represented with the following reconstruction formula:

fB(t) =
∞∑

n=−∞
fB(nT )sinc

(
t− nT

T

)
,

where we are assuming that T = 1
fmax

. This is in fact the same representation as given

in Equation (4.2) and the corresponding rate of innovation is ρ = 1/T = fmax.

Consider now a stream of K Diracs given by f(t) =
∑K−1

k=0 akδ(t− tk) with t ∈ [0, 1].

The signal is non-bandlimited but can also be classified as a FRI signal as the only

free parameters are the amplitudes ak and the locations tk. Hence, the global rate

of innovation is equal to 2K. Another example of a non-bandlimited FRI signal is a

piecewise polynomial signal defined on t ∈ [0, 1], with K pieces of maximum degree R.

Each polynomial piece can be described by (R+1) coefficients and the signal, therefore,

has a finite rate of innovation ρ = (R + 2)K. These two examples are illustrated in

Figure 4.2.
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4.4 Polynomial Reproducing Kernels

4.4 Polynomial Reproducing Kernels

In [14], three classes of sampling kernels were proposed: polynomial reproducing ker-

nels, exponential reproducing kernels and kernels with rational Fourier transform. As

mentioned earlier, this thesis will only focus on kernels that reproduce polynomials.

4.4.1 Polynomial Reproduction Property

Polynomial reproducing kernels are any function ϕ(t) that together with its shifted

versions can reproduce polynomials of maximum degree P as described by the following

equation:
∑

n∈Z
c(p)
n ϕ(t/T − n) = tp with p = 0, 1, ..., P (4.4)

with a proper choice of coefficients
{

c
(p)
n

}
. A function ϕ(t) with compact support can

reproduce polynomials if it satisfies the following conditions [55]:





Φ(0) 6= 0 and
dpΦ(2iπ)

dωp = 0 for i > 0, p = 0, 1, ..., P,
(4.5)

where Φ(ω) is the Fourier transform of ϕ(t). These conditions are known as the Strang-

Fix conditions of order (P + 1).

There exists a wide range of functions satisfying Strang-Fix conditions. In terms of

wavelet theory, any admissible scaling function of L2(R) reproduces polynomials. We

recall from the previous chapter that a scaling function ϕ(t) with (P + 1)th-order of

approximation reproduces polynomials of maximum degree P . One important family

of scaling function is the B-spline family [62]. A B-spline function of order P ≥ 0

reproduces polynomial of maximum degree P and can be obtained by the (P + 1)-fold

convolution of the box function β0(t):

βP (t) = β0(t) ∗ β0(t)... ∗ β0(t)︸ ︷︷ ︸
=P+1 times

, with B(ω) =
1− e−jω

jω
.
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4.4 Polynomial Reproducing Kernels

Alternatively, βP (t) can be expressed with the following formula:

βP (t) =
1
P !

P+1∑

l=0

(
P + 1

l

)
(−1)l (t− l)P

+ ,

where

(t)P
+ =





0 t < 0,

tP t ≥ 0.

Interestingly, in [65], Unser and Blu reformulated the wavelet theory based on their

B-spline factorization theorem and obtained the following result:

Theorem 12 [65]: ϕ(t) is a valid scaling function with approximation order (P + 1)

if and only if its Fourier transform Φ(ω) can be factorized as Φ(ω) = BP
+(ω)Φ0(ω) =

(
1−e−jω

jω

)P+1
Φ0(ω).

The function BP
+(ω) is the Fourier transform of a B-spline function of order P and Φ0(ω)

is a bounded function of ω. This result is derived from the filter bank implementation of

the wavelet transform. From Theorem 12, it is clear that any valid scaling function will

satisfy Strang-Fix conditions in Equation (4.5). The polynomial reproduction property

is illustrated with a Daubechies scaling function of order 3 in Figure 4.3. Note that this

scaling function can reproduce polynomials of maximum degree two.

4.4.2 Polynomial Reproduction Coefficients

There are two main methods to retrieving the polynomial reproduction coefficients
{

c
(p)
n

}
of equation (4.4). First, the coefficients can be calculated from the dual of the

scaling function ϕ(t). The dual function ϕ̃(t) satisfies the following property:

〈ϕ(t−m), ϕ̃(t− n)〉 = δm,n (4.6)
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Figure 4.3: Polynomial reproduction property of 1-D kernels as given by Equation (4.4): (a)
Daubechies scaling function of order 3; (b) zeroth order polynomial (p = 0); (c) first order
polynomial (p = 1); (d) second order polynomial (p = 2); the blue lines in (b),(c) and (d)
represent the reproduced polynomials and the red lines are the scaled and shifted versions of
the db3 scaling function.

with δm,n denoting the Kronecker’s delta function. It then follows that

(1/T ) 〈tp, ϕ̃(t/T − n)〉 (a)
= (1/T )

〈∑

k

c(p)
n ϕ(t/T − k), ϕ̃(t/T − n)

〉

(b)
= (1/T )

∑

k

c(p)
n 〈ϕ(t/T − k), ϕ̃(t/T − n)〉

(c)
=

∑

k

c
(p)
k δk,n

= c(p)
n , (4.7)

where (a) and (c) follow from Equations (4.4) and (4.6) respectively and (b) comes

from the linearity of the inner product. One can, therefore, directly obtain
{

c
(p)
n

}
from

Equation (4.7).

The second method provides an alternative to the first, especially when ϕ̃(t) is

difficult to calculate. It involves obtaining the coefficients numerically by constructing
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4.4 Polynomial Reproducing Kernels

and solving a system of equations from Equation (4.4). Let Lϕ denote the length of

the support of ϕ(t/T ), it follows that at any point in the polynomial reproduced by

Equation (4.4), there exist Nϕ = dLϕ/T e overlapping scaled and shifted versions of

ϕ(t/T ) that, together, make up tp. The coefficients
{

c
(p)
n

}
can, therefore, be obtained

by solving the following system of equations:




ϕn

(
t1
T

)
ϕn+1

(
t1
T

) · · · ϕn+Nϕ−1

(
t1
T

)

ϕn

(
t2
T

)
ϕn+1

(
t2
T

) · · · ϕn+Nϕ−1

(
t2
T

)
...

...
. . .

...

ϕn

(
tNϕ

T

)
ϕn+1

(
tNϕ

T

)
· · · ϕn+Nϕ−1

(
tNϕ

T

)







c
(p)
n

c
(p)
n+1

...

c
(p)
n+Nϕ−1




=




(
t1
T

)p

(
t2
T

)p

...
(

tNϕ

T

)p




,

(4.8)

where for simplicity, we denote ϕ(t−n) with ϕn(t). Moreover, {t1, t2, ..., tNϕ} are chosen

such that {t1, t2, ..., tNϕ} ∈ [(n + Nϕ − 2)T, (n + Nϕ − 1)T ].

4.4.3 Moment-Samples Relationship

Assuming that the samples yn of f(t) are obtained with the kernel that reproduces

polynomials of maximum degree P as shown in Equation (4.4), we now show that it

is possible to perfectly retrieve the exact continuous moments of f(t) up to order P

from the samples yn. We refer to this result as the moment-samples relationship. The

continuous moment of order p of f(t) is defined as

Mp =
∫ ∞

−∞
f(t)tpdt. (4.9)

It then follows that

Mp =
∑

n

c(p)
n yn (4.10)

(a)
=

∑
n

c(p)
n 〈f(t), ϕ(t/T − n)〉

(b)
=

〈
f(t),

∑
n

c(p)
n ϕ(t/T − n)

〉

(c)
=

∫ ∞

−∞
f(t)tpdt with p = 0, 1, ..., P,
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4.5 Sampling Schemes for FRI Signals

where (a) and (c) are directly from Equations (4.1) and (4.3) and (b) follows from the

linearity of the inner product. As we will see in the next section, this relationship

described by Equation (4.10) is at the heart of the sampling schemes presented in [14]

and [49].

4.5 Sampling Schemes for FRI Signals

We now review in detail the sampling schemes for three types of FRI signals as presented

in [14]; these include streams of Diracs, streams of differentiated Diracs and piecewise

polynomial functions.

4.5.1 Streams of Diracs

Let f(t) be a stream of K Diracs defined by a set of parameters {ak, tk}k=0,...,K−1,

corresponding respectively to the amplitudes and locations, where

f(t) =
K−1∑

k=0

akδ(t− tk). (4.11)

The function f(t) is sampled by a kernel ϕ(t) that reproduces polynomials according

to Equation (4.4) to obtain yn. The goal is then to reconstruct f(t) parametrically

by retrieving {ak, tk}k=0,...,K−1 from the observed samples yn. The reconstruction al-

gorithm presented in [14] is non-linear and operates in three steps: first, the exact

continuous moments of f(t) are retrieved; second, the locations {tk} are found using

the annihilating filter method and, lastly, the amplitudes {ak} are obtained by solving

a Vandermonde system of equations.

Clearly, the exact continuous moment Mp of order p of f(t) has the form

Mp =
K−1∑

k=0

ak

∫
δ(t− tk)tpdt =

K−1∑

k=0

akt
p
k. (4.12)

We can retrieve Mp directly from yn using the relationship shown in Equation (4.10).
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4.5 Sampling Schemes for FRI Signals

More precisely, we have that

Mp =
∑

n

c(p)
n yn

=

〈
K−1∑

k=0

akδ(t− tk),
∑

n

c(p)
n ϕ(t/T − n)

〉

=
∫ ∞

−∞

K−1∑

k=0

akδ(t− tk)tpdt

=
K−1∑

k=0

akt
p
k with p = 0, 1, ..., P.

The locations {tk} can now be obtained from the retrieved moments using the annihi-

lating filter method.

Assume that we have a filter with coefficients hp, p = 0, 1, ..., K, whose z transform

is given by

H(z) =
K∑

p=0

hpz
−p =

K−1∏

k=0

(
1− tkz

−1
)
,

that is, the zeros of H(z) corresponds to a set of K locations {tk}k=0,...,K−1. By filtering

a sequence of moments Mp, p = 0, 1, ..., 2K − 1 with hp, where Mp is given by Equation

(4.12), it follows that

hp ∗Mp =
K∑

i=0

hiMp−i =
K∑

i=0

K−1∑

k=0

akhit
p−i
k =

K−1∑

k=0

akt
p
k

K∑

i=0

hit
−i
k

︸ ︷︷ ︸
=0

= 0. (4.13)

In other words, the filter hp annihilates the sequence Mp. Hence, the filter is called an-

nihilating filter. Since h0 = 1, we can write (4.13) in a matrix form with 2K consecutive

values of Mp, which leads to the following Yule-Walker system of equations:




MK−1 MK−2 · · · M0

MK MK−1 · · · M1

...
...

. . .
...

MN−1 MN−2 · · · MN−K







h1

h2

...

hK




= −




MK

MK+1

...

MN




. (4.14)

Therefore, the locations {tk}k=0,...,K−1 can be obtained by solving Equation (4.14) and
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finding the roots of hp. This method requires the retrieval of the first 2K − 1 moments,

which means that the sampling kernel ϕ(t) must be able to reproduce polynomials up

to order 2K − 1.

The amplitudes {ak}k=0,...,K−1 can now be calculated by forming a system of equa-

tions from Equation (4.12), which gives




1 1 · · · 1

t0 t1 · · · tK−1

...
...

. . .
...

tK−1
0 tK−1

1 · · · tK−1
K−1







a0

a1

...

aK−1




=




M0

M1

...

MK−1




. (4.15)

This is a Vandermonde system, which has a unique solution if tk 6= tl, ∀k 6= l. Having

retrieved the amplitudes and locations {ak, tk}k=0,...,K−1, the original Dirac function

f(t) can be reconstructed from Equation (4.11).

If we now assume that f(t) is an infinite-length stream of Diracs, then one can

attempt to reconstruct f(t) locally using the method described above. In fact, the

following result was obtained in [14]:

Theorem 13 [14]: Given a sampling kernel ϕ(t) of length Lϕ that can reproduce

polynomials of maximum degree N ≥ 2K − 1, an infinite-length stream of Diracs

f(t) =
∑

n∈Z akδ(t − tk) is uniquely determined by its samples yn = 〈f(t), ϕ(t/T − n)〉
if there are at most K Diracs in an interval of size 2KLϕT .

4.5.2 Streams of Differentiated Diracs

We now assume that f(t) is a stream of differentiated Diracs given by

f(t) =
K−1∑

k=0

Rk−1∑

r=0

ak,rδ
(r)(t− tk),

with K locations and K̂ =
∑K−1

k=0 Rk weights. Recall that the r-th derivative of a Dirac

has the property
∫∞
−∞ f(t)δ(r)(t−t0)dt = (−1)rf (r)(t0). The exact p-th order continuous
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moment Mp of f(t) is, therefore, given by

Mp =
∑

n

c(p)
n yn =

∫ ∞

−∞
f(t)tpdt

=
K−1∑

k=0

Rk−1∑

r=0

ak,r

∫ ∞

−∞
δ(r)(t− tk)tpdt

(a)
=

K−1∑

k=0

Rk−1∑

r=0

ak,r(−1)r p!
(p− r)!

tp−r
k , (4.16)

where (a) follows from the fact that
∫∞
−∞ tpδ(r)(t− t0)dt = (−1)r (p!/(p− r)!) tp−r

0 .

As in the previous case, Equation (4.10) is used to retrieve the exact moments Mp

from the samples yn. It was shown in [14] that a filter with z-transform

H(z) =
K−1∏

k=0

(
1− tkz

−1
)Rk

annihilates the sequence Mp where Mp is given by Equation (4.16). Similarly to the

previous scheme, the locations {tk}k=0,...,K−1 can then be retrieved with the annihilating

filter method i.e. by solving a Yule-Walker system of equations using 2K̂ consecutive

moments of f(t). The weights {ak,r} can then be obtained by constructing and solving

the Vandermonde system of equations from Equation (4.16). Note that we now need

the kernel to reproduce polynomials up to order 2K̂ − 1.

For an infinite-length stream of differentiated Diracs, the following result was ob-

tained in [14]:

Theorem 14 [14]: Given a sampling kernel ϕ(t) of length Lϕ that can reproduce

polynomials of maximum degree N ≥ 2K̂ − 1, an infinite-length stream of differenti-

ated Diracs f(t) =
∑

k∈Z
∑Rk−1

r=0 ak,rδ
(r)(t − tk) is uniquely determined by its samples

yn = 〈f(t), ϕ(t/T − n)〉 if there are at most K Diracs with K̂ weights in an interval of

size 2K̂LϕT .
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4.5.3 Piecewise Polynomial Functions

Let us now consider a piecewise polynomial function f(t) with K pieces of maximum

degree R− 1 (R > 0), which can be written as

f(t) =
K−1∑

k=0

R−1∑

r=0

ak,r(t− tk)r
+ (4.17)

with t+ = max(t, 0). The R-th derivative of f(t) is a stream of differentiated Diracs

where

f (R)(t) =
K−1∑

k=0

R−1∑

r=0

r!ak,rδ
(R−r−1)(t− tk).

Intuitively, if we are able to obtain the samples of f (R)(t) from the original samples

yn of f(t) together with the continuous moments of f (R)(t), then we can reconstruct

f (R)(t) from Theorem 14 and, hence, f(t).

By taking the Fourier transform of a function ϕ(t)− ϕ(t− 1), we have that

ϕ(t)− ϕ(t− 1) ⇐⇒ Φ(ω)
(
1− e−jω

)
= jωΦ(ω)

(
1− e−jω

)

jω
= jωΦ(ω)B0(ω),

where B0(ω) is the Fourier transform of the zero-th order B-spline function β0(t). Hence,

ϕ(t)− ϕ(t− 1) =
d

dt
[ϕ(t) ∗ β0(t)]. (4.18)

Let z
(R)
n denote the R-th order finite difference of yn where z

(r)
n = z

(r−1)
n+1 − z

(r−1)
n and

z
(1)
n = yn+1 − yn. It was shown in [14] that

z(1)
n = yn+1 − yn = 〈f(t), ϕ(t/T − n− 1)− ϕ(t/T − n)〉

(a)
=

〈
f(t),− d

dt
[ϕ(t/T − n) ∗ β0(t/T − n)]

〉

(b)
=

〈
df(t)
dt

, ϕ(t/T − n) ∗ β0(t/T − n)
〉

,

where (a) is from Equation (4.18) and (b) follows from integration by parts. This leads
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to the following result:

z(R)
n =

〈
f (R)(t), ϕ(t/T − n) ∗ βR−1(t/T − n)

〉
, (4.19)

where βR−1(t) denotes the (R − 1)-th order B-spline function. The R-th order finite

difference z
(R)
n of yn, therefore, represents the sampling of f (R)(t) with the new kernel

ϕ(t/T − n) ∗ βR−1(t/T − n).

From Equation (4.10), we now have that

M (R)
p =

∑

n∈Z
c′(p)
n z(R)

n , (4.20)

where M
(R)
p is the p-th order continuous moment of f (R)(t). The polynomial reproduc-

tion coefficients {c′(p)
n } of the new kernel ϕ(t/T − n) ∗ βR−1(t/T − n) can be obtained

using the methods shown in Equations (4.7) and (4.8). The function f (R)(t) and, hence,

f(t) (as given in Equation (4.17)) can, therefore, be reconstructed from its samples yn

using Equations (4.17) and (4.20) together with the annihilating filter method shown

earlier in this section. Note that the scaling function ϕ(t) now must be able to repro-

duce polynomials up to order 2KR− 1−R. We summarize the review of this sampling

scheme with the following theorem from [14]:

Theorem 15 [14]: Given a sampling kernel ϕ(t) of length Lϕ that can reproduce poly-

nomials of maximum degree P , an infinite-length piecewise polynomial function f(t)

with pieces of maximum degree R (as given by Equation (4.17)) is uniquely determined

by its samples yn = 〈f(t), ϕ(t/T − n)〉 if there are at most K polynomial discontinuities

in an interval of size 2K(Lϕ + R)T and P + R ≥ 2KR− 1.

4.6 Sampling of 2-D FRI Signals

4.6.1 2-D Sampling Setup

Figure 4.4 shows the setup for the sampling of 2-D FRI signals. A continuous 2-D

function f(x, y) ∈ R2 with x, y ∈ R is first convolved with a 2-D sampling kernel

h(x, y) = ϕ(−x/Tx,−y/Ty) prior to being sampled with sampling periods Tx and Ty
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4.6 Sampling of 2-D FRI Signals

Figure 4.4: Generic 2-D sampling setup: a continuous signal f(x, y), x, y ∈ R, is filtered by a
sampling kernel h(x, y) = ϕ(−x/Tx,−y/Ty) and uniformly sampled by

∑
m

∑
n δ(x−mTx, y −

nTy) to obtain a set of discrete samples Sm,n = 〈f(x, y), ϕ(x/Tx −m, y/Ty − n)〉, where m,n ∈ Z
and Tx, Ty ∈ R+.

where Tx, Ty ∈ R+. The output is a set of 2-D discrete samples {Sm,n}m,n∈Z, given by

the following inner product:

Sm,n = 〈f(x, y), ϕ(x/Tx −m, y/Ty − n)〉 (4.21)

=
∫ ∞

−∞

∫ ∞

−∞
f(x, y)ϕ(x/Tx −m, y/Ty − n)dxdy.

For simplicity, we assume that Tx = Ty = T unless explicitly specified. As with the 1-D

case, we focus on a class of 2-D sampling kernels that have finite support and reproduce

polynomials.

4.6.2 2-D Signals with Finite Rate of Innovation

The notion of 2-D FRI signals can be easily obtained from the definition of 1-D FRI

signals given in Definition 2. Consider a 2-D continuous function f(x, y) that can be

represented in the following parametric form:

f(x, y) =
∑

i∈Z

∑

j∈Z

K∑

k=0

ai,j,kφk(x− xi, y − yj), (4.22)

with a known set of functions {φk(x, y)}k=0,...,K . That is, the only free unknown pa-

rameters are the coefficients ai,j,k ∈ R and the spatial shifts (xi, yj) ∈ R.

As with the 1-D case, one can introduce a function Cf ([xa, xb], [ya, yb]) that counts

the number of free parameters over the window [xa, xb] × [ya, yb]. The global rate of
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4.6 Sampling of 2-D FRI Signals

xy

(a) (b)

Figure 4.5: Examples of 2-D signals with finite rate of innovation: (a) a set of Diracs; (b) a
bilevel polygon image.

innovation is then defined as

ρxy = lim
`x→∞,`y→∞

1
`x`y

Cf

([
−`x

2
,
`x

2

]
,

[
−`y

2
,
`y

2

])
. (4.23)

A 2-D FRI signal is, therefore, a signal whose parametric representation is given by

Equation (4.22) with a finite ρxy as defined in Equation (4.23). Similarly, the local rate

of innovation of f(x, y) at (x, y) is given by

ρ`x,`y(x, y) =
1

`x`y
Cf

([
x− `x

2
, x +

`x

2

]
,

[
y − `y

2
, y +

`y

2

])
.

Clearly, a set of 2-D Diracs given by f(x, y) =
∑

k∈Z akδ(x − xk, y − yk) is a 2-D FRI

signal. Other examples of 2-D FRI signals include bilevel polygon images as illustrated

in Figure 4.5. It was shown in [49] that these two types of signals can be sampled and

perfectly reconstructed using variations of the methods presented in [14].

4.6.3 2-D Polynomial Reproducing Kernels

The polynomial reproduction property of 2-D kernels ϕ(x, y) is also a straightforward

extension from the 1-D case and can be written as follows:

∑

m∈Z

∑

n∈Z
c(p,q)
m,n ϕ(x/T −m, y/T − n) = xpyq (4.24)
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4.6 Sampling of 2-D FRI Signals

with p = 0, 1, ..., P and q = 0, 1, ..., Q. As shown in Section 4.4.2, the polynomial

reproduction coefficients
{

c
(p,q)
m,n

}
can be obtained from the dual function ϕ̃(x, y) of

ϕ(x, y):

c(p,q)
m,n = (1/T ) 〈xpyq, ϕ̃(x/T −m, y/T − n)〉 . (4.25)

The proof of Equation (4.25) is a direct extension of Equation (4.7). Alternatively, one

can obtain
{

c
(p,q)
m,n

}
numerically by constructing and solving a system of equations from

Equation (4.24) using the procedure described in Section 4.4.2.

Let us now consider a 2-D separable kernel where ϕ(x, y) is the tensor product of

two 1-D functions ϕ1(x) and ϕ2(y):

ϕ(x, y) = ϕ1(x)⊗ ϕ2(y).

Moreover, we assume that both ϕ1(x) and ϕ2(y) reproduce polynomials according to

Equation (4.4) with corresponding sets of coefficients
{

c
(p)
m

}
and

{
c
(q)
n

}
where p =

0, 1, ..., P and q = 0, 1, ..., Q. It follows that

∑

m∈Z

∑

n∈Z
c(p,q)
m,n ϕ1(x/T −m)ϕ2(y/T − n) = xpyq with c(p,q)

m,n = c(p)
m c(q)

n . (4.26)

One can, therefore, easily obtain
{

c
(p,q)
m,n

}
from

{
c
(p)
m

}
and

{
c
(q)
n

}
in this case. Figure 4.6

illustrates the polynomial reproduction property of a 2-D Daubechies scaling function

of order 4.

The 2-D continuous geometric moment of order (p+q), p, q ∈ N, of f(x, y) is defined

as

Mp,q =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)xpyqdxdy. (4.27)

By following the proof in Equation (4.10), we arrive at the following 2-D moment-
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4.6 Sampling of 2-D FRI Signals

xy xy

(a) (b)

xy xy

(c) (d)

Figure 4.6: Polynomial reproduction property of 2-D kernels as given by Equation (4.24): (a)
2-D Daubechies scaling function of order 4; (b) zeroth order polynomial with p = 0, q = 0;
(c) first order polynomial along x-direction with p = 1, q = 0; (d) first order polynomial along
y-direction with p = 0, q = 1. Note that the grid scale used in (a) is different from (b),(c) and
(d)

samples relationship:

Mp,q =
∑
m

∑
n

c(p,q)
m,n Sm,n (4.28)

(a)
=

∑
m

∑
n

c(p,q)
m,n 〈f(x, y), ϕ(x/Tx −m, y/Ty − n)〉

(b)
=

〈
f(x, y),

∑
m

∑
n

c(p,q)
m,n ϕ(x/Tx −m, y/Ty − n)

〉

(c)
=

∫ ∞

−∞

∫ ∞

−∞
f(x, y)xpyqdxdy,

where (a) and (c) follow from Equations (4.21) and (4.24) and (b) from linearity of

the inner product. Such ability to exactly retrieve geometric moments of 2-D signals

from their samples is very useful. Shukla and Dragotti used the relationship in Equa-

tion (4.28) to build three reconstruction algorithms for bilevel polygon images; namely,

directional-derivative-based, complex-moments-based and radon-transform-based algo-

61



4.7 Summary

rithms (see [49] for an in-depth coverage). Baboulaz et al. [7] applied the FRI principle

to accurately register multiple images from their samples and this leads to a novel image

super-resolution technique.

As a working example, let us consider a 2-D single Dirac function given by

f(x, y) = a1δ(x− x1, y − y1).

Clearly, the rate of innovation equals to three as the only free parameters are the

amplitude a1 and the coordinate (x1, y1). We now assume that the function is sampled

with a 2-D kernel ϕ(x, y) that reproduces polynomials of maximum degree (P + Q) as

shown in Equation (4.24), where P, Q ≥ 1. It is easy to see that the geometric moments

Mp,q of f(x, y), up to the first order, are as follows:

M0,0 = a1, M1,0 = a1x1, and M0,1 = a1y1.

We can, therefore, easily reconstruct f(x, y) from the samples Sm,n by retrieving the

moments M0,0, M1,0 and M0,1 using Equation (4.28) and, consequently, the parameters

a1 and (x1, y1).

4.7 Summary

The basics of sampling theory for FRI signals have been reviewed in this chapter. A

formal notion of FRI signals, first introduced in [68], was given in Definition 2. We

exclusively focused on sampling kernels that reproduce polynomials with a particular

emphasis on the moment-samples relationship (see Equation (4.10)). Under a generic

sampling setup shown in Figure 4.1, we demonstrated using sampling schemes from [14]

that non-bandlimited FRI signals can be sampled and perfectly reconstructed. Finally,

we looked at the extension of the theory in a 2-D scenario. In the next chapter, we will

present our original work on semi-parametric compression of piecewise smooth functions,

which also uses the reconstruction algorithm described in Section 4.5.3.
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CHAPTER 5
Centralized Semi-Parametric

Compression of Piecewise Smooth

Functions

5.1 Introduction

Recent mathematical analysis on the performance of wavelets in compression,

which we reviewed in Chapter 3, has led to new interesting insights into the

connections between compression and source approximation [11, 66, 34]. It is now well

understood that under a standard transform coding structure, a compression algorithm

based around a nonlinear approximation-based bit allocation strategy outperforms a

linear compression algorithm.

If we have a continuous smooth function that satisfies the uniform α-Lipschitz con-

dition, we saw in Chapter 3 that the D(R) function of a wavelet-based compression

scheme that allocates the bits according to a linear approximation strategy is given by

D(R) ≤ c1R
−2α. (5.1)

If, instead, a function is piecewise smooth, Theorem 11 (Chapter 3) showed that the
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5.1 Introduction

D(R) of the same wavelet-based compression scheme is

D(R) ≤ c2R
−2α + c3R

−1, (5.2)

where the dominating decay rate of R−1 is due to the presence of discontinuities. In

contrast, given the same function, a compression scheme that employs a nonlinear ap-

proximation strategy achieves the following D(R) function:

D(R) ≤ c4R
−2α + c5

√
R2−c6

√
R. (5.3)

It is clear that at high rates, a nonlinear compression scheme gives a better distortion-

rate performance with a decay of R−2α. Hence, conventional compression schemes are

characterized by a complex nonlinear encoder and a simple decoder.

We will show in this chapter that, given a piecewise smooth function, a compression

scheme whose encoder allocates the bits according to a linear approximation strategy can

also achieve, in some cases, the D(R) decay of R−2α at high rates. This is made possible

by incorporating a parametric estimation procedure into the decoder, which enables it to

estimate the singular structures of a function, i.e. the locations of discontinuities, from

the linearly approximated coefficients. Thus, the resulting decoding process is nonlinear.

This architecture is, therefore, the dual of the traditional one since the computational

complexity is transferred from the encoder to the decoder. There are situations such as

compression in sensor network where a simple encoder is desirable.

In the next section, we recall the notion of piecewise smooth signals. We then

propose our semi-parametric compression strategy in Section 5.3. A theoretical estimate

of the D(R) function of the proposed compression scheme is computed in Section 5.5.

Section 5.6 presents a constructive compression algorithm followed by simulation results

in Section 5.7. Finally, conclusions are drawn in Section 5.8.
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5.2 Modeling of Piecewise Smooth Functions

5.2 Modeling of Piecewise Smooth Functions

Throughout this chapter, we assume that the support of the continuous function is

normalized to [0, 1[. We define the regularity of a function with the Lipschitz exponent.

Recall from Definition 1 (Chapter 3) that a function f(t) restricted to [a, b] is said to

be uniformly α-Lipschitz over [a, b], with α ≥ 0, if it can be written as

f(t) = p(t) + ε(t), (5.4)

where p(t) is a polynomial of degree m = bαc and there exists a constant K > 0 such

that

∀t ∈ (a, b) and ∀ν ∈ [a, b], |ε(t)| ≤ K|t− ν|α.

A piecewise smooth function f(t), t ∈ [0, 1[ with K + 1 pieces is then defined as

f(t) =
K∑

i=0

fi(t)1[ti,ti+1[(t) with 1[a,b[(t) =





1 ∀t ∈ [a, b[,

0 otherwise.
(5.5)

Here, t0 = 0, tK+1 = 1 and fi(t) is uniformly α-Lipschitz over [ti, ti+1].

Given a function f(t) as defined by (5.5), it was shown in [16] that f(t) can in fact be

decomposed into two functions, namely, a piecewise polynomial function that contains

the singular structure and a globally smooth function. Hence, our piecewise smooth

functions can be written as follows:

f(t) = fp(t) + fα(t), (5.6)

where fα(t) is uniformly α-Lipschitz over [0, 1[ and fp(t) is a piecewise polynomial

function with pieces of maximum degree bαc. The piecewise polynomial signal can be

written as follows:

fp(t) =
K∑

k=0

bαc∑

r=0

ar,k(t− tk)r
+ (5.7)

with t+ = max(t, 0). This signal model will be used in our analysis in the forthcoming

sections.
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5.3 Semi-Parametric Compression Strategy

5.3 Semi-Parametric Compression Strategy

5.3.1 Linear Approximation

First, let us recall that the wavelet decomposition of a continuous function f(t), t ∈ [0, 1[,

is formally expressed as

f(t) =
L−1∑

n=0

cJ,nϕJ,n(t) +
J∑

j=−∞

2−j−1∑

n=0

dj,nψj,n(t), with J < 0, (5.8)

where the basis elements of L2([0, 1]) are the shifted and dilated versions of the scaling

function ϕ(t) and the wavelet function ψ(t):

ϕJ,n(t) = 2−J/2ϕ
(
2−J t− n

)
and ψj,n(t) = 2−j/2ψ

(
2−jt− n

)
.

The low-pass and high-pass coefficients, {cJ,n} and {dj,n} respectively, are given by the

following inner products:

cJ,n = 〈f(t), ϕ̃J,n(t)〉 and dj,n =
〈
f(t), ψ̃j,n(t)

〉
,

where ϕ̃J,n and ψ̃j,n are the dual of ϕJ,n and ψj,n. We denote the total number of

low-pass coefficients with L, where

L = 2−J .

The N -term linear approximation of f(t) where N ∼ 2JN is then given by

fN (t) =
L−1∑

n=0

cJ,nϕJ,n(t) +
J∑

j=J−JN+1

2−j−1∑

n=0

dj,nψj,n(t), with JN ≥ 1. (5.9)

5.3.2 Semi-Parametric Compression Algorithm

We now introduce the concept of semi-parametric compression algorithm. Consider

a piecewise smooth function f(t) given by the signal model in (5.6). Intuitively, one

can recover f(t) by reconstructing the piecewise polynomial function fp(t) and the
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5.3 Semi-Parametric Compression Strategy

smooth function fα(t) separately. Since fα(t) is uniformly α-Lipschitz, a compression

method based on linear approximation shown in (5.9) can be used to compress fα(t)

with D(R) ∼ R−2α. On the other hand, the function fp(t) is completely determined by

a finite set of parameters. Hence, we can reconstruct fp(t) by estimating the locations

{ti}0≤i≤K+1 and the polynomial coefficients {ar,k}0≤r≤bαc,0≤k≤K . The reconstruction of

fp(t) can, therefore, be viewed as a parametric estimation problem.

First, we consider the wavelet decomposition of f(t) as shown in (5.8) and assume

that the wavelet has at least bα + 1c vanishing moments. We denote with Ip a set of

indices such that

Ip = {(j, n) ∈ Z : |〈fp(t), ψj,n(t)〉| > 0} .

In other words, the coefficients {dj,n}j,n∈Ip are in the cone of influence of discontinuities

found in fp(t). On the other hand, the coefficients in {dj,n}j,n/∈Ip
are outside the cone

of influence and the wavelet coefficients decay as dj,n ∼ 2j(α+1/2) (from Theorem 6,

Chapter 3). This is illustrated in Figure 5.1.

Linear approximation-based quantization

Let us now address the linear approximation-based quantization strategy in details.

With linear approximation shown in (5.9), the function fα(t) is approximated by trans-

mitting only the coefficients in decomposition level j = J − JN + 1, ..., J . Since the

wavelet coefficients of fα(t) decays as dj,n ≤ A2j(α+1/2) (from Theorem 6), this is equiv-

alent to setting the quantizer step size ∆ at

∆ = A2(J−JN+1)(α+1/2),

where A = maxj,n |dj,n|. Therefore, the number of bits allocated to each coefficient at

resolution 2−j is given by

Rj,α =

⌈
log2

(
A2j(α+1/2)

∆

)⌉
+ 1, j = J − JN + 1, ..., J, (5.10)

where an extra bit is needed to code the sign.
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t

f(t) cJ,n

dJ,n

dJ−1,n

dJ−2,n

dJ−3,n

(a) (b)

t

fp(t) cJ,n

dJ,n

dJ−1,n

dJ−2,n

dJ−3,n

(c) (d)

t

fα(t) cJ,n

dJ,n

dJ−1,n

dJ−2,n

dJ−3,n

(e) (f)

Figure 5.1: Illustration of a piecewise smooth function. (a) A piecewise smooth function
f(t) = fp(t) + fα(t); (b) coefficients of f(t), the high-pass coefficients in the boxes are in the
cone of influence of discontinuities represented by the index set Ip and the coefficients outside
the boxes are in the set Iα; (c) a piecewise polynomial function fp(t); (d) coefficients of fp(t),
the high-pass coefficients in the boxes correspond to the index set Ip, which can be predicted
using parametric estimation; (e) a smooth α-Lipschitz function fα(t); (f) coefficients of fα(t).
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In reality, the encoder does not have a direct access to the smooth component fα(t)

of f(t). This is not a problem for the coefficients {dj,n}(j,n)/∈Ip
outside the cone of

influence of discontinuities as

dj,n = 〈f(t), ψj,n(t)〉 = 〈fα(t), ψj,n(t)〉+ 〈fp(t), ψj,n(t)〉︸ ︷︷ ︸
=0

= 〈fα(t), ψj,n(t)〉 , (j, n) /∈ Ip.

Hence, the above quantization strategy can be applied directly. For the coefficients

{dj,n}(j,n)∈Ip
in the cone of influence of discontinuities, it follows that

dj,n = 〈f(t), ψj,n(t)〉 = 〈fα(t), ψj,n(t)〉+ 〈fp(t), ψj,n(t)〉 , (j, n) ∈ Ip.

Since the coefficients {dj,n}(j,n)∈Ip
do not decay as 2j(α+1/2) across scales, the values

of {dj,n}(j,n)∈Ip
are outside the range of the quantizer i.e. for the same ∆, more than

Rj,α bits are required to code the coefficients in the set Ip. However, it is true that the

information of the wavelet coefficients of fα(t) is fully contained within the first Rj,α

least significant bits (LSB). Therefore, for the coefficients {dj,n}(j,n)∈Ip
, only the first

Rj,α LSBs are transmitted to the decoder and the rest of the bits can be discarded.

Decoding with Parametric Estimation

As mentioned earlier, the reconstruction of the piecewise polynomial component fp(t)

can be done parametrically. We recall that the wavelet coefficients of f(t) is given

by dj,n = 〈fα(t), ψj,n(t)〉 + 〈fp(t), ψj,n(t)〉, (j, n) ∈ Ip. Let us denote with f̂p(t), the

reconstructed version of fp(t), which is obtained from parametric estimation, and let

d̂j,n = 〈f̂p(t), ψj,n(t)〉 be the corresponding wavelet coefficients. In addition, by following

the above quantization strategy, the decoder receives the first Rj,α LSBs of {dj,n}(j,n)∈Ip

(see (5.10)). We denote with d̄j,n, the quantized version of dj,n. We will now show

that {dj,n}(j,n)∈Ip
can be decoded using the concept of error correction code. Let us

demonstrate this concept with the following example.

Consider the case where RJ,α = 2 bits for a given J . Suppose that the binary

representation of d̄J,n is 1111 and that, at the decoder, parametric estimation gives d̂J,n

that is represented with 1110. The encoder sends the first RJ,α LSBs of d̄J,n, which is
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11, to the decoder. Since dJ,n = 〈fα(t), ψj,n(t)〉 + 〈fp(t), ψj,n(t)〉, this means that the

quantized version of 〈fα(t), ψJ,n(t)〉 can either take a positive value of 1 or a negative

value of 111 (this is without the sign bit attached), which would lead to d̄J,n = 1111

or d̄J,n = 111 respectively. However, since the decoder knows that the magnitude of

〈fα(t), ψj,n(t)〉 is bounded by RJ,α − 1 = 1 bit, it can select d̄J,n = 1111 as the correct

decoded value. This is, in spirit, similar to the use channel coding technique in Wyner-

Ziv coding reviewed in Chapter 2, where the first RJ,α bits is the equivalent of the

coset.

The proposed ‘semi-parametric’ compression algorithm for a piecewise smooth func-

tion can now be outlined as follows:

Algorithm 1 : Semi-parametric compression algorithm.

Encoding process:

1. N-term linear approximation: the encoder approximates f(t) as shown
in (5.9);

2. Quantization: the coefficients {cJ,n} and {dj,n}J−JN+1≤j≤J are quan-
tized using a linear approximation-based quantization strategy as discussed
in this section to obtain the quantized coefficients {c̄J,n} and {d̄j,n}J−JN+1≤j≤J .

Decoding process:

1. Parametric estimation: the decoder approximates fp(t) by estimating
the locations {ti}0≤i≤K+1 and the polynomial coefficients {ar,k}0≤r≤bαc,0≤k≤K

of fp(t) from the received quantized coefficients {c̄J,n} and {d̄j,n}J−JN+1≤j≤J

to obtain f̂p(t);

2. Cone of influence prediction: the coefficients {dj,n}−∞<j≤J,n∈Ip in
the cone of influence are predicted as follows:

d̂j,n = 〈f̂p(t), ψj,n(t)〉, j = −∞, ..., J − JN , (j, n) ∈ Ip;

3. Error correction decoding: the decoder uses the received Rj,α LSBs of
quantized coefficients d̄j,n together with the predicted coefficients d̂j,n to
decode {dj,n}J−JN+1≤j≤J,(j,n)∈Ip

, where we denote with d̃j,n, the decoded
version of dj,n;

4. Final reconstruction: f(t) is reconstructed from the inverse wavelet
transform of the following set of coefficients:

{c̄J,n}, {d̄j,n}J−JN+1≤j≤J,(j,n)/∈Ip
, {d̃j,n}J−JN+1≤j≤J,(j,n)∈Ip

and {d̂j,n}−∞<j≤J−JN
.
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By using parametric estimation, the decoder is able to predict the coefficients in

the cone of influence from the reconstructed function f̂p(t) (see Figure 5.1 (c) and (d)).

Moreover, the encoder in Algorithm 1 is low in complexity as it is based on linear wavelet

approximation. Thus, there is no need to employ any sorting algorithm or transmit the

locations of the coefficients.

5.4 Cramér-Rao Bound of Parametric Estimation

In this section, we assess the efficiency of using scaling and wavelet coefficients in para-

metric estimation, which is a core element of the decoding in Algorithm 1. In particular,

we study the Cramér-Rao Bound (CRB), which is the bound on the error of parametric

estimation.

5.4.1 Derivation of Cramér-Rao Bound

Let us begin by deriving the CRB for our problem. Given a function f(Θ, t) where

Θ = (θ1, θ2, ..., θK)T is a vector of K deterministic parameters, the CRB provides us

the lower bound on the variance of any unbiased estimator i.e.

CRB(Θ) ≤ E
[(

Θ̂−Θ
)(

Θ̂−Θ
)T

]
, (5.11)

where Θ̂ is obtained from any unbiased estimation procedure. The CRB can be calcu-

lated from the inverse of the Fisher Information Matrix I(Θ) as

CRB(Θ) = I−1(Θ) =
(
E

[∇l(Θ)∇l(Θ)T
])−1

,

where l(Θ) is the log-likelihood function and ∇ =
(

∂
∂θ1

, ∂
∂θ2

, ..., ∂
∂θK

)
.

We now consider the problem of estimating Θ from a set of noisy transform coeffi-

cients. Let IL denote the index set of the coefficients that are received by the estimator.

The following result can be obtained [12].

Theorem 16 : Consider a function f(Θ, t) ∈ L2([0, 1]) and a set of noisy measurement
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{ŷn}n∈IL
given by

ŷn = yn + εn = yn(f(Θ, t)) + εn, n ∈ IL, (5.12)

where εn is i.i.d. additive Gaussian noise with zero mean and variance σ2
ε . The Cramér-

Rao lower bound CRB(Θ) of any unbiased estimator that uses {ŷn}n∈IL
to estimate Θ

is as follows:

CRB(Θ) = σ2
ε


 ∑

n∈IL

∇yn∇yT
n



−1

, (5.13)

where ∇yn =
(

∂yn

∂θ1
, ∂yn

∂θ2
, ..., ∂yn

∂θK

)
.

Proof: Since the coefficients {yn}n∈IL
are also dependent on Θ, we can

apply the formula for change of variable to obtain

pŷ(ŷn|Θ) = pε (ŷn − yn) . (5.14)

Using the fact that εn is i.i.d. Gaussian noise together with (5.14), we can

express the log-likelihood function l(Θ) as:

l(Θ) = lnP ({ŷn}n∈IL
|Θ) = ln

∏

n∈IL

pŷ(ŷn|Θ) =
∑

n∈IL

ln pε (ŷn − yn) . (5.15)

It then follows that the partial derivative of l(Θ) with respect to θi is given

by
∂l(Θ)
∂θi

= ∂l(Θ)
∂(ŷn−yn)

∂(ŷn−yn)
∂yn

∂yn

∂θi

(a)
= − ∑

n∈IL

p′ε(ŷn−yn)
pε(ŷn−yn)

∂yn

∂θi

(b)
= σ−2

ε

∑
n∈IL

εn
∂yn

∂θi
,

where (a) follows from (5.15) and (b) from the fact that

pε(εn) =
1√
2πσ2

ε

exp
(
− ε2n

2σ2
ε

)
.

Hence, we have that ∇l(Θ) = σ−2
ε

∑
n∈IL

εn∇yn. The Fisher Information
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Matrix can now be determined as

I(Θ) = E
[∇l(Θ)∇l(Θ)T

]

= σ−4
ε E

[∑
n

∑
m εnεm∇yn∇yT

m

]

= σ−4
ε

∑
n

∑
m E [εnεm]∇yn∇yT

m

= σ−2
ε

∑
n

∑
m δn,m∇yn∇yT

m

= σ−2
ε

∑
n∇yn∇yT

n .

(5.16)

By finding the inverse of I(Θ), we obtain the expression for the CRB(Θ) in

(5.13), which concludes the proof.

5.4.2 Evaluation of Cramér-Rao Bound

In order to gain some intuition, we consider the following simplified estimation problem.

The parametric function of interest s(t) is assumed to be piecewise constant with a single

discontinuity:

s(t) =





0 t < t0,

A t0 ≤ t < 1.
(5.17)

The estimator then has to retrieve Θ = (t0, A)T from a set of noisy coefficients of s(t).

For simplicity, we assume that the estimator only receives noisy versions of the L scaling

coefficients of s(t). More precisely, the estimator receives

ŷn = yn + εn = 〈s(t), ϕJ,n(t)〉+ εn, n = 0, 1, ..., L− 1.

By applying the formula in (5.13), we have that CRB(Θ) = σ2
ε Jt0,A, where Jt0,A is

Jt0,A =




∑L−1
n=0

(
∂yn

∂t0

)2 ∑L−1
n=0

∂yn

∂t0
∂yn

∂A

∑L−1
n=0

∂yn

∂A
∂yn

∂t0

∑L−1
n=0

(
∂yn

∂A

)2




−1

. (5.18)

It, therefore, follows that the CRBs for the estimation of the location t0 and the ampli-

tude A of s(t) are given by

CRB(t0) = σ2
ε (Jt0,A)11 and CRB(A) = σ2

ε (Jt0,A)22 (5.19)
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5.4 Cramér-Rao Bound of Parametric Estimation

where (Jt0,A)ij denotes the entry in the i-th row and j-th column of the matrix Jt0,A.

B-spline scaling functions and parametric estimation

Let us now examine the above CRBs for an important family of scaling function, which

is the B-spline family. A B-spline function of order P ≥ 0 is given by

β(t) =
1
P !

P+1∑

l=0

(
P + 1

l

)
(−1)l (t− l)P

+ , (5.20)

where

(t)P
+ =





0 t < 0,

tP t ≥ 0.

The coefficients are, therefore, given by

yn = 〈s(t), βJ,n(t)〉 , J < 0, (5.21)

where βJ,n(t) = 2−J/2β
(
2−J t− n

)
. Note that, in reality, the wavelet transforms with

B-spline scaling function of order one or higher are not orthogonal and the scaling

coefficients would be given by
〈
s(t), β̃J,n(t)

〉
where β̃ is the dual of β. Nevertheless, the

results shown in this section can still give us a good understanding of the estimation of

the step function.

It is relatively straight forward to evaluate equations (5.18) and (5.19). The full

evaluation can be found in the Appendix A.2. Figure 5.2 shows the plots of the values

of (Jt0,A)11 and (Jt0,A)22 (from (5.18)) against the order of the B-spline function at

resolution 2J . Note that higher (Jt0,A)11 and (Jt0,A)22 translate to larger errors in the

estimation of t0 and A respectively.

It is clear that the estimation of t0 improves with decreasing order of B-spline func-

tion. Intuitively, this is because reducing the order of a B-spline by one decreases its

support size by 2−J . Thus, the discontinuity is captured more accurately with fewer

number of coefficients. For the estimation of A, however, the opposite is true as the ac-

curacy improves with increasing order of B-spline function since larger support allows a

single coefficient to capture a longer observation of A. Finally, we can see that by lower-
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Figure 5.2: Evaluation of Jt0,A in (5.18) using B-spline scaling functions of order P , where
0 < P ≤ 10. (a) Plots of (Jt0,A)11 against P . (b) Plots of (Jt0,A)22 against P .

ing J , which has the effect of increasing the resolution and the total number of low-pass

coefficients (L = 2−J), we obtain better estimates of both parameters. Interestingly,

this improvement is much less visible for the estimation of A.

5.5 Distortion-Rate Analysis

We now give the derivation of the distortion-rate bound D(R) of our proposed semi-

parametric compression scheme outlined in Algorithm 1. For simplicity, in the analysis

that follows, we assume that the function to be compressed f(t) ∈ L2([0, 1]) is piecewise

smooth with one discontinuity and that each piece is α-Lipschitz with 0 ≤ α < 1. From

our signal model shown in (5.6), it follows that the piecewise polynomial component

fp(t) is in fact a piecewise constant function. We can, therefore, write this simplified

piecewise smooth function f(t) as

f(t) = s(t) + fα(t), (5.22)

where s(t) is the step function as shown in (5.17). In addition, we also assume the

decoder uses L low-pass coefficients to estimate t0 and A. These assumptions, however,

do not change the overall behavior of the distortion-rate bound in terms of the decay

rate.
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The following analysis uses the fact that the decoder described in Algorithm 1 es-

sentially reconstructs s(t) and fα(t) separately. Therefore, the total distortion D can

be written with the following sum:

D = Dα + Ds, (5.23)

where Dα and Ds are the distortion from the reconstruction of the smooth function fα(t)

and the step function s(t) respectively. Since fα(t) is uniformly α-Lipschitz smooth and

given that the wavelet basis has at least bα + 1c vanishing moments, an encoder in

Algorithm 1 whose rate allocation follows the N -term wavelet linear approximation

strategy achieves

Dα(R1) ≤ c7R
−2α
1 , (5.24)

where R1 is the total rate (in bits) allocated for the compression of fα(t). The quan-

tization strategy has previously been discussed in details in Section 5.3.2. For the

coefficients in the cone of influence of discontinuities, it is true that the information of

the wavelet coefficients of fα(t) is fully contained within the first Rj,α least significant

bits. Therefore, any additional distortion has an effect on 〈fp(t), ψj,n(t)〉 only and is in-

cluded in Ds. We can, therefore, conclude that (5.24) holds inside the cone of influence

as well. Our next step then is to derive Ds.

Quantized coefficients representation

The low-pass coefficients of f(t) can be written as follows:

yn = 〈f(t), ϕJ,n(t)〉
(a)
= 〈s(t), ϕJ,n(t)〉+ 〈fα(t), ϕJ,n(t)〉
= ys

n + yα
n ,

where (a) follows from (5.6) and the linearity of the inner product. We can then write

the quantized coefficients as

ȳn = yn + εq
n = ys

n + yα
n + εq

n = ys
n + εs

n, (5.25)
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where εq
n represents the quantization noise, which is assumed to be additive and Gaus-

sian. Thus, we have written the quantized coefficients ȳn as the sum of the coefficients

of the step function ys
n and the noise term εs

n = εq
n + yα

n .

Suppose that a uniform scalar quantizer is used, at high rates, it follows that the

variance σ2
q of the quantization noise {εq

n}0≤n≤L−1 is given by

σ2
q = C2−2

R2
L , (5.26)

where C is a constant and R2 is the total rate allocated to represent {yn}0≤n≤L−1.

Let us also make the following assumptions for the computation of Ds:

• the probability density function (PDF) of yα
n is zero-mean Gaussian 1 with variance

σ2
α,

• both εq
n and yα

n are independent, which implies εs
n is Gaussian distributed with

zero mean and variance σ2
ε , where

σ2
ε =

(
σ2

q + σ2
α

)
, (5.27)

• finally, we assume that the estimators of t0 and A are unbiased minimum variance

estimators that achieve the CRBs.

Distortion from parametric estimation

We can now derive the distortion Ds of the reconstructed step function. The recon-

structed step function ŝ(t) can be written as

ŝ(t) =





0 t < t0 + εt,

A + εA t0 + εt ≤ t ≤ 1.

1The PDF of yα
n and εq

n are arbitrarily assumed to be zero-mean Gaussian as this allows us to use
the analytical expression of the CRB, given by (5.13). The derived distortion-rate bound is then verified
with simulations.
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Here, the errors in the estimation of t0 and A are represented by εt and εA. It then

follows that the average distortion Ds = MSE (s(t)− ŝ(t)) is given by

Ds = E
[∫

(s(t)− ŝ(t))2 dt

]
= E

[∫ t0+|εt|

t0

A2dt +
∫ 1

t0+εt

ε2Adt

]
= E

[
A2|εt|+ cτ ε

2
A − ε2Aεt

]

with a constant 0 ≤ cτ ≤ 1.By assuming that εt and εA are independent, we have that

Ds = E
[
A2|εt|

]
+ E

[
cτ ε

2
A

]− E
[
ε2A

]
E [εt]︸ ︷︷ ︸

=0

= A2E [|εt|] + cτE
[
ε2A

]
,

where E [|εt|] is the mean absolute deviation of εt.

We now denote with σ2
t and σ2

A the variances of εt and εA respectively. Our assump-

tion that the estimators are unbiased minimum variance estimators means that both

σ2
t and σ2

A are given by their respective CRBs shown in (5.19) where, from (5.25), σ2
ε is

given by (5.27). Using Jensen’s inequality for concave functions1, we have that

E[|εt|] = E
[√

(εt − E[εt])
2

]
≤

√
E

[
(εt − E[εt])

2
]

= σt =
√

CRB(t0)

as E[εt] = 0. Clearly, E
[
ε2A

]
= σ2

A = CRB(A). Therefore, the expected distortion can

be written as

Ds ≤ A2σt + σ2
A = A2

√
CRB(t0) + CRB(A).

By using the expression for the CRBs in (5.19) together with the relationship given

in (5.25), we obtain the following distortion-rate bound for the estimation of the step

function:
Ds(R2) ≤ A2σε (Jt0,A)

1
2
11 + σ2

ε (Jt0,A)22

(a)
= c8

(
σ2

q + σ2
α

) 1
2 + c9

(
σ2

q + σ2
α

)

(b)
= c8

(
c102

−2R2
L + σ2

α

) 1
2 + c9

(
c102

−2R2
L + σ2

α

)
,

(5.28)

where (a) and (b) follow from substituting in (5.27) and (5.26) respectively. The ex-

pression for the total distortion-rate bound can now be obtained by substituting (5.24)
1Jensen’s inequality: given a random variable X and a concave function f(x), it follows that

E[f(X)] ≤ f(E[X]).
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and (5.28) into (5.23), which gives

D(R) ≤ c7R
−2α
1 + c8

(
c102

−2R2
L + σ2

α

) 1
2 + c9

(
c102

−2R2
L + σ2

α

)
, (5.29)

where the total rate R is equal to

R = R1 + R2. (5.30)

Bit allocation problem

Given the total rate R, we now need to allocate the bits among R1 and R2 so that

the distortion in (5.29) is minimized. This is a well known constrained optimization

problem, which can be solved using a Lagrange multiplier method. One necessary

condition for the optimal bit allocation is that the derivatives of the distortion D with

respect to R1 and R2 must be equal i.e.

∂D

∂R1
=

∂D

∂R2
. (5.31)

First, let us consider the case where the variance of {yα
n} is negligible i.e. σ2

α ≈ 0.

The distortion-rate function now becomes

D(R) ≤ c7R
−2α
1 + c8

√
c102

−R2
L + c9c102

−2R2
L . (5.32)

By applying the condition given in (5.31) to (5.32) and assuming a high-rate regime,

we have that the bits can be approximately allocated as

R2 ≈ L(2α + 1) log2 R1 + C ′ (5.33)

and the total rate is then given by

R = R1 + L(2α + 1) log2 R1 + C ′ ≈ R1. (5.34)

From the substitution of (5.33) into (5.32), together with the approximation in (5.34),
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we have that the total distortion is

D(R) ≤ c7R
−2α + c11R

−(2α+1) + c12R
−2(2α+1). (5.35)

From (5.35), we can see that both terms c11R
−(2α+1) and c12R

−2(2α+1) represent the

distortion due to the discontinuity, which decay faster than c7R
−2α. Therefore, given

that σ2
α ≈ 0, the distortion-rate curve of our proposed scheme follows D(R) ∼ R−2α at

high R.

If we now consider the case where σ2
α > 0 and assume that c102

−2R2
L < σ2

α, the

distortion given in (5.29) can then be approximated with a Taylor series expansion of

the square root term
(
c102

−2R2
L + σ2

α

) 1
2 to obtain

D(R) ≤ c7R
−2α
1 + c8

(
c102

−2R2
L

2σα
+ σα

)
+ c9

(
c102

−2R2
L + σ2

α

)
. (5.36)

By solving the equal gradient condition in (5.31), where D is approximately given by

(5.36), we obtain the following rate allocation:

R2 =
L

2
(2α + 1) log2 R1 + C ′ (5.37)

with a constant C ′. In the high-rate regime (high R), the total rate R can be approxi-

mated by

R = R1 +
L

2
(2α + 1) log2 R1 + C ′ ≈ R1. (5.38)

Therefore, by substituting (5.37) into (5.36) and using the approximation shown in

(5.38), the overall distortion-rate function of our semi-parametric compression scheme

is

D(R) ≤ c7R
−2α + c11R

−(2α+1) +
(
c8σα + c9σ

2
α

)
. (5.39)

Note that the term c13R
−(2α+1) now represents the distortion caused by the discon-

tinuity, which still decays faster than the distortion from the encoding of the smooth

function in our scheme. The results of this distortion-rate analysis can be summarized

as follows:
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Summary 1 Consider a piecewise smooth function f(t) with a single discontinuity and

two α-Lipschitz pieces, where 0 ≤ α < 1. The semi-parametric compression of f(t) in

Algorithm 1, which employs a linear approximation strategy at the encoder and recon-

structs the piecewise constant component fp(t) and the uniformly smooth component

fα(t) separately, achieves the following distortion-rate function:

D(R) ≤ c7R
−2α + c11R

−(2α+1) + c12R
−2(2α+1)

when the variance of the coefficients of fα(t) is close to zero. Otherwise, the achievable

distortion-rate function is

D(R) ≤ c7R
−2α + c11R

−(2α+1) +
(
c8σα + c9σ

2
α

)
.

Therefore, given that σ2
α is sufficiently small, the proposed scheme can achieve the

dominating decay rate of R−2α for a wide range of rates. Such performance is compa-

rable to that of a compression scheme based on nonlinear approximation as shown in

(5.3). Moreover, the D(R) curve of a compression scheme based on a linear encoder

and a linear decoder is characterized by the much slower decay of R−1 (see (5.2)).

5.6 Constructive Compression Algorithms

5.6.1 FRI-Based Parametric Estimation Algorithm

This section introduces a practical parametric estimation technique inspired by the

recently developed concept of sampling of signals with finite rate of innovation (FRI)

(see Chapter 4). It is easy to see that a piecewise polynomial signal with pieces of

maximum degree bα + 1c (as shown in (5.7)) also belongs to this class of functions as

there are a finite number of discontinuities and each polynomial piece can be described

by at most bαc polynomial coefficients. The sampling scheme for the reconstruction

of piecewise polynomial functions from its low-pass coefficients is given in Chapter 4,

Section 4.5.3.

Consider a set of noisy quantized low-pass coefficients {c̄M,n} of a piecewise poly-
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nomial function fp(t) =
∑1

k=0

∑r=R−1
r=0 ak,r(t − tk)r

+ where t0 = 0, t1 ∈]0, 1[ and

c̄J,n = 〈fp(t), ϕJ,n(t)〉 + εn. Assuming that ϕJ,n(t) reproduces polynomials of maxi-

mum order P ≥ R − 1, we now present a FRI-based parametric estimation algorithm

for the estimation of fp(t):

Algorithm 2 : FRI-based parametric estimation algorithm.

1. Finite difference: the R-order finite difference of {c̄M,n} is obtained by

z̄(R)
n = z̄

(R−1)
n+1 − z̄(R−1)

n with z̄(1)
n = c̄J,n+1 − c̄J,n.

2. Thresholding: in order to reduce the effect of noise, thresholding is
applied as

z̃(R)
n =

{
z̄
(R)
n z̄

(R)
n ≥ zth

0 otherwise.

where zth is the threshold.

3. Moments estimation: the continuous moments of f
(R)
p (t) are estimated

as:
M̃ (R)

p =
∑

n

c′(p)
n z̃(R)

n p = 0, 1...., 2R− 1.

4. Annihilating filter method: the locations tk of the discontinuities are
estimated from {M̃ ′

p}p=0,...,2R−1 with the annihilating filter method as
shown in (4.13).

5. Solving Vandermonde system: the amplitudes of the stream of differ-
entiated Diracs f

(R)
p (t) are estimated by solving the Vandermonde system

of equations of {M̃ (R)
p }p=0,...,2R−1, which is derived from the identity in

(4.20).

6. Integration: the function fp(t) is estimated by integrating the recon-
structed R-th derivative of fp(t).

Note that the above algorithm can also be applied to functions with more than two

pieces by locally reconstructing fp(t) at one discontinuity point at a time. Consequently,

a practical semi-parametric compression scheme with a low-complexity encoder can now

be constructed from Algorithm 1, where the parametric estimation step is implemented

with Algorithm 2. This allows the decoder to approximate the piecewise polynomial

function from the quantized low-pass coefficients {c̄J,n}.
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5.6.2 FRI-based Semi-Parametric Compression with Nonlinear Encoder

We now present an alternative semi-parametric compression scheme that includes a

high-complexity encoder, which uses both a parametric estimation algorithm and a

non-linear approximation based coding strategy, as shown below. Such scheme can be

adopted when the signal of interest does not exactly fit the model described in (5.6) but

is still well approximated by it. Hence, the use of a parametric estimation algorithm

at the encoder exploits the fact that the high-pass coefficients in the cone of influence

can be estimated from the low-pass coefficients. The parametric estimation step can be

considered as an additional step to the existing coding strategy. Simulation results of

the algorithm below can be found in Section 5.7.

Algorithm 3 : Semi-parametric compression with nonlinear encoder.

Encoding

1. Nonlinear encoding: the encoder quantizes the N largest coefficients to
obtain

{c̄J,n}n∈IN
and {d̄j,n}(j,n)∈IN

with IN denoting a set of indices of the N largest coefficients.

2. Parametric estimation: the encoder estimates fp(t) with {c̄J,n}n∈IN

using Algorithm 2 to obtain f̂p(t).

3. Cone of influence prediction: the coefficients in the cone of influence
{dj,n}(j,n)∈Ip

are predicted as follows:

d̂j,n = 〈f̂p(t), ψj,n(t)〉, (j, n) ∈ Ip.

4. Residual calculation: the residual is calculated as

d̃j,n = dj,n − d̂j,n, (j, n) ∈ Ip

5. Encoding mode decision: if
∑

(j,n)∈Ip
|d̃j,n|2 <

∑
(j,n)∈Ip

|dj,n|2, then
the encoder creates a new set of N -largest coefficients, I∗N , from {cJ,n},
{dj,n}(j,n)/∈Ip

and
{

d̃j,n

}
(j,n)∈Ip

, which are re-quantized and transmitted.

Else, the quantized coefficients in step 1 are transmitted.

Decoding
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Synchronized decoding: if parametric estimation is required, the decoder
repeats step 2 and step 3, and reconstructs f(t) as

{c̄J,n}n∈I∗N
,

{
d̄j,n

}
(j,n)∈I∗N−Ip

and
{ ¯̃

dj,n + d̂j,n

}
(j,n)∈Ip

.

Else, a standard procedure is used without the parametric estimation steps.

5.7 Simulation Results

5.7.1 Parametric Estimation Algorithm

Let us start by comparing the variance of an estimator that uses Algorithm 2, which is

based on the concept of sampling of FRI signals, against the CRB described in Section

5.4.2. In this simulation, the coefficients {yn} of the step function s(t) given by (5.17)

are obtained as yn = {〈s(t), ϕJ,n(t)〉} with J = 6, where ϕ(t) is the first order B-spline

scaling function. Gaussian noise with variance σ2
ε is then added to {yn}. The values of

the amplitude A and the location t0 are estimated using Algorithm 2.

Figure 5.3 shows the plot of the MSE of the estimation E
[
(t̄0 − t0)

2
]

in comparison

with the corresponding CRB (see Section 5.4.2) together with the plot of the retrieved

locations. Note that the signal-to-noise ratio (SNR) is calculated as 10 log10

(
var[yn]

σ2
ε

)

where var [yn] is the variance of {yn}. We can see that our proposed algorithm exhibits

the same decay as the CRB when the SNR reaches approximately 15dB even though

the estimator does not achieve the lower bound. The plots for the estimation of the

amplitude A are shown in Figure 5.4. Note that the MSE in the estimation of A follows

the CRB even at low SNR.

5.7.2 Semi-Parametric Compression Algorithm

In this section, we present the simulation results of the semi-parametric compression

scheme described in Algorithm 1 where the parametric estimation step is implemented

with Algorithm 2. The simulation results of the simplified signal model in (5.22) are

presented first, where the function f(t), t ∈ [0, 1[, is made of a step function and a

smooth α-Lipschitz function with α = 1. A ten-level wavelet transform with a first order

B-spline scaling function was used to decompose f(t). Note that in all our simulation,
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Figure 5.3: Error in the estimation of t0. (a) MSE in the estimation of t0 using Algorithm
2 in comparison with the corresponding CRB. (b) retrieved locations t̄0 using Algorithm 2 and
the corresponding CRB.

the function f(t) is generated by adding the piecewise polynomial component fp(t)

directly to the smooth component fα(t). The smooth function fα(t) is generated in the

wavelet domain as follows: first, a set of coefficients {dJ,n} at the coarsest decomposition

level is generated with a random number generator; the rest of the coefficients at j-th

decomposition level are then created by scaling the maximum value of the random

number generator as dj,n ∼ A2j(α+1/2) where A = maxn |dJ,n|.
Figure 5.5 shows the distortion-rate plot of our proposed semi-parametric compres-

sion scheme in comparison with the D(R) curves of a linear approximation-based scheme

and a non-linear approximation-based scheme, which is a 1-D version of the SPIHT al-

gorithm [43]. The tree structure of the SPIHT algorithm can simply be adjusted to

work with 1-D signals. Our scheme achieves a decay rate of R−2α = R−2, which is in

line with our analysis of Section 5.5, and the performance is comparable with SPIHT.

In contrast, the distortion of a linear approximation based scheme decays as R−1. The

reconstructed functions from the two compression schemes are illustrated in Figure 5.6.

Note that, in this simulation, the term σ2
α is insignificant.

Let us now consider the case where σ2
α is not negligible and its effect is visible in

the D(R) curve. Figure 5.7 shows the D(R) plots of our semi-parametric compression

scheme for a piecewise smooth function, which consists of a step function and a uniformly

smooth part with α = 0.95. The variance σ2
α of cJ,n = 〈fα(t), ϕJ,n(t)〉 causes the
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Figure 5.4: Error in the estimation of A. (a) MSE in the estimation of A using Algorithm 2
in comparison with the corresponding CRB. (b) retrieved amplitudes Ā using Algorithm 2 and
the corresponding CRB.
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Figure 5.5: Distortion-rate plots (log scale) for the compression of piecewise smooth function
with one discontinuity and α = 1. The proposed semi-parametric compression scheme achieves
the decay rate of R−2α whereas the distortion of a linear approximation based scheme decayed
as R−1.

behavior of the D(R) curve to change from D(R) ∼ R−2α to

D(R) ∼ C1σα + C2σ
2
α (5.40)

after a certain rate point. The value of C1 and C2 in (5.40) depend largely on the per-

formance of the parametric estimation algorithm. Thus, a better parametric estimation

algorithm allows a wider range of R where D(R) ∼ R−2α.

The simulation results for the compression of a piecewise smooth function f(t),

t ∈ [0, 1[ that was generated with the signal model described by (5.6) are given next.

Here, fp(t) is a piecewise quadratic function with three pieces and fα(t) has the degree
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Figure 5.6: Plots of the original signal, the reconstructed signals with a linear approximation
based scheme and a semi-parametric scheme. The original function is piecewise smooth with
one discontinuity and α = 1
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Figure 5.7: Distortion-rate plots (log scale) for the compression of piecewise smooth function
with one discontinuity and α = 0.95. The variance σ2

α of cJ,n = 〈fα(t), ϕJ,n(t)〉 causes the
behavior of the D(R) curve to change from D(R) ∼ R−2α to D(R) ∼ Cσ2

α after a certain rate
point.

of smoothness set to α = 2.5. We used a six-level wavelet decomposition with a second

order B-spline scaling function. The parametric estimation for the two discontinuities

in the function are done locally. The D(R) curve of our proposed scheme are shown

together with the plots from a pure linear approximation-based scheme and SPIHT in

Figure 5.8. The proposed scheme also achieves a decay rate of R−2α = R−5 in this

case with a comparable performance to that of the modified SPIHT algorithm. The

reconstructed functions are shown in Figure 5.9. The term σ2
α is also insignificant in

this simulation.

In summary, the simulation results show that the proposed semi-parametric com-

pression scheme is able to achieve the same decay in the D(R) curve as a compression

scheme that employs a non-linear approximation strategy for a wide range of rates.
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Figure 5.8: Distortion-rate plots (log scale) for the compression of piecewise smooth func-
tion with two discontinuities and α = 2.5. The proposed semi-parametric compression scheme
achieves the decay rate of R−2α.
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Figure 5.9: Plots of the original signal, the reconstructed signals with a linear approximation
based scheme and a semi-parametric scheme. The original function is piecewise smooth with
two discontinuities and α = 2.5.

5.7.3 Semi-Parametric Compression Algorithm with Nonlinear Encoder

The simulation results of a semi-parametric compression scheme with high-complexity,

nonlinear encoder described in Algorithm 3 are presented in this section. In our simu-

lation, we use the 1-D version of SPIHT discussed in Section 5.7.2 to perform nonlinear

encoding. A piecewise smooth function f(t), t ∈ [0, 1[ was then generated with a

piecewise quadratic function with four pieces and a smooth α-Lipschitz function with

α = 2.75. As with the previous simulation, we also use a second order B-spline scal-

ing function with six decomposition levels and the parametric estimation for the three

discontinuities are done locally. Figure 5.10 shows the PSNR plots of the proposed

semi-parametric compression scheme in comparison with a pure SPIHT encoder. At

high rates, our combined scheme achieves a gain of approximately 1-3 dB in the PSNR
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Figure 5.10: PSNR plots of semi-parametric compression algorithm with nonlinear encoder;
at high rates, the combined semi-parametric compression with 1-D SPIHT achieved a gain of
approximately 1-3 dB.

over a scheme that uses only the SPIHT encoder.

5.8 Conclusion

This chapter introduces a new semi-parametric compression algorithm for piecewise

smooth functions. We take advantage of the fact that a piecewise smooth function can

be decomposed into two components: a uniformly smooth function and a piecewise poly-

nomial function. The encoder of the proposed algorithm allocates the rate using a linear

approximation strategy. The decoding process is instead nonlinear as it reconstructs

the piecewise polynomial component of the function with parametric estimation. This

allows the decoder to predict the wavelet coefficients in the cone of influence of the dis-

continuities. This new structure reflects the shift of the computational complexity from

the encoder to the decoder. We then showed that the distortion-rate function D(R) of

our proposed scheme achieves a decay of R−2α at high rates, which is comparable to

that of a optimal compression scheme based on nonlinear approximation.

In addition, we proposed a practical method based on FRI theory to estimate the

piecewise smooth function from the scaling coefficients of the wavelet decomposition.

Another practical semi-parametric compression scheme that employs a nonlinear en-

coder was also presented. Finally, our simulation results confirm that the proposed
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scheme achieves the D(R) function with a decay of R−2α at high rates. The simulation

of a semi-parametric nonlinear compression also shows that the additional parametric

estimation step can improve the overall performance of existing nonlinear compression

scheme.
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CHAPTER 6
Distributed Semi-Parametric

Compression of Piecewise Smooth

Functions

6.1 Introduction

Distributed transform coding of correlated sources has gained much research in-

terest in recent years (see Chapter 2 for a review). A distributed coding scenario

requires two or more sources to be independently encoded but jointly decoded. In con-

trast to the centralized case, joint decoding means that the computational complexity is

shifted from the encoder to the decoder. In order to gain new insights into distributed

transform coding and its applications, researchers have investigated a number of dif-

ferent setups (see [24, 18, 20, 28, 15]) such as, for example, the distributed KLT for

Gaussian sources [20]. With non-Gaussian sources, practical distributed compression

schemes change the way transform coefficients are quantized by applying channel cod-

ing techniques to the existing centralized transform coding structure [24, 18, 28]. In

such cases, more attention is paid to the statistical modeling of the transform coeffi-

cients rather than the modeling of the source and the resulting distributed compression

schemes are more heuristic in nature.

In this chapter, we investigate the new problem of distributed transform coding of
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piecewise smooth functions. This class of functions is commonly used to model, for

example, a scan line of an image [66, 11]. Our aim here is to provide precise answers to

the following questions: what compression strategies would be suitable in this new sce-

nario; in an ideal case, what are the differences in distortion-rate performance between

the distributed, joint and independent compression algorithms. The centralized semi-

parametric compression presented in Chapter 5 has already given us some new insights

into the distortion-rate performance of a wavelet-based scheme whose computational

complexity is shifted from the encoder to the decoder. It was shown that the proposed

scheme can still achieve the same decay in the D(R) function as that of a conventional

scheme.

In the next section, we present our model of the signal disparity. The distributed

semi-parametric compression strategies based on the disparity models are then proposed

in Section 6.3. We then conduct the distortion-rate analysis of the proposed scheme in

Section 6.4. Section 6.5 shows the simulation results and, finally, conclusions are drawn

in Section 6.6.

6.2 Signal and Disparity Models

In this chapter, we focus on the distributed compression scenario where N piecewise

smooth signals are independently encoded but are decoded jointly as depicted in Figure

6.1. We denote a set of N functions with {fi(t)}1≤i≤N , where the subscript i indicates

the signal that is observed by Encoder i. Here, we also use the same model of piecewise

smooth functions given in (5.6). Hence, each piecewise smooth signal fi(t) ∈ L2([0, 1])

can be written as

fi(t) = fip(t) + fiα(t), i = 1, ..., N, (6.1)

where fip(t) and fiα(t) denote a piecewise polynomial function with pieces of maximum

degree bαc and a uniformly smooth α-Lipschitz function.

In the analysis that follows in this chapter, we consider a disparity model where

the main difference between the two observed signals, fi(t) and fj(t), is described by a
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Figure 6.1: Distributed compression scenario. A set of N functions {fi(t)}1≤i≤N are individ-
ually encoded but are jointly decoded.

global shift (or a translation). This disparity model can, therefore, be defined as

fi(t) = fj(t− τij) + εijα(t), i 6= j, i, j ∈ (1, ..., N) and |τij | < 1. (6.2)

The term εijα(t) represents the prediction error (or the residual), where it is assumed

for simplicity that εijα(t) is uniformly α-Lipschitz. The construction of this model is

inspired by applications such as the block-based prediction found in many video com-

pression algorithms, where a set of translation vectors are estimated and transmitted

along with the residual. Another example is a set of images captured by an array of

cameras, where the disparity between each image is well approximated by a shift pa-

rameter. Our aim is then to devise a distributed compression strategy for this disparity

model. Figure 6.2 shows an example of the scan lines taken from stereo images and the

corresponding prediction error. Note that some regions of the residual shown in Figure

6.2 (c) are not smooth because the image contains texture, which is not well captured

by this simplified signal model.

6.3 Distributed Semi-Parametric Compression Strategies

Let us now consider a distributed compression strategy for the signal model in (6.2).

For simplicity, we write each function fi(t) as

fi(t) = f1(t− τi) + εiα(t), i = 2, ..., N, (6.3)

where εiα(t) is uniformly α-Lipschitz smooth. Moreover, we assume that a reconstructed

version of f1(t) is available at the decoder by means of conventional wavelet nonlinear
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Figure 6.2: Examples of the scan lines taken from stereo images shown in (a) and (b). (c)
A scan line of the first image f1(x, y′); (d) a scan line from the second image f2(x, y′); (e) the
prediction error given by f2(x, y′)− f1(x− τx, y′), where τx denotes the shift parameter.

approximation-based compression strategy. Given that the disparity model between

fi(t) and fj(t) is known a priori, fi(t) can be reconstructed by first estimating the shift

parameter τi and then the residual εiα(t) as follows:

f̂i(t) = f̂1(t− τ̂i) + ε̂iα(t),

where f̂i(t) and ε̂iα(t) denote the reconstructed versions, and τ̂i is the estimated shift

parameter. This setup is depicted in Figure 6.3. One of the challenges here is that the

Encoder 2 to N have no access to f1(t) and, hence, the prediction error εiα(t) cannot be

directly calculated and transmitted. Our goal is then to devise a suitable compression

strategy for Encoder 2 to N .

From the piecewise smooth function model in (6.1), let us define the locations of

the discontinuities in fip(t) with {tik}1≤k≤K such that tik = t1k
− τi. Therefore, by
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Figure 6.3: Distributed compression problem setup using the disparity-by-translation model
with prediction error. Each function is piecewise smooth and fi(t) = f1(t − τi) + εiα

(t), i =
2, ..., N .

retrieving {tik}1≤k≤K , the shift parameters τi can be estimated by taking the average:

τ̂i =
1
K

K∑

k=1

(
t̂1k

− t̂ik
)
, i = 2, ..., N. (6.4)

In the following analysis, we will assume that the decoder is able to retrieve the locations

{t1k
}1≤k≤K . Hence, the problem of estimating τi becomes the problem of estimating the

locations {tik}1≤k≤K , i = 2, ..., N . In addition, we will assume that the decoder only

uses L low-pass coefficients ciJ,n = 〈fi(t), ϕJ,n(t)〉, n = 0, ..., L − 1, of fi(t) to estimate

{tik}1≤k≤K .

Since the reconstructed version of f1(t) is available at the decoder, the prediction of

fi(t) can be formed by f̃i(t) = f̂1(t− τ̂i). Assuming that the range of the amplitude of

εiα(t) can be estimated a priori, we can adopt a similar quantization strategy as the one

discussed in the previous chapter, where the encoder only transmits the required least

significant bits to the decoder. We, therefore, propose the following semi-parametric

distributed compression algorithm:

Algorithm 4 A distributed semi-parametric compression scheme.

Encoding and Decoding of f1(t)

1. Nonlinear approximation-based compression: f1(t) is encoded and
decoded with a conventional wavelet nonlinear approximation-based com-
pression scheme;

2. Extracting locations of discontinuities: the locations {t1k
}k=0,..,K

are extracted from f̂1(t).

Encoding of fi(t), i = 2, ..., N
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1. N-term linear approximation: the encoder approximates fi(t) as shown
in (5.9);

2. Quantization: the coefficients {ciJ,n} and {dij,n}J−JN+1≤j≤J are quan-
tized using a linear approximation-based quantization strategy as discussed
in Section 5.3.2 to obtain {c̄iJ,n} and {d̄ij,n}J−JN+1≤j≤J . For {d̄ij,n}, only
the required LSBs are transmitted. The analysis that determines the num-
ber of required LSBs will be given in the next section.

Joint Decoding of fi(t), i = 2, ..., N

1. Parametric estimation: the decoder estimates the locations {tik}k=0,..,K

from the L quantized low-pass coefficients {c̄iJ,n} and the shift parameter
τi is calculated using (6.4);

2. Prediction by translation: a predicted version of fi(t) is formed by
f̃i(t) = f̂1(t− τ̂) and the coefficients

{
d̃ij,n =

〈
f̃i(t), ψj,n(t)

〉}
J−JN+1≤j≤J

are obtained;

3. Error correction decoding: the error correction decoding technique dis-
cussed in Section 5.3.2 can also be applied at this stage where the received
LSBs of quantized coefficients {d̄ij,n}J−JN+1≤j≤J are used together with
the predicted coefficients {d̃ij,n}J−JN+1≤j≤J to decode dij,n. The decoded
coefficient is denoted with d̂ij,n;

4. Final reconstruction: the signal fi(t) is reconstructed by taking the
inverse wavelet transform of the following set of coefficients:

{c̄iJ,n}, {d̂ij,n}J−JN+1≤j≤J and {d̃ij,n}−∞<j≤J−JN
.

Note that the encoding strategy of fi(t) is based on the proposed compression scheme

in Algorithm 1 in the previous chapter.

6.4 Distortion-Rate Analysis

This section presents the distortion-rate analysis of the proposed distributed compres-

sion algorithm. As with the centralized case, we consider a simplified model of the

piecewise smooth signal, which consists of a step function and a uniformly smooth α-

Lipschitz function. For the sake of clarity in the following analysis, we will first assume
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that there are only two functions f1(t) and f2(t) where

fi(t) = si(t) + fiα(t) with si(t) =





0 t < ti,

A ti ≤ t < 1
for i = 1, 2.

The generalization of the analysis to the case of N signals will be given at the end of

this section.

6.4.1 Disparity by Translation

Let us begin by assuming that there is no prediction error (6.2) i.e. ε2α(t) = 0. Hence,

the function f2(t) can be written as

f2(t) = f1(t− τ) = s1(t− τ) + f1α(t− τ).

We have that the total distortion is the sum of two distortion terms:

D = D1 + D2, (6.5)

where D1 and D2 are the distortion due to the reconstruction of f1(t) and f2(t) respec-

tively. Since a conventional wavelet nonlinear approximation-based compression scheme

is used to encode f1(t) in the proposed algorithm, from Theorem 11, D1 is given by

D1(R1) ≤ c1R
−2α
1 , (6.6)

where R1 is the total number of bits allocated to compress f1(t). Our next task is then

to derive D2.

Since the decoder reconstructs f2(t) by estimating the shift parameter τ = t1 − t2,

the reconstructed function can be written as

f̂2(t) = f̂1(t− τ̂) = ŝ1(t− τ̂) + f̂1α(t− τ̂),

where τ̂ is the estimated shift parameter. Let εf1(t) denote the compression error of
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f1(t): f1(t) = f̂1(t) + εf1(t). It then follows that D2, which is measured as the MSE, is

given by

D2 = E
[∫ (

f2(t)− f̂2(t)
)2

dt

]

= E
[∫ (

f1(t− τ)− f̂1(t− τ̂)
)2

dt

]

= E
[∫

(f1(t− τ)− (f1(t− τ̂) + εf1(t− τ̂)))2 dt
]

= E
[∫

(s1(t− τ)− s1(t− τ̂))2 dt
]

+E
[∫

(f1α(t− τ)− f1α(t− τ̂))2 dt
]

+E
[∫

εf1(t− τ̂)2dt
]

+2E
[∫

(f1α(t− τ)− f1α(t− τ̂)) (s1(t− τ)− s1(t− τ̂)) dt
]

+2E
[∫

(f1α(t− τ)− f1α(t− τ̂)) εf1(t− τ̂)dt
]

+2E
[∫

(s1(t− τ)− s1(t− τ̂)) εf1(t− τ̂)dt
]
.

Let ετ denote an error in the estimation of τ i.e. ετ = τ − τ̂ . Given that ετ is small, the

above expression can be simplified with the following approximation:

E
[∫

(s1(t− τ)− s1(t− τ̂))2 dt
]
À E

[∫
(f1α(t− τ)− f1α(t− τ̂))2 dt

]

and

E
[∫

(f1α(t− τ)− f1α(t− τ̂)) (s1(t− τ)− s1(t− τ̂)) dt
] ≈ 0.

In addition, if R1 is high, we further assume that

E
[∫

(f1α(t− τ)− f1α(t− τ̂)) εf1(t− τ̂)dt
] ≈ 0

and

E
[∫

(s1(t− τ)− s1(t− τ̂)) εf1(t− τ̂)dt
] ≈ 0.

The distortion D2 can, therefore, be approximated as

D2 ≈ E
[∫

(s1(t− τ)− s1(t− τ̂))2 dt

]
+ E

[∫
ε2f1

(t− τ̂)dt

]
= A2E [|ετ |] + D1.

It is not surprising that the term D1 appears in the above expression as the algorithm

uses f̂1(t) to form the prediction of f2(t). Furthermore, given that |A| > sup
t∈[0,1]

|f1α(t)|,
it is clear that the distortion due to the reconstruction of the step function dominates
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in D2.

Given that the location t1 can be retrieved by the decoder, the error in the parametric

estimation then becomes

ετ = t2 − t̂2 = εt2 .

By assuming that the estimator of t2 is minimum-variance unbiased estimator, from the

analysis of the centralized case in Chapter 5, this leads to the distortion of the form:

D2 ≈ A2E [|εt2 |] + D1 = A2
√

CRB(t2) + D1,

where CRB(t2) is the Cramér-Rao lower bound in the estimation of t2. Using the same

set of assumptions as our analysis in Chapter 5, it follows that

√
CRB(t2) = c2

(
σ2

q + σ2
α

) 1
2 with σ2

q = C2−
2R2

L .

Here, σ2
q is the variance of the quantization noise and σ2

α represents the variance of the

term 〈f2α(t), ϕJ,n(t)〉. Hence, we have that

D2 ≈ c2

(
c32−

2R2
L + σ2

α

) 1
2 + D1. (6.7)

Therefore, the total distortion can be approximated by substituting (6.6) and (6.7) into

(6.5), which gives

D ≈ 2c1R
−2α
1 + c2

(
c32−

2R2
L + σ2

α

) 1
2
. (6.8)

Assuming a high rate regime, where c32
−2R2

L < σ2
α, the distortion given in (6.8) can

be approximated with a Taylor series expansion of the square root function as follows:

D(R) ≈ 2c1R
−2α
1 +

c2c3

2σα
2
−2R2

L + c2σα. (6.9)

By solving the Lagrange multiplier method, we have that the optimal rate allocation

for R2 is

R2 =
L

2
(2α + 1) log2 R1 + C (6.10)
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with a constant C. The total rate R is thus given by

R = R1 +
L

2
(2α + 1) log2 R1 + C ≈ R1. (6.11)

at high R1. Therefore, by substituting (6.10) into (6.9) together with the approximation

in (6.11), the overall D(R) function of the proposed scheme is as follows:

D(R) ≤ 2c1R
−2α + c4R

−(2α+1) + c2σα. (6.12)

If the term σα is sufficiently small, then D(R) decays as R−2α for a wide range of rates.

Finally, we note here that even though Encoder 2 employs a linear compression strategy,

the overall D(R) function has a decay characteristic of a nonlinear scheme for a wide

range of rates.

6.4.2 Disparity by Translation with Prediction Error

We can now add the prediction error εα(t) to the distortion-rate analysis or

f2(t) = f1(t− τ) + εα(t) = s1(t− τ) + f1α(t− τ) + εα(t).

It follows that the total distortion of the proposed scheme is now given by

D = D1 + D2 = D1 + Dτ + Dε,

where Dτ is due to the reconstruction of the prediction f̃2(t) = f̂1(t− τ̂) and Dε is due

to the reconstruction of the prediction error. Our next step is to determine Dε.

Linear approximation of the prediction error

Since the function εα(t) is uniformly α-Lipschitz, the wavelet linear approximation based

compression gives the following distortion:

Dε(Rε) = βD1(Rε) = βc1R
−2α
ε with β ≥ 0, (6.13)
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where Rε is the total rates allocated to represent εα(t). The constant β is used to relate

the energy of the prediction error to f1(t). In terms of the wavelet coefficients, (6.13)

implies

max
j,n∈Z

|dεj,n | ≤
√

β max
j,n∈Z

|d1j,n |, (6.14)

where {dεj,n} and {d1j,n} denote the wavelet coefficients of εα(t) and f1(t) respectively.

If we are to compress εα(t) directly, a linear approximation-based compression would

achieve the D(R) given in (6.13). Since dεj,n decays as 2j(α+1/2) across scales, from

(6.14), the linear approximation based compression strategy that keeps the coefficients

in decomposition level J − JN + 1 ≤ j ≤ J sets the quantizer step size to

∆ε ≤
√

β max
n∈Z

(|d1J,n |
)
2−JN (α+1/2). (6.15)

Here, we assume that maxn∈Z
(|d1J,n |

) ≈ maxn∈Z
(|d2J,n |

)
. Let Rε(j) be the number of

bits per coefficient required to directly quantize dεj,n , it follows that

Rε(j) =




log2



√

β sup
n∈Z

(
|d2J,n

|
)
2−(J−j)(α+1/2)

∆ε







+ 1

= d(JN − J + j)(α + 1/2)e+ 1, with JN > 0, J < 0 and j ≤ J.

(6.16)

Note that one extra bit has been included for the sign.

In our setup, however, Encoder 2 does not have access to εα(t). Intuitively, one

can still quantize the coefficients of f2(t) with a step size ∆ε as given in (6.15). If we

assume that the best possible prediction, which is f1(t− τ), is available at the decoder,

then the information of the wavelet coefficients of εα(t) is fully contained within the

first Rε(j) LSBs. Thus, with the same argument as the one given in Section 5.5 of the

previous chapter, the quantized coefficients of the prediction error can be retrieved from

the first Rε(j) LSBs of each coefficient and any additional distortion is due to the error

in the prediction. In the case where the best possible prediction can be obtained, the

compression performance is then equivalent to that of the joint encoding case where

εα(t) is accessible.

From (6.13), it is clear that β is the key parameter that relates the prediction error
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εα(t) to the side information f1(t). In reality, however, β has to be estimated prior to

compression as εα(t) is not accessible. We denote with β∗, the value of β estimated by

Encoder 2. Thus, the actual quantizer step size used by Encoder 2 is given by

∆∗
ε =

√
β∗ sup

n∈Z

(|d2J,n |
)
2−JN (α+1/2). (6.17)

Let us consider an ideal case where the best possible prediction of f2(t), which is given

by f1(t − τ), is available at the decoder. If β∗ = β, the proposed scheme achieves the

D(R) equivalent to that of a joint encoding scheme. Instead, if β∗ > β, then the step size

∆∗
ε will be too large and the added redundancy will result in an inferior compression

performance. On the other hand, if the quality of the prediction f̃2(t) = f̂1(t − τ̂)

deteriorates, a larger β∗ allows a wider range of error to be recovered. Hence, the value of

β∗ represents a trade-off between the compression performance and the robustness of the

distributed compression algorithm. Lastly, if β∗ < β then the encoder underestimates

the energy of the prediction error, which means that not enough bits will be transmitted

for εα(t) to be correctly decoded. In the analysis that follows, we will assume that

β∗ ≥ β.

Total distortion with prediction error

With the above quantization strategy, following from the discussion in Section 5.5 of

Chapter 5, we assume that Dε decays as

Dε ≤ β∗c1R
−2α
2ε

with a linear approximation-based compression strategy both inside and outside the

cone of influence of discontinuities. This is because the encoder transmits enough bits

to carry the information of εα(t) and any additional error is due to the parametric

estimation of the prediction f̃2(t). Here, R2ε denotes the total number of bits allocated

to represent εα(t). Note also that we have used the estimated β∗ instead of β. From the

analysis in the previous setup, where the prediction error was absent, it directly follows
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from (6.7) and (6.9) that Dτ is given by

Dτ (R2τ ) ≈ c1R
−2α
1 +

c2c3

2σα
2
−2R2τ

L + c2σα,

where R2τ is the number of bits allocated to the L low-pass coefficients, which are used

to estimate f̃2(t).

We can now express the total distortion as follows:

D(R) ≤ 2c1R
−2α
1 +

c2c3

2σα
2
−2R2τ

L + c2σα + β∗c1R
−2α
2ε

(6.18)

with R = R1 + R2τ + R2ε . The optimal bit allocation can then be obtained using the

Lagrange multiplier method, which gives

R2τ = L
2 (2α + 1) log2 R1 + C,

R2ε =
(

β∗
2

) 1
(2α+1)

R1.
(6.19)

The total rate R can then be approximated as

R = R1 + L
2 (2α + 1) log2 R1 + C +

(
β∗
2

) 1
(2α+1)

R1

≈
(

1 +
(

β∗
2

) 1
(2α+1)

)
R1

(6.20)

at high R. By substituting (6.19) and (6.20) into (6.18), we have that the D(R) curve

for the proposed distributed semi-parametric compression is given by

D(R) ≤
(

1 +
(

β∗

2

) 1
(2α+1)

)2α+1 (
2c1R

−2α + c4R
−(2α+1)

)
+ c2σα. (6.21)

If we assume that R is high and that the term σα is negligible, then the distortion-rate

behavior at high rates follows

D(R) ≤ 2

(
1 +

(
β∗

2

) 1
2α+1

)2α+1

c1R
−2α. (6.22)
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6.4.3 Comparison with Independent and Joint Compression

Independent compression

Let us now compare the distortion-rate performance of the proposed compression scheme

with a compression scheme that encodes and decodes f1(t) and f2(t) independently using

a wavelet nonlinear approximation-based strategy. We denote the distortion-rate curve

of such independent-encoder scheme with Dind(R), which can be written as

Dind(R) ≤ c1R
−2α
1 + c1R

−2α
2 with R = R1 + R2.

Clearly, the optimal rate allocation is given by R1 = R2. This gives the following

distortion-rate function:

Dind(R) ≤ 2c1

(
R

2

)−2α

= 22α+1c1R
−2α. (6.23)

In comparison to the proposed distributed scheme, assuming that σα is sufficiently small,

the distortion of the independent scheme is higher by a factor of

Dind(R)
D(R)

=
22α

(
1 +

(
β∗
2

) 1
2α+1

)2α+1 . (6.24)

Figure 6.4 (a) shows the plots of (6.24). Interestingly, the gain in the compression

performance increases with the smoothness of the function. The log-log plot in Figure

6.4 (b) reveals that the performance gain over independent coding scheme exhibits a

super-exponential decay with increasing β∗.

Centralized compression

As a benchmark for the best-case scenario, the D(R) of the proposed scheme is gauged

against that of a compression scheme with a joint encoder and a joint decoder. In this

setting, the encoder has access to both functions f1(t) and f2(t). That is, the encoder

knows the true value of β. This allows the residual function εα(t) to be encoded with

optimal bit allocation and transmitted directly to the decoder along with the quantized
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Figure 6.4: Plots of the function in (6.24). The gain in compression performance over an
independent scheme increases with the degree of smoothness of the function. From the log-
log plot in (b), we can see that the performance gain exhibits a super-exponential decay with
increasing β∗.

shift parameter τ . The decoder can then reconstruct f2(t) as f̂2(t) = f̄1(t− τ̄) + ε̄α(t).

Let εq
τ be the quantization error of τ , assuming that a uniform quantizer is used, the

distortion in the reconstruction of the prediction f̃2(t) = f1(t− τ) can be approximated

by

Dτ (Rτ ) ≈ A2E[|εq
τ |] ≤

A2

√
12

2−Rτ ,

where we have used the Jensen’s inequality and Rτ denotes the number of bits allocated

to quantize τ . By following a similar analysis as shown in the distributed case, the total

distortion can be shown to be

Djoint(R) ≤ 2c1R
−2α
1 +

A2

√
12

2−Rτ + βc1R
−2α
ε ,

where Rε is the total bits allocated to the compression of εα(t). It then follows that the

optimal bit allocation is given by

Rτ = (2α + 1) log2 R1 + C,

Rε =
(

β
2

) 1
(2α+1)

R1.
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Figure 6.5: The plot of D(R)
Djoint(R) against β∗

β . The redundancy increases linearly with the ratio
β∗

β .

In a high-rate regime, we can approximate the total rate R with

R = R1 + Rτ + Rε ≈
(

1 +
(

β

2

) 1
(2α+1)

)
R1.

It then follows that the joint encoding scheme achieves the following D(R) at high rates:

D(R) ≤
(

1 +
(

β

2

) 1
2α+1

)2α+1 (
2c1R

−2α + c9R
−(2α+1)

)
, (6.25)

which has the same form as the distributed case given in (6.22). The only difference is

in the values of β∗ and β. This means that the closer the value of β∗ can be to the actual

β (i.e. the better the quality of the prediction of f2(t)), the closer the performance of

the distributed compression scheme is to that of an ideal joint encoding scenario. The

plot in Figure 6.5 indicates that the redundancy measured as D(R)
Djoint(R) increases linearly

as β∗
β increases.

6.4.4 Extension to N Signals

We now extend the distortion-rate analysis for the setup in (6.3) to N signals. It is

assumed here that σiα = σα for i = 2, ..., N . In addition, we assume that Encoder 2 to

N use the same β∗. From (6.18), it follows that the total distortion is now given by

D(R) ≤ Nc1R
−2α
1 +

c2c3

2σα

N∑

i=2

2
−2Riτ

L + (N − 1)c2σα + β∗c1

N∑

i=2

R−2α
iε

,
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which gives the following optimal rate allocation:

Riτ =
L

2
(2α + 1) log2 R1 + C and Riε =

(
β∗

N

) 1
2α+1

R1, i = 2, ..., N.

The total rate can then be approximated as R ≈
(

1 + (N − 1)
(

β∗
N

) 1
2α+1

)
R1. Finally,

the resulting D(R) bound obtained is given as follows:

D(R) ≤
(

1 + (N − 1)
(

β∗

N

) 1
(2α+1)

)2α+1 (
Nc1R

−2α + (N − 1)c10R
−(2α+1)

)
+(N−1)c2σα.

Similarly, one can easily show that the independent compression scheme for N signals

achieves

Dind(R) = 2c1N
2αR−2α.

The same approach can be applied to a scheme with a joint encoder and the correspond-

ing D(R) bound is given by

Djoint(R) ≤
(

1 + (N − 1)
(

β

N

) 1
(2α+1)

)2α+1 (
Nc1R

−2α + (N − 1)c11R
−(2α+1)

)
.

We summarize the findings of this section as follows:

Summary 2 Consider a set of N piecewise smooth functions, {fi(t)}1≤i≤N ∈ L2([0, 1]),

where each consists of a step function and a uniformly α-Lipschitz function and fi(t) =

f1(t − τ) + εiα(t). The function εiα(t) is uniformly α-Lipschitz. Given that the D(R)

function corresponding to a linear compression of εiα(t) follows Diε(Riε) = βD1(Riε), at

high rates, the semi-parametric distributed compression scheme presented in Algorithm

4 achieves

D(R) ≤
(

1 + (N − 1)
(

β∗

N

) 1
(2α+1)

)2α+1 (
Nc1R

−2α + (N − 1)c10R
−(2α+1)

)
+(N−1)c2σα.

where β∗ is the estimate of β. At high rates, provided that σα is sufficiently small, if

β∗ = β then the achieved D(R) performance is comparable to that of a joint encoding
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scheme and is better by a factor of

2N2α−1

(
1 + (N − 1)

(
β∗
N

) 1
2α+1

)2α+1

when compared to an independent compression scheme.

6.5 Simulation results

The simulation results of the proposed distributed semi-parametric compression schemes

are presented in this section. We use a 1-D SPIHT [43] as discussed in Chapter 5 to

perform the nonlinear compression of f1(t). Two piecewise smooth functions, f1(t) and

f2(t), are generated, where f2(t) = f1(t − τ) and t ∈ [0, 1[. Both functions contain

two smooth pieces with α = 2.6. In the simulations, FRI-based algorithms presented in

Chapter 5 are used to perform the parametric estimation of the location t2. The wavelet

transform uses a second order B-spline scaling function to decompose the signals up to

six decomposition levels. Note that the term σα is negligible in our simulations.

In the first simulation, the disparity between the two functions is completely de-

scribed by the shift τ with no prediction error as shown in Figure 6.6. Figure 6.7(a)

shows the D(R) plots of the proposed scheme of Algorithm 4. Here, only the low-pass co-

efficients were encoded. The gain in performance over the independent encoding scheme

is approximately Dind(R)
D(R) ≈ 28 and the predicted value is 22α = 36.76. The plots in deci-

bel are shown in Figure 6.7 (b). At high rates, our scheme outperforms the independent

scheme by approximately 15 dB. The gain predicted is 10 log10

(
22α

)
= 15.65dB. In

comparison to the joint encoding scheme, the compression performance of the proposed

scheme is outperformed by approximately 2 dB.

The second simulation includes the prediction error into the setup, where a smooth

function εα(t) is added to f2(t) such that supt∈[0,1[ |εα(t)| ≤ supt∈[0,1[

√
β|f1(t)| with

β = 0.04. Encoder 2 uses β∗ = 0.06 in our simulation. Note that the distributed

compression scheme requires β∗ ≥ β in order to decode the error correctly. The plots

of the two functions f1(t) and f2(t) are shown in Figure 6.8. Figure 6.9(a) shows D(R)
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Figure 6.6: Plots of the two original piecewise smooth functions f1(t) and f2(t) used in the
first simulation, where f2(t) = f1(t− τ).

plots of the proposed scheme of Algorithm 4. The distortion of the proposed distributed

scheme is approximately 2.33 times lower when compared to the independent coding

scheme, which is in line with the predicted gain of 2.26 times given by (6.24). The

result also shows that the achieved distortion is very close to that of the joint encoding

scheme. This is because β∗ is well calibrated to be close to β. Figure 6.9 (b) shows

the same plots in decibel scale. At high rates, our scheme outperforms the independent

scheme by approximately 3 dB (the gain predicted in our analysis is 3.5 dB).

6.6 Conclusion

This chapter has presented the distributed semi-parametric compression schemes of

piecewise smooth functions. The signal disparity model described the difference between

each signal with a translation and a prediction error. Our problem setup assumes that

one of the two functions is available at the decoder via conventional compression method.

The distributed compression algorithm is then built based on the proposed centralized

semi-parametric algorithms presented in the previous chapter, where the encoder only

employs a standard linear approximation-based compression strategy.

The distortion-rate analysis shows that the proposed scheme can achieve a compres-

sion performance comparable to that of a centralized joint encoding scheme for a wide

range of rates. We have also calculated the gain in performance relative to the inde-

pendent encoding and decoding scheme. When the prediction error is presented in the
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Figure 6.7: Distortion-rate plots of compression schemes based on disparity-by-translation
model (log-log scale in (a) and decibel scale in (b)). The proposed distributed semi-parametric
compression scheme in Algorithm 4 outperforms the independent compression scheme by a
factor of Dind(R)

D(R) ≈ 28 (≈ 15 dB), where the predicted factor is 22α = 36.76 (15.65 dB). The
joint encoding scheme outperforms the proposed scheme by approximately 2 dB

form of a smooth function, the encoder has to estimate the power of the error (i.e. β) a

priori. In contrast to the standard standard channel coding approaches, which always

assume that the wavelet coefficients of the prediction error do not decay across scales,

the proposed scheme can allocate the bits more precisely with linear approximation-

based strategy in this case. Here, the value of the estimated β∗ has an impact on the

overall performance. Given that β∗ ≈ β and that the decoder can form the prediction

of the function f2(t) that is close to that of a joint encoder, the proposed scheme can

achieve the D(R) that is comparable to that of the joint encoding algorithm. With
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Figure 6.8: Plots of the two original piecewise smooth functions f1(t) and f2(t) used in the
second simulation, where f2(t) = f1(t− τ) + εα(t).
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Figure 6.9: Distortion-rate plots of compression schemes based on disparity-by-translation
model with prediction error (log-log scale in (a) and decibel scale in (b)). The proposed dis-
tributed semi-parametric compression scheme in Algorithm 4 outperforms the independent com-
pression scheme by a factor of Dind(R)

D(R) ≈ 2.33, which is close to the predicted value of 2.26 (from
(6.24)). The achieved D(R) is comparable to that of the joint encoder scheme.

the proposed compression algorithm, there is no change to the structure of the wavelet

transform. Instead, the quantization strategy and the bit allocation are different from

the centralized case, where both depend on the value of the parameter β. Here, we can

see that the use of an error correction code in the proposed scheme is similar to the use

of coset in channel coding technique, which is used in the Wyner-Ziv problem reviewed

in Chapter 2.
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CHAPTER 7
Distributed Semi-Parametric

Compression of 2-D Signals

7.1 Introduction

This chapter focuses on the applications of the semi-parametric compression schemes

discussed in Chapter 5 and 6 in the context of distributed coding of images and

video. In particular, we show that by using the transform coefficients to perform para-

metric estimation, the complex process of motion estimation can be shifted to the de-

coder side. This allows a reduction of the complexity of the encoding process and, by

performing joint decoding, the overall performances are improved.

In the next section, we briefly review the notion of the wavelet transform and ap-

proximation in 2-D. Section 7.3 presents a case study of the FRI-based distributed

compression scheme for a toy model of a video sequence, which consists of a translating

bi-level polygon. This concept is then extended, in Section 7.4, to a real object whose

motion can be described by an affine transform. The applications of the proposed coding

schemes to more realistic signals are then presented in Section 7.5. Finally, conclusions

are then given in Section 7.6.
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7.2 Wavelet Approximation in 2-D

Let us first formally state the notion of wavelet linear and nonlinear approximation of

2-D continuous functions, which is a straightforward extension of the 1-D case reviewed

in Chapter 3. Given a continuous 2-D function f(x, y), x, y ∈ L2([0, 1]), its wavelet

decomposition is given as follows:

f(x, y) =
Lm−1∑

m=0

Ln−1∑

n=0

cJ
m,nϕJ

m,n(x, y) +
J∑

j=−∞

2−j−1∑

m=0

2−j−1∑

n=0

dj
m,nψj

m,n(x, y) with J < 0.

(7.1)

Here, we have that Lm = Ln = 2−J . In this chapter, we consider the case where the

scaling function ϕ(x, y) and the wavelet ψ(x, y) are separable. Hence, ϕ(x, y) and ψ(x, y)

are obtained by the tensor product of two 1-D functions: ϕ(x, y) = ϕ1(x) ⊗ ϕ2(y) and

ψ(x, y) = ψ1(x)⊗ ψ2(y). We assume that ϕ1 = ϕ2 = ϕ and ψ1 = ψ2 = ψ. It, therefore,

follows that ψj
m,n(x, y) = ψj,m(x) ⊗ ψj,n(y), where ψj,m(x) = 2−j/2ψ(2−jx − m) and

ψj,n(y) = 2−j/2ψ(2−jy − n), m,n ∈ Z, and similarly for ϕJ
m,n(x, y). The low-pass and

high-pass coefficients, {cJ
m,n} and {dj

m,n}, are then given by the following inner products:

cJ
m,n =

〈
f(x, y), ϕ̃J

m,n(x, y)
〉

and dj
m,n =

〈
f(x, y), ψ̃j

m,n(x, y)
〉

,

where ϕ̃J
m,n(x, y) and ψ̃j

m,n(x, y) are the dual of ϕJ
m,n(x, y) and ψj

m,n(x, y) respectively.

We, therefore, have that the N -term linear approximation of f(x, y), where N ∼ 22j ,

is given by

fN (x, y) =
Lm−1∑

m=0

Ln−1∑

n=0

cJ
m,nϕJ

m,n(x, y) +
J∑

j=J−JN+1

2−j−1∑

m=0

2−j−1∑

n=0

dj
m,nψj

m,n(x, y),

which is equivalent to keeping every coefficient in the first JN decomposition levels.

Finally, the best nonlinear approximation of f(x, y) is given by

fIN
(x, y) =

∑

(m,n)∈IN

cJ
m,nϕJ

m,n(x, y) +
∑

(j,m,n)∈IN

dj
m,nψj

m,n(x, y),

where IN denotes the index set of the N largest coefficients.
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(a) (b)

Figure 7.1: Examples of equilateral bilevel polygon signals: (a) a polygon with four corner
points; (b) illustration of the distortion due to the error in the retrieved translation vector.

7.3 Bi-level Polygon Case Study

7.3.1 Signal Model

In order to gain some intuition, we start by considering a simple toy model of a video

sequence (or an array of images) that consists of a single bi-level equilateral polygon

in a uniform background. The polygon is uniquely defined by a set of locations of its

K corner points {(xk, yk)}k=1,...,K . We assume that the disparity between each frame

is described by a translation vector τ i = [τxi , τyi ]. Let us define a set of N frames

with fi(x, y), i = 1, 2, ..., N , x, y ∈ L2([0, 1]) and let f1(x, y) be the reference or the key

frame. Thus, the relationship between each frame can be written as follows:

fi(x, y) = f1(x− τxi , y − τyi), i = 2, 3, ..., N.

In the analysis that follows, we will assume for simplicity that

∫∫
fi(x, y)dxdy = 1, i = 1, 2, ..., N.

We denote the length of each side of the polygon with ` and the amplitude of the polygon

with A. The uniform background has the amplitude set to zero. The illustration of this

signal model is shown in Figure 7.1 (a).
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7.3.2 Distributed Compression Strategy

Compression algorithm

We now construct a distributed compression scheme based on the approach presented

in the previous chapter. Here, we assume that both the encoder and the decoder know

that the sequence contains a single bi-level polygon and that the disparity between

each frame is due to translation only. The proposed compression algorithm is given as

follows:

Algorithm 5 : Distributed semi-parametric compression algorithm for the
translating equilateral bi-level polygon sequence.

Encoding and Decoding of the Key Frame f1(x, y)

1. Quantization of corner points: the locations of the corner points
{(xk, yk)}k=1,...,K of the polygon in f1(t) are quantized with a uniform
scalar quantizer and transmitted by the encoder;

2. Reconstruction of the key frame: the decoder reconstructs the key
frame to obtain f̂1(x, y) from the received quantized locations of the corner
points {(x̄k, ȳk)}k=1,...,K .

Encoding of fi(x, y), i = 2, ..., N

1. Uniform quantization of low-pass coefficients: LmLn low-pass co-
efficients {cJ

m,n}0≤m<Lm,0≤n<Ln, of fi(t) are uniformly quantized and trans-
mitted.

Joint Decoding of fi(t), i = 2, ..., N

1. Parametric estimation: the decoder estimates the translation vectors
{τ i}2≤i≤N , from the received quantized low-pass coefficients {c̄J

m,n};
2. Reconstruction by translation: fi(x, y) is reconstructed as f̂i(x, y) =

f̂1(x− τ̂xi , y − τ̂yi).

Parametric estimation with FRI principle

In this section, we show that the translation vectors can be estimated from the con-

tinuous geometric moments of the function fi(x, y). We first recall that a continuous
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geometric moment of order (p + q) is defined as

Mp,q =
∫∫

f(x, y)xpyqdxdy.

Let us denote the geometric moment of fi(x, y) with M i
p,q. It then follows that the first

order moment of the i-th frame is given by

M i
1,0 =

∫∫
f1(x− τxi , y − τyi)xdxdy

(a)
=

∫∫
f1(x′, y′)(x′ + τxi)dx′dy′

= M1
1,0 + τxiM

1
0,0

(b)
= M1

1,0 + τxi ,

where (a) follows from the substitution x′ = x− τxi and (b) from the assumption that

M i
0,0 =

∫∫
fi(x, y)dxdy = 1. A similar expression for τyi is obtained by evaluating M i

0,1.

Therefore, the translation vector τ i, i = 2, ..., N , can be calculated from the first order

moments as follows:

τxi = M i
1,0 −M1

1,0 and τyi = M i
0,1 −M1

0,1. (7.2)

It is now clear that τ i can be retrieved from the moments of fi(x, y). Therefore, in

order to perform parametric estimation during joint decoding, the decoder of Algorithm

5 can apply the 2-D moment-samples relationship shown in (4.28) in Chapter 4 to

estimate M i
p,q, p, q = 0, 1, from the low-pass coefficients as follows:

M̂ i
p,q =

Lm−1∑

m=0

Ln−1∑

n=0

c(p,q)
m,n c̄J

m,n, p, q = 0, 1 (7.3)

with a proper choice of coefficients c
(p,q)
m,n . We denote the estimated moments with M̂ i

p,q.

The translation vector τ i can then be estimated as

τ̂xi = M̂ i
1,0 − M̂1

1,0 and τ̂yi = M̂ i
0,1 − M̂1

0,1. (7.4)
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7.3.3 Quantization Error in Moment-Samples Relationship

Before moving on to the distortion-rate analysis of the above compression algorithm,

we first assess the effect of quantization error on the retrieved moments in (7.3). Let

us write c̄J
m,n = cJ

m,n + εq
m,n, where εq

m,n denotes the quantization noise. From (7.3), it

follows that

M̂ i
p,q =

Lm−1∑

m=0

Ln−1∑

n=0

c(p,q)
m,n cJ

m,n +
Lm−1∑

m=0

Ln−1∑

n=0

c(p,q)
m,n εq

m,n = M i
p,q + wi

p,q, (7.5)

where wp,q represents the error in the retrieved moments due to quantization.

Since a uniform scalar quantizer with a step size ∆ is used, at high rates, the PDF

of each term in the sum
∑Lm−1

m=0

∑Ln−1
n=0 c

(p,q)
m,n εq

m,n is given by

p(c(p,q)
m,n εq

m,n) =





1

c
(p,q)
m,n ∆

− c
(p,q)
m,n ∆

2 ≤ c
(p,q)
m,n εq

m,n ≤ c
(p,q)
m,n ∆

2 ,

0 otherwise.
(7.6)

Moreover, we assume that εq
m,n are independent so that the PDF of wi

p,q is the (LmLn−1)

times convolution:

p(wp,q) = p(c(p,q)
0,0 εq

0,0) ∗ p(c(p,q)
0,1 εq

0,1) ∗ ... ∗ p(c(p,q)
Lm−1,Ln−1ε

q
Lm−1,Ln−1)︸ ︷︷ ︸

(LmLn−1)times

.

Given that LmLn is large, p(wi
p,q) is approximately a Gaussian function. From (7.6),

we have that the variance of the term c
(p,q)
m,n εq

m,n is as follows:

var(c(p,q)
m,n εq

m,n) =

(
c
(p,q)
m,n ∆

)2

12
.

Let Rc be the number of bits allocated to represent one low-pass coefficient. We have

that

∆ = 2−Rc

(
max

0≤m<Lm,0≤n<Ln

|cJ
m,n|

)
.

Note that the sign bit is excluded for simplicity here. Therefore, we have that the

117



7.3 Bi-level Polygon Case Study

variance of wp,q, which is denoted by σ2
w, is given by

σ2
w =

∆2

12

Lm−1∑

m=0

Ln−1∑

n=0

(
c(p,q)
m,n

)2
= C12−2Rc (7.7)

with a constant C1 = 1
12

(
max

0≤m<Lm,0≤n<Ln

|cJ
m,n|

)2 ∑Lm−1
m=0

∑Ln−1
n=0

(
c
(p,q)
m,n

)2
.

7.3.4 Distortion-Rate Analysis

Distributed semi-parametric compression scheme

We now derive the D(R) bound of the scheme proposed in Algorithm 5. The total

distortion due to the reconstruction of fi(x, y), i = 1, ..., N , is given by Ddistr =
∑N

i=1 Di,

where Di = E
[
‖fi(x, y)− f̂i(x, y)‖2

]
. Consider first, the distortion of the key frame D1,

which arises from the quantization of the corner points {(xk, yk)}k=1,...,K . Assuming that

a uniform quantizer is used with a step size ∆1 = 1/2R1 where R1 is the number of bits

allocated to each component of the corner point coordinate, at high rates, the PDFs of

the quantization error of the x and y coordinates are

p(εy) = p(εx) = p(εx,y) =





1
∆1

−∆1
2 ≤ εx,y ≤ ∆1

2 ,

0 otherwise.

Moreover, we assume that the distortion due to quantization of the x and y coordinates

are independent and, thus, additive. It then follows that D1 is bounded by

D1 ≤ E
[
KA2`|εx|

]
+ E

[
KA2`|εy|

]

= 2KA2`E [|εx,y|]
(a)

≤ 2KA2` ∆1√
12

= 1√
3
KA2`2−R1 ,

(7.8)

where in (a) we have applied Jensen’s inequality for concave functions.

Let us now derive the bounds for the distortion Di, i = 2, 3, ..., N . Since the encoding

method is the same for each of the non-key frames, it is clear that Di = Dj = Dc for

i 6= j and i, j = 2, ..., N . Intuitively, the distortion D1 reappears in Dc because the
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decoder in Algorithm 5 reconstructs fi(x, y), i = 2, ..., N , by shifting f̂1(x, y). Hence,

we have that

Dc = D1 + Dτ ,

where Dτ is due to the error in the retrieved translation vector. Figure 7.1 (b) shows a

visualization of the squared error in the reconstruction due to the error in the retrieved

shift parameter τ i. As with before, we assume that the distortion from the error in

the x and y coordinates of τ i are independent and additive. Let ετx and ετy denote the

error in the retrieved τ i such that τ̂ i = [τ̂xi , τ̂yi ] = [τxi + ετx , τyi + ετy ]. From (7.4) and

(7.5), we have that

τ̂xi = M̂ i
1,0 − M̂1

1,0 = M i
1,0 −M1

1,0 + wi
1,0 − εM1

1,0
,

where εM1
1,0

is the error in the retrieved moment of the key frame. At high rates, we

assume that wi
1,0 À εM1

1,0
and that εM1

1,0
≈ 0. Therefore, we have that

ετx = wi
1,0 and ετy = wi

0,1.

It then follows that Dτ is bounded by

Dτ ≤ E
[
KA2`|ετx |

]
+ E

[
KA2`|ετy |

]

= KA2`
(
E

[|wi
1,0|

]
+ E

[|wi
0,1|

])
(a)

≤ 2KA2`σw

(b)
= 2KA2`

√
C12−Rc ,

(7.9)

where we have used Jensen’s inequality at (a) and (b) follows from (7.7). Here we as-

sumed that ϕJ
m,n is symmetrical so that

∑Lm−1
m=0

∑Ln−1
n=0

(
c
(1,0)
m,n

)2
=

∑Lm−1
m=0

∑Ln−1
n=0

(
c
(0,1)
m,n

)2
.

We can now write the total distortion as

Ddistr =
∑N

i=1 Di

= ND1 + (N − 1)Dτ

≤ N 1√
3
KA2`2−R1 + (N − 1)2KA2`

√
C12−Rc

(7.10)

119



7.3 Bi-level Polygon Case Study

and the total rate is given by

R = 2KR1 + (N − 1)LmLnRc. (7.11)

By solving the Lagrange multiplier method, we obtain the following optimal rate allo-

cation:

Rc = R1 + log2

(√
C2(N − 1)

N

)
, (7.12)

where C2 =
(

max
0≤m<Lm,0≤n<Ln

|cJ
m,n|

)2 ∑Lm−1
m=0

∑Ln−1
n=0

(
c
(1,0)
m,n

)2
. By substituting (7.12)

into (7.11) and (7.10), we have that the D(R) bound for the compression scheme in

Algorithm 5 is given by

Ddistr(R) ≤ NKA2`
2√
3

(√
C2(N − 1)

N

)(
N−1

2K+(N−1)LmLn

)

2−
R

2(K+(N−1)LmLn/2) . (7.13)

Comparison with independent and joint compression schemes

In order to gauge the performance of the proposed scheme, we compare the D(R)

bound in (7.13) to that of the ideal independent and joint compression schemes. For

the independent scheme, the coordinates of the corner points in each frame are uniformly

quantized and directly transmitted to the decoder. It is easy to extend the result in

(7.8) to derive the distortion for the independent scheme. It then follows that

Dind =
N∑

i=1

Di =
N∑

i=1

1√
3
KA2`2−Ri .

Clearly, the optimal rate allocation is Ri = Rj = Rk, i 6= j, and the total rate is given

by R = 2NKRk. This gives us the following D(R) bound

Dind(R) = NKA2`
1√
3
2−

R
2NK . (7.14)

For the joint compression scheme, the coordinates of the corner points in the key

frame f1(x, y) are quantized and transmitted to the decoder along with the translation

vectors τ i, i = 2, ..., N . Using the same argument as the analysis of the distributed case,
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we have that D = ND1 +(N−1)Dτ , where Dτ is the distortion due to the quantization

of τ i. Given a uniform quantizer with a step size ∆τ = 1
2Rτ

, where Rτ is the rate

allocated to each component of the translation vector, with the assumption that the

distortion of the x and y coordinates are additive, we have that

Dτ ≤ E
[
KA2`|ετx |

]
+ E

[
KA2`|ετy |

]
(a)

≤ 2KA2` ∆τ√
12

= 1√
3
KA2`2−Rτ ,

where Jensen’s inequality is applied at (a). The total distortion is, therefore, given by

D ≤ 1√
3
KA2`

(
N2−R1 + (N − 1)2−Rτ

)

with the total rate R = 2KR1 + 2(N − 1)Rτ . This gives us the optimal rate allocation

of Rτ = R1 + log2

(
N−1

N

)
and the corresponding D(R) bound is

Djoint(R) = NKA2`
2√
3

(
N − 1

N

) N−1
K+N−1

2−
R

2(K+N−1) . (7.15)

D(R) performance comparison

From (7.13) and (7.15), it is clear that the distortion of the proposed distributed scheme

in Algorithm 5 always decays at a slower rate than the ideal joint compression scheme

as R
2(K+(N−1)LmLn/2) < R

2(K+N−1) . By reducing the quantity LmLn, which translates to

lowering the resolution of the low-pass coefficients, the D(R) of the proposed scheme

approaches that of the joint compression scheme. Note that the FRI principle allows

the moments to be retrieved even at lower resolution. Moreover, as the complexity of

the polygon increases such that K À (N −1)LmLn/2, the achieved D(R) becomes very

close to that of the ideal joint compression scheme.

In comparison to the independent scheme whose D(R) decays as 2−
R

2NK , if K >

LmLn/2 then the distortion of the proposed distributed scheme decays at a faster rate.

One can, therefore, conclude that if the number of corner points of the polygon exceeds

LmLn/2, which can be interpreted as a threshold of the degree of complexity of an
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Figure 7.2: Plots of D(R) functions (in log scale) of the proposed distributed semi-parametric,
independent and joint compression schemes for four sequences of translating bi-level polygons
with different number of corner points K: (a) K < LmLn/2; (b) K = LmLn/2; (c) K > LmLn/2
and (d) K À (N − 1)LmLn/2. As the complexity of the polygon increases, i.e. as K increases,
the bound Ddistr(R) approaches Djoint(R).

image, then one can achieve a superior D(R) performance by employing the distributed

compression scheme. On the other hand, given a simpler image with smaller K, an

independent scheme gives a better compression result. Figure 7.2 illustrates this finding

with the plots of Dind(R), Ddistr(R) and Djoint(R) for sequences of a polygon with

different level of complexity K.
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7.4 Real Objects with Affine Transform Disparity Model

7.4.1 Signal Model

Following the analysis of the simplified bi-level polygon model presented in the previ-

ous section, let us now consider a sequence that contains a real object in a uniform

background whose frame-to-frame disparity can be described by an affine transform as

illustrated in Figures 7.5 (a) and 7.6 (a). Let xi denote the coordinate points in the

frame fi(x, y) and similarly for xj . With the affine transform assumption, the disparity

between the ith frame and the jth frame is given by:

fj(xj) = fi(Aijxi + τ ij), i 6= j i, j = 1, 2, ..., N, (7.16)

where Aij is a non-singular affine transformation matrix and τ ij is a translation vector.

Hence, this disparity model has six parameters where the matrix Aij can accommodate

rotation, shearing and scaling.

7.4.2 Estimating Affine Parameters from Moments

In [29], the method to retrieve the matrix Aij using second and higher order moments

was presented. Heikkilä showed that, by using the whitening transform, the estimation

of Aij can be reduced to a problem of finding a rotational matrix R. We now briefly

show the derivation of the result given in [29].

Central and complex moments

Let us begin with the definitions of the central moments µp,q and complex moments κp,q

of order (p + q). Given a continuous function f(x, y). The central moments µp,q are
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defined about the barycenter (x, y) =
(

M1,0

M0,0
,

M0,1

M0,0

)
of f(x, y) as [7]

µp,q =
∫ ∫

f(x, y)(x− x)p(y − y)qdxdy

=
∫ ∫

f(x, y)

(
p∑

k=0

(
p

k

)
(−x)p−kxk

)(
q∑

l=0

(
q

l

)
(−y)q−lyl

)
dxdy

=
p∑

k=0

q∑

l=0

(
p

k

)(
q

l

)
(−x)p−k(−y)q−lMk,l. (7.17)

The complex moments κp,q are defined on the complex plane z = x + jy, j =
√−1 as

[7]

κp,q =
∫ ∫

f(x, y)(x + jy)p(x− jy)qdxdy

=
∫ ∫

f(x, y)

(
p∑

k=0

(
p

k

)
(jy)p−kxk

)(
q∑

l=0

(
q

l

)
(−jy)q−lxl

)
dxdy

=
p∑

k=0

q∑

l=0

(
p

k

)(
q

l

)
jp−k+q+l(−1)q−lMk+l,p−k+q−l. (7.18)

Therefore, both the central and complex moments can be obtained from the combination

of geometric moments.

Estimating affine transform matrix

Consider a covariance matrix defined by:

Σ =




µ2,0 µ1,1

µ1,1 µ0,2


 ,

from the affine transform equation given in (7.16), it can be shown that the covariance

matrix of fj , denoted by Σj , can be written as Σj = AijΣiA
T
ij . It has been shown that

any two point sets can be matched under an affine transformation if their canonical forms

can be matched under rotation alone [29]. A point set is said to be in a canonical form

if its covariance is an identity matrix. We can convert a point set into the canonical

form using the whitening transform. The method presented in [29] is the Cholesky
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factorization:

Σ = FF T , F =



√

µ2,0 0

µ1,1√
µ2,0

√
µ0,2 − µ2

1,1

µ2,0


 . (7.19)

The whitening transform can then be expressed as

y = F−1x, (7.20)

where x = x−E [x] and the covariance matrix of the vector y is now an identity matrix

i.e. E
[
yyT

]
= I. By substituting (7.20) into (7.16) we have that

Fjyj = AijFiyi

FjF
T
j

(a)
= AijFiF

T
i AT

ij , (7.21)

where (a) represents the quadratic form. The solution to this quadratic form TT T =

SST is given by T = SR where R is an orthogonal matrix [29], which yields

Aij = FjRF−1
i . (7.22)

Thus, the problem of finding Aij can be reduced to a problem of finding the matrix R

and since R is a 2× 2 orthogonal matrix, we have that

R =




cos(α) − sin(α)

sin(α) cos(α)


 . (7.23)

Heikkilä showed that the matrix R can be estimated from higher order complex

moments of y. By substituting (7.22) into (7.21), we have that yj = Ryi. The complex

moments ηp,q of order (p + q) = 3 of y in polar coordinates is given by

ηp,q = E[dp+qej(p−q)θ], (7.24)

where d is the magnitude of y and θ is the phase of y. Since yj is the rotated version
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of yi, we have that

ηj
p,q = ηi

p,qe
j(p−q)α. (7.25)

Therefore, the angle of rotation α can be solved using the complex moments of y as

follows:

α mod
(

2π

p− q

)
=


arg

(
ηj

p,q

)
− arg

(
ηi

p,q

)

p− q


mod

(
2π

p− q

)
. (7.26)

It was then shown in [29] that ηp,q can be calculated from a combination of central

moments µp,q using the following formulae:

Re {η2,1} = (µ3,0µ0,2 − 2µ2,1µ1,1 + µ2,0µ1,2) µ
1
2
2,0κ

−1;

Im {η2,1} =
(−µ3,0µ1,1µ0,2 + µ2,1µ2,0µ0,2 + 2µ2

1,1µ2,1 − 3µ1,1µ2,0µ1,2 + µ2
2,0µ0,3

)
µ

1
2
2,0κ

3
2 ;

Re {η3,0} =
(
µ3,0µ0,2µ2,0 − 4µ3,0µ

2
1,1 + 6µ2,1µ1,1µ2,0 − 3µ2

2,0µ1,2

)
µ
− 3

2
2,0 κ−1;

Im {η3,0} =
(−3µ3,0µ1,1µ0,2µ2,0 + 4µ3,0µ

2
1,1 + 3µ2,1µ

2
2,0µ0,2 − 6µ2

1,1µ2,1µ2,0

+3µ1,1µ
2
2,0µ1,2 − µ3

2,0µ0,3

)
µ
− 3

2
2,0 κ−

3
2

(7.27)

with κ = µ2,0µ0,2 − µ2
1,1. Here, Re{·} and Im{·} refer to the real and imaginary part of

the complex moment.
In summary, the affine transformation matrix can be retrieved from a set of geometric

moments with the following algorithm:

Algorithm 6 : Calculation of the affine transformation matrix from geo-
metric moments.

1. Geometric moments: the geometric moments Mp,q, (p + q) = 0, .., 3,
of fi(xi) and fj(xj) are obtained;

2. Central moments: the central moments µp,q, (p+ q) = 0, .., 3, of fi(xi)
and fj(xj) are calculated using (7.17);

3. Complex moments: the corresponding complex moments ηi
p,q and ηj

p,q,
(p + q) = 3, are then retrieved with the set of formulae given in (7.27);

4. Rotation matrix: the rotation matrix R can then be obtained using
(7.26) and (7.23);

5. Affine transform matrix: the affine transformation matrix Aij is re-
trieved from (7.19) and (7.22).

A distributed semi-parametric compression scheme based on the above algorithm is

presented next.
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7.4 Real Objects with Affine Transform Disparity Model

7.4.3 Distributed Compression Scheme

We can now devise a distributed compression scheme for a sequence with the affine

transform disparity model. It is also assumed here that the decoder only uses the low-

pass coefficients to estimate the affine transform matrix. In order to control the number

of bits allocated to the low-pass coefficients cJ
m,n in relation to the high-pass coefficients

dj
m,n, we introduce a scaling parameter λ ∈ Z such that cJ

m,n is scaled by

cJ∗
m,n = cJ

m,n2λ

before being transmitted by the encoder. Here, a positive λ represents the bit shift to

the left. The proposed algorithm is as follows:

Algorithm 7 : Distributed semi-parametric compression algorithm for the
sequence with a real object undergoing affine transform.

Encoding and Decoding of the Key Frame f1(x, y)

1. Nonlinear approximation-based compression: f1(x, y) is encoded
and decoded with a conventional wavelet nonlinear approximation-based
compression scheme.

Encoding of fi(x, y), i = 2, ..., N

1. Scaling of low-pass coefficients: the low-pass coefficients {cJ
m,n} of

fi(x, y) are scaled as follows:

cJ∗
m,n = cJ

m,n2λ, λ ∈ Z,

and the parameter λ is transmitted to the decoder;

2. Nonlinear approximation-based compression: the coefficients {cJ∗
m,n}(m,n)∈IN

and {dj
m,n}(j,m,n)∈IN

of fi(x, y) are then encoded and with a conventional
wavelet nonlinear approximation-based compression scheme.

Joint Decoding of fi(t), i = 2, ..., N

1. Parametric estimation: the decoder estimates the affine transform ma-
trix Ai and the translation vector τ i, from the received quantized low-pass
coefficients

{
c̄J
m,n = c̄J∗

m,n/2λ
}
;
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7.4 Real Objects with Affine Transform Disparity Model

2. Prediction with affine transform: the prediction of fi(x, y) is formed
by

f̃i(x) = f̂1(Âix− τ̂ i)

and the predicted coefficients c̃J
m,n =

〈
f̃i(x, y), ϕJ

m,n(x, y)
〉

and d̃j
m,n =〈

f̃i(x, y), ψj
m,n(x, y)

〉
are obtained;

3. Final reconstruction: the decoder reconstructs fi(x, y) by taking the
inverse wavelet transform of the following set of coefficients:

{
c̄J
m,n

}
(m,n)∈IN

,
{
d̄j

m,n

}
(j,m,n)∈IN

,
{
c̃J
m,n

}
(m,n)/∈IN

and
{

d̃j
m,n

}
(j,m,n)/∈IN

.

The parametric estimation step of the above compression scheme can be done with

Algorithm 6. This allows the complex task of motion estimation to be implemented

at the decoder. As with before, we can use the moment-samples relationship from the

sampling theory of FRI signals to estimate the geometric moments from the quantized

low-pass coefficients as shown in (7.3). Note that, in our work, the bit allocation strategy

between the key frame and the non-key frames is done using a greedy strategy, meaning

that an additional bit is given to the frame that improves the overall PSNR the most.

7.4.4 Simulation Results

We now present the simulation results of the proposed scheme, where the parametric

estimation step is implemented with Algorithm 6. The SPIHT algorithm [43] is used to

perform the nonlinear compression of each frame. We use the wavelet transform with a

Daubechies 4 scaling function to decompose each frame up to four decomposition levels.

In order to gauge the performance, we compare both the PSNR plot and the visual

quality obtained from our scheme against an independent scheme where each frame is

encoded and decoded with SPIHT.

Figure 7.5 (a) shows the first sequence used in our simulation, which consists of

four images. We find that the effective range of the low-pass scaling parameter is

−2 ≤ λ ≤ 1. The plot of the PSNR against the total rate R in bits per pixel (bpp) is

given in Figure 7.3. From the plot, the proposed scheme outperforms the independent

scheme by approximately 1 to 2 dB at lower rates. Consider a point at 0.04 bpp,

the proposed distributed scheme achieves the PSNR of 33.96 dB λ = 1, whereas the
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Figure 7.3: The plot of the PSNR against the bit rate (in bits per pixel) for the proposed
compression scheme in Algorithm 7. The input sequence shown is shown in Figure 7.5 (a).

independent scheme achieves 33.22 dB at the same rate. The reconstructed sequences

by the two schemes at these two rate points are displayed in Figure 7.5 (b) and (c). It

is clear that the images compressed by the proposed scheme are sharper. In fact, the

difference lies in the way the bits are allocated. With our scheme, the key frame f1(x, y)

is allocated 20,285 bits and {fi(x, y)}i=2,3,4 take, on average, 7,320 bits per frame. Joint

decoding then allows the details of the first frame to be used for the prediction of the

coefficients in other frames. This in turn improves the overall visual quality of the

reconstructed sequence. Independent encoding, on the other hand, allocates the bits to

each frame equally.

The second testing sequence is shown in Figure 7.6 (a). At lower rates, setting

−2 ≤ λ ≤ 0 gives a better performance. Since this sequence contains more details when

compared to the previous one, it is beneficial to allocate more bits to the high-pass

coefficients while letting the low-pass coefficients be predicted from the key frame. The

corresponding PSNR plot is given in Figure 7.4. As with the previous simulation, the

proposed scheme outperforms the independent scheme by approximately 1 to 2 dB at

lower rates. At 0.043 bpp, the proposed distributed scheme achieves the PSNR of 30.1

dB with λ = −2, whereas the independent scheme achieves 29.3 dB at 0.045 bpp. The

reconstructed sequences are shown in Figure 7.6 (b) and (c). It is also worth noting

that for this sequence, at the rate point shown, the key frame receives 8,176 bits while
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Figure 7.4: The plot of the PSNR against the bit rate (in bits per pixel) for the proposed
compression scheme in Algorithm 7. The input sequence shown is shown in Figure 7.6 (a).

other frames receive 9,265 bits per frame on average. Even though the rate allocation is

almost equally distributed amongst the frames, by using joint decoding and prioritizing

the transmitted coefficients differently (i.e. giving more bits to the low-pass in the key

frame while focusing on the high-pass in other frames) the overall performance can be

improved.
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7.4 Real Objects with Affine Transform Disparity Model

1st Frame 4th Frame

(a) original sequence;

(b) distributed semi-parametric compression;

(c) independent SPIHT algorithm.

Figure 7.5: Illustration of the compression of the first sequence with a real object whose
disparity is described by the affine transform: (a) the original sequence; (b) the reconstructed
sequence using the proposed distributed semi-parametric compression scheme in Algorithm 7 at
0.04 bpp with the PSNR of 333.96 dB; (c) the reconstructed sequence using the independent
SPIHT algorithm at 0.04 bpp with the PSNR of 33.22 dB.
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1st Frame 4th Frame

(a) original sequence;

(b) distributed semi-parametric compression;

(c) independent SPIHT algorithm.

Figure 7.6: Illustration of the compression of the second sequence with a real object whose
disparity is described by the affine transform: (a) the original sequence; (b) the reconstructed
sequence using the proposed distributed semi-parametric compression scheme in Algorithm 7
at 0.043 bpp with the PSNR of 30.1 dB; (c) the reconstructed sequence using the independent
SPIHT algorithm at 0.045 bpp with the PSNR of 29.3 dB.
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7.5 Applications to Real Signals

In this section, we show the potential applications of the distributed semi-parametric

compression schemes presented in the previous sections. We consider two types of

signals: a set of images obtained from an array of two cameras and a video sequence

with a fixed background.

7.5.1 Array of Images

Let us first consider a simple set of N images fi(x, y), i = 1, 2, ..., N , captured by an

array of cameras where the disparity between each image can be approximated with

fi(x) ≈ f1(x− τ i),

with τi denoting a translation vector. Examples of these images are shown in Figures

7.9 (a) and 7.10 (a).

Compression algorithm

We propose the following semi-parametric compression algorithm:

Algorithm 8 : Distributed semi-parametric compression algorithm for an
array of images.

Encoding and Decoding of the Key Image f1(x, y)

1. Nonlinear approximation-based compression: f1(x, y) is encoded
and decoded with a conventional wavelet nonlinear approximation-based
compression scheme.

Encoding of fi(x, y), i = 2, ..., N

1. Scaling of low-pass coefficients: the low-pass coefficients {cJ
m,n} of

fi(x, y) are scaled as follows:

cJ∗
m,n = cJ

m,n2λ, λ ∈ Z,

and the parameter λ is transmitted to the decoder. Here we assume that
the value of λ is selected a priori based on empirical results that give the
lowest distortion-rate performance;
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2. Nonlinear approximation-based compression: the coefficients {cJ∗
m,n}(m,n)∈IN

and {dj
m,n}(j,m,n)∈IN

of fi(x, y) are then encoded and with a conventional
wavelet nonlinear approximation-based compression scheme.

Joint Decoding of fi(t), i = 2, ..., N

1. Parametric estimation: the decoder estimates the translation vector τ i

from the received quantized coefficients
{
c̄J
m,n = c̄J∗

m,n/2λ
}

and {d̄j
m,n}(j,m,n)∈IN

;

2. Prediction with translation: the prediction of fi(x, y) is formed by

f̃i(x) = f̂1(x− τ̂ i)

and the predicted coefficients c̃J
m,n =

〈
f̃i(x, y), ϕJ

m,n(x, y)
〉

and d̃j
m,n =〈

f̃i(x, y), ψj
m,n(x, y)

〉
are obtained;

3. Final reconstruction: the decoder reconstructs fi(x, y) by taking the
inverse wavelet transform of the following set of coefficients:

{
c̄J
m,n

}
(m,n)∈IN

,
{
d̄j

m,n

}
(j,m,n)∈IN

,
{
c̃J
m,n

}
(m,n)/∈IN

and
{

d̃j
m,n

}
(j,m,n)/∈IN

.

As with before, the scaling of low-pass coefficients allows the encoder to control

the rate allocation. In our work, the parametric estimation of the translation vector

is implemented with a block-based approach. First, the decoder obtains the function

f̄i(x, y) by taking the inverse wavelet transform of the received coefficients c̄J
m,n and

d̄j
m,n. The resulting image f̄i(x, y) is then divided into K disjoint blocks {Bk}1≤k≤K

and the decoder searches for the translation vector τ̂ i,k to minimize the following:

min
τ̂ i,k∈Sk

∥∥∥f̂1(x)− f̄i(x + τ̂ i,k)
∥∥∥

2
, x ∈ Bk, k = 1, 2, ..., K,

where Sk is the search range. The vector τ̂ i can then be obtained by taking the average

of τ̂ i,k. Clearly, one can also form the prediction f̃i(x) directly by shifting the blocks.

Simulation results

Let us now present the simulation results of the proposed scheme. Here, we consider a set

of two images. We apply the biorthogonal2.2 wavelet transform up to four decomposition

levels and encode each frame with the SPIHT algorithm [43]. An independent encoding
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Figure 7.7: The plot of the PSNR against the bit rate (in bits per pixel) for the proposed
compression scheme in Algorithm 8. The input sequence shown is shown in Figure 7.9 (a).

scheme where each frame is encoded and decoded with SPIHT is used to compare the

performance of the proposed scheme.

Figure 7.9 (a) shows the first set of images used in our simulation. For the estimation

of the translation vector using the block-based approach described above, we found that

by allocating more bits to the high pass coefficients i.e. setting λ < 0, a more accurate

prediction is obtained. This is because block-matching method works more efficiently

when the information about the edges of the image is available. The plot of the PSNR

against the total rate R is given in Figure 7.7. At lower bit rates, our proposed scheme

outperforms the independent scheme by approximately up to 3 dB with λ = −2. At 0.07

bpp, the proposed distributed scheme achieves the PSNR of 31.9 dB and the independent

scheme achieves 28.35 dB at 0.066 bits. Figure 7.9 (b) and (c) show the reconstructed

images by the two schemes at these two rate points. We can see that the reconstructed

images by the proposed scheme are sharper. At this rate point, the first image receives

0.11 bpp and the second image gets 0.029 bpp.
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Figure 7.8: The plot of the PSNR against the bit rate (in bits per pixel) for the proposed
compression scheme in Algorithm 8. The input sequence shown is shown in Figure 7.10 (a).

Figure 7.8 shows the PSNR plots for the second set of images as illustrated in

Figure 7.10 where we set λ = −1. A similar gain in performance is also observed here.

At 0.34 bpp, the proposed scheme achieves the PSNR of 28.1 dB. Here the first and

second images are encoded at 0.63 bpp and 0.055 bpp respectively. In contrast, the

independent scheme achieves the PSNR of 26.5 dB at 0.31 bpp with equally distributed

rate allocation.
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1st Image 2nd Image

(a) original set of images;

(b) distributed semi-parametric compression;

(c) independent SPIHT algorithm.

Figure 7.9: The first illustration of the compression of an array of images whose disparity is
described by a translation vector. (a) the original images; (b) the reconstructed images using
the proposed distributed semi-parametric compression scheme at 0.07 bpp with the PSNR of
31.9 dB; (c) the reconstructed sequence using the independent SPIHT algorithm at 0.066 bpp
with the PSNR of 28.35 dB.
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1st Image 2nd Image

(a) original set of images;

(b) distributed semi-parametric compression;

(c) independent SPIHT algorithm.

Figure 7.10: The second illustration of the compression of an array of images whose disparity
is described by a translation vector. (a) the original images; (b) the reconstructed images using
the proposed distributed semi-parametric compression scheme at 0.34 bpp with the PSNR of
28.1 dB; (c) the reconstructed sequence using the independent SPIHT algorithm at 0.31 bpp
with the PSNR of 26.5 dB.
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7.5.2 Real Video Sequence with Fixed Background

Our aim here is to apply the framework presented in Section 7.4 to a more realistic video

sequence with a fixed background. We used the ‘highway sequence’ 1 in our experiment

as shown in Figure 7.13 (a), where each frame is 512×512 in resolution. In this sequence,

the motion of each object or each car can be modeled with a simplified affine transform

that involves only translation and scaling i.e. the affine transform matrix is diagonal.

Let us denote with Oi,k, k = 1, 2, ..., N , a set of coordinates of each object in fi(x, y).

We can, therefore, obtain the following approximation:

fi(xi) ≈ f1(Ai,kx1 − τ i,k), ∀xi ∈ Oi,k and ∀x1 ∈ O1,k with k = 1, 2, ..., N

where Ai,k is the affine transform matrix and τ i,k is the translation vector that describes

the disparity of the k-th object between the first frame and the i-th frame.

Compression algorithm

In our algorithm, we divide the sequence into groups of pictures (GOP), where each

GOP has N frames, which are denoted by fi(x, y), i = 1, 2, ..., N . The first frame of

the GOP f1(x, y) is referred to as the key frame. It is also assumed here that the

decoder only uses the low-pass coefficients to perform the parametric estimation. We

now propose the following distributed semi-parametric compression scheme:

Algorithm 9 : Distributed semi-parametric compression algorithm for each
GOP in the highway sequence.

Encoding and Decoding of the Key Frame f1(x, y)

1. Nonlinear approximation-based compression: f1(x, y) is encoded
and decoded with a conventional wavelet nonlinear approximation-based
compression scheme.

Encoding of fi(x, y), i = 2, ..., N

1. Nonlinear approximation-based compression: the coefficients {cJ
m,n}(m,n)∈IN

and {dj
m,n}(j,m,n)∈IN

of fi(x, y) are encoded with a conventional wavelet
nonlinear approximation-based compression scheme.

1Courtesy of the ACTS Project AC304 MODEST.
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Joint Decoding of fi(t), i = 2, ..., N

1. Background extraction: the decoder extracts the background g(x, y)
from previously decoded key frames;

2. Object segmentation: with the extracted background, the decoder apply
segmentation to the key frame to obtain a set of objects {f1(x, y)}x,y∈O1,k

,
k = 1, 2...,K;

3. Low-pass coefficients segmentation: by using the low-pass coeffi-
cients of extracted background

〈
g(x, y), ϕJ

m,n(x, y)
〉
, the decoder segments

the received low-pass coefficients c̄J
m,n to form a set of low-pass coefficients

of each object
{
c̄J
m,n

}
m,n∈OJ

i,k

, k = 1, 2...,K, where OJ
i,k denotes a set of

coordinates of the low-pass coefficients of the k-th object in fi(x, y);

4. Parametric estimation: for each object, the decoder estimates the
affine transform matrix Ai,k and the translation vector τ i,k from f1(x, y)
with (x, y) ∈ O1,k and c̄J

m,n with (m,n) ∈ OJ
i,k, k = 1, 2...,K;

5. Prediction with affine transform: the prediction of fi(x, y) is formed
as

f̃i(x) = f̂1(Âi,kx− τ̂ i,k), ∀xi ∈ Oi,k and ∀x1 ∈ O1,k, k = 1, 2, ..., K

and
f̃i(x, y) = g(x, y), ∀(x, y) /∈ Oi,k, k = 1, 2, ...,K.

The predicted coefficients
{
c̃J
m,n

}
and

{
d̃j

m,n

}
of f̃i(x, y) are then ob-

tained;

6. Final reconstruction: the decoder reconstructs fi(x, y) by taking the
inverse wavelet transform of the following set of coefficients:

{
c̄J
m,n

}
(m,n)∈IN

,
{
d̄j

m,n

}
(j,m,n)∈IN

,
{
c̃J
m,n

}
(m,n)/∈IN

and
{

d̃j
m,n

}
(j,m,n)/∈IN

.

The estimation of the affine transform matrix can be implemented with Algorithm 6

and the translation vector can be obtained from (7.2). In this case, however, a simpler

estimation method of the matrix Ai,k can also be used if we assume that the decoder

has prior knowledge about the nature of the disparity between each objects. More

specifically, as the object moves higher along the y-axis, its size decreases. Therefore,

the decoder can be trained to calculate the scaling factor from the relative position of

the object and the retrieved translation vector.
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Figure 7.11: The plot of the PSNR against the bit rate (in bits per pixel) for the proposed
compression scheme in Algorithm 9. The input sequence is shown in Figure 7.13 (a).

Simulation results

We now show the simulation results of the proposed distributed semi-parametric com-

pression scheme above. The GOP size is set to four frames and we compress a set of

images extracted from the first GOP. Once again, we use the SPIHT algorithm [43] to

perform the nonlinear compression. The wavelet transform with a Daubechies 4 scaling

function is used to decompose each frame up to three decomposition levels. A greedy

bit allocation strategy is also used here. We compare the PSNR and the visual quality

obtained from our scheme with an independent scheme where each frame is encoded

and decoded with SPIHT.

Figure 7.11 shows the plot of the PSNR against the total rate R. The proposed

scheme outperforms the independent scheme by approximately 1 to 2 dB. At 0.2 bpp,

the proposed scheme achieves the PSNR of 32.3 dB, whereas the independent scheme

achieves 29.9 dB at 0.18 bpp. The extracted background as well as the segmentation

of the objects and their low-pass coefficients are shown in Figure 7.12. Figure 7.13 (b)

and (c) show the reconstructed sequence by the proposed scheme and an independent

compression scheme. Notice that the objects in the reconstructed images obtained from

our scheme are sharper. This is due to the use of parametric estimation during joint

decoding, which allows the decoder to predict the wavelet coefficients of each object

from the key frame. Note that the overall PSNR also improves because of the use of

the extracted background. At this rate point, the encoder allocates 0.3 bpp for the key
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frame and 0.18 bpp for the other frames.

(a)

(b) (c)

Figure 7.12: Illustration of the segmentation results of the key frame and the corresponding
low-pass coefficients: (a) the extracted background; (b) the segmentation of the key frame; (c)
the segmentation of the low-pass coefficients in the second frame.
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1st Frame 2nd Frame

(a) original sequence;

(b) distributed semi-parametric compression;

(c) independent SPIHT algorithm.

Figure 7.13: Illustration of the compression of the highway sequence: (a) the original sequence;
(b) the reconstructed sequence using the proposed distributed semi-parametric compression
scheme in Algorithm 9 at 0.2 bpp with the PSNR of 32.3 dB; (c) the reconstructed sequence
using the independent SPIHT algorithm at 0.18 bpp with the PSNR of 29.9 dB.
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7.6 Conclusion

In this chapter, we have presented a new approach to distributed compression based on

the concept of joint decoding with parametric estimation. We first considered a syn-

thetic video sequence, which consists of a translating bi-level polygon. The compression

algorithm inspired by the sampling theory of FRI signals was presented, where we also

analyzed the effect of quantization of the coefficients on the retrieved moments. Our

analysis shows that as the complexity of the polygon increases, the gap between the

performance of the proposed scheme and the ideal joint encoding scheme narrows. On

the other hand, for a simple polygon, an independent encoding-decoding scheme can

give a better performance.

We then considered a sequence of real object undergoing an affine transformation in

a uniform background. Based on the work of [29], we described a way to estimate the

affine transform matrix from the low-pass coefficients. A distributed compression scheme

based on this result was then proposed. Our simulation results show that improvements

in terms of the PSNR and the visual quality are observed with the proposed scheme

when compared to a scheme with independent decoding.

Lastly, we presented two compression algorithms for a set of real images taken from

an array of camera and a video sequence with a fixed background. Both compression

schemes outperform the independent encoding-decoding schemes in terms of the PSNR

and visual quality. The differences are more pronounced at lower bit rates. This is

because the process of parametric estimation allows the decoder to better predict the

wavelet coefficients using the information from the decoded key frame.
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CHAPTER 8
Conclusions

8.1 Thesis Summary

The objective of the research presented in this thesis is to develop a new approach

to centralized and distributed compression using wavelets. We first approach

the problem from a theoretical point of view by using a piecewise smooth function

as the signal model. Our goal is to provide a precise set of answers to the following

questions: given that the complexity is shifted from the encoder to the decoder, can the

same distortion-rate performance be achieved? When the piecewise smooth function

is partially observed by a number of independent encoders, can we still obtain the

distortion-rate performance that is comparable to that of a joint encoding scheme?

Finally, how can we apply this new framework in the context of distributed image and

video compression?

Centralized semi-parametric compression: a scheme with a linear encoder

and a nonlinear decoder

A new semi-parametric compression algorithm for piecewise smooth functions has been

proposed. This algorithm reflects the shift of the computational complexity from the en-

coder to the decoder. The encoder of the proposed algorithm uses a wavelet-based linear

approximation strategy. The decoder is, instead, nonlinear and employs a parametric

estimation technique to reconstruct the singular structure of the observed function.
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This enables it to predict the wavelet coefficients in the cone of influence of the discon-

tinuities. Our analysis shows that the distortion-rate function of the proposed scheme

achieves a dominating decay rate of R−2α for a wide range of rates, which is comparable

to that of a conventional compression scheme with a nonlinear encoder and a linear

decoder. A practical parametric estimation algorithm, which applies the results of the

new sampling theory of FRI signals, has also been presented.

Distributed semi-parametric compression: a scheme with independent en-

coders and a joint decoder

We have extended the concept of semi-parametric compression to devise a new dis-

tributed compression scheme. We modeled the disparity between each observed signal

with a shift and a prediction error. The decoder of the proposed scheme uses a para-

metric estimation technique to retrieve the locations of discontinuities in each signal

and, in turn, calculate the shift parameter. We also show that the prediction error

can be transmitted to the decoder where the number of bits required depends on the

quality of the prediction formed by the decoder. The distortion-rate analysis shows that

the proposed scheme can achieve a compression performance comparable to that of a

centralized joint encoding scheme for a wide range of rates. The gain in performance

relative to the independent encoding and decoding scheme has also been determined.

In the proposed scheme, the rate allocation depends on the power of the prediction

error, which has to be estimated a priori. Lastly, there is no change to the structure

of the wavelet transform in our scheme. Instead, the quantization strategy and the bit

allocation are different from the centralized case, where both depend on the power of

the prediction error.

Applications of semi-parametric compression: a new approach to distributed

image and video compression

The proposed distributed semi-parametric compression framework has been applied in

the context of distributed compression of images and videos. First, a toy model of a

video sequence has been constructed and the semi-parametric compression algorithm
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inspired by the FRI sampling theory was presented. Our distortion-rate analysis shows

that it is more advantageous to employ joint decoding as the complexity of the polygon

increases. The second model consists of a real object in a uniform background whose mo-

tion is described by an affine transform. For this model, we devise a compression scheme

whose decoder is able to estimate the affine transform matrix from the received scaling

coefficients by using the results from FRI theory and the moments-based registration

technique presented in [29]. Finally, we present two practical compression algorithms

for a set of real images taken from an array of cameras and a video sequence with a fixed

background. The simulation results show that all of our proposed schemes can outper-

form the independent encoding-decoding schemes, both, in terms of the PSNR and the

visual quality, where differences are more pronounced at lower bit rates. The reason

behind such improvement lies in the use of parametric estimation, which allows the de-

coder to predict the unknown wavelet coefficients from the previously decoded reference

images. In addition, the bit allocation of our schemes is generally non-symmetric.

8.2 Future Work

The concept of semi-parametric compression presented in this thesis leads to a rather

different approach to compression. To this end, there are still many problems that

remain largely open for future research.

Parametric estimation from scaling and wavelet coefficients

One of the key features of the proposed compression scheme is the use of parametric

estimation at the decoder. In this thesis, we have presented a practical parametric esti-

mation algorithm based on the sampling theory of FRI signals. It was shown in Chapter

5, however, that the proposed algorithm does not achieve the CRB and is, therefore,

not optimal. Therefore, one can improve the compression performance of the semi-

parametric compression scheme further by developing a better parametric estimation

algorithm. In addition, because the information of the discontinuities is well captured

in the wavelet coefficients, an algorithm that also uses both the scaling and wavelet

coefficients is more likely to produce a more accurate result. Thus, the development of
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such algorithm will be an important step in the future research of this topic.

Rate allocation and quantization strategies

In the practical compression schemes presented in Chapter 7, the scaling and wavelet

coefficients are used in the parametric estimation step during the decoding procedure.

Thus, the fact that the largest coefficients should receive more bits may no longer hold.

In Chapter 7, we carry out a preliminary test by introducing the scaling parameter

λ, which scales the low-pass coefficients by 2λ prior to being coded with a standard

algorithm such as SPIHT. Generally speaking, in addition to the energy contained

within the coefficients, the bit allocation should also consider their use in the parametric

estimation, which allows for the prediction of other absent coefficients. Therefore, a

standard encoding algorithm such as SPIHT may not be the most suitable algorithm

for our approach. Hence, the future work will also focus on the development of a more

suitable encoding algorithm.

The directional transforms

The decoding process proposed in this thesis is not limited to the use of the wavelet

transform. It is now well-known that the wavelet transform is not the most efficient

transform to represent the discontinuities along the curves found in natural images.

Thus, other transforms that take into account the directionality of the discontinuities

have been proposed. An example of such transforms is the curvelet transform [54]. It is,

therefore, interesting to see whether one can improve the performance of a compression

scheme based on such directional transforms by integrating parametric estimation into

the decoding procedure.

Beyond the piecewise smooth model

The theoretical results presented in this thesis is based on the piecewise smooth model.

In reality, the increase in applications with high-definition images means that textures

will become a vital part in compression problems. The discontinuity caused by the

boundary of an object, however, remains an important feature in images. Moreover,

148



8.2 Future Work

the locations of such discontinuities can still be approximated with a parametric repre-

sentation. Hence, for our future work, we look to apply the concept of joint decoding

with parametric estimation in a distributed compression of signals that are not piece-

wise smooth but still contain some discontinuities. In this case, it is also interesting to

investigate how the prediction of different textures from previously decoded images can

be achieved.
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A.1 Proof of Theorem 10

We prove here that, given a function f(t), t ∈ [0, 1[, whose wavelet coefficients decay

as dj,n ∼ 2j(α+1/2) across scales, the distortion of a wavelet-based compression scheme

that uses a linear approximation strategy is given by

D(R) ≤ c1R
−2α. (A.1.1)

Proof: Assume that the compression algorithm keeps all the coefficients

from decomposition level JN onwards with JN < 0. Since dj,n ∼ 2j(α+1/2),

this is equivalent to setting the step size of the quantizer ∆ to be

∆ = c112JN (α+1/2). (A.1.2)

The distortion D, measured by MSE, has two components:

D = D1 + D2,

where D1 is due to the discarding of coefficients and D2 is due to quantiza-

tion of the retained coefficients. Let Nj denotes total number of the wavelet

coefficients at level j. Since the wavelet function ψ(t) and the corresponding
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scaling function ϕ(t) form the basis of L2[0, 1], then we have that

Nj = 2−j . (A.1.3)

It then follows that

D1 =
∑JN−1

j=−∞
∑Nj

n=0 〈f(t), ψj,n(t)〉2
(a)

≤ ∑JN−1
j=−∞

∑Nj

n=0 C122j(α+1/2)

(b)
= C1

∑JN−1
j=−∞ 2−j22j(α+1/2)

= C1
∑JN−1

j=−∞ 2j2α

≈ C12(JN−1)2α

(c)
= C1(C ′R−1)2α

= C2R
−2α,

where (a) follows the fact that dj,n ∼ 2j(α+1/2), (b) from (A.1.3) and (c)

from the fact that the total rates R is proportional to the total number of

coefficients NJN
: R = C(NJN

) = 2C(NJN−1) = C ′′2−(JN−1). The distortion

D2 is given by the sum of the variance of the quantization noise:

D2 =
∑∞

j=JN

∑Nj

n=0
∆2

12

(a)
= C22JN (α+1/2)

∑∞
j=JN

Nj

(b)
= C22JN (α+1/2)

∑∞
j=JN

2−j

≈ C22JN (α+1/2)2−JN

= C ′2J2α
N

(c)
= C ′(C ′′R−1)2α

= C3R
−2α,

where (a) follows from (A.1.2), (b) from (A.1.3) and (c) from the fact that

R = C(NJN
) = C2−JN . Therefore, we have that

D = C2R
−2α + C3R

−2α = c1R
−2α,
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which proves the equation (A.1.1).

A.2 Evaluation of Cramér-Rao Bound with B-Spline Scal-

ing Functions

This section presents the evaluation of the CRBs in (5.19). We use a family of B-spline

scaling functions to generate the coefficients used in the estimation of the location t0

and amplitude A of a step function s(t) where

s(t) =





0 t < t0,

A t ≥ t0.

More specifically, we show the calculation of the matrix Jt0,A in (5.18). The results are

plotted in Figure 5.2.

Recall that a B-spline function of order P ≥ 0 is given by

β(t) =
1
P !

P+1∑

l=0

(
P + 1

l

)
(−1)l (t− l)P

+ with (t)P
+ =





0 t < 0,

tP t ≥ 0.

The coefficients are then given by

yn = 〈s(t), βJ,n(t)〉 , J < 0, (A.2.1)

where βJ,n(t) = 2−J/2β
(
2−J t− n

)
. Let us denote the scaling factor with T = 2J .

Evaluating (A.2.1) gives

yn = 1
P !
√

T

∫ (n+P+1)T
nT s(t)

∑P+1
l=0

(
P+1

l

)
(−1)l ( t

T − n− l
)P

+
dt

= 1
P !
√

T

∑P+1
l=0

(
P+1

l

)
(−1)l ∫ (n+P+1)T

nT s(t)
(

t
T − n− l

)P

+
dt

=





0 n <
⌊

t0
T

⌋− P,

A
P !
√

T

∑P+1
l=0

(
P+1

l

)
(−1)l ∫ (n+P+1)T

t0

(
t
T − n− l

)P

+
dt

⌊
t0
T

⌋− P ≤ n ≤ ⌊
t0
T

⌋
,

A
P !
√

T

∑P+1
l=0

(
P+1

l

)
(−1)l ∫ (n+P+1)T

nT

(
t
T − n− l

)P

+
dt n >

⌊
t0
T

⌋
.
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It then follows that the partial derivative of yn with respect to t0 is

∂yn

∂t0
=





A
P !
√

T

∑P+1
l=0

(
P+1

l

)
(−1)l+1 (

t0
T − n− l

)P

+

⌊
t0
T

⌋− P ≤ n ≤ ⌊
t0
T

⌋
,

0 otherwise
(A.2.2)

and, similarly, the partial derivative with respect to A is

∂yn

∂A
=





√
T

P !

∑P+1
l=0

(
P
l

)
(−1)l

(
(P + 1− l)(P+1) − (

t0
T − n− l

)P+1

+

) ⌊
t0
T

⌋− P ≤ n ≤ ⌊
t0
T

⌋
,

√
T

P !

∑P+1
l=0

(
P
l

)
(−1)l (P + 1− l)(P+1) n >

⌊
t0
T

⌋
,

0 otherwise.

(A.2.3)

By substituting (A.2.2) and (A.2.3) into (5.19), we obtain the CRBs.
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