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Abstract

In the single-channel hands-free telephony, the acoustic coupling between the loudspeaker

and the microphone can be strong and this generates echoes that can seriously degrade

user experience. Therefore, effective acoustic echo cancellation (AEC) is necessary to

maintaining a stable system and hence improving the perceived voice quality of a call.

Traditionally, adaptive filters have been deployed in acoustic echo cancellers to estimate

the acoustic impulse responses (AIRs) using adaptive algorithms. The performances of

a range of well-known algorithms are studied in the context of both AEC and network

echo cancellation (NEC). It presents insights into their tracking performances under both

time-invariant and time-varying system conditions.

In the context of AEC, the level of sparseness in AIRs can vary greatly in a mo-

bile environment. When the response is strongly sparse, convergence of conventional

approaches is poor. Drawing on techniques originally developed for NEC, a class of time-

domain and a frequency-domain AEC algorithms are proposed that can not only work

well in both sparse and dispersive circumstances, but also adapt dynamically to the level

of sparseness using a new sparseness-controlled approach.

As the early part of the acoustic echo path is sparse while the late reverberant

part of the acoustic path is dispersive, a novel approach to an adaptive filter structure

that consists of two time-domain partition blocks is proposed such that different adaptive

algorithms can be used for each part. By properly controlling the mixing parameter for

the partitioned blocks separately, the proposed partitioned block algorithm works well in

both sparse and dispersive time-varying circumstances.

A new insight into an analysis on the tracking performance of IPNLMS is presented

by deriving the expression for the mean-square error. By employing the framework for

both sparse and dispersive time-varying echo paths, this work validates the analytic results
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in practical simulations for AEC.

The time-domain second-order statistic based blind SIMO identification algorithms,

which exploit the cross relation method, are investigated and then a technique with pro-

portionate step-size control for both sparse and dispersive system identification is also

developed.
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Chapter 1

Introduction

1.1 Overview

WIRELESS phones are increasingly being regarded as essential communications

tools due to their flexibility. As the use for the in-car hands free telephony has

gained much popularity in recent years due to the rise in safety concerns, and also the

need for an automated service delivery system, digital wireless subscribers are becoming

ever more critical of the voice quality they receive from network providers. One factor

that affects the voice quality is echo.

An echo is said to occur when delayed and possibly distorted versions of a signal

are reflected back to the source of that signal. This delayed replica is only noticeable if

the amplitude of the echo is significantly high or the time delay between the speech and

the echo exceeds 16 ms (32 ms round trip) [4]. The study carried out at Bell laboratories

found that echoes above 250 ms can make it impossible to have natural conversation.

Hybrid echo [5] is a type of echo generated in telephone networks comprising mixed

packet-switched and circuit-switched components. Echo cancellation in telephone net-

works requires the identification and compensation of echo systems with various levels of

sparseness. The network echo response in such systems is typically of length 64-128 ms,

characterized by an unknown bulk delay dependant on network loading, encoding and

jitter buffer delays [6]. This results in an ‘active’ region in the range of 8-12 ms duration
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Figure 1.1: Illustration of acoustic echo in a loudspeaker-room-microphone sys-
tem (LRMS).

and consequently, the impulse response is dominated by ‘inactive’ regions where coefficient

magnitudes are close to zero, making the impulse response sparse.

Acoustic echo is the other type of echo which is produced by strong voice coupling

between the earpiece and microphone in handsets and hands-free devices [7, 8]. The

length of the acoustic echo response in a typical teleconferencing room is in the region

of 100 to 400 ms and hence adaptive filters employing 1024 taps or more (at 8 kHz of

sampling frequency) are typically required in order to achieve adequate levels of echo

cancellation [9]. As shown in Fig. 1.1, a signal, x(n), from a loudspeaker is heard by

a listener, as intended. However, this same sound also is picked up by the microphone,

both directly and indirectly, after bouncing off the wall. The result of this reflection is

the creation of echo which is transmitted back to the far end and is heard by the talker

as echo. A typical office or living room exhibits reverberation time in the order of 50 to

300 ms [10].

The time variation of the near-end acoustic impulse response (AIR), in the acous-

tic echo cancellation (AEC) system may arise due to, for example, a change in tempera-

ture [11], pressure and changes in the acoustic environment [12]. Therefore, adaptation of

the filter coefficients once, at the beginning of communication and a subsequent freezing

of the filter coefficients is not sufficient for a permanent echo cancellation. Since the filter
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should be able to track the variations of the echo system, it should be adaptive.

In the earlier days of telecommunications, echo suppression was used for echo can-

cellation in satellite communication [5]. In essence these devices rely upon the fact that

most telephone conversations are half-duplex. That is one person speaks while the other

listens. Nowadays, adaptive filters are used in echo cancellers which model and subtract

the echo from the return path and therefore, outperformed the suppression-based devices

by aiding full-duplex capabilities (parties at both ends can speak simultaneously). The

adaptive filtering technique is crucial for many other applications in the field of telecom-

munication, such as noise cancellation and channel equalization [13]. Although adaptive

filters can be used when the echo path is initially unknown, their application is unavoidable

when facing time-varying environments.

For the adaptation of the filter coefficients several families of adaptive algorithms

such as the recursive least-square algorithm (RLS) [13, 14, 15], the affine projection algo-

rithm (AP) [16, 17, 18], or the normalized least-mean-square (NLMS)-based algorithms [13]

can be applied. They differ in their iterative updating scheme, their computational com-

plexity and their convergence speed [19]. All these algorithms compute the new filter

coefficients (at time sample n, for example) by correcting the old estimation (at time

sample n− 1) with an innovation vector weighted by a step-size. Details of the algorithm-

dependent innovation vector will be addressed in the next chapter for the NLMS-based

algorithms and the former two families of the adaptive algorithms will not be addressed

in this thesis.

In hands-free systems, reverberation also affects the quality and intelligibility of

speech and is a significant problem for speech recognition applications [20]. Dereverbera-

tion is therefore another important speech enhancement process for hands-free terminals,

other than the echo cancellation process. Although many approaches [21] have been de-

veloped for speech dereverberation, blind system identification (BSI), based on the cross

relation (CR), will be addressed in this thesis, as BSI is believed to be the key to thoroughly

solving the dereverberation problem [22].
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1.2 Research objectives

Variation in the sparseness of AIRs can also occur in AEC within an enclosed space. The

problem can be formulated by considering an example case illustrated in Fig. 1.2, where the

distance, a, between a loudspeaker and the user using, for example, a wireless microphone

is varying. It shows two AIRs, generated using the method of images [1, 23] using room

dimensions of 8×10×3 m and 0.57 as the reflection coefficient. The loudspeaker is fixed at

4×9.1×1.6 m in the loudspeaker-room-microphone system (LRMS) while the microphone

is positioned at 4 × 8.2 × 1.6 m and 4 × 1.4 × 1.6 m giving impulse responses as shown

in Fig. 1.2 (a) and (b) for a = 0.9 m and a = 7.7 m respectively. As can be seen, the

sparseness of these AIRs varies significantly with the loudspeaker-microphone distance.

Hence, algorithms developed for mobile hands-free terminals are required to be robust to

the variations in the sparseness of the acoustic path.

The partitioned block technique is another useful approach to consider in order to

improve the convergence and tracking performances of the existing AEC algorithms. For

sparse and dispersive AIRs, the partitioned block of the echo path that consists of the direct

path and a few early reflections is almost always sparse while the other partitioned block

is always dispersive. To validate this, consider an example case where two AIRs of length

L = 1024 were simulated using the method of images [1], under the same experimental

set-up as before. Figure 1.3 (a) shows the AIR obtained when the loudspeaker-microphone

distance is 0.85 m in the LRMS with 0.3 reflection coefficient. Figure 1.3 (b) illustrates

the AIR attained when the loudspeaker-microphone distance is 5 m in the LRMS with

0.53 reflection coefficient. As can be seen from the figure and the sparseness measure [2, 3],

the first block is always more sparse than the second block. Hence, a sparse algorithm

is desired for the first block, whereas a non-sparse algorithm is desired for the second

block. Moreover, due to the nature of the time-varying environments, which is commonly

encountered in the LRMS, the length of the partitioned blocks should be made adaptive

to exploit the full use of this technique.

It is pragmatically useful to study an insight of how the performances of adaptive

algorithms, in particular the gradient based algorithms, are affected by conditions such as
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a b

Figure 1.2: Loudspeaker-room-microphone system (LRMS) and two acoustic impulse
responses, generated using the method of images, for the cases when the separation
is 0.9 m and 7.7 m.

the degree of variation of the unknown system and the step-size used for adaptation in

single channel AEC. Developing a framework under time-varying unknown system condi-

tions is therefore reputable, as it can be used to predict sensible values for the designer

adjustable parameters depending on the specific needs of the application.

Motivated by the time-varying nature of the AIR within the enclosed environment,

adaptive algorithms developed for blind single-input multiple-output (SIMO) system iden-

tification problems should also necessitated to be robust to the variations in the sparseness

of the multiple acoustic paths. The forthcoming chapters of this thesis will concentrate

on:

• sparseness-controlled techniques to develop both the time and frequency domains
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Figure 1.3: Acoustic impulse responses obtained using the method of images [1].
ξ(h), ξ(h1) and ξ(h2) respectively denote the sparseness measures [2, 3] of the full
impulse response, the first block with size of 256 and the second block.

AEC algorithms to improve the convergence limitations on the well-known existing

adaptive algorithms.

• partitioned block technique, with adaptive control for the lengths of the partitioned-

block AIR, to improve the performance of any AEC algorithms compared to that

without the partitioned block technique.

• a framework to predict the tracking performance for IPNLMS for a time-varying echo

system, so that, for example, one can choose an appropriate value for the step-size

depending on their satisfactory level for the (misadjustment) error.

• a class of time domain sparseness-controlled affine projection algorithms for blind

SIMO system identification based on second-order statistics which exploit the cross

relation method.

1.3 Thesis structure

The chapters of this thesis are organized as follows. Chapter 2 starts with formulating the

AEC process using an adaptive filter with finite impulse response (FIR) structure and the

necessary assumptions made for simplicity and mathematical tractability. The main time
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domain adaptive algorithms for AEC and NEC are reviewed. This includes the NLMS al-

gorithm, the proportionate normalized least-mean-square (PNLMS) algorithm [24], the

µ-law proportionate NLMS (MPNLMS) algorithm [25] and the improved proportionate

NLMS (IPNLMS) algorithm [26]. Frequency domain adaptive algorithms, in particular

the fast-LMS (FLMS) algorithm [27], the multidelay filtering (MDF) structure [28] and

the improved proportionate MDF (IPMDF) algorithm [29] are reviewed.

Chapter 3 presents a novel class of time domain and a new frequency domain

algorithms that are robust to the sparseness variation of AIRs. These algorithms compute

a sparseness measure of the estimated impulse response at each iteration of the adaptive

process and incorporate it into their conventional methods. As will be shown, the proposed

sparseness-controlled algorithms achieve fast convergence for both sparse and dispersive

AIRs and are effective for time-varying AEC.

In Chapter 4, block partitioning is proposed as a novel technique. A partitioned

block IPNLMS algorithm with a control mechanism for the dynamic adjustment of the

block size is developed and the convergence performance for identification of a time-varying

echo system is compared with the classical IPNLMS without block partitioning.

In chapter 5, following the approach as presented in [30], the tracking performance

of adaptive algorithms under time-varying unknown system conditions is analyzed. A

general framework is developed such that the analysis can be applied to the NLMS-based

algorithms. The aim of this analysis is to provide an insight of how the performances of

such adaptive algorithms, in particular IPNLMS , are affected by conditions such as the

degree of variation of the unknown system in single channel AEC. The proposed framework

is evaluated in detail by comparing the theoretical and experimental performances of

IPNLMS.

The focus of this thesis then moves to the problem of blind identification of single-

input multiple-output (SIMO) acoustic systems. Chapter 6 begins with an introduction to

the blind SIMO identification and the existing main algorithms in the literature. Later, it

presents a more rigorous way to derive proportionate affine projection algorithms (PAPA).

The sparseness-controlled techniques developed in Chapter 3 is then exploited into the
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novel framework for the individual step-size control, in order to improve the robustness in

the sparseness variation of AIRs. The simulated results, with a short channel length, for

the proposed sparseness-controlled algorithms show fast convergence in both sparse and

dispersive AIRs.

The thesis is concluded and further work is discussed in Chapter 7.

1.4 Statement of originality

As far as the author is aware, the following aspects of the thesis are believed to be original

contributions:

1. Investigation into the variation in the sparseness of AIRs in AEC within an enclosed

space, by varying the distance between a fixed loudspeaker and a moving wireless

microphone.

2. Development of a class of sparseness-controlled time domain adaptive algorithms

for AEC application which is robust to the level of sparseness encountered in the

impulse response of the echo path.

3. Development of a frequency domain algorithm for AEC which dynamically adjusts

its step-size according to the sparseness variation in AIR that arises in a mobile

environment.

4. Investigation into the variation in sparseness measure of the early part (i.e., direct

path and early reflections) of the acoustic echo path and the late reverberant part

of the acoustic path, regardless of the overall sparseness measure.

5. Implementation of a partitioned block IPNLMS algorithm with a self-configuration

method based on the ratio between the `1-norms of the two partitioned blocks.

6. Implementing a generalized framework for the analysis on tracking performance of

NLMS based algorithms under both non-stationary and stationary unknown system

conditions in single channel AEC.



1.5 Publications 37

7. Development of a class of sparseness-controlled proportionate affine projection algo-

rithms for blind SIMO system identification.

1.5 Publications
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• Conference proceedings

1. P. Loganathan, E. A. P. Habets and P. A. Naylor, “A Proportionate adaptive

algorithm with variable partitioned block length for acoustic echo cancellation”,

The 36th International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), Prague, Czech Republic, May 2011.

2. P. Loganathan, E. A. P. Habets and P. A. Naylor, “A Partitioned Block Pro-
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Chapter 2

Literature Review

2.1 Overview of adaptive algorithms for echo cancellation

TRADITIONALLY, echo cancellers are realized by a FIR structure to achieve echo

cancellation using an adaptive algorithm. The NLMS algorithm is a popular choice

due to its simplicity, both in terms of computational load and easiness of implementation.

It has, therefore, been successfully applied to a wide variety of adaptive filtering problems,

including plant identification [31] and noise cancellation applications [32]. A generalized

normalized gradient descent (GNGD) algorithm [33] was proposed as an extension of the

NLMS, where an additional stabilization and faster convergence were introduced by mak-

ing the compensation term in the normalization of the NLMS step-size gradient adaptive.

However, for sparse systems such as encountered in NEC, the NLMS algorithm suffers

from slow convergence and therefore new algorithms have been proposed in the literature

for sparse adaptive filtering.

Several approaches have been proposed over recent years to improve the perfor-

mance of the standard NLMS algorithm in various ways for NEC. These include the

variable step-size (VSS) algorithms [34, 35, 36], data reusing technique [37, 38, 39], partial

update adaptive filtering techniques [40, 41, 42] and sub-band adaptive filtering (SAF)

schemes [43, 44, 45]. The VSS algorithm [34] improves the performance of the adaptive

algorithm by employing larger step-size at the beginning of the adaptation, for fast initial
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convergence, and a smaller step-size during later stage of adaptation, in order to reduce

the tradeoff between misadjustment and tracking ability of the fixed step-size LMS algo-

rithm. Data reusing is another technique which was introduced to achieve improvement

in convergence rate. This approach reuses the current desired response and data vector

repeatedly to update the adaptive tap-weight vector several times during each iteration.

Partial update algorithms are proposed to reduce the computational complexity of an

adaptive filter by updating only a subset of filter coefficients for each iteration based on a

selection criteria. SAF has also been introduced in AEC to achieve complexity reduction

whilst achieving an improved rate of convergence compared to the conventional full-band

structure. In contrast to these approaches, sparse adaptive algorithms have been developed

specifically to address the performance of adaptive filters in sparse system identification.

In this thesis, attention is devoted to sparse adaptive algorithms in time and fre-

quency domains, because of their ease of implementation and moreover the framework can

be applied to most of the aforementioned approaches.

The idea of exploiting the sparse character of echo paths has appeared in [46, 47, 48].

However, one of the first sparse adaptive filtering algorithms considered as a milestone for

NEC is PNLMS [24] in which each filter coefficient is updated with an independent step-size

that is linearly proportional to the magnitude of that estimated filter coefficient. It is well

known that PNLMS has very fast initial convergence for sparse impulse responses after

which its convergence rate reduces significantly, sometimes resulting in a slower overall

convergence than NLMS. In addition, PNLMS suffers from slower convergence compared

to NLMS when estimating dispersive impulse responses [49, 50]. To address the latter

problem, subsequent improved versions, such as PNLMS++ [49], were proposed. The

PNLMS++ algorithm achieves improved convergence by alternating between NLMS and

PNLMS for each sample period. However, as shown in [26], the PNLMS++ algorithm

only performs best in the cases when the impulse response is sparse or highly dispersive.

An IPNLMS [26] algorithm was proposed to exploit the ‘proportionate’ idea by in-

troducing a controlled mixture of proportionate (PNLMS) and non-proportionate (NLMS)

adaptation. A sparseness-controlled IPNLMS (SC-IPNLMS) algorithm was proposed in [2]



2.1 Overview of adaptive algorithms for echo cancellation 41

to improve the robustness of IPNLMS to the sparseness variation in impulse responses.

Composite proportionate NLMS (CPNLMS) [51] adaptation was proposed to control the

switching of PNLMS++ between the NLMS and PNLMS algorithms. For sparse impulse

responses, CPNLMS performs the PNLMS adaptation to update the large coefficients

and subsequently switches to NLMS, which has better performance for the adaptation of

the remaining small taps. The MPNLMS [25, 52] algorithm was proposed to address the

uneven convergence rate of PNLMS during the estimation process. As proposed in [25],

MPNLMS uses optimal step-size control factors to achieve faster overall convergence until

the adaptive filter reaches its steady state.

The main limitation of all these adaptive algorithms is that their performances are

subject to a tradeoff between the speed of convergence and high precision. Algorithms with

higher step-size achieve faster convergence, but the mismatch between the true system and

the predicted system is worse compared to that with smaller step-size. To overcome this

tradeoff, a combination framework was proposed in [53, 54], which adaptively combines

two independent least-mean-square (LMS) filters with large and small step-sizes to obtain

fast convergence with low mis-adjustment.

These time domain algorithms have also been proposed in the frequency [55, 27, 56]

and wavelet [57, 58] domains. These frequency domain adaptive algorithms have become

popular because of their efficient implementation, compared to the above time domain al-

gorithms. They perform computations by incorporating block updating strategies, rather

than performing sample-by-sample computations. In addition, exploiting the computa-

tional efficiency of the fast Fourier transform (FFT) for computing the discrete Fourier

transform (DFT), so as to perform linear convolution and gradient estimation, further in-

creases the efficiency of such algorithms. They also use the pseudo-orthogonality property

of the DFT [59] to speed up the convergence rate.

The concept of frequency domain adaptive filtering was first introduced in [55].

The fast-LMS (FLMS) algorithm [27] was proposed, where the overlap-save method [60]

for implementing linear convolution using FFT [61] blocks is employed to avoid the effects

of circular convolution encountered in the direct implementation of the frequency domain
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LMS algorithm [62, 63].

Although substantial computational savings can be achieved, one of the drawbacks,

however, is the delay introduced between the input and output, which is equivalent to the

length of the adaptive filter L. For AIRs with several hundreds of coefficients, this delay

can be significant. To overcome this, the MDF algorithm was proposed in [28] to partition

the adaptive filter into blocks each of length N such that the delay is reduced by a factor

of K = L/N , although K = 1 is the optimum choice in terms of computational complex-

ity. Combining proportionate updating of filter coefficients, the improved proportionate

MDF (IPMDF) algorithm [29] achieves a fast convergence with a low delay for K > 1

in NEC, and a similar improvement has also been shown in [64] for blind estimation of

multichannel AIRs.

Although sparse adaptive filtering algorithms, such as those described above, have

originally been developed for NEC, it has been shown in [64] that such algorithms give

good convergence performance in the AEC system. The tracking capabilities of these

sparse NLMS-based algorithms can also be exploited to cope with the time-varying nature

of AIRs.

2.2 Acoustic echo cancellation

The source of acoustic echo originates from the acoustic coupling between the microphone

and loudspeaker. As its name suggests, an acoustic echo canceller attempts to cancel,

rather than suppresses, the acoustic echo. Figure 2.1 shows a LRMS describing a typical

AEC system, with an echo canceller employing an adaptive filter.

2.2.1 Notations and definitions

An adaptive FIR filter with coefficients

ĥ(n) = [ĥ0(n)ĥ1(n) . . . ĥL−1(n)]T , (2.1)



2.2 Acoustic echo cancellation 43

+
LRMS

Far-endNear-end

Figure 2.1: Adaptive system for acoustic echo cancellation in a loudspeaker-room-
microphone system (LRMS).

is deployed to cancel acoustic echo, where L is the length of the adaptive filter assumed

to be equal to the unknown room impulse response h(n), defined by

h(n) = [h0(n) h1(n) . . . hL−1(n)]T , (2.2)

and [·]T is the transposition operator. The time-varying far-end signal x(n) is transmitted

to the near-end loudspeaker in the LRMS. The microphone in the near-end room receives

the desired signal (the output of the LRMS), which is given by

y(n) = hT (n)x(n) + w(n), (2.3)

where x(n) = [x(n) x(n − 1) . . . x(n − L + 1)] and w(n) is additive noise. If no echo

canceller is presented, the echo y(n) is transmitted back to the far-end with a delay.

2.2.2 Assumptions

In order to simplify the mathematical derivations of algorithms without loss of generality

the following assumptions are made throughout this project:

• The length of h(n) is same as the length of ĥ(n), which is L. In reality, the length
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of the adaptive filter is often less than the receiving room impulse responses. This is

due to the fact that the computational complexity of an adaptive algorithm increases

monotonically with the length of the adaptive filter. Therefore, L must be long

enough to achieve a low system mismatch and computational complexity.

• The noise signal in the LRMS, w(n), is additive.

• There is no near-end signal in the LRMS.

• A transversal FIR filter configuration is used due to its stability characteristics.

2.2.3 Adaptive echo cancellation process

An echo canceller’s objective is to estimate h(n) as closely as possible at each iteration.

An a posteriori error signal ep(n), can be computed by subtracting the output of the echo

canceller ŷ(n) from the desired signal y(n), given by

ep(n) = y(n)− ŷ(n)

= y(n)− ĥT (n)x(n)

=
[
hT (n)− ĥT (n)

]
x(n) + w(n). (2.4)

Note that the a posteriori error ep(n) in (2.4) is computed after the adaptive filter coef-

ficients have been updated. In contrast, by using the previous estimation of the impulse

response ĥT (n− 1), an a priori error signal e(n) at each iteration is computed as

e(n) = y(n)− ĥT (n− 1)x(n). (2.5)

For effective echo cancellation, e(n) must come significantly smaller at each iteration, as

the filter coefficients converge to the unknown true impulse response h(n). The system

identification performance of the echo canceller can be quantified by the misalignment

which will be discussed in Section 2.3.

A common feature of the different structures proposed is that the canceller should

be adaptive. This is necessary in order to track the time-varying nature of the echo path
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and for initial convergence since the echo path is initially unknown. The time variation of

the AIR in the AEC system may arise due to a change in temperature [11] and pressure

and to changes in the acoustic environment [12], for example movements of people, doors,

windows or furniture. For this reason, adaptive filters are utilized to track and compensate

any changes in the LRMS.

2.3 Performance measures

Evaluation of performance measures influences the choice of one algorithm over the wide

variety of others. The commonly adopted measures will next be reviewed.

2.3.1 Mean square error

The mean square error (MSE) is one of the ways to define an objective function. It is

defined as the expected value of the square of the error and, as can be seen from (2.6), a

lower MSE value is favorable.

MSE = E
{
e2(n)

}
. (2.6)

2.3.2 Normalized misalignment

Normalized misalignment is one of the most commonly used performance used in the

literature of system identification [13], defined by

η[h(n), ĥ(n)] =
‖h(n)− ĥ(n)‖22
‖h(n)‖22

, (2.7)

where ‖ ·‖2 is the `2-norm. It measures the closeness of an estimated system to that of the

true system and is particulary useful to study the tracking capability of a time-varying

system. It should be noted that this measure is applicable only for ‘oracle’ simulations in

which the true ‘unknown’ system is known.
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2.4 Time domain adaptive algorithms for echo cancellation

As the acoustic echo path has a relatively long duration (hundreds of milliseconds for a

typical office environment), a longer adaptive filter (800-1600 filter coefficients with 8 kHz

sampling frequency) is required to model the unknown impulse response more closely.

This results in a need for a large amount of computations and memory for the employed

adaptive algorithm. Also, the echo path may vary with time due to changes in room

characteristics (e.g. temperature, pressure and movement of talker). This makes tracking

ability a necessary condition for the adaptive algorithm. Moreover, the non-stationary

statistical nature of the speech signal (x(n)), i.e.: the eigenvalue spread of the speech

signals autocorrelation matrix, causes a slow rate of convergence as compared to white

Gaussian noise (WGN) with zero mean. All these combined factors demand for a robust

and effective algorithm for AEC.

Several adaptive algorithms and their extensions have been proposed over the past

decades for either AEC or NEC in the time domain, with the aim of increasing the rate

of convergence. However, the discussion in this thesis is limited to NLMS, PNLMS,

MPNLMS and IPNLMS. These algorithms will form the basis for the proposed algorithms

in the next chapters.

2.4.1 The LMS and NLMS algorithms

The LMS algorithm [13, 65] is an iterative formulation which solves, in the limit, the

Wiener-Hopf equations recursively using a stochastic approximation to the method of

steepest descent. The LMS algorithm computes the optimum coefficients of a linear filter

by minimizing a statistical cost function defined as the MSE in (2.6). The following deriva-

tion shows the source of Wiener-Hopf equation and discusses how the method of steepest

descent can be applied to form LMS. As this chapter deals with system identification in

the application of echo cancellation, the input signal is always a real-valued speech signal.

Hence, throughout the following time domain derivations, the use of conjugate operator

is omitted and the non-conjugate matrix transpose ([.]T ) is used instead of the Hermitian
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transposition ([.]H).

By using the a priori error signal e(n) in (2.5), the cost function J
(
ĥ(n− 1)

)

yields an expression as

J
(
ĥ(n− 1)

)
= E

{
e2(n)

}

= E
{[
y(n)− ĥT (n− 1)x(n)

] [
y(n)− xT (n)ĥ(n− 1)

]}

= E
{
y2(n)

}
− 2pT ĥ(n− 1) + ĥT (n− 1)Rĥ(n− 1), (2.8)

where p is the L-by-1 cross-correlation vector between y(n) and x(n) defined as follows:

p = E {y(n)x(n)}

= E





y(n)x(n)

y(n)x(n− 1)
...

y(n)x(n− L+ 1)





, (2.9)

and R is the L-by-L auto-correlation matrix of the tap inputs in the transversal filter and

can be defined as

R = E
{
x(n)xT (n)

}

= E





x(n)x(n) x(n)x(n− 1) · · · x(n)x(n− L+ 1)

x(n− 1)x(n) x(n− 1)x(n− 1) · · · x(n− 1)x(n− L+ 1)
...

...
. . .

...

x(n− L+ 1)x(n) x(n− L+ 1)x(n− 1) · · · x(n− L+ 1)x(n− L+ 1)





,

(2.10)

Thus, the MSE cost function has a quadratic form in the impulse response vector ĥ and

the minimum of the error surface can be obtained by setting the partial derivatives of J ,

with respect to each filter coefficient, to zero. Therefore, the unique optimum impulse

response is given by

ĥopt = R−1p, (2.11)



2.4 Time domain adaptive algorithms for echo cancellation 48

which is known as Wiener-Hopf solution. This method provides minimum MSE and there-

fore can be used to estimate the unknown room impulse response. However, this approach

is not appropriate in dealing with non-stationarity signals like speech signals and further-

more, the autocorrelation and cross-correlations are unknown.

The method of steepest decent is a gradient type iterative technique that has been

employed to optimize cost functions [13]. The basic concept of the method of steepest

descent is such that from an arbitrary starting point on the error performance surface

(defined by (2.8)), a small step is taken in the direction where the cost function decreases

fastest. The filter coefficients thus progress towards the minimum point on the error

performance surface as the number of iterations increases. Thus, the definition of the

filter coefficient update equation be of the form

ĥ(n) = ĥ(n− 1)− µ

2
∇J

(
ĥ(n− 1)

)
, (2.12)

where µ is a step-size and ∇J
(
ĥ(n− 1)

)
is the gradient vector of the cost function (i.e.

the direction where the cost function changes fastest), which is computed from (2.8) as

∇J
(
ĥ(n− 1)

)
=

∂E
{
e2(n)

}

∂ĥ(n− 1)

= −2E
{

[x(n)]
[
y(n)− xT (n)ĥ(n− 1)

]}

= −2p + 2Rĥ(n− 1). (2.13)

Thus, the filter coefficient update equation for the method of steepest descent is given by

ĥ(n) = ĥ(n− 1) + µ
[
p−Rĥ(n− 1)

]
. (2.14)

The purpose of the adaptive step-size µ is to allow control over the rate of convergence

such that a higher µ gives a faster rate of convergence. For stability it must be lie with

the range

0 < µ <
2

ϑmax
, (2.15)

where ϑmax is the largest eigen-value of the auto-correlation matrix R.
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The method of steepest descent still requires the explicit knowledge of the statis-

tics of the input signal, according to (2.14). The filter coefficients update equation for

LMS replaces the gradient vector in (2.13) with an instantaneous estimate of the gradient

vector, as

ĥ(n) = ĥ(n− 1)− µ

2
∇̂J

(
ĥ(n− 1)

)
, (2.16)

where ∇̂J
(
ĥ(n− 1)

)
is defined by using the instantaneous estimates for R and p that

are based on sample values of x(n) and y(n) [13]. This yields

∇̂J
(
ĥ(n− 1)

)
= −2x(n)y(n) + 2x(n)xT (n)ĥ(n− 1)

= −2x(n)e(n). (2.17)

Hence, the filter coefficients update equation for LMS is expressed as

ĥ(n) = ĥ(n− 1) + µx(n)e(n). (2.18)

The LMS algorithm can be considered as only an estimator of the Wiener filter due

to the approximation of the gradient vector. In (2.18), the filter coefficient adjustment

is directly proportional to the tap input vector, x(n). Therefore, when the x(n) vector

is large, the LMS suffers from a gradient noise amplification problem. To overcome this

problem, the adjustment applied to the tap weight vector at each iteration can be nor-

malized with respect to the squared Euclidean norm of x(n). This is then known as the

NLMS algorithm and its filter coefficient update equation is given by

ĥ(n) = ĥ(n− 1) + µ
x(n)e(n)

xT (n)x(n) + δNLMS
, (2.19)

where the regularization parameter δNLMS = σ2
x (the variance of the input signal), which

prevents division by zero, especially during initialization when x(n) = 0.

The NLMS algorithm is one of the most popular for AEC due to its straightforward

implementation and relatively low complexity. One of the main drawbacks of the NLMS

algorithm is that its convergence rate reduces significantly when the impulse response
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is sparse, such as often occurs in NEC. The poor performance has been addressed by

several sparse adaptive algorithms such as those described below that have been developed

specifically to identify sparse impulse responses in NEC applications.

The filter coefficients update equation for many of the adaptive algorithms can be

described by (2.5) and the following set of generalized equations [10]:

ĥ(n) = ĥ(n− 1) +
µQ(n− 1)x(n)e(n)

xT (n)Q(n− 1)x(n) + δ
, (2.20)

Q(n− 1) = diag
{
q0(n− 1) . . . qL−1(n− 1)}. (2.21)

The diagonal step-size control matrix Q(n) is introduced here to determine the step-size

of each filter coefficient and is dependent on the specific algorithm. For NLMS, since the

step-size is the same for all filter coefficients,

Q(n) = IL×L, (2.22)

with IL×L being an L× L identity matrix.

2.4.2 The PNLMS and MPNLMS algorithm

It is important for an adaptive filter to identify rapidly the active coefficients in sparse

impulse responses. The PNLMS and MPNLMS algorithms have been proposed for such

sparse system identification. Diagonal elements ql of the step-size control matrix Q(n) in

(2.21) for the PNLMS [24] and MPNLMS [25] algorithms can be expressed as

ql(n) =
κl(n)

1
L

∑L−1
i=0 κi(n)

, 0 ≤ l ≤ L− 1, (2.23)

κl(n) = max
{
ρ×max{γ, F (|ĥ0(n)|) . . . F (|ĥL−1(n)|)}, F (|ĥl(n)|)

}
, (2.24)

where F (|ĥl(n)|) is specific to the algorithm. The parameter γ = 0.01 in (2.24) prevents

the filter coefficients ĥl(n) from stalling when ĥ(0) = 0L×1 at initialization and ρ, with a
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typical value of 0.01, prevents the coefficients from stalling when they are much smaller

than the largest coefficient.

The PNLMS algorithm achieves a high rate of convergence by employing step-sizes

that are proportional to the magnitude of the estimated impulse response coefficients

where elements F (|ĥl(n)|) are given by

F (|ĥl(n)|) = |ĥl(n)|. (2.25)

Hence, PNLMS employs larger step-sizes for ‘active’ coefficients than for ‘inactive’ co-

efficients and consequently achieves faster convergence than NLMS for sparse impulse

responses. However, it is found that PNLMS achieves fast initial convergence but this is

followed by a slower second phase convergence [25].

The MPNLMS algorithm was proposed to improve the convergence of PNLMS.

It achieves this by computing the optimal proportionate step-size during the adaptation

process. The MPNLMS algorithm was derived such that all coefficients attain a converged

value to within a vicinity ε of their optimal value in the same number of iterations [25].

As a consequence, F (|ĥl(n)|) for MPNLMS is specified by

F (|ĥl(n)|) = ln(1 + ν|ĥl(n)|), (2.26)

with ν = 1/ε and ε (vicinity) is a very small positive number chosen as a function of the

noise level [25]. It has been shown in [25] that ε = 0.001 is a good choice for typical echo

cancellation. The positive bias of 1 in (2.26) is introduced to avoid numerical instability

during the initialization stage when |ĥl(0)| = 0, ∀l. In order to reduce the expensive

computational complexity of the MPNLMS algorithm, two straight lines are proposed [25]

to approximate the logarithmic function in (2.26).

It is important to note that both PNLMS and MPNLMS suffer from slow conver-

gence when the unknown system h(n) is dispersive [49, 50]. This is because when h(n)

is dispersive, κl(n) in (2.24) becomes significantly large for most 0 ≤ l ≤ L − 1. As a

consequence, the denominator of ql(n) in (2.23) is large, giving rise to a small step-size for
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each large coefficient. This causes a significant degradation in convergence performance

for PNLMS and MPNLMS when the impulse response is dispersive such as can occur in

AIRs.

2.4.3 The IPNLMS algorithm

The IPNLMS [26] algorithm was originally developed for NEC and was further developed

for the identification of acoustic room impulse responses [64]. It employs a combination

of proportionate (PNLMS) and non-proportionate (NLMS) adaptation, with the relative

significance of each controlled by a factor αIP such that the diagonal elements of Q(n) are

given as

ql(n) =
1− αIP

2L
+

(1 + αIP)|ĥl(n)|
2‖ĥ(n)‖1 + δIP

, 0 ≤ l ≤ L− 1. (2.27)

where ‖ · ‖1 is defined as the l1-norm and the first and second terms are the NLMS

and the proportionate terms respectively. It can be seen that IPNLMS is the same as

NLMS when αIP = −1 and PNLMS when αIP = 1. Use of a higher weighting for NLMS

adaptation, such as αIP = 0, −0.5 or −0.75, is a favorable choice for most AEC/NEC

applications [26]. It has been shown that, although the IPNLMS algorithm has faster

convergence than NLMS and PNLMS regardless of the impulse response nature [26], but

it was noted from the simulations that IPNLMS does not outperform MPNLMS for highly

sparse impulse responses with the above choices of αIP.

2.4.4 Computational complexity

It is also necessary to examine the computational complexity of these algorithms. Al-

though many factors contribute to the complexity of an algorithm, the relative complexity

of NLMS, PNLMS, MPNLMS and IPNLMS in terms of the total number of additions,

multiplications, division, logarithm (Log) and comparisons (C) per iteration for adaptation

of filter coefficients is assessed in Table 2.1.

The followings should be noted:

• The computation of the 2-norm ‖x(n)‖22 requires two multiplications and one addi-
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tion using the following recursive method

‖x(n)‖22 = ‖x(n− 1)‖22 + (1− υ)x2(n), (2.28)

where υ is the forgetting factor.

• The comparison between two numbers takes one subtraction. But, in this content,

comparison is regarded as an operator.

Table 2.1: Complexity of algorithms’ coefficients update - Addition, Multiplication,
Division, Logarithm (Log) and Comparison.

Algorithm Addition Multiplication Division Log Comparison

NLMS L+ 3 L+ 3 1 0 0

PNLMS 2L+ 1 5L+ 2 2 0 2L

MPNLMS 3L+ 1 6L+ 2 2 L 2L

IPNLMS 3L+ 2 5L+ 2 2 0 0

It can be noticed from Table 2.1 that the overall computational complexities of

PNLMS, MPNLMS and IPNLMS are increased or stayed same, compared to NLMS. To

compensate this increased complexities their convergence performances must be signifi-

cantly higher.

2.5 Frequency domain adaptive algorithms for echo cancel-

lation

In this section, echo cancellation using adaptive algorithms in frequency domain is studied.

Since its introduction in [55], adaptive filtering in the frequency domain has attracted a

great deal of research interest for the following three main reasons:

• By taking advantage of the computational efficiency of the FFT for computing the

DFT, a convolution of two signals can be quickly calculated in frequency domain.
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• They perform computations block-by-block, by incorporating block updating strate-

gies, rather than performing sample-by-sample computations. Since the filter output

and tap updates are computed only after a block of data has been accumulated, their

computational complexities reduce proportional to the block length.

• A DFT processes a time sequence like a filter bank, which orthogonalizes the data,

and therefore the coefficients of a frequency domain adaptive filter can converge

independently or even uniformly if the update is normalized properly [66].

Deriving a frequency domain adaptive algorithm can involve a large number of vari-

ables in the form of both vectors and matrices, in time and frequency domains. Therefore,

Section 2.5.1 clarifies the notations and definitions used in the following sections, before

reviewing the main adaptive algorithms in the frequency domain, such as the FLMS algo-

rithm, the MDF algorithm and the IPMDF algorithm.

2.5.1 Notations and definitions

For consistency, these notations are adopted from [10]. The N × N identity matrix is

represented as IN×N and a null matrix of the same dimension is denoted as 0N×N . The

2L× 2L Fourier matrix is defined as

F2L×2L =




1 1 1 · · · 1

1 e−i2π/2L e−i4π/2L · · · e−i2π(2L−1)/2L

1 e−i4π/2L e−i8π/2L · · · e−i4π(2L−1)/2L

...
...

... · · · ...

1 e−i2π(2L−1)/2L e−i4π(2L−1)/2L · · · e−i2π(2L−1)2/2L




2L×2L

, (2.29)

where i =
√
−1 and its inverse is defined by [63]

F−1
2L×2L =

1
2L

F∗2L×2L, (2.30)

where ∗ denotes complex conjugate operation. All frequency domain variables are denoted

with an underscore. The windowing matrices, with L and N denote the sizes, are defined
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as

G10
L×2L = FL×L W10

L×2L F−1
2L×2L, (2.31)

G01
2L×2L = F2L×2L W01

2L×2L F−1
2L×2L, (2.32)

where

W10
L×2L =

[
IL×L 0L×L

]

L×2L

, (2.33)

W01
2L×2L =




0L×L 0L×L

0L×L IL×L




2L×2L

. (2.34)

2.5.2 The FLMS algorithm

The FLMS algorithm [27] adapts its filter coefficients by first arranging the input signal

x(n) into frames and employing an arbitrary overlapping factor between successive frames.

These frames are then transformed into their DFT sequences using the FFT algorithm for

efficient implementation. By defining m as the frame-index, the mth input frame is given

by

X(m) =
[
x(mL− L), x(mL− L+ 1), · · · , x(mL− 1), x(mL),

x(mL+ 1), · · · , x(mL+ L− 1)
]T
1×2L

, (2.35)

while the estimated impulse response is given by

ĥ(m) =
[
ĥ0(m) ĥ1(m) · · · ĥL−1(m)

]T
. (2.36)

The frequency domain input sequence can be expressed as

X(m) = F2L×2L X(m)

=
[
x0(m) x1(m) · · · x2L−1(m)

]T
, (2.37)

where xl(m) is the lth frequency-bin of the input signal for l = 0, 1, · · · , 2L− 1. The L× 1
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received microphone signal is given by

Y(m) =
[
y(mL) y(mL+ 1) · · · y(mL+ L− 1)

]T
. (2.38)

The frequency domain output of the adaptive filter can be expressed as

Ŷ(m) = F2L×2L




0L×1

Ŷ(m)




2L×1

= G01
2L×2L D(m) ĥ(m− 1), (2.39)

where

D(m) = diag
{

X(m)
}

=




x0(m) 0 · · · 0

0 x1(m) · · · 0
...

...
. . .

...

0 0 · · · x2L−1(m)




2L×2L

, (2.40)

and

ĥ(m) = F2L×2L




ĥ(m)

0L×1




2L×1

. (2.41)

Consequently, the time domain and frequency domain a priori block error can be respec-

tively expressed as

E(m) =
[
e(mL) e(mL+ 1) · · · e(mL+ L− 1)

]T

= Y(m)− Ŷ(m), (2.42)
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E(m) = F2L×2L




0L×1

E(m)




2L×1

= Y(m)− Ŷ(m)

= Y(m)−G01
2L×2L D(m) ĥ(m− 1). (2.43)

Similar to the time domain adaptive algorithms, the FLMS employs a gradient

estimate given by the correlation between the a priori error and the input sequence.

Therefore, the time domain gradient estimation is given by

∇̂(m) = W10
L×2L F−1

2L×2L D∗(m) E(m), (2.44)

where W10
L×2L is used to obtain the first L terms in F−1

2L×2L D∗(m) E(m). Hence, the

equivalent filter coefficients update equation of frequency domain LMS can be given by

ĥ(m) = ĥ(m− 1) + µ FL×L W10
L×2L F−1

2L×2L D∗(m) E(m) (2.45)

= ĥ(m− 1) + µ G10
L×2L D∗(m) E(m). (2.46)

The FLMS algorithm quantifies each frequency-bin such that the effective step-size

for each element in the gradient vector is inversely proportional to the energy of the input

signal at that frequency-bin. As a result, a more uniform convergence can be achieved

across different frequency-bins. This energy can be estimated recursively using a 2L× 2L

matrix [67]

SFLMS(m) = ζ SFLMS(m− 1) + (1− ζ) D∗(m) D(m)

= diag
{

S0(m) S1(m) · · · S2L−1(m)
}
, (2.47)

where Sl(m) is the energy of the input signal in the lth frequency-bin and 0� ζ < 1 is the

forgetting factor. Hence, by normalizing the energy, the filter coefficients update equation
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of FLMS is defined by

ĥ(m) = ĥ(m− 1) + 2µ (1− ζ) G10
L×2L D∗(m) [SFLMS(m) + δFLMS I2L×2L]−1 E(m),

(2.48)

where δFLMS is the regularization parameter.

Compared to the time domain adaptive algorithms, substantial computational sav-

ings can be achieved by employing the FLMS algorithm, especially when the AIRs contain

several hundreds of coefficients. However, one of the drawbacks is the delay introduced

between the input and output, which is equivalent to the length of the adaptive filter L,

since the FLMS algorithm computes the output Ŷ(m) for every L input samples.

2.5.3 The MDF algorithm

The MDF structure [28] was developed to mitigate the delay problem inherent in FLMS.

It partitions the adaptive filter into blocks each of length N such that the delay is reduced

by a factor of K = L/N . The MDF structure can be described by first defining, for the

mth frame, the a priori error, which is similar to that of FLMS in (2.43),

e(m) = y(m)−G01
2L×2L

K−1∑

k=0

D(m− k) ĥk(m− 1), (2.49)

where

D(m− k) = diag {FFT {x(mN − kN −N) . . . x(mN − kN +N − 1)}} , (2.50)

and

ĥk(m) = F2N×2N W10
2N×N ĥk(m). (2.51)
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where k is denoted as the block-index and the realization of ĥ(m) and the sub-filter ĥk(m)

can be explicitly expressed by

ĥ(m) =


ĥ0(m) · · · ĥN−1(m)︸ ︷︷ ︸

ĥ0(m)

· · · · · · ĥL−N (m) · · · ĥL−1(m)︸ ︷︷ ︸
ĥK−1(m)




T

. (2.52)

This recursive relation for the energy estimation, similar to that of FLMS in (2.47),

can be given by

SMDF(m) = ζ SMDF(m− 1) + (1− ζ) D∗(m) D(m). (2.53)

Hence, the kth sub-filter of the MDF structure is updated by

ĥk(m) = ĥk(m− 1) + µF G10
L×2L D∗(m− k) [SMDF(m) + δMDF I2L×2L]−1 e(m),

(2.54)

where

µF = τ(1− ζ), (2.55)

with 0 < τ ≤ 1. Letting σ2
x be the input signal variance, the initial regularization pa-

rameters [10] are SMDF(0) = σ2
x/100 and δMDF = 20σ2

xN/L. For N = L and K = 1,

MDF is equivalent to FLMS [27]. It is also interesting to note that the smaller block

size (N), allows the filter coefficients to be updated more frequently, hence resulting in

faster convergence. On the other hand, larger block size results a computationally efficient

structure. Therefore, a good compromise should be made when choosing N , depending

on the application. The convergence analysis on MDF can be found in [68].

2.5.4 The IPMDF algorithm

The MDF structure has also been proposed for sparse system identification. The IP-

MDF algorithm [29] was proposed to combine the fast convergence of IPNLMS and the

efficient implementation brought about by the MDF structure. To achieve this, the step-
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size control matrix with diagonal elements given by (2.27) is employed in each subfilter

ĥk(m) in the time domain such that

qkN+l(m) =
1− αIPMDF

2L
+

(1 + αIPMDF)|ĥkN+l(m)|
2‖ĥ(m)‖1 + ε

(2.56)

for k = 0, 1, . . . ,K − 1, l = 0, 1, . . . , N − 1, and

Qk(m) = diag{qkN (m) qkN+1(m) . . . qkN+N−1(m)}. (2.57)

Accordingly, the filter coefficients adaptation is performed in the time domain by us-

ing (2.49), the energy recursion equation (similar to (2.53)) defined by

SIPMDF(m) = ζ SIPMDF(m− 1) + (1− ζ) D∗(m) D(m), (2.58)

and

ĥk(m) = ĥk(m− 1) + LµFQk(m)G̃10
N×2N D∗(m− k) [SIPMDF(m) + δIPMDF]−1 e(m),

(2.59)

where G̃10
N×2N = [IN×N 0N×N ]F−1

2N×2N and µF is defined as in (2.55). The initial reg-

ularization parameters are given by SIPMDF(0) = (1 − αIPMDF)SMDF(0) and δIPMDF =

(1− αIPMDF)δMDF.

2.5.5 Computational complexity

In terms of the computational complexities, N = L is the optimal choice for MDF and IP-

MDF, as they have single block (K = 1) without any overlapped input samples. Moreover,

with K = 1, MDF is similar to FLMS. The relative computational complexity of FLMS,

MDF and IPMDF in terms of the total number of additions, multiplications and divisions

per iteration for adaptation of filter coefficients is shown in Table 2.2 for K = 1. Since

IPMDF updates the filter coefficients in time domain, it requires an additional L log2(L)

real multiplications and L log2(L) additions to compute the radix-2 FFT.
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Table 2.2: Computational complexity of FLMS, MDF and IPMDF for K = 1

Algorithm Addition Multiplication Division

FLMS & MDF 4L log2(L) + 4L 4L log2(L) + 6L L

IPMDF 5L log2(L) + 6L+ 2 5L log2(L) + 8L+ 2 L+ 2

2.6 Summary

Echo cancellers can be potentially employed in telecommunication systems so that the

undesired echoes, both acoustic and hybrid, can be controlled. The formation of single

channel acoustic echo canceller has been looked at in detail, where the functioning of the

adaptive filter has been studied.

By minimizing the mean square value of the error signal for linear filtering problems,

Wiener filters can be employed to find the optimal filter which, when applied to the

input signal, produces a signal that is close to the desired signal. This approach requires

knowledge of certain statistical information of the input signal and needs to perform heavy

computation each time the statistics changes. The well-known recursive optimization

technique, steepest descent, can be applied and eventually converges to the Wiener solution

from an arbitrary starting point on the error performance surface. It iteratively improves

the solution by progressing towards the minimum point on the error performance surface

as the number of iterations increases. As the gradient vector of the steepest decent method

still requires the explicit knowledge of the statistics of the input signal, stochastic gradient

based algorithms are next considered as they avoid this need for statistical knowledge by

estimating the gradient vector at each iteration. To conclude the three methods, the

Wiener filter is a closed-form solution, whereas the steepest descent and the stochastic

gradient methods approach the Wiener solution by taking calculated and estimated steps,

respectively.

Several time and frequency domains algorithms were reviewed and the main adap-

tive algorithms, including NLMS, PNLMS, MPNLMS, IPNLMS, FLMS, MDF and IP-

MDF, were studied in detail by also studying their computational complexities. Their
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tracking performances will be compared in the next chapter, along with the proposed

algorithms extended using these conventional methods.

2.6.1 Time domain algorithms

Table 2.3: The NLMS, PNLMS, MPNLMS and IPNLMS Algorithms

Initializations:

ĥ(0) = 0L×1

0 < µ ≤ 1

General Computations:

e(n) = y(n)− ĥT (n− 1)x(n)

ĥ(n) = ĥ(n− 1) +
µQ(n− 1)x(n)e(n)

xT (n)Q(n− 1)x(n) + δ

Q(n− 1) = diag {q0(n− 1), . . . , qL−1(n− 1)}

NLMS

ql(n) = 1, 0 ≤ l ≤ L− 1

PNLMS

ql(n) =
κl(n)

1
L

∑L−1
i=0 κi(n)

, 0 ≤ l ≤ L− 1

κl(n) = max
{
ρ×max

{
γ, |ĥ0(n)|, . . . , |ĥL−1(n)|

}
, |ĥl(n)|

}

MPNLMS

ql(n) =
κl(n)

1
L

∑L−1
i=0 κi(n)

, 0 ≤ l ≤ L− 1

κl(n) = max
{
ρ×max

{
γ, F(|ĥ0(n)|), . . . ,F(|ĥL−1(n)|)

}
,F(|ĥl(n)|)

}

F(|ĥl(n)|) = ln(1 + ν|ĥl(n)|)

IPNLMS

ql(n) =
(1− αIP)

2L
+

(1 + αIP)|ĥl(n)|
2‖ĥ(n)‖1 + δIP

, 0 ≤ l ≤ L− 1
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2.6.2 Frequency domain algorithms

Table 2.4: The FLMS Algorithm

ζ =
[
1− 1

3L

]L

X(m) = [x(mL− L) x(mL− L+ 1) · · · x(mL+ L− 1)]T

X(m) = F2L×2L X(m)

D(m) = diag {X(m)}

Ŷ(m) = G01
2L×2L D(m) ĥ(m− 1)

E(m) = Y(m)− Ŷ(m)

SFLMS(m) = ζ SFLMS(m− 1) + (1− ζ) D∗(m) D(m)

ĥ(m) = ĥ(m− 1) + 2µ (1− ζ) G10
L×2L D∗(m) [SFLMS(m) + δFLMS I2L×2L]−1 E(m)

Table 2.5: The MDF and IPMDF Algorithm

ζ =
[
1− 1

3L

]L

µF = τ(1− ζ), 0 < τ ≤ 1

D(m− k) = diag {FFT {x(mN − kN −N) . . . x(mN − kN +N − 1)}}

e(m) = y(m)−G01
2L×2L

∑K−1
k=0 D(m− k) ĥk(m− 1)

MDF

SMDF(m) = ζ SMDF(m− 1) + (1− ζ) D∗(m) D(m)

ĥk(m) = ĥk(m− 1) + µFG10
L×2LD∗(m− k) [SMDF(m) + δMDFI2L×2L]−1 e(m)

IPMDF

SIPMDF(m) = ζ SIPMDF(m− 1) + (1− ζ) D∗(m) D(m)

qkN+l(m) =
1− αIPMDF

2L
+

(1 + αIPMDF)|ĥkN+l(m)|
2‖ĥ(m)‖1 + ε

k = 0, · · · K − 1, l = 0, · · ·N − 1

Qk(m) = diag{qkN (m) qkN+1(m) . . . qkN+N−1(m)}

ĥk(m) = ĥk(m− 1) + LµFQk(m)G̃10
N×2N D∗(m− k) [SIPMDF(m) + δIPMDF]−1 e(m)
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Chapter 3

A Class of Sparseness-controlled

Algorithms

THE aim of the previous chapter was to introduce the first and most fundamental

adaptive algorithms that identify unknown acoustic impulse responses in the time

and frequency domains. In this chapter, more sophisticated time and frequency domain

single-input single-output adaptive algorithms that better suit the acoustic environment

are studied. The earlier version of these works were published in [69, 70, 71].

3.1 Introduction

The use of adaptive filters for system identification has found applications in both network

and acoustic echo cancellation. Such adaptive filters are employed to estimate the unknown

impulse response of the system and algorithms developed for such applications require fast

convergence as well as good tracking performance.

In reality, the acoustic echo in the receiving room does not always follow a same

response. The path may vary with time influenced by the distance between the loudspeaker

and the microphone and due to change in room characteristics, including temperature [11],

pressure and movement of the talker. The acoustic characteristics of environment can be

evaluated by the reverberation time, which is proportional to the volume of the enclosed
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space and inversely proportional to the absorption area [12]. For an outdoor environment,

the reverberation time is reduced significantly due to the lack of reflections from any

enclosure. The outdoor environment refers here to a typical urban area or a rural area with

sparsely placed acoustically reflecting objects such as display boards. The sparseness of the

AIR of an outdoor environment is significantly greater than typical indoor environments

and equally, if not more, variable.

In such a time-varying environment, the underlying impulse response may vary

over a sufficiently large range that its sparsity could change from sparse to dispersive.

Therefore, there is a need for an algorithm which can work effectively and be robust to

the variations in the sparseness of the acoustic path.

In this chapter, a new approach is proposed to improve convergence of proportionate

adaptive algorithms for dispersive impulse responses estimation, in the time (Section 3.4)

and frequency (Section 3.5) domains. The proposed algorithms compute a sparseness

measure of the estimated impulse response at each iteration of the adaptive process and

incorporate it into their methods. As will be shown, the proposed sparseness-controlled

algorithms achieve fast convergence for both sparse and dispersive AIRs and are robust

to the sparseness variation of AIRs, hence they are effective for AEC.

3.2 Sparseness measure

Impulse responses are very different from one to another in networks or under different

room conditions, so it is important to quantify how sparse or dispersive they are. The

degree of sparseness for an impulse response can be qualitatively measured ranging from

strongly dispersive to strongly sparse. The sparsity ξ(h) of a vector h can be quantitatively

measured by [2, 3]

ξ(h) =
L

L−
√
L

{
1− ‖h‖1√

L ‖h‖2

}
, (3.1)
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Figure 3.1: Sparseness measure of different impulse responses.

where L is the length of the vector h and ‖h‖1 and ‖h‖2 represent `1 and `2-norms of h,

respectively defined as:

‖h‖1 =
L−1∑

l=0

|hl|, (3.2)

‖h‖2 =

√√√√
L−1∑

l=0

|h2
l |

=
√

hTh. (3.3)

As 1 ≤ ‖h‖1‖h‖2 ≤
√
L, it can be shown [2, 3] that 0 ≤ ξ(h) ≤ 1. In the extreme but unlikely

case when

hl =




±k, l = l1,

0, 0 ≤ l ≤ L− 1, l 6= l1,
(3.4)

where l1 ∈ {[0, L−1]} and k ∈ < as shown in the rightmost plot of Fig. 3.1, then ξ(h) = 1.

On the other hand, when hl = ±k ∀l as shown in the leftmost plot of Fig. 3.1, then

ξ(h) = 0. It is also interesting to note that the measure is independent of the sorting

order of the impulse response coefficients and not affected by a non-zero scaling factor,

i.e.:

ξ(Ch) = ξ(h) ∀C 6= 0. (3.5)



3.3 Characterization of framework for robust convergence in the time domain68

3.3 Characterization of framework for robust convergence

in the time domain

In this Section, an illustrative example is provided to show how the sparseness of AIRs

varies with the loudspeaker-microphone distance in an enclosed space such as when the

user is using a wireless microphone for tele/video conferencing. This serves as a motivation

to develop new algorithms which are robust to the sparseness variation of AIRs in the next

Section. In addition, it also demonstrates how the choice of ρ in (2.24) affects the step-size

of each filter coefficient for PNLMS.

3.3.1 Variation of sparseness in AIRs

In reality h(n) and hence ξ (h(n)) is time-varying and depends on factors such as tem-

perature, pressure and reflectivity [11]. As explained in Section 3.1, the sparseness of

AIRs ξ(h(n)) varies with the location of the receiving device in an open or enclosed

environment, because of the open environment has fewer acoustically reflecting objects

than the enclosed environment. The sparseness measure ξ(h(n)) can also vary with the

loudspeaker-microphone distance in an enclosed space.

Consider an example case where the distance, a, between a fixed position loud-

speaker and the talker using a microphone is varying. Figure 1.2 shows two AIRs, gen-

erated using the method of images [1, 23] with 1024 coefficients using room dimensions

of 8 × 10 × 3 m and 0.57 as the reflection coefficient. The loudspeaker was fixed at

4× 9.1× 1.6 m in the LRMS while the microphone was positioned at 4× 8.2× 1.6 m and

4 × 1.4 × 1.6 m giving impulse responses as shown in Fig. 1.2 (a) and (b) for a = 0.9 m

and a = 7.7 m respectively. Figure 3.2 illustrates how ξ(h(n)) of such AIRs varies with a.

For each loudspeaker-microphone distance a, the microphone was directly in front of the

loudspeaker. As can be seen, ξ(h(n)) reduces with increasing a, since for increasing a, the

sound field becomes more diffuse. Since ξ(h(n)) varies with a, it is proposed to incorporate

ξ(h(n)) into PNLMS, MPNLMS and IPNLMS in order to improve their robustness to the

sparseness of AIRs in AEC. Since h(n) is unknown during adaptation, ξ̂(n) is employed
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to estimate the sparseness of an impulse response, where at each sample iteration,

ξ̂(n) =
L

L−
√
L

{
1− ‖ĥ(n)‖1√

L ‖ĥ(n)‖2

}
, (3.6)

which uses the estimation of the impulse response at the iteration (ĥ(n)), instead of the

unknown impulse response h(n).

3.3.2 Effect of ρ on step-size control matrix Q(n) for PNLMS

As explained in Section 2.4.2, the parameter ρ in (2.24) was originally introduced to

prevent freezing of the filter coefficients when they are much smaller than the largest

coefficient. Figure 3.3 shows the effect of ρ for both sparse and dispersive AIRs on the

convergence performance of PNLMS measured using the normalized misalignment defined

in (2.7).

A zero mean white Gaussian noise (WGN) sequence was used as the input signal

while another WGN sequence w(n) was added to give an SNR of 20 dB. Impulse responses
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nal. Impulse responses in Fig. 1.2 are used as sparse and dispersive AIRs respectively.
[µPNLMS = 0.3, SNR = 20 dB]

as shown in Fig. 1.2 were used as sparse and dispersive AIRs, and µPNLMS = 0.3. It can

be seen from this illustration that, for a sparse h(n), a low value of ρ is desired while, for a

dispersive unknown system h(n), a high value of ρ is desired. This is due to the resulting

effect of how different values of ρ affect the step-size control element ql(n) as illustrated

in Fig. 3.4. It can be observed that a higher value of ρ will reduce the influence of the

proportional update term meaning that all filter coefficients are updated at a more uniform

rate. This provides a good convergence performance for PNLMS for a dispersive AIR. On

the other hand, a lower ρ will increase the degree of proportionality hence giving good

convergence performance when the AIR is sparse. As a consequence of this important

observation, it is proposed to incorporate ξ̂(n) into ρ for both PNLMS and MPNLMS as

described in the next section.

3.4 Time domain sparseness-controlled algorithms

In this section, an improvement in the robustness of PNLMS, MPNLMS and IPNLMS

to varying levels of sparseness of impulse response such as encountered in, for example

AEC, is proposed. As will be shown in the following, this is achieved by incorporating the

sparseness measure of the estimated AIRs into the adaptation process. These approaches

will be discussed conceptually and with simulation results on both WGN and speech input
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signals.

3.4.1 The SC-PNLMS and SC-MPNLMS algorithm

In order to address the problem of slow convergence in PNLMS and MPNLMS for dis-

persive AIR, the step-size control elements ql(n) require to be robust to variation in the

sparseness of the impulse response. Several choices can be employed to obtain the de-

sired effect of achieving a high ρ when ξ̂(n) is small when estimating dispersive AIRs. An

example exponential function is considered as

ρ(n)=e−λξ̂(n), λ ∈ R+. (3.7)

The variation of ρ(n) in PNLMS for the exponential function is plotted in Fig. 3.5 for the

cases where λ = 4, 6 and 8. It can be noted that a linear function ρ(n) = 1 − ξ̂(n) also

achieves the desired condition. This case was first tested and found it to be performing

worse than the more general form of (3.7), as the value of ρ(n) is not small enough to
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achieve the desired proportionality control determined by ql(n) when the AIR is strongly

sparse such as for 0.8 ≤ ξ̂(n) ≤ 1. So, the choice of the linear function will not be

considered further.

It can be seen that low values of ρ(n) are allocated for a large range of sparse impulse

responses such as when ξ̂(n) > 0.4. As a result of small values in ρ(n) using (3.7), the pro-

posed sparseness-controlled PNLMS algorithm (SC-PNLMS) inherits the proportionality

step-size control over a large range of sparse impulse response. When the impulse response

is dispersive, such as when ξ̂(n) < 0.4, the proposed SC-PNLMS algorithm inherits the

NLMS adaptation control with larger values of ρ(n). As explained in Section 3.3.2 and

Fig. 3.4, this gives a more uniform step-size across hl(n). Hence, the exponential function

described by (3.7) will achieve the overall desired effect of the robustness to sparse and

dispersive AIRs.

The choice of λ is important. As can be seen from Fig. 3.5, a larger choice of λ will

cause the proposed SC-PNLMS to inherit more of PNLMS properties compared to NLMS
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giving good convergence performance when AIR is sparse. On the other hand, when the

AIR is dispersive, λ must be small for good convergence performance. Hence, it will be

shown in Section 3.5.2 that a good compromise is given by λ = 6, though the algorithm

is not very sensitive to this choice in the range of 4 ≤ λ ≤ 6.

Incorporating ρ(n) in a similar manner for the MPNLMS algorithm, the resulting

sparseness-controlled MPNLMS algorithm (SC-MPNLMS) inherits more of the MPNLMS

properties when the estimated AIR is sparse and distributes uniform step-size across hl(n),

as in NLMS, when the estimated AIR is dispersive. In addition, it can be noted that when

n = 0, ‖ĥ(0)‖2 = 0 and hence, to prevent division by a small number or zero, ξ̂(n) can

be computed for n ≥ L in both SC-PNLMS and SC-MPNLMS. When n < L, a value of

ρ(n) = 5/L can be set as described in [26].

The SC-PNLMS algorithm is thus described by (2.5)-(2.25), (3.6) and (3.7), whereas

SC-MPNLMS is described by (2.5)-(2.24), (2.26), (3.6) and (3.7) with λ = 6, as summa-

rized in Table 3.3.

3.4.2 The SC-IPNLMS algorithm

A different approach, compared to SC-PNLMS and SC-MPNLMS, is chosen to incorpo-

rate sparseness-control into the IPNLMS algorithm (SC-IPNLMS) [2] because, as can be

seen from (2.27), two terms are employed in IPNLMS for control of the mixture between

proportionate and NLMS updates. The proposed SC-IPNLMS improves the performance

of the IPNLMS by expressing ql(n) for n ≥ L as

ql(n)=

[
1− 0.5ξ̂(n)

L

]
(1− αSC−IP)

2L
+

[
1 + 0.5ξ̂(n)

L

]
(1 + αSC−IP)|ĥl(n)|

2‖ĥ(n)‖1 + δIP
. (3.8)

As can be seen, for large ξ̂(n) when the impulse response is sparse, the algorithm

allocates more weight to the proportionate term of (2.27). For comparatively less sparse

impulse responses, the algorithm aims to achieve the convergence of NLMS by applying

a higher weighting to the NLMS term. An empirically chosen weighting of 0.5 in (3.8) is
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Figure 3.6: Magnitude of ql(n) for 0 ≤ l ≤ L − 1 against the magnitude of coefficients
ĥl(n) in SC-IPNLMS and different sparseness measures of 8 systems.

included to balance the performance between sparse and dispersive cases, which could be

further optimized for a specific application. In addition, normalization by L is introduced

to reduce significant coefficient noise when the effective step-size is large for sparse AIRs

with high ξ̂(n).

Figure 3.6 illustrates the step-size control elements ql(n) for SC-IPNLMS in estimat-

ing different unknown AIRs. As can be seen, for dispersive AIRs, SC-IPNLMS allocates

a uniform step-size across hl(n) while, for sparse AIRs, the algorithm distributes ql(n)

proportionally to the magnitude of the coefficients. As a result of this distribution, the

SC-IPNLMS algorithm varies the degree of NLMS and proportionate adaptations accord-

ing to the nature of the AIRs. In contrast, in standard IPNLMS the mixing coefficient αIP

in (2.27) is fixed a priori. The SC-IPNLMS algorithm is described by (2.5)-(2.21), (3.6)

and (3.8), as specified in Table 3.3.
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3.4.3 Performance evaluation

Simulation results are presented next, to evaluate the performance of the proposed SC-

PNLMS, SC-MPNLMS and SC-IPNLMS algorithms in the context of AEC. In addition,

an example case of how SC-IPNLMS can be employed in NEC and also the tracking

performances of the sparseness-controlled algorithms under a time-varying unknown echo

system are shown at the end of this section.

Experimental setup

Throughout the simulations, algorithms were tested using a zero mean WGN and a male

speech signal as inputs while another WGN sequence w(n) was added to give an SNR of

20 dB. The length of the adaptive filter L = 1024 was assumed to be equivalent to that

of the unknown system. Two receiving room impulse responses h(n) for AEC simula-

tions have been used as described in Fig. 1.2. The sparseness measure of these AIRs are

computed using (3.1) giving ξ(n) = 0.83 and ξ(n) = 0.59 respectively.

Effect of λ on the performance of SC-PNLMS for AEC

SC-PNLMS was tested as shown in Fig. 3.7 for different λ values in (3.7) to illustrate

the time taken to reach -20 dB normalized misalignment using a WGN sequence as the

input signal. A step-size of µ = 0.3 was used in this experiment. It can be seen from

the result that, for each case of λ, the SC-PNLMS has a higher rate of convergence for

a sparse system compared to a dispersive system. This is due to the initialization choice

of ĥ(0) = 0L×1, where most filter coefficients are initialized close to their optimal values.

In addition, a smaller value of λ is favorable for the dispersive AIR, since SC-PNLMS

performs similarly to NLMS for small λ values. On the contrary, a higher value for λ is

desirable for the sparse case. It can be noted that SC-PNLMS is exactly NLMS for λ = 0.

It can also be seen that a range of good value for λ is 4 ≤ λ ≤ 6.

Figure 3.8 shows the performance of SC-PNLMS with an echo path change intro-

duced from Fig. 1.2 (a) to (b) at 3.5 s, for λ = 0, 4, 6 and 8. It can be observed from this
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of λ in SC-PNLMS using WGN input signal. Impulse response in Fig. 1.2 used as
sparse AIR and dispersive AIR respectively. [µSC−PNLMS = 0.3, SNR = 20 dB]

result that the convergence rate of SC-PNLMS is high when λ is small for a dispersive

channel. This is because, as explained in Section 3.4.1, the proposed algorithm inherits

properties of the NLMS for a small λ value. For a high λ, the SC-PNLMS algorithm

inherits properties of PNLMS giving good performance for sparse AIR before the echo

path change. As can be seen, a good compromise of λ is given by λ = 6.

Convergence performance of SC-PNLMS for AEC

Figure 3.9 compares the performance of NLMS, PNLMS and SC-PNLMS using WGN as

the input signal. The step-size parameter for each algorithm was chosen such that all

algorithms achieve the same steady-state performance assymptotically. This was achieved

by setting µNLMS = µPNLMS = µSC−PNLMS = 0.3. An echo path change was introduced

at 3.5 s from Fig. 1.2 (a) to 1.2 (b) while λ for the SC-PNLMS algorithm was set to 6. It

can be seen from Fig. 3.9 that the convergence rate of SC-PNLMS is as fast as PNLMS
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signal with an echo path change at 3.5 s. Impulse response is changed from Fig. 1.2
(a) to (b) and µSC−PNLMS = 0.3, SNR = 20 dB.

for sparse and much better than PNLMS for dispersive, therefore achieving our objective

of improving robustness to varying sparseness. This is because SC-PNLMS inherits the

beneficial properties of both PNLMS and NLMS. It can be seen from the result that

SC-PNLMS achieves high rate of convergence similar to PNLMS giving approximately

5 dB improvement in normalized misalignment during initial convergence compared to

NLMS for a sparse AIR. After the echo path change, for a dispersive AIR, the SC-PNLMS

maintains its high convergence rate over NLMS and PNLMS giving approximately 4 dB

improvement in normalized misalignment compared to PNLMS.

Figure 3.10 shows simulation results for a male speech input signal where the same

parameters as in the case of WGN input signal were used. As can be seen, the proposed

SC-PNLMS algorithm achieves the highest rate of convergence, giving convergence as fast

as PNLMS and approximately 7 dB improvement during initial convergence compared to

NLMS for the sparse AIR. For dispersive AIR, SC-PNLMS performs almost the same as

NLMS with approximately 4 dB improvement compared to PNLMS.
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Figure 3.9: Relative convergence of NLMS, PNLMS and SC-PNLMS using WGN
input signal with an echo path change at 3.5 s. Impulse response is changed from that
shown from Fig. 1.2 (a) to (b) and µNLMS = µPNLMS = µSC−PNLMS = 0.3, SNR = 20 dB.

Convergence performance of SC-MPNLMS for AEC

Figure 3.11 illustrates the performance of NLMS, MPNLMS and SC-MPNLMS using

WGN as the input signal. As before, the step-sizes were adjusted to achieve the

same steady-state misalignment for all algorithms. This corresponds to µNLMS = 0.3,

µMPNLMS = µSC−MPNLMS = 0.25. The value of λ = 6 was also used for SC-MPNLMS. As

can be seen from this result, the SC-MPNLMS algorithm attains approximately 8 dB im-

provement in normalized misalignment during initial convergence compared to NLMS and

same initial performance followed by approximately 2 dB improvement over MPNLMS for

the sparse AIR. After the echo path change, SC-MPNLMS achieves approximately 3 dB

improvement compared to MPNLMS and about 8 dB better performance than NLMS for

dispersive AIR.

As shown in Fig. 3.12, with the speech signal as the input, the proposed SC-

MPNLMS algorithm achieves approximately 10 dB improvement during initial conver-



3.4 Time domain sparseness-controlled algorithms 79

0 20 40 60 80 100 120 140 160 180

−25

−20

−15

−10

−5

0

time (s)

N
or

m
al

iz
ed

 M
is

al
ig

nm
en

t (
dB

)

sparse AIR dispersive AIR

NLMS

PNLMS,
SC−PNLMS

SC−PNLMS

NLMS

PNLMS

Figure 3.10: Relative convergence of NLMS, PNLMS and SC-PNLMS using speech
input signal with echo path changes at 58 s. Impulse response is changed from that
shown in Fig. 1.2 (a) to (b) and µNLMS = 0.3, µPNLMS = µSC−PNLMS = 0.1, SNR = 20 dB.

gence compared to NLMS and 2 dB compared to MPNLMS for the sparse AIR. For

dispersive AIR, the SC-MPNLMS algorithm achieves an improvement of approximately

4 dB compared to both NLMS and MPNLMS. It is also noted that NLMS achieves ap-

proximately 7 dB better steady-state performance than the MPNLMS-based approaches

for this example with speech input. This is attributed in [72] to sensitivity to eigenvalue

spread of the speech signal’s autocorrelation matrix.

Convergence performance of SC-IPNLMS for AEC

For SC-IPNLMS performance comparison, the step-sizes were chosen as µNLMS =

µIPNLMS = 0.3, µSC−IPNLMS = 0.7 in order to attain same steady state performance.

Proportionality control factors αIP = αSC−IP = −0.75 have been used for both IPNLMS

and SC-IPNLMS. It can be seen from Fig. 3.13 and 3.14 that by using both WGN and

speech input signals, SC-IPNLMS achieves approximately 10 dB improvement in normal-
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Figure 3.11: Relative convergence of NLMS, MPNLMS and SC-MPNLMS using
WGN input signal with an echo path change at 3.5 s. Impulse response is changed
from that shown from Fig. 1.2 (a) to (b) and µNLMS = 0.3, µMPNLMS = µSC−MPNLMS =
0.25, SNR = 20 dB.

ized misalignment during initial convergence compared to NLMS for the sparse AIR. For

a dispersive AIR, the SC-IPNLMS achieves a 5 dB improvement compared to NLMS. For

a speech input, the improvement of SC-IPNLMS over IPNLMS is 3 dB for both sparse

and dispersive AIRs. On the other hand, the improvement of SC-IPNLMS compared to

NLMS are 10 dB and 6 dB for sparse and dispersive AIRs, respectively.

Convergence performance for AIRs with different sparseness in AEC

Eight different impulse responses were extracted from a set of AIRs with sparseness mea-

sure 0.58 ≤ ξ ≤ 0.93 as shown in Fig. 3.2. The time taken to reach -20 dB normalized

misalignment is plotted against ξ(n) for NLMS, PNLMS, SC-PNLMS, IPNLMS and SC-

IPNLMS in Fig. 3.15, and for NLMS, MPNLMS and SC-MPNLMS in Fig. 3.16. As before,

all step-sizes have been adjusted so that the algorithms achieve the same steady-state nor-

malized misalignment. These correspond to µNLMS = µPNLMS = µSC−PNLMS = µIPNLMS =
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Figure 3.12: Relative convergence of NLMS, MPNLMS and SC-MPNLMS using
speech input signal with echo path changes at 58 s. Impulse response is changed
from that shown in Fig. 1.2 (a) to (b) and µNLMS = 0.3, µMPNLMS = µSC−MPNLMS =
0.25, SNR = 20 dB.

0.3, µMPNLMS = µSC−MPNLMS = 0.25 and µSC−IPNLMS = 0.7. A zero mean WGN was

used as an input signal while another WGN sequence w(n) was added to achieve an SNR

of 20 dB. It can be seen that when the AIRs are sparse, the speed of initial convergence

increases significantly for each algorithm. This is because many of the filter coefficients

are initialized close to their optimum values since during initialization, ĥ(0) = 0L×1.

The sparseness-controlled algorithms (SC-PNLMS, SC-MPNLMS and SC-

IPNLMS) give the overall best performance compare to their conventional methods across

the range of sparseness measure. This is because the proposed algorithms take into account

the sparseness measure of the estimated impulse response at each iteration.
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Figure 3.13: Relative convergence of NLMS, IPNLMS and SC-IPNLMS using WGN
input signal with an echo path change at 3.5 s. Impulse response is changed from
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Convergence performance of SC-IPNLMS for NEC

Additional simulations are provided to illustrate the performance of SC-IPNLMS in the

context of sparse adaptive NEC, such as may occur in network gateways for mixed packet-

switched and circuit-switched networks. Figure 3.17 shows two impulse responses, sampled

at 8 kHz comprising a 12 ms active region located within a total duration of 128 ms.

The sparseness of these impulse responses computed using (3.1) are (a) ξ(n) = 0.88 and

(b) ξ(n) = 0.85 respectively. As before, a WGN input signal was used while another WGN

sequence is added to give an SNR of 20 dB.

0 200 400 600 800 1000

−0.4

−0.2

0

0.2

0.4

0.6
(a)

sample index

m
ag

ni
tu

de

0 200 400 600 800 1000

−0.4

−0.2

0

0.2

0.4

0.6
(b)

sample index

m
ag

ni
tu

de

Figure 3.17: Sparse impulse responses, sampled at 8 kHz, giving (a) ξ(n) = 0.88 and

(b) ξ(n) = 0.85 respectively.

Figure 3.18 shows the performances of NLMS, IPNLMS, for αIP = −0.5 and −0.75,

and the proposed SC-IPNLMS algorithm with αSC−IP = −0.75. An echo path change was

introduced using impulse responses as shown from Fig. 3.17 (a) to (b) at 3.5 s. It can

be seen from the result that the performance of IPNLMS is dependent on αIP. More

importantly, a faster rate of convergence can be seen for SC-IPNLMS compared to NLMS

and IPNLMS both at initial convergence and also after the echo path change.
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Figure 3.18: Relative convergence of NLMS, IPNLMS for α = −0.5 and −0.75 and

SC-IPNLMS using WGN input signal with an echo path change at 3.5 s. Impulse

response is changed from that shown in Fig. 3.17 (a) to (b) and µNLMS = µIPNLMS =

0.3, µSC−IPNLMS = 0.7, SNR = 20 dB.

Tracking performance under a time-varying unknown echo system

As mentioned before, acoustic channels are inherently time-varying systems. It is therefore

necessary to consider the performances of the adaptive algorithms under a time-varying

system model. If the channel changes slowly in time, it can be obtained using the method

of image proposed in [1, 23].

Figure 3.19 illustrates the sparseness measure of the generated impulse responses,

computed using (3.1), with L = 1024 against iteration number (t). For this illustration,

it was assumed that a loudspeaker was fixed at 4 × 9.1 × 1.6 m inside a room with a

dimension of 8 × 10 × 3 m. In order to introduce a time-varying h(n), a user using a

wireless microphone was placed at 4 × 9.1 × 1.6 m initially and moved away from the

loudspeaker across the room at a constant velocity of 0.2 ms−1. This example case was
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Figure 3.19: Sparseness measure of the generated impulse responses using the method
of image with L = 1024 against iteration number (t) and the generated impulse re-
sponses at t = 200, 4000 and 8000, respectively.

simulated, with 8 kHz sampling frequency, by generating a new receiving room impulse

response at every 40th sample iteration n by varying the microphone position by 1 mm

(i.e,: n = 40t). It can be noted from Fig. 3.19 that the bulk delay represented by the

leading zeros in the impulse responses is proportional to the separation distance between

the loudspeaker and the microphone at that particular time instance.

To evaluate the performances of the conventional, i.e.: NLMS, PNLMS, MPNLMS

and IPNLMS, and the proposed sparseness-controlled algorithms for time-varying system

identification, a zero mean WGN with σ2
x = 1 was used as the input signal and the rest

of the parameters were carried from the previous simulation setup. Figure 3.20 - 3.22

illustrate the tracking performance of the algorithms under the time-varying echo system,

with h(0) initialized to the impulse response generated at t = 200 in Fig. 3.19 which

describes that the microphone is 20 cm away from the loudspeaker. As it can be seen from

the figures that the sparseness-controlled algorithms give better tracking performances,

compared to the conventional methods. These results reinforce the suitability of SC-
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Figure 3.20: Relative tracking performances of NLMS, PNLMS and SC-PNLMS,
using WGN input signal, under a time-varying unknown system.

PNLMS, SC-MPNLMS and SC-IPNLMS to build echo cancelers with improved robustness

to echo system sparsity.

3.4.4 Computational complexity

The relative complexity of NLMS, PNLMS, SC-PNLMS, IPNLMS, SC-IPNLMS,

MPNLMS and SC-MPNLMS in terms of the total number of additions, multiplications,

division, logarithm (Log) and comparisons per iteration for adaptation of filter coefficients

is assessed in Table 3.1 (for convenient, the computational costs of the classical algorithms

are also included here, that are same as in Table 2.1). The additional complexity of the

proposed sparseness-controlled algorithms, on top of their conventional method, arises

from the computation of the sparseness measure ξ̂(n). Given that L/(L −
√
L) in (3.6)

can be computed off-line, the remaining l-norms require an additional 2L additions and L

multiplications.

The SC-PNLMS and SC-MPNLMS algorithms additionally require computations
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Figure 3.21: Relative tracking performances of NLMS, MPNLMS and SC-MPNLMS,
using WGN input signal, under a time-varying unknown system.
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Figure 3.22: Relative tracking performances of NLMS, IPNLMS and SC-IPNLMS,
using WGN input signal, under a time-varying unknown system.
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Table 3.1: Complexity of algorithms’ coefficients update - Addition, Multiplication,
Division, Logarithm (Log) and Comparison.

Algorithm Addition Multiplication Division Log Comparison

NLMS L+ 3 L+ 3 1 0 0

PNLMS 2L+ 1 5L+ 2 2 0 2L

SC-PNLMS 4L+ 2 6L+ 4 3 0 2L

IPNLMS 3L+ 2 5L+ 2 2 0 0

SC-IPNLMS 4L+ 5 6L+ 8 3 0 0

MPNLMS 3L+ 1 6L+ 2 2 L 2L

SC-MPNLMS 5L+ 2 7L+ 4 3 L 2L

for (3.7). Alternatively, a look-up table with values of ρ(n) defined in (3.7) can be com-

puted for 0 ≤ ξ̂(n) ≤ 1. Segment PNLMS (SPNLMS) is proposed in [52], to approximate

the µ-law function in MPNLMS using line segments. Since ‖ĥ(n)‖1 computation is already

available from IPNLMS in (2.27), SC-IPNLMS only requires an additional L+3 additions,

L + 6 multiplications and 1 division. As it can be seen, the increase in the complexity is

compromised by the algorithm’s performance. Consequently, the trade-off between com-

plexity and performance depend on the design choice for a particular application.

3.5 Frequency domain sparseness-controlled algorithms

In this section, a frequency domain adaptive algorithm for AEC is proposed. This new

algorithm dynamically adjusts its step-size according to the sparseness variation in acoustic

impulse responses that might arise in a mobile environment. Inheriting the beneficial

properties of both the fast convergence of IPNLMS [26] and the efficient implementation

of the MDF algorithm [28], the proposed sparseness-controlled improved proportionate

MDF (SC-IPMDF) algorithm is evaluated using WGN and speech input signals with

AIRs of various degrees of sparseness.
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Figure 3.23: Convergence of IPMDF for different values of αIPMDF using WGN input
signal. Impulse responses in Fig. 1.2 (a) and (b) are used as sparse and dispersive
AIRs respectively. [τ = 0.2, K = 8, SNR = 20 dB]

3.5.1 The SC-IPMDF algorithm

Considering the highly time-varying nature of the AIR in hands-free telephony devices,

the sparseness measure defined in (3.1) can be invoked at each iteration allowing an au-

tomatic adjustment of the weighting αIPMDF, in (2.56), between proportionate and non-

proportionate updating of the filter coefficients of the IPMDF algorithm. The resultant

variable weighting factor, as a function of the sparseness of the kth subfilter, gives rise to

the proposed SC-IPMDF algorithm.

As mentioned respectively in Sections 2.4.3 and 2.5.4, the weighting factor αIP

and αIPMDF were originally introduced to determine the significance of proportionate and

non-proportionate step-size controls. To show the importance of αIPMDF for IPMDF in

terms of the convergence performance, the sparse and dispersive AIRs as shown in Fig. 1.2

were used. Employing the normalized misalignment defined in (2.7) as the performance

measure, the IPMDF algorithm was then tested using a zero mean WGN as input while

another WGN sequence w(n) was added to give an SNR of 20 dB. As before, it was

assumed that the length of ĥ(n) is equivalent to that of the unknown h(n).

Figure 3.23 shows the effect of αIPMDF to the performance of IPMDF for τ = 0.2,

K = 8 in estimating the AIRs as shown in Fig. 1.2 (a) and Fig. 1.2 (b) respectively. As can

be seen, a smaller value of αIPMDF is desirable for sparse AIR while αIPMDF with larger
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value is favorable for dispersive AIR. It can be observed that αIPMDF = −0.3 for sparse

identification gives worse initial convergence performance for IPMDF. This is because,

when αIPMDF = −0.3, it emphasizes more the proportionate term than that for the case

when αIPMDF = −0.75. Since the ‖ĥ(m)‖1 in (2.56) is very small during the initial

convergence for a sparse impulse response, αIPMDF = −0.3 results in more undesirable

noisy step-size and therefore, giving worse initial convergence.

The desired effect can be further verified by plotting T20, which denotes the min-

imum time for IPMDF to reach the −20 dB normalized misalignment given a specific

αIPMDF value, against various sparseness associated with 8 simulated AIRs generated

using the aforementioned setup in Section 3.4.3. As it can be seen from Fig. 3.24, an ap-

proximately monotonic relationship can be observed. By performing a least-squares curve

fitting to such relationship using the Matlab’s ‘polyfit’ function with degree 1, a variable

weighting factor can be formed as a function of ξ̂(m) such that the diagonal elements of

the step-size control matrix is defined by

qkN+l(m) =
1− αSC−IPMDF

2L
+

(1 + αSC−IPMDF)|ĥkN+l(m)|
2‖ĥ(m)‖1 + ε

(3.9)

where

αSC−IPMDF(m) = 1− 2ξ̂(m). (3.10)

The proposed SC-IPMDF algorithm, as depicted in Fig. 3.25, can be described

by (2.49), (2.57) - (2.59) and (3.9) - (3.10).

3.5.2 Performance evaluation

Simulation results are presented next, to evaluate the performance of the proposed SC-

IPMDF algorithm compared to the MDF and IPMDF algorithms, in the context of AEC.

Experimental setup

A time-varying AIR was obtained by switching between two simulated AIRs shown in

Fig. 1.2 with two echo path changes being introduced, i.e., from Fig. 1.2 (b) to 1.2 (a) and
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Figure 3.24: Variation of αIPMDF for minimum T20 against AIRs with different sparse-
ness.

then back to Fig. 1.2 (b). The convergence performance was measured using the normal-

ized misalignment, defined in (2.7). The length of ĥ(n) was assumed to be equivalent to

that of the unknown h(n). Proportionality control factor αIPMDF = −0.75 was used for

the standard IPMDF algorithm and the other simulation parameters were same as in the

case described in Section 3.5.1.

Convergence performance of SC-IPMDF for AEC

Figure 3.26 first compares the convergence performance of MDF, IPMDF and SC-IPMDF

using WGN as the input signal. The step-size parameter for each algorithm was set to

τ = 0.2. It can be seen from Fig. 3.26 that the convergence rate of SC-IPMDF is as

fast as IPMDF for the dispersive case and achieves a faster convergence performance over

MDF by up to 7 dB in terms of normalized misalignment. After the echo path change,

the SC-IPMDF exhibits a faster tracking performance over both MDF and IPMDF giving

approximately 11 dB and 5 dB gain in normalized misalignment, respectively. After the
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Figure 3.26: Relative convergence of MDF, IPMDF and SC-IPMDF using WGN input
signal with an echo path changes at 8 s and 16 s with τ = 0.2, K = 8, SNR = 20 dB. The
dispersive and sparse AIRs are as shown in Fig. 1.2 (b) and Fig. 1.2 (a) respectively.

final echo path change, SC-IPMDF maintains its high initial convergence rate over MDF

and IPMDF giving respectively 9 dB and 2 dB improvements.

Figure 3.27 shows the results using a male speech input signal. As can be seen,

the proposed SC-IPMDF algorithm achieves the highest rate of convergence, giving ap-

proximately 1 dB and 4 dB improvements during the initial convergence compared to

IPMDF and MDF, respectively, for the dispersive AIR. For sparse AIR, improvements of

up to 3 dB and 7 dB normalized misalignment for SC-IPMDF can be seen in comparison

with IPMDF and MDF, respectively. It is also noted that SC-IPMDF achieves better

steady-state performance than IPMDF and MDF after the final echo path change.

3.5.3 Computational complexity

The relative complexity of MDF, IPMDF and SC-IPMDF in terms of the total number of

additions, multiplications and divisions per iteration for adaptation of filter coefficients is

shown in Table 3.2 for K = 1. The additional complexity of the proposed SC-IPMDF arises
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Figure 3.27: Relative convergence of MDF, IPMDF and SC-IPMDF using speech
input signal with an echo path changes at 9.5 s and 19 s with τ = 0.2, K = 8, SNR =
20 dB. The dispersive and sparse AIRs are as shown in Fig. 1.2 (b) and Fig. 1.2 (a)
respectively.

from the computation of the sparseness measure ξ̂(m). Given that L/(L −
√
L) in (3.6)

can be computed off-line and that l1-norm is available from IPMDF weight updation, the

proposed SC-IPMDF only requires additional L + 2 additions, L + 3 multiplications and

1 division, compared to that of IPMDF.

3.6 Summary

The NLMS algorithm achieves good convergence in dispersive AIRs, whereas the pro-

portionate algorithms, including PNLMS and MPNLMS, perform well in sparse impulse

response. The IPNLMS algorithm combines the NLMS update and the proportionate

term.

A class of sparseness-controlled algorithms have been proposed. They achieve im-

proved convergence compared to classical NLMS and typical sparse adaptive filtering al-

gorithms. The sparseness measure has been incorporated into PNLMS, MPNLMS and



3.6 Summary 96

Table 3.2: Computational complexity of MDF, IPMDF and SC-IPMDF.

Algorithm Addition Multiplication Division

MDF 4L log2(L) + 4L 4L log2(L) + 6L L

IPMDF 5L log2(L) + 6L+ 2 5L log2(L) + 8L+ 2 L+ 2

SC-IPMDF 5L log2(L) + 7L+ 4 5L log2(L) + 9L+ 5 L+ 3

IPNLMS for AEC to achieve fast convergence that is robust to the level of sparseness

encountered in the impulse response of the echo path. The resulting SC-PNLMS, SC-

MPNLMS and SC-IPNLMS algorithms take into account the sparseness measure via a

modified coefficient update function. Through a series of simulations, it has been shown

that the proposed sparseness-controlled algorithms are robust to variations in the level of

sparseness in AIR, with only a modest increase in computational complexity.

In the frequency domain, the SC-IPMDF algorithm has been proposed for AEC,

which integrates the sparseness control mechanism into the MDF structure. This has

been achieved by forming a variable weighting factor for combining proportionate and

non-proportionate tap updating schemes according to the sparseness of the adaptive filter,

which allows the proposed SC-IPMDF algorithm to be robust to the sparseness variation

of AIRs due to its time-varying nature. The incorporation of the MDF structure ensures a

reduced delay for the filter output. Simulation results have shown an improved convergence

and tracking performance in terms of normalized misalignment over MDF and IPMDF

algorithms.
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3.6.1 Sparseness-controlled time domain algorithms

Table 3.3: The Sparseness-controlled time domain Algorithms

ĥ(0) = 0L×1 and 0 < µ ≤ 1

αSC−IP = −0.75 (SC-IPNLMS)

λ = 6 and ρ(n) = 5/L for n < L (SC-PNLMS, SC-MPNLMS)

ν = 1000 (SC-MPNLMS)

e(n) = y(n)− ĥT (n− 1)x(n)

ĥ(n) = ĥ(n− 1) +
µQ(n− 1)x(n)e(n)

xT (n)Q(n− 1)x(n) + δ

Q(n− 1) = diag
{
q0(n− 1), . . . , qL−1(n− 1)}

ξ̂(n) =
L

L−
√
L

{
1− ‖ĥ(n)‖1√

L ‖ĥ(n)‖2

}
, n ≥ L

SC-PNLMS

ql(n) =
κl(n)

1
L

∑L−1
i=0 κi(n)

, 0 ≤ l ≤ L− 1

κl(n) = max
{
ρ(n)×max{γ, |ĥ0(n)|, . . . , |ĥL−1(n)|}, |ĥl(n)|

}

ρ(n) = e−λξ̂(n), n ≥ L

SC-MPNLMS

ql(n) =
κl(n)

1
L

∑L−1
i=0 κi(n)

, 0 ≤ l ≤ L− 1

κl(n) = max
{
ρ(n)×max{γ,F(|ĥ0(n)|), . . . ,F(|ĥL−1(n)|)},F(|ĥl(n)|)

}

F(|ĥl(n)|) = ln(1 + ν|ĥl(n)|)

ρ(n) = e−λξ̂(n), n ≥ L

SC-IPNLMS

ql(n) =
[1− 0.5ξ̂(n)

L

] (1− αSC−IP)
2L

+
[1 + 0.5ξ̂(n)

L

] (1 + αSC−IP)|ĥl(n)|
2‖ĥ(n)‖1 + δIP
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3.6.2 Sparseness-controlled frequency domain algorithms

Table 3.4: The SC-IPMDF Algorithm

0 < µ ≤ 1

ζ =
[
1− 1

3L

]L

D(m− k) = diag {FFT {x(mN − kN −N) . . . x(mN − kN +N − 1)}}

e(m) = y(m)−G01
2L×2L

∑K−1
k=0 D(m− k) ĥk(m− 1)

SIPMDF(m) = ζ SIPMDF(m− 1) + (1− ζ) D∗(m) D(m)

ξ̂(m) =
L

L−
√
L

{
1− ‖ĥ(m)‖1√

L ‖ĥ(m)‖2

}

αSC−IPMDF(m) =




−0.75, m=1,

1− 2ξ̂(m), else.

qkN+l(m) =
1− αSC−IPMDF

2L
+

(1 + αSC−IPMDF)|ĥkN+l(m)|
2‖ĥ(m)‖1 + ε

k = 0, 1, · · · K − 1, l = 0, 1, · · ·N − 1

Qk(m) = diag{qkN (m) qkN+1(m) . . . qkN+N−1(m)}

ĥk(m) = ĥk(m− 1) + LµQk(m)G̃10
N×2N D∗(m− k) [SIPMDF(m) + δIPMDF]−1 e(m)
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Chapter 4

A Partitioned Block Proportionate

Adaptive Algorithm

IN this chapter, an adaptive filter structure that consists of two time domain partition

blocks is proposed such that different adaptive algorithms can be used for each part.

The earlier version of this work was published in [73, 74].

4.1 Introduction

Initially, research on sparse adaptive filters [75] was aimed at NEC while more recently [76]

these filters have been investigated in the context of AEC. As explained in Chapter 3, the

AIRs, and hence the sparseness of AIRs, are time-varying and depend on factors such as

air temperature and pressure and reflectivity of the acoustic environment [11]. The level

of sparseness in AIR also varies with the location of the receiving device in an open or

enclosed environment. Hence, algorithms developed for AEC are required to be robust to

the variations in the sparseness of the acoustic path.

For both sparse and dispersive AIR, the early part of the echo path that consists of

the direct path and a few early reflections is almost always sparse while the remaining late

part is normally dispersive. To validate this, consider an example case where two AIRs of

length L = 1024 were simulated using the method of images [1] in a room of dimension

8×10×3 m at a sampling frequency of 8 kHz. Figure 1.3 (a) shows the AIR obtained when
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the loudspeaker-microphone distance is 0.85 m in the LRMS with 0.3 reflection coefficient.

Figure 1.3 (b) illustrates the AIR attained when the loudspeaker-microphone distance is

5 m in the LRMS with 0.53 reflection coefficient. As can be seen from the figure and the

sparseness measure [2, 3], the first block is always sparser than the second block. Hence,

it would be advantageous to use a sparse adaptive algorithm for the early part of the AIR

and a non-sparse adaptive algorithm for the late part.

In this chapter, it is proposed to use two IPNLMS algorithms each with a different

proportionate/non-proportionate factor α for the two corresponding time domain parti-

tioned blocks and develop a fast tracking time domain adaptive algorithm for AEC. The

review on the classic IPNLMS can be found in Section 2.4.3 or in Table 2.3. This chapter

is organized as follows: Section 4.2 shows how the sparseness of AIRs varies when the echo

path is partitioned into two blocks. Incorporating the findings, the proposed partitioned

block IPNLMS (PB-IPNLMS) algorithm is developed in Section 4.3 with fixed block sizes,

using two different ways to compose the step-size control matrix of each block. Simulation

results shown in Section 4.3.3, in the context of AEC, demonstrate a faster tracking per-

formance for both sparse and dispersive AIRs compared to the IPNLMS algorithm with

single mixing factor α. Section 4.4 demonstrates a technique proposed for adaptive block

partitioning which improves the robustness of convergence of PB-IPNLMS in a situation

requiring identification of time-varying echo path.

4.2 Motivation

Let’s first express the echo path as

h(n) = [hT1 (n) hT2 (n)]T , (4.1)

with

h1(n) = [h0(n) . . . hL1−1(n)]T , (4.2)

h2(n) = [hL1(n) . . . hL−1(n)]T . (4.3)
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Here, h1(n) with length L1 includes the direct path and a few early reflections, which is

sparser than h2(n) that includes all other reflections.

Figure 1.3 (a) and (b) show illustrative AIRs for substantially sparse and dispersive

cases respectively. With L = 1024, the sparseness measure, ξ(h) (defined in (3.1)), of the

AIR shown in Fig. 1.3 (a) equals 0.76. The measures of the first and second blocks with

L1 = dL4 e are ξ(h1) = 0.71 and ξ(h2) = 0.37. The AIR shown in Fig. 1.3 (b) gives

ξ(h) = 0.40, ξ(h1) = 0.60 and ξ(h2) = 0.28. As can be seen, the first block is in both

cases substantially sparser than the second block.

Figure 4.1 shows the convergence performance of IPNLMS measured using the

normalized misalignment (defined in (2.7)), for the sparse AIR shown in Fig. 1.3 (a), with

α = −1 and 0.9. A zero mean WGN sequence is used as the input signal while another

WGN sequence w(n) is added to give an SNR of 20 dB and µ = 0.3. It can be seen from

Fig. 4.1 (a)-(c) that, IPNLMS with α = 0.9 is better for the first block during the initial

phase and therefore giving an overall faster initial convergence, while α = −1 (NLMS) is

better for the second block and thus giving an improved overall steady-state performance.

The same observation is seen from Fig. 4.2 for the dispersive AIR shown in Fig. 1.3

(b), under the same experimental setup as before. As the first block of the AIR contains

the dominant parts of the echo path, allocating larger individual step-sizes for the coef-

ficients in the block gives faster initial convergence performance. Moreover, through the

simulations, it was found that distributing almost equal step-sizes for the second block

gives better steady-state performance. As a consequence of this important observation, a

new adaptation approach is proposed for IPNLMS as described below.

4.3 Fixed length partitioned block IPNLMS

In this Section, an illustrative example is provided to show how the sparseness of AIRs

varies when the echo path is partitioned into two blocks with different sizes. This serves

as a motivation to develop a new algorithm which improves the the tracking performance

of IPNLMS. In addition, it is also demonstrated how the sums of the composite diago-

nal elements of Q(n) for the two blocks affect the overall performance of the proposed

algorithm.
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Figure 4.1: Normalized misalignments (NM) of IPNLMS with different mixing pa-
rameters, α, for identification of a sparse impulse response.

To achieve the desired effect explained in Section 4.2, it is proposed to use IPNLMS

with the mixing parameter α1 close to 1 as the sparse algorithm for the first block of length

L1, where the diagonal elements ql of the step-size control matrix of the first block Q1(n)

for the proposed partitioned block IPNLMS (PB-IPNLMS) algorithm can be expressed as

ql(n) =
(1− α1)

2L1
+

(1 + α1)|ĥl(n)|
2‖ĥ1(n)‖1 + δIP

, 0 ≤ l ≤ L1 − 1, (4.4)

Q1(n− 1) = diag
{
q0(n− 1), . . . , qL1−1(n− 1)}, (4.5)
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Figure 4.2: Normalized misalignments (NM) of IPNLMS with different mixing pa-
rameters, α, for identification of a dispersive impulse response.

where diag{} is the diagonal operator. For the second block, as it is more dispersive

compared to the first block, it is proposed to employ IPNLMS with the mixing parameter

α2 (α2 < α1) close to −1, where ql of the second block Q2(n) for PB-IPNLMS can be

formulated as

ql(n) =
(1− α2)

2(L− L1)
+

(1 + α2)|ĥl(n)|
2‖ĥ2(n)‖1 + δIP

, L1 ≤ l ≤ L− 1, (4.6)

Q2(n− 1) = diag
{
qL1(n− 1), . . . , qL−1(n− 1)}. (4.7)
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When using different update rules, the constraint on tr{Q(n)} of PB-IPNLMS,

which is composed of Q1(n) and Q2(n), still needs to be tr{Q(n)} = 1 for very small

values of δIP. Although this constraint can be satisfied in many ways, the following two

different approaches are considered in this work.

4.3.1 Non-proportionate weighting

In the first approach, equal weights are allocated as

Q(n− 1) =




0.5 Q1(n− 1) 0L1×(L−L1)

0(L−L1)×L1
0.5 Q2(n− 1)


 , (4.8)

to satisfy the constraint on Q(n) of PB-IPNLMS. This approach has been dubbed the

‘non-proportionate PB-IPNLMS’. Thus, the non-proportionate PB-IPNLMS algorithm is

described by (2.5), (2.20) and (4.4)-(4.8), as also specified in Table 4.1. It was noted

through simulations that the non-proportionate approach works well only if ‖h1(n)‖1 ≈
‖h2(n)‖1, but in practice this condition is seldom met.

4.3.2 Proportionate weighting

As h1(n) and h2(n) are unobservable, it is proposed to allocate weights proportional to

the ratio between ‖ĥ1(n)‖1 and ‖ĥ(n)‖1, while satisfying tr{Q(n)} ∼ 1 for very small

values of δIP. This approach is referred as the ‘proportionate PB-IPNLMS’.

It is noted that, for a sparse system identification with ĥ(0) = 0, the ratio between

‖ĥ1(n)‖1 and ‖ĥ(n)‖1 is close to 1 during the initial stage and decays to a value κ (0 ≤
κ ≤ 1), which on average is greater than 0.5, due to the fact that the first block contains

almost all the dominant echo. However, for a dispersive AIR, the ratio quickly decays to

a value less than κ, as the second block also has many weaker acoustic reflections. In this

approach, the proportionality is controlled by β(n) which is defined as follows, for n > 1,
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in order to calculate the composed step-size control matrix Q(n− 1):

β(n) =





χ‖ĥ1(n)‖1
‖ĥ(n)‖1

, ‖ĥ1(n)‖1
‖ĥ(n)‖1

> κ,

χ−1 ‖ĥ1(n)‖1
‖ĥ(n)‖1

, otherwise

(4.9)

Q(n− 1) =




β(n) Q1(n− 1) 0L1×(L−L1)

0(L−L1)×L1
[1− β(n)] Q2(n− 1)


 .

(4.10)

With the formulation of β(n) in (4.9) for the first block, a weight that is directly

proportional to the ratio between ‖ĥ1(n)‖1 and ‖ĥ(n)‖1 is allocated, when the ratio is

above a threshold value κ, where χ (0 < χ < 1) is introduced to allocate almost equal

weights for the two blocks after the initial convergence. The factor χ also ensures that

1 − β(n) for the second block is always greater than zero, and therefore avoids stalling

the adaptation of ĥ2. Likewise, χ−1 (which is ≥ 1) ensures that β(n) is never very small,

thereby avoiding stalling the adaptation of ĥ1.

When the ratio is below or equal to κ, the first block gets higher weight during

the initial stage of a dispersive system identification and gradually reduces such that the

second block gets more weight. With the experimentally determined values of χ = 0.8 and

κ = 0.5, proportionate PB-IPNLMS not only works well in both sparse and dispersive cir-

cumstances, but also performs well when the scenario involves a time-varying system. The

proposed proportionate PB-IPNLMS algorithm is thus described by (2.5), (2.20), (4.4)-

(4.7), (4.9) and (4.10), as specified in Table 4.1.

4.3.3 Performance evaluation

Simulation results are presented to evaluate the performance of the proposed PB-IPNLMS

algorithm. Throughout the simulations, algorithms were tested using a zero mean WGN

signal as input while another WGN sequence w(n) was added to give an SNR of 20 dB.

It was assumed that the length of the adaptive filter L = 1024 was equivalent to that of
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the unknown system. Two receiving room impulse responses h(n) for AEC simulations

have been used, with an echo path change at 4 s. The AIR was changed from that shown

in Fig. 1.3 (a) to (b) and µ = 0.3. For PB-IPNLMS, L1 was fixed to 256 such that

the first partitioned block contained the direct path and early reflections and, α1 = 0.9

and α2 = −1 were used, while χ = 0.8 and κ = 0.5 were employed specifically for the

proportionate PB-IPNLMS algorithm.

Figure 4.3 compares the overall performance of IPNLMS, in terms of normalized

misalignment, with α = −1 and 0.9 and PB-IPNLMS using the non-proportionate and

proportionate weight allocation approaches, while Fig. 4.4 shows the normalized misalign-

ments of the first and second blocks. As it can be seen that the proposed non-proportionate

PB-IPNLMS achieves approximately 3 dB improvements over the IPNLMS with α = −1,

and performs similar to the IPNLMS with α = 0.9 during the initial stage of the sparse

system identification. After the echo path change, a similar performance pattern was ob-

served between 4 − 5 s. However, below the −10 dB normalized misalignment level, the

non-proportionate PB-IPNLMS algorithm performs similar to the IPNLMS with α = −1,

and achieves approximately 3 dB better convergence performance over the IPNLMS with

α = 0.9. Moreover, the proportionate PB-IPNLMS gives better performance compared to

all the algorithms, notably a 2 dB improvement over the non-proportionate PB-IPNLMS

after the echo path changes to a dispersive AIR. PB-IPNLMS achieves this better initial

performance by exploiting the beneficial properties of the IPNLMS with α = 0.9 for the

first block and allocates step-sizes similar to the IPNLMS with α = −1 for the second

block, as illustrated in Fig. 4.4.

Figure 4.5 shows a detailed study on the evolution of β in (4.9), which is equiv-

alent to ‖ĥ1(n)‖1 for the IPNLMS algorithm with α = −1 and α = 0.9 and 0.5 for the

non-proportionate PB-IPNLMS algorithm, throughout the simulation time for the overall

performance illustrated in Fig. 4.3. As can be seen, the IPNLMS with α = −1 gives a

small weight, β, for the first block at all times, therefore gives higher weight, (1− β), for

the second block to achieve a better steady-state performance. While, the IPNLMS with

α = 0.9 allocates higher weight during the early stages of before and after the echo path

change, giving faster convergence performance. The proportionate PB-IPNLMS exploits

the beneficial properties of IPNLMS with α = −1 and 0.9 and hence achieves the better

overall performance.
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Figure 4.3: Relative convergence of IPNLMS for α = −1 and 0.9 and PB-IPNLMS
with non-proportionate and proportionate weight allocation approaches, using WGN
input signal with an echo path change at 4 s.Impulse response is changed from that
shown in Fig. 1.3 (a) to (b) and µ = 0.3, SNR = 20 dB.

The same experiment was repeated with the exact parameter settings using a cor-

related unity-variance AR(2) process given by [75]

x(n) = 0.73 x(n− 1)− 0.8 x(n− 2) + s(n), (4.11)

where s(n) is a white Gaussian noise with σ2
s = 0.3, and the relative performances are

shown in Fig. 4.6. As observed in the WGN input signal case, the proportionate PB-

IPNLMS outperforms all the aforementioned algorithms before and after the echo path

change.
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Figure 4.4: The normalized misalignments (NM) for the overall convergence perfor-
mance illustrated in Fig. 4.3

4.4 Variable length partitioned block IPNLMS

The study in Section 4.3 on the block partitioned approach proposed to keep L1 constant.

As the echo path is time-varying in practical cases, such as in an application scenario

involving hands-free telephony in which the user moves through significantly different

acoustic environments during the call. For example, starting in an office, then moving into

an elevator, then a lobby, out into the open air and finally into a car. During this call the

level and nature of sparseness in the AIR to be identified both change significantly. Hence,

the block size L1 should be made time dependent, to adaptively control the structure of the

adaptive filter to deal effectively with such changes, for a robust convergence performance
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algorithm with α = −1 and α = 0.9 and 0.5 for the non-proportionate PB-IPNLMS
algorithm.

of PB-IPNLMS.

A filter length control (FLC) algorithm was also addressed in [77]. However, the

objective in [77] was to find the length of an adaptive filter that identifies a system with

unknown and time-varying system memory.

In this section, it is shown how the AIRs can be partitioned into two blocks adap-

tively, so that the first block, with the dominant direct path and early reflections, is

more sparse than that of the second block. This serves as a motivation to develop a

new algorithm which improves the robustness and the tracking performance compared to

PB-IPNLMS.

4.4.1 Automatic control of the block length L1

As shown in Section 4.3, the composed step-size control matrix in (4.8) and (4.10) satisfies

the constraint on tr{Q(n)}, even though this constraint can be satisfied in many other
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with non-proportionate and proportionate weight allocation approaches, using the
input signal generated by (4.11) with an echo path change at 4 s.Impulse response is
changed from that shown in Fig. 1.3 (a) to (b) and µ = 0.3, SNR = 20 dB.

ways. To motivate this work, we begin by defining

χ(n|L1) =
‖h1(n)‖1
‖h(n)‖1

. (4.12)

Figure 4.7 shows the performance of PB-IPNLMS with the non-proportionate weighting

technique, for different χ values, which is controlled by varying L1, to illustrate the time

taken to reach -20 dB normalized misalignment defined in (2.7). The input signal was

generated using an AR(2) process given by [75]

x(n) = 0.4 x(n− 1)− 0.4 x(n− 2) + s(n), (4.13)

where s(n) is a WGN with σ2
s = 0.77. Another WGN sequence was chosen for w(n) such

that an SNR of 20 dB was obtained. A step-size of µ = 0.3 was used in this experiment.

As it can be seen from the result, the non-proportionate composition of Q in (4.8) works
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well in this case only if

χ(n) ≈ 0.5, (4.14)

for both sparse and dispersive AIRs. It is also interesting to note that, when the ratio

is 0, PB-IPNLMS employs the non-sparse algorithm. If the ratio is 1, it employs the

sparse algorithm. In addition, as it can be noted from the result that, for each case

of χ, PB-IPNLMS has a higher rate of convergence for a sparse system compared to a

dispersive system. This is due to the initialization choice of ĥ(0) = 0L×1, where most

filter coefficients are initialized close to their optimal values.

The condition in (4.14) can be adopted as a technique to partition the block, so

that the first block contains the direct path and few early reflections. The AIRs in Fig. 4.8

were partitioned into two blocks using different sizes for the first block with length L1,

giving (a) L1 = 316, (b) L1 = 196 and (c) L1 = 356 respectively. The three AIRs of length

L = 1024 were simulated under different conditions using the method of images [1] in a

LRMS at a sampling frequency of 8 kHz.
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Figure 4.8: Acoustic impulse responses obtained using the method of images [1].
ξ(h), ξ(h1) and ξ(h2) respectively denote the sparseness measures [3] of the full impulse
response, the first block with size L1 and the second block.

Figure 4.8 (a) and (c) show the AIRs obtained when the loudspeaker-microphone

distances, a, are 11.4 m and 5 m in a room of dimension 8× 10× 3 m, with 0.2 and 0.53

as the reflection coefficients, respectively. Figure 4.8(b) illustrates the AIR attained when

a = 4.2 m in a room of dimension 10 × 15 × 3 m, with 0.2 as the reflection coefficient.

The sparseness measures of these AIRs are computed using (3.1). As can be seen from

the sparseness measures of the first blocks (ξ(h1)) and second blocks (ξ(h2)), the first

blocks in all cases are more sparse than the second blocks. As a consequence of this im-

portant finding, a new adaptation technique for PB-IPNLMS is proposed with an efficient

mechanism to make L1 time-dependent, as described below.
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4.4.2 The proposed VLPB-IPNLMS algorithm

An example set of AIRs illustrated in Fig. 4.8 (a)-(c) show that in order to satisfy the

condition in (4.14), L1 varies depending on the initial bulk delays and the overall sparseness

levels of the AIRs. An efficient mechanism for the automatic control of L1(n) can be

derived according to the ratio between ‖ĥ1(n)‖1 and ‖ĥ(n)‖1 as follows

L1(n) =





L/4, n < L

L1(n− 1) +4`, ‖ĥ1(n)‖1
‖ĥ(n)‖1

< κmin

L1(n− 1)−4`, ‖ĥ1(n)‖1
‖ĥ(n)‖1

> κmax

L1(n− 1), otherwise

(4.15)

where4`� L denotes the number of coefficients by which L1(n) can be enlarged/reduced.

The minimum and maximum threshold values κmin (0 � κmin < 0.5) and κmax (0.5 <

κmax � 1) can be specified in order to define the region to satisfy (4.14). With the

formulation in (4.15), L1 initializes to L/4 which has been chosen empirically and kept

as constant for n < L. The first block size L1 gets enlarged, when the ratio between

‖ĥ1(n)‖1 and ‖ĥ(n)‖1 is less than a threshold value κmin, resulting adding some more

early reflections into the first block. On the other hand, L1 reduces to exclude some

of the weaker reflections when the ratio is greater than κmax. Otherwise, L1 stays the

same. Thus, the proposed variable length partitioned block IPNLMS (VLPB-IPNLMS)

algorithm is described by (2.5), (2.20), (4.4)-(4.8) and (4.15).

4.4.3 Performance evaluation

Simulation results are presented to evaluate the performance of the proposed VLPB-

IPNLMS algorithm. Throughout the simulations, algorithms were tested using the input

signal generated by (4.13) while w(n) was a WGN sequence chosen such that an SNR

of 20 dB was obtained. It was assumed that the length of the adaptive filter L = 1024

was equivalent to that of the unknown system. Three receiving room impulse responses,

simulated using the method of images [1], for AEC simulations have been used, with an



4.4 Variable length partitioned block IPNLMS 114

echo path changed from that shown in Fig. 4.8 (a) to (b) and then to (c) and µ = 0.3.

For PB-IPNLMS and VLPB-IPNLMS, α1 = 0.9 and α2 = −1 were used respectively as

sparse and dispersive adaptive algorithms, while 4` = 10, κmin = 0.45 and κmax = 0.65

were employed specifically for the VLPB-IPNLMS algorithm. The 4` value was chosen

empirically and the lower and upper threshold values were chosen from the results shown

in Fig. 4.7.

Figure 4.9 (a) compares the overall performance of IPNLMS with α = −1 and 0.9,

PB-IPNLMS using the proportionate weight allocation technique and VLPB-IPNLMS, in

terms of the normalized misalignment. As it can be seen that the proposed VLPB-IPNLMS

achieves both a high rate of initial convergence similar to IPNLMS with α = 0.9 for the

identification of the first two AIRs and also approximately 3 dB better convergence perfor-

mance for the identification of the third (dispersive) AIR. Moreover, VLPB-IPNLMS gives

more than 7 dB better initial convergence performance and similar steady-state perfor-

mance compared to IPNLMS with α = −1 for the first two sparse AIRs and almost equiv-

alent convergence performance for the dispersive AIR. Notably, VLPB-IPNLMS achieves

more than 5 dB faster initial convergence compared to PB-IPNLMS for the sparse AIRs

and similar performance for the dispersive AIR.

The VLPB-IPNLMS algorithm achieves this better performance by varying the

block size L1, as illustrated in Fig. 4.9 (c), such that the first block of the AIR with the

dominant parts of the echo path gets larger individual step-sizes and therefore achieves

faster initial convergence performance. Moreover, the second partitioned block is set to

have almost equal step-sizes and as a result attains better steady-state performance. Here,

the adaptation of the L1 was automatically controlled by the evolution of the ratio shown

in Fig. 4.9 (b).
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4.5 Summary

A partitioned block IPNLMS algorithm has been presented, with two different approaches

to allocate weights for the composition of the step-size control matrix of the two blocks.

The proposed algorithm achieves improved convergence compared to classical IPNLMS

with fixed single proportional/non-proportionate factor α. For the proposed PB-IPNLMS

algorithm with proportionate weighting, the ratio between the `1-norm of the first block’s

estimated filter coefficients and that of the overall filter coefficient has been incorporated

into IPNLMS for AEC to achieve fast convergence for both sparse and dispersive acoustic

echo paths.

In practical scenarios of AEC for hands-free mobile telephony devices, the level

of sparseness in the AIR can be highly variable. To deal with this issue, a partitioned

block IPNLMS algorithm has been developed with a control mechanism for the dynamic

adjustment of the block size. The proposed algorithm achieves improved convergence. For

the proposed VLPB-IPNLMS, a self-configuration method has been incorporated based on

the ratio between the `1-norm of the first block’s estimated filter coefficients and that of

the overall filter coefficient into PB-IPNLMS to achieve faster convergence for both sparse

and dispersive acoustic echo paths with variable bulk delay.
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4.5.1 The partitioned block IPNLMS algorithms

Table 4.1: The Partitioned Block IPNLMS algorithms

e(n) = y(n)− ĥT (n− 1)x(n)

ĥ(n) = ĥ(n− 1) +
µQ(n− 1)x(n)e(n)

xT (n)Q(n− 1)x(n) + δ

ĥ1(n) = [ĥ0(n) . . . ĥL1−1(n)]T

ĥ2(n) = [ĥL1(n) . . . ĥL−1(n)]T

ĥ(n) = [ĥ1(n)T ĥ2(n)T ]T

ql(n) = (1−α1)
2L1

+ (1+α1)|ĥl(n)|
2‖ĥ1(n)‖1+δIP

, 0 ≤ l ≤ L1 − 1

Q1(n− 1) = diag
{
q0(n− 1), . . . , qL1−1(n− 1)}

ql(n) = (1−α2)
2(L−L1)

+ (1+α2)|ĥl(n)|
2‖ĥ2(n)‖1+δIP

, L1 ≤ l ≤ L− 1

Q2(n− 1) = diag
{
qL1(n− 1), . . . , qL−1(n− 1)}

Non-proportionate PB-IPNLMS

L1 = L/4

Q(n− 1) =


 0.5 Q1(n− 1) 0L1×(L−L1)

0(L−L1)×L1
0.5 Q2(n− 1)




L×L

Proportionate PB-IPNLMS

L1 = L/4

β(n) =





χ‖ĥ1(n)‖1
‖ĥ(n)‖1

, ‖ĥ1(n)‖1
‖ĥ(n)‖1

> κ,

χ−1 ‖ĥ1(n)‖1
‖ĥ(n)‖1

, otherwise

Q(n− 1) =


 β(n) Q1(n− 1) 0L1×(L−L1)

0(L−L1)×L1
[1− β(n)] Q2(n− 1)



L×L

Variable length PB-IPNLMS

L1(n) =





L/4, n < L

L1(n− 1) +4`, ‖ĥ1(n)‖1
‖ĥ(n)‖1

< κmin

L1(n− 1)−4`, ‖ĥ1(n)‖1
‖ĥ(n)‖1

> κmax

L1(n− 1), otherwise

Q(n− 1) =


 0.5 Q1(n− 1) 0L1×(L−L1)

0(L−L1)×L1
0.5 Q2(n− 1)



L×L
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Chapter 5

Performance Analysis for

Time-Varying System

Identifications

IN this chapter, a theoretical model is developed to predict the tracking performance

of the IPNLMS algorithm, measured using the mean-squared error, for sparse and

dispersive time-varying system. The earlier version of this work was published in [78].

5.1 Introduction

Adaptive filters have been used to achieve AEC in time-varying environments by tracking

the acoustic echo path and thereby continuously predicting the acoustic echo that is re-

ceived by the microphone. By introducing a controlled mixture of proportionate (PNLMS)

and non-proportionate (NLMS) adaptation, the IPNLMS algorithm is currently a favor-

able choice employed in real-time applications, as it performs better than NLMS and

PNLMS regardless of the level of sparseness in the AIR with a modest increased in the

computational complexity [26].

As explained in Chapter 3, the sparseness of the AIR is dependent on (a) the

distance from the loudspeaker to the microphone and (b) the nature and number of sound

reflecting surfaces in the vicinity of the microphone. Both (a) and (b) may vary with
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time when a wireless microphone is used and when the terminal is mobile, respectively,

and therefore the sparseness will also be time-varying. An everyday example of time-

varying sparseness in the AIR is during a hands-free phone call when the caller starts in

an elevator, then moves through the lobby of a building and finally moves outside onto

the street. An illustration is shown in Fig. 1.2 using the image model [1], with different

distances between loudspeaker and microphone in a room.

In order to explore the algorithms’ performances under such continuously time-

varying condition, a first-order Markov process [15, 79] is commonly used to model the

unknown AIR. Tracking capability of time-variations by the LMS algorithm has already

been the subject of several studies including [79, 80]. Recently, the transient behavior of

a modified PNLMS algorithm was studied in [30].

In this chapter, the analysis of the tracking performance of IPNLMS, for sparse and

dispersive time-varying systems, is presented. For the analysis, the methodology proposed

in [30] is adopted. A review in IPNLMS can be found in Section 2.4.3 or in Table 2.3.

This chapter is organized as follows: the modified first-order Markov model [15, 81] used

for the time-varying unknown system is reviewed in Section 5.2 while Section 5.3 develops

expressions to predict both the transient and steady-state performances, measured in

terms of mean-square error, of IPNLMS algorithm for time-varying systems. Simulation

results shown in Section 5.4 demonstrate that the predicted performance and the actual

performance (i.e., ensemble average of simulations) are very similar when the unknown

system changes in the context of AEC.

5.2 Time-varying system model

If the channel changes slowly in time, it can be adequately represented by a first or-

der Markov model [15]. The modified first-order Markov model [15, 81] is employed to

represent a time-varying unknown system

h(n) = εh(n− 1) +
√

1− ε2 s(n), (5.1)

where

h(n) = [h0(n) h1(n) . . . hL−1(n)]T , (5.2)
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is the unknown room impulse response with length L and

s(n) = [s0(n) s1(n) . . . sL−1(n)]T , (5.3)

is a random sequence with elements drawn from a normal (Gaussian) distribution with zero

mean and variance σ2
s . The parameter ε (0� ε < 1) controls the relative contributions to

the instantaneous values of the “system memory” and “innovations” [15]. It can be noted

that ε = 1 represents a time-invariant environment.

Figure 5.1 shows the sparseness measure (defined in (3.1)) of the generated impulse

responses with L = 1024, using the modified Markov model in (5.1) with parameters

set to σ2
s = 1 and ε = 0.9999, against iteration number (n). As time progresses, this

dynamic model keeps E{h(n)} constant and the covariance matrix of h(n) tends to a

finite steady-state value that is equal to the covariance matrix of the sequence {s(n)}.
Hence, the model always gives a dispersive system as n → ∞. However, by initializing

h(0) to a sparse system and choosing a value close to 1 for ε, this model can be employed

to simulate a slowly time-varying sparse system.

5.3 Recursive mean-square error analysis

The main purpose of this study is to explore the sensitivity of the transient and stead-state

performances to the input signal x(n), additive noise w(n) and step-size µ. To motivate

for the convergence analysis in terms of the mean-square output error (MSE) in (2.6),

the following generalized equation (also defined in (2.20)) of the adaptive algorithms is

considered

ĥ(n) = ĥ(n− 1) +
µQ(n− 1)x(n)e(n)

xT (n)Q(n− 1)x(n) + δ
, (5.4)

with the notations as defined in Section 2.4. However, the generalized formulation that is

developed in Section 5.3.1, with the set of assumptions in Section 5.3.2, is proceeded by

considering the MSE specifically for the IPNLMS algorithm (described in Section 2.4.3).
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Figure 5.1: Sparseness measure of the generated impulse responses using the modified
Markov model with L = 1024, σ2

s = 1 and β = 0.9999, against iteration number (n) and
generated impulse responses at n = 0, 1000 and 8000, respectively.

5.3.1 General formulation

With the weight deviation vector defined as

z(n) = h(n)− ĥ(n), (5.5)

using (2.3) and (2.5), e(n) can be rearranged as

e(n) = w(n) +
L−1∑

j=0

xj(n)zj(n), (5.6)

where xl(n) , x(n− l + 1). Hence, the MSE in (2.6) can be reformulated as

MSE(n) = E
{
e2(n)

}

= σ2
w + σ2

x

L−1∑

l=0

E
{
z2
l (n)

}
, (5.7)
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where σ2
w and σ2

x are the variances of the additive noise and the input signal, respectively.

In order to calculate (5.7), the expected values of the square weight deviations, E
{
z2
l (n)

}
,

can be calculated as follows.

By substituting (5.4) and (5.1) into (5.5), with e(n) defined as in (5.6), the

component-wise weight deviation is given by

zl(n) = zl(n− 1) + (ε− 1)hl(n− 1) +
√

1− ε2sl(n)−
[

µql(n− 1)xl(n)
xT (n)Q(n− 1)x(n) + δ

]
w(n) +

L−1∑

j=0

xj(n)zj(n)


 .

(5.8)

In order to calculate the MSE in (2.6), the component-wise form of the recursion

for the square of the wight deviation in (5.8) is given by

z2
l (n) = z2

l (n− 1) + 2zl(n− 1)(ε− 1)hl(n− 1) +

(ε− 1)2h2
l (n− 1) + 2zl(n− 1)

√
1− ε2sl(n) + (5.9)

(ε− 1)hl(n− 1)
√

1− ε2sl(n) + (1− ε2)s2l (n)−
[

2µ(ε− 1)hl(n− 1)ql(n− 1)xl(n)
xT (n)Q(n− 1)x(n) + δ

]
w(n) +

L−1∑

j=0

xj(n)zj(n)


−

[
2µzl(n− 1)ql(n− 1)xl(n)
xT (n)Q(n− 1)x(n) + δ

]
w(n) +

L−1∑

j=0

xj(n)zj(n)


+




µ2q2l (n− 1)x2
l (n)

(
xT (n)Q(n− 1)x(n) + δ

)2





w(n) +

L−1∑

j=0

xj(n)zj(n)




2

−

[
2µ
√

1− ε2sl(n)ql(n− 1)xl(n)
xT (n)Q(n− 1)x(n) + δ

]
w(n) +

L−1∑

j=0

xj(n)zj(n)


 .

5.3.2 Assumptions

The subsequent theoretical analysis will rely on the following assumptions [13, 30, 82] that

have been extensively used in the adaptive filtering literature to match reasonably well

with their actual performance:

I) The step-size µ is chosen sufficiently small such that zl(n) changes slowly relative to
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xl(n).

II) The length of the adaptive filter L is equivalent to that of the unknown system.

III) The expected value of the normalization term in (5.9) and the expected valued of

its square can be assumed to be [30]

E
{
xT (n)Q(n− 1)x(n) + δ

}
=σ2

x + δ (5.10)

E
{(

xT (n)Q(n− 1)x(n) + δ
)2}

=
(
σ2
x + δ

)2
. (5.11)

IV) Using the ‘separable approach’ theory developed in [30], for a, b ∈ {1, 2},

E {qal (n− 1)}=E {ql(n− 1)}a (5.12)

E
{
qal (n− 1)zbl (n)

}
=E {ql(n− 1)}a E

{
zbl (n)

}
. (5.13)

V) The lth component of the weight deviation at each iteration, zl(n), follows a normal

distribution with z̄l(n) , E{zl(n)} and variance σ2
l (n) [30]. This implies that the

each adaptive filter coefficient ĥl(n) is also distributed as

ĥl(n) ∼ N
(
ml(n), σ2

l (n)
)
, (5.14)

with p.d.f

f
(
|ĥl(n)|

)
=

1√
2πσ2

l (n)

[
e
− (|ĥl(n)|−ml(n))2

2σ2
l
(n) + e

− (|ĥl(n)|+ml(n))2

2σ2
l
(n)

]
U
(
ĥl(n)

)
,

(5.15)

where

ml(n) = hl(n)− z̄l(n), (5.16)

σ2
l (n) , E

{
z2
l (n)

}
− E2 {zl(n)} , (5.17)
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and

U
(
ĥl(n)

)
=





0, ĥl(n) < 0

1, ĥl(n) ≥ 0;
(5.18)

It follows from (5.15) that the mean of this distribution is given by

E
{
|ĥl(n)|

}

=
∫ ∞

−∞
|ĥl(n)| f

(
|ĥl(n)|

)
d|ĥl(n)| (5.19)

=ml(n) erf


 ml(n)√

2σ2
l (n)


+

√
2
π
σl(n)e

− m2
l (n)

2σ2
l
(n) ,

with

erf(x) ,
2√
π

∫ x

0

e−t
2

dt. (5.20)

5.3.3 Recursive mean-square error analysis for IPNLMS

By employing these assumptions, the expectations E{.} of the weight deviation in (5.8)

and the square weight deviation in (5.9) are respectively given by the following recursive

forms:

E {zl(n)} = E{zl(n− 1)} − µσ2
x

σ2
x + δ

E{ql(n− 1)} E{zl(n)}, (5.21)

E
{
z2
l (n)

}
= E

{
z2
l (n− 1)

}
+ 2(1− ε)σ2

s −
2µσ2

x

σ2
x + δ

E{ql(n− 1)} E
{
z2
l (n)

}
+

µ2σ2
xσ

2
w

(σ2
x + δ)2

E {ql(n− 1)}2 +
µ2σ4

x

(σ2
x + δ)2

E {ql(n− 1)}2
L−1∑

j=0

E
{
z2
j (n)

}
,

(5.22)

with their initial values assigned to

E{zl(0)} = hl(0), (5.23)

E
{
z2
l (0)

}
= h2

l (0), (5.24)



5.3 Recursive mean-square error analysis 126

and

E{ql(n− 1)} =
1− α

2L
+

(1 + α)E
{
|ĥl(n)|

}

2
∑L−1

j=0 E
{
|ĥj(n)|

}
+ δip

. (5.25)

Given (5.19)-(5.25), the MSE in (5.7) can be now recursively computed which, as will

be shown in Section 5.4, allows to investigate the sensitivity of the IPNLMS algorithm’s

tracking performance to the parameters such as variances of the input signal (σ2
x) and the

additive noise (σ2
w), step-size (µ) and rate of the time-varying system (ε). The formulation

can also be used to compute the steady-state MSE value, as described in the next section.

5.3.4 Steady-state analysis for IPNLMS

The steady-state MSE value, MSE(∞), can be estimated by evaluating (5.7) at n = ∞,

as

MSE(∞) = σ2
w + σ2

x

L−1∑

l=0

E
{
z2
l (∞)

}
. (5.26)

The sum of all the weight deviation components in (5.26) can be computed, by evaluat-

ing (5.22) at n =∞, as

0 =
L−1∑

l=0

2(1− ε)σ2
s −

L−1∑

l=0

2µσ2
x

σ2
x + δ

E{ql(∞)} E
{
z2
l (∞)

}
+

L−1∑

l=0

µ2σ2
xσ

2
w

(σ2
x + δ)2

E {ql(∞)}2 +

L−1∑

l=0

µ2σ4
x

(σ2
x + δ)2

E {ql(∞)}2
L−1∑

j=0

E
{
z2
j (∞)

}
, (5.27)

which assumes convergent behavior such that when n =∞

L−1∑

l=0

E
{
z2
l (n)

}
=

L−1∑

l=0

E
{
z2
l (n− 1)

}
. (5.28)
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The
∑L−1

l=0 E{ql(∞)} E
{
z2
l (∞)

}
term in (5.27) can be computed as

L−1∑

l=0

E{ql(∞)} E
{
z2
l (∞)

}
=

L−1∑

l=0

[(
1− α

2L
+

(1 + α) |ĥl(∞)|
2‖ĥ(∞)‖1 + δip

)
E
{
z2
l (∞)

}
]

=
1− α

2L

L−1∑

l=0

E
{
z2
l (∞)

}
+

(1 + α)
L−1∑

l=0

[
|ĥl(∞)|

2‖ĥ(∞)‖1 + δip
E
{
z2
l (∞)

}
]
. (5.29)

where the second term can be estimated by considering the extreme dispersive and sparse

cases as follows:

• For the extreme sparse case, the estimated impulse response ĥ(∞) with length L

is assumed to have only one coefficient with a non-zero magnitude and rest of the

coefficients are zero, so the second term in (5.29) becomes

L−1∑

l=0

[
|ĥl(∞)|

2‖ĥ(∞)‖1 + δip
E
{
z2
l (∞)

}
]

=
∑L−1

l=0 E
{
z2
l (∞)

}

2 + δip
. (5.30)

• For the extreme dispersive case, the estimated impulse response ĥ(∞) with length L

is assumed to have equal magnitude for all coefficients, so the second term in (5.29)

becomes

L−1∑

l=0

[
|ĥl(∞)|

2‖ĥ(∞)‖1 + δip
E
{
z2
l (∞)

}
]

=
∑L−1

l=0 E
{
z2
l (∞)

}

2L+ δip
. (5.31)

Therefore, by using the linear interpolation, the second term in (5.29) can be estimated

in terms of ξ̂(∞) as

L−1∑

l=0

[
|ĥl(∞)|

2‖ĥ(∞)‖1 + δip
E
{
z2
l (∞)

}
]
'

∑L−1
l=0 E

{
z2
l (∞)

}
[
2L(1− ξ̂(∞)) + 2ξ̂(∞)

]
+ δip

(5.32)
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where ξ̂(∞) is the sparseness measure of the estimated impulse response at n =∞, defined

in (3.6). Finally, the
∑L−1

l=0 E {ql(∞)}2 term in (5.27) can be expressed as

L−1∑

l=0

E {ql(∞)}2 =
L−1∑

l=0

[
1− α

2L
+

(1 + α) |ĥl(∞)|
2‖ĥ(∞)‖1 + δip

]2

=
L−1∑

l=0

[
1− α

2L

]2

+
L−1∑

l=0

[
(1 + α) |ĥl(∞)|
2‖ĥ(∞)‖1 + δip

]2

+

L−1∑

l=0

(1− α)
L

(1 + α)
|ĥl(∞)|

2‖ĥ(∞)‖1 + δip
. (5.33)

By ignoring the δip in the denominator terms, (5.33) can be approximated as

L−1∑

l=0

E {ql(∞)}2 ' (1− α)2

4L
+
L−1∑

l=0

[
(1 + α) |ĥl(∞)|

2‖ĥ(∞)‖1

]2

+
(1− α2)

2L‖ĥ(∞)‖1

L−1∑

l=0

|ĥl(∞)|

' (1− α)2

4L
+


 (1 + α)

2
√
L− 2ξ̂(∞)

[√
L− 1

]




2

+
(1− α2)

2L
. (5.34)

Substituting (5.32) into (5.29), (5.27) becomes

L−1∑

l=0

E
{
z2
l (∞)

}
=





2L(1− ε)σ2
s + µ2σ2

xσ
2
w

(σ2
x+δ)

2

∑L−1
l=0 E {ql(∞)}2

µσ2
x

σ2
x+δ

[
1−α
L + 1+α

[L(1−ξ̂(∞))+ξ̂(∞)]+δip

]
− µ2σ4

x

(σ2
x+δ)

2

∑L−1
l=0 E {ql(∞)}2




,

(5.35)

where
∑L−1

l=0 E
{
z2
l (∞)

}
is defined in (5.34).

Hence, the steady-state MSE value can be estimated, by substituting (5.35)

into (5.26), as

MSE(∞) = σ2
w + σ2

x





2L(1− ε)σ2
s + µ2σ2

xσ
2
w

(σ2
x+δ)

2

∑L−1
l=0 E {ql(∞)}2

µσ2
x

σ2
x+δ

[
1−α
L + 1+α

[L(1−ξ̂(∞))+ξ̂(∞)]+δip

]
− µ2σ4

x

(σ2
x+δ)

2

∑L−1
l=0 E {ql(∞)}2




.

(5.36)
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5.4 Performance evaluation

In this section, the theoretical results of the IPNLMS algorithm derived for the tran-

sient performance in Section 5.3.3 and the steady-state performance in Section 5.3.4 are

confirmed for different experimental setups, for sparse and dispersive time-varying echo

systems, in the context of AEC.

5.4.1 Experimental setup

In all simulations, the adaptive filter length was set to L = 1024, a zero mean white

Gaussian noise (WGN) was used as the input signal x(n) while another WGN sequence

w(n) was used for the additive noise in the receiving room. The proportionality control

factor for IPNLMS was set to α = −0.75 [26] and σ2
s = 1 was chosen to model a sce-

nario described in Section 5.4.2. The regularization parameters were chosen to satisfy the

assumptions in (5.10) and (5.11) and the estimation in (5.32). These were achieved by

setting to δ = δip = 10−4 [30]. In all simulation cases, the results were obtained by the

Monte Carlo simulations with 100 independent trials.

5.4.2 Performances prediction under different rates of time-varying sys-

tems

The transient and steady-state performances of the IPNLMS algorithm is assessed under

different first order Markov systems by changing the time-varying rate ε in (5.1). The

step-size and the variances of the input signal and the additive noise were set to µ = 0.7,

σ2
x = 10−3 and σ2

w = 10−6, respectively, while the other parameters were fixed to those

described in Section 5.4.1.

Figure 5.2 shows the MSEs for different ε, including ε = 1, which models a time-

invariant system, and ε = 1−10−8 which models an equivalent scenario of a source moving

approximately at 0.35 ms−1 in a room dimensions of 8× 10× 3 m. In all cases, h(0) was

initialized to the sparse impulse response shown in Fig. 1.3 (a) in order to model sparse

time-varying systems as explained in Section 5.2. For these values of ε the predicted MSEs

provide results close to the MSE obtained by the simulations. In addition, it can be noticed

that the steady-state MSE(∞) increases when ε decreases (i.e, the system becomes more
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Figure 5.2: MSE of IPNLMS for varying ε with µ = 0.7, α = −0.75, σ2
x = 10−3, σ2

w = 10−6,
σ2
s = 1, δ = δip = 10−4.

time-variant).

5.4.3 Performances prediction using different step-sizes

Figure 5.3 shows MSEs of IPNLMS for different step-sizes. The sparse time-varying system

was modeled by initializing h(0) to the sparse impulse response shown in Fig. 1.2 (a). By

setting the time-varying rate ε to 1− 10−9, the system changes slowly over time such that

the sparseness measure in the first 4 seconds of the sparse response ranges between 0.66

and 0.83. The variances of the WGN sequences for the input signal and the additive noises

were chosen as σ2
x = 10−3 and σ2

w = 10−6, respectively. It can be seen that the transient

and steady-state MSEs correspond very well with the simulated MSE.

With the similar setup as before, Fig. 5.4 shows the theoretical and simulated MSEs

of IPNLMS for a dispersive time-varying system. The dispersive time-varying system was

simulated by initializing h(0) to the dispersive impulse response shown in Fig. 1.2 (b).

With ε empirically set to 1 − 10−7, the sparseness measure of the dispersive impulse

response in the first 4 seconds ranged between 0.33 and 0.59. As shown in Fig. 5.4,
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Figure 5.3: MSE of IPNLMS in sparse and time-variant system identification for
varying step-sizes µ with ε = 1 − 10−9, α = −0.75, σ2

x = 10−3, σ2
w = 10−6, σ2

s = 1,
δ = δip = 10−4.

the transient and steady-state MSEs can be accurately predicted by (5.7) and (5.36),

respectively.

This analysis enables the designers to choose a sensible step-size for the adaptive

algorithm, depending on their application and the background noise level, as the designer

adjustable parameter involves a trade-off between mis-adjustment and the convergence

speed.

5.4.4 Performances prediction using different input signal variances

Figure 5.5 and 5.6 show the results for predicted and simulated MSEs of IPNLMS using

different input signal variances, to track the sparse and dispersive time-varying systems,

respectively. The time-varying systems were imitated as described in Section 5.4.3. Zero

mean WGN sequences with three different variances were used as the input signals, while

step-size µ = 0.7 and the additive noise variance σ2
w = 10−6 were chosen in these examples.

The results in Fig. 5.5 and 5.6 indicate that the predictions are accurate to within
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1 dB. It can also be observed that the predicted MSE slightly deviates (approximately

2-3 dB in terms of MSE) from the simulated MSE for the sparse time-varying system,

during the initial stage, due to the assumption in (5.13).

5.4.5 Performances prediction using different additive noise variances

Simulations to support the analysis of the transient and steady-state MSEs for time-

varying system identifications are shown in Fig. 5.7 and 5.8, respectively, for different

additive noise variances σ2
w. In these simulations, the sparse and dispersive time-varying

systems were modeled as described above and µ = 0.7 and σ2
x = 10−3. Predictions accurate

to within 2 dB, in terms of MSE, can be seen from the results.

It can also be noted from Fig. 5.7 that the developed model to predict the transient

performance of IPNLMS can also forecast any misconvergence behavior.
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varying σ2

x with ε = 1− 10−8, α = −0.75, µ = 0.7, σ2
w = 10−6, σ2

s = 1, δ = δip = 10−4.
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5.5 Summary

A performance analysis has been presented for IPNLMS, one of the best known sparse

adaptive filtering algorithms. The analysis considers the tracking case in which the un-

known system to be identified is not only sparse or dispersive but also time-varying. The

cases of slowly time-varying sparse and dispersive echo paths have been included in the

study with varying levels of sparseness.

Due to the specific assumption in this prediction of a stochastic process, the the-

oretical and experimental results are very close but not exactly the same for the sparse

time-varying case. Nevertheless, simulations presented, in the context of AEC, have been

shown to verify the theoretical analysis to within 3 dB in terms of MSE which accurately

describes the performances of the algorithm under different experimental setups.
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Chapter 6

A Class of Sparseness-controlled

Affine Projection Algorithms for

Blind SIMO System Identification

IN the literature of supervised sparse system identification, affine projection algorithms

(APA) with proportionate step-size allocation techniques have been proposed based on

extensions of PNLMS-type algorithms, especially to achieve a superior convergence rate

for correlated input signals such as speech signals. In this chapter, a generalized framework

for a class of proportionate APA (PAPA) is derived for blind system identification (BSI),

similar to the supervised PAPA formulated in [83], and then the sparseness-controlled

techniques developed in Chapter 3 are exploited in the novel framework for the individual

step-size control.

6.1 Introduction

In contrast to the supervised unknown system identification studied in the previous chap-

ters where a reference source signal is known, a priori knowledge of the source speech

signal is inaccessible in applications like speech dereverberation. This demands a method

for blind identification of acoustic multichannel systems. In the recent time, there has been

a significant increase in the interest of applying BSI [84] techniques on applications for both
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civil and military purposes. For example, integration of microphone arrays in portable de-

vices has become popular, which has made robust multichannel BSI algorithms extremely

desirable for speech dereverberation and subsequent speech enhancement applications.

Since the second-order statistics (SOS) [85] of a scalar channel output do not con-

tain information about the system phase, early methods of blind estimation were based

on higher-order statistics (HOS) [86]. However, accurate estimation of the higher-order

moments usually requires long segments of data, which is problematic for time-varying

channels. This can be overcome by using multiple receivers, so that the lost phase infor-

mation is recovered, thereby giving a SIMO channel model. A large number of SOS-based

multichannel BSI algorithms have been developed [87, 88], among which celebrated work

include the cross-relation (CR) method [87], the subspace method [89], the LP-based sub-

space algorithm [90], and the two-step maximum likelihood algorithm [91]. They identify

the unknown channels from multichannel observations, providing

1. the transfer functions of the unknown channels do not share any common zeros

2. the autocorrelation matrix of the input signal is of full rank.

For a real-time implementation, an adaptive BSI algorithm is desirable due to track

changes in the acoustic environment. In [92], a systematic way to design adaptive algo-

rithms for BSI has been introduced and also proposed the multichannel LMS (MCLMS)

method which is computationally efficient. Its frequency domain version, the normal-

ized multichannel frequency domain LMS (NMCFLMS), was proposed in [93]. However

such an LMS-based method converges slowly particularly when the SIMO system to be

identified is sparse , which is a common drawback of the LMS-type algorithms [83]. Mo-

tivated by the sparse nature of AIRs, proportionate blind adaptive algorithms, such as

improved proportionate NMCFLMS (IPNMCFLMS) and improved proportionate multi-

channel multi-delay filter (IPMCMDF) [64], have been proposed so that the convergence

can be accelerated in identifying sparse AIRs blindly.

The rate of convergence of the aforementioned LMS-type algorithms is highly de-

pendent on the sample correlation coefficient of successive input signal vectors. To alleviate

this dependency, a generalized framework is developed in this chapter for blind SIMO sys-

tem identification, by exploiting the affine projection technique [16] into the PNLMS-type
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Figure 6.1: Illustration of an acoustic FIR SIMO system.

sparseness-controlled algorithms described in Chapter 3. The sparseness measure is ex-

ploited to deal efficiently with systems having different degrees of sparsity. In addition, the

new class of algorithms takes into account the proportionate history [83], yielding further

improvement in performance and makes efficient use of computations due to the recursive

implementation of the proportionate history.

This chapter is organized as follows: Section 6.2 and 6.3 define the multichannel

system model and the cross relation method, respectively. A generalized framework for

SIMO system identification using the CR error is derived in Section 6.4. A class of multi-

channel sparseness-controlled PAPA is then described in Section 6.5. Finally, experimental

results are presented in Section 6.6 before summarize the chapter.

6.2 Signal model

For an M -channel SIMO system as shown in Fig. 6.1, the mth impulse response with L

coefficients can be denoted as

hm = [hm,0 hm,1 . . . hm,L−1]T , (6.1)

for m = 1, 2, . . . ,M , which corresponds to the mth unique acoustic channel resulted from

multipath reflections of the transmitted source signal s(n). The mth sensor signal can be
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expressed as

xm(n) =
L−1∑

l=0

hm,l s(n− l) + bm(n), (6.2)

where bm(n) is the additive noise. The additive noise is assumed to be zero-mean and

uncorrelated with the source signal. In vector form, (6.2) can be written as

xm(n) = Hm s(n) + bm(n), (6.3)

where s(n) = [s(n) s(n− 1) . . . s(n− 2L+ 1)]T , xm(n) = [xm(n) xm(n− 1) . . . xm(n−
L + 1)]T , bm(n) = [bm(n) bm(n − 1) . . . bm(n − L + 1)]T , and Hm is the L × (2L − 1)

matrix for the mth channel such that

Hm =




hm,0 hm,1 · · · hm,L−1 · · · · · · 0

0 hm,0 hm,1 · · · hm,L−1 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · hm,0 hm,1 · · · hm,L−1



. (6.4)

Since the impulse responses are assumed to be slowly time-varying, Hm is independent of

n. By concatenating all M outputs of (6.3), a system of equations

x(n) = H s(n) + b(n) (6.5)

can be obtained using the following quantities

x(n) = [xT1 (n) xT2 (n) . . . xTM (n)]T , (6.6)

H = [HT
1 HT

2 . . . HT
M ]T , (6.7)

b(n) = [bT1 (n) bT2 (n) . . . bTM (n)]T . (6.8)

The problem of blind SIMO system identification is to find h = [hT1 hT2 . . . hTM ]T using

only the received signals xm(n). Hence, given the received signals, a unique solution to h

should be obtained up to a non-zero scale factor across all channels. This scale factor is

irrelevant in most of acoustic signal processing applications.
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6.3 Cross relation method

The CR method [87] is based on the fact that

xm(n) ∗ hk,l = s(n) ∗ hm,l ∗ hk,l = xk(n) ∗ hm,l, (6.9)

a cross-relation between the mth and kth channel outputs, in the absence of noise, can be

formulated as

xTm(n)hk = xTk (n)hm, m, k = 1, 2, . . . ,M, m 6= k, (6.10)

where hk and hm denote the kth and mth channel impulse responses, respectively. In the

presences of noise the a priori CR error is defined as the difference between the left- and

right-hand sides of (6.10)

emk(n) = xTm(n)hk − xTk (n)hm. (6.11)

Channel estimation can be performed by minimizing the CR error between different sensor

pairs subject to the identifiability conditions, mentioned in Section 6.1, being satisfied.

6.4 General cost function for SIMO BSI using the CR error

In Section 6.4.1 the novel multichannel proportionate APA (MC-PAPA) algorithm is de-

rived specifically for M = 2, while the framework is then generalized for M ≥ 2 in

Section 6.4.2.

6.4.1 Dual channel (M = 2)

By denoting the estimator of h(n) at time n as ĥ(n), the a posteriori CR error can be

defined as

ε(n) = R(n)ĥ(n), (6.12)
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where

R(n) =




xT2 (n) −xT1 (n)

xT2 (n− 1) −xT1 (n− 1)
...

...

xT2 (n− P + 1) −xT1 (n− P + 1)




P×2L

, (6.13)

with P (P ≤ L) denoting the projection order that controls the tradeoff between the com-

putational complexity and rate of convergence. It is well-known that when the projection

order increases, the convergence rate of the filter coefficient vector also increases. However,

this also leads to an increased computational complexity. The normalized a posteriori CR

error can be similarly defined as

ε̃(n) =
[
R(n)G(n− 1)RT (n)

]− 1
2 ε(n), (6.14)

where

G(n) =


 G1(n) 0

0 G2(n)




2L×2L

, (6.15)

with Gm(n) = diag{gm(n)} = diag{gm,0(n), gm,1(n), . . . , gm,L−1(n)} for 1 ≤ m ≤M is an

L× L diagonal matrix that usually depends on ĥm(n− 1).

Similar to the supervised case in [95], the criterion of proportionate adaptive algo-

rithms for blind SIMO system identification can be formulated as

J(n) = d
[
ĥ(n), ĥ(n− 1)

]
+ ε̃T (n)ε̃(n), (6.16)

where d
[
ĥ(n), ĥ(n− 1)

]
denotes a distance measure between the estimated channels at

time n and n− 1. Differentiating J(n) with respect to ĥ(n) produces

∂J(n)

∂ĥ(n)
=

∂ d
[
ĥ(n), ĥ(n− 1)

]

∂ ĥ(n)
+ 2 RT (n)

[
R(n)G(n− 1)RT (n)

]−1
R(n)ĥ(n).

(6.17)

Equating the derivative in (6.17) to zero, it can be seen that any adaptive algorithms need
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to satisfy

Px(n)
[
ĥ(n)− ĥ(n− 1)

]
+

1
2

∂ d
[
ĥ(n), ĥ(n− 1)

]

∂ ĥ(n)
= −RT (n)

[
R(n)G(n− 1)RT (n)

]−1
e(n),

(6.18)

where

Px(n) = RT (n)
[
R(n)G(n− 1)RT (n)

]−1
R(n) (6.19)

and

e(n) = R(n)ĥ(n− 1) (6.20)

is the a priori CR error.

In order to increase robustness of the system performance for example, after a

large noise sample perturbs it, d
[
ĥ(n), ĥ(n− 1)

]
should be constrained efficiently at each

iteration. Depending on the choice for the distance function, different algorithms can be

derived.

6.4.2 Multichannel (M ≥ 2)

In the case of M number of channels, there exist M(M − 1)/2 number of independent CR

errors defined in (6.11). To include all the CR possibilities, the full rank matrix R(n) can

be generalized as follows for M channels [66]:

R(n) =




C1(n)−D1(n)

C2(n)−D2(n)
...

CM−1(n)−DM−1(n)



PM(M−1)

2
×ML

, (6.21)

where

Cm(n) =




0 · · · 0 Xm+1(n) 0 · · · 0

0 · · · 0 Xm+2(n) 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 XM (n) 0 · · · 0




P (M−m)×ML

, (6.22)
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and

Dm(n) =




0 · · · 0 Xm(n) 0 · · · 0

0 · · · 0 0 Xm(n) · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · Xm(n)




P (M−m)×ML

. (6.23)

with the P × L matrix Xm(n) = [xm(n) xm(n− 1) · · · xm(n− P + 1)]T . Finally, the

generalized step-size control matrix is defined as

G(n) =




G1(n) 0 · · · 0

0 G2(n) · · · 0
...

...
. . .

...

0 0 · · · GM (n)




ML×ML

, (6.24)

which allows different adaptation techniques for the coefficients according to their influence

in the adaptive filter. As for the sparse supervised system identification case, this could

increase the convergence speed of the BSI adaptive algorithms when the system is sparse.

6.5 Multichannel sparseness-controlled PAPA

In this Section, a generalized framework is developed for blind SIMO system identification,

based on the CR error, by exploiting the following 3 existing techniques:

1. affine projection [16], to deal with coloured input signal

2. history of proportionate step-size control [83], to improve the convergence perfor-

mance in sparse system identification

3. sparseness-controlled [70], which makes it robust to the sparseness variation of AIRs.

6.5.1 General formulation

From all the possible choice of functions for d
[
ĥ(n), ĥ(n− 1)

]
, Riemannian manifolds1 [96]

are used as the function facilitates for proportionate coefficient update techniques. Hence,

1a curved differentiable manifold where the distance properties are not uniform along the space
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the distance measure is defined as

d
[
ĥ(n), ĥ(n− 1)

]
=
[
ĥ(n)− ĥ(n− 1)

]T
Qx [G(n− 1)]

[
ĥ(n)− ĥ(n− 1)

]
, (6.25)

where Qx [G(n− 1)] is a symmetric positive-definite matrix that depends on x(n) and

G(n−1) and thus indirectly on ĥ(n−1). Let’s define the ML×ML matrix Qx [G(n− 1)]

as

Qx [G(n− 1)] = µ−1G−1(n− 1)−Px(n), (6.26)

which is know as the Riemannian metric tensor [97]. Using (6.18), (6.19) and (6.26), it

follows for P > 1 that

ĥ(n) = ĥ(n− 1)− µG(n− 1)RT (n)
[
R(n)G(n− 1)RT (n) + δI

]−1
e(n), (6.27)

where δ is a positive regularization parameter to improve the numerical stability. The

diagonal step-size control matrix Qx [G(n− 1)] determines the step-size of each filter co-

efficient and is dependent on the specific algorithm.

6.5.2 The MC-APA algorithm

For the MC-APA algorithm [94], since the step-size is the same for all filter coefficients,

Qx [G(n− 1)] = IML×ML, (6.28)

with IML×ML being an ML×ML identity matrix, (6.27) becomes

ĥ(n) = ĥ(n− 1)− µRT (n)
[
R(n)RT (n)

]−1
e(n). (6.29)

The main advantage of MC-APA over the MCLMS algorithm is that it has a faster con-

vergence rate for correlated inputs. But, its convergence performance degrades when the

system is sparse, which is a common drawback of the LMS-type algorithm as found from

Chapter 3.
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6.5.3 The MC-PAPA formulation

Since PNLMS-type algorithms usually outperform the NLMS algorithm for sparse impulse

responses, the poor performance of MC-APA in BSI has been addressed by combining

the proportionate idea with the MC-APA, thus resulting MC-PAPA. To incorporate the

history of the proportionate step-size control matrix (G), let us consider rewriting (6.27)

as [83]

ĥ(n) = ĥ(n− 1)− µY(n)
[
R(n)Y(n) + δI

]−1
e(n), (6.30)

where

Y(n) = G(n− 1)RT (n). (6.31)

Denoting the operator � as the Hadamard product, i.e., a � b =

[a(1)b(1) a(2)b(2) . . . a(L)b(L)]T , where a and b are two vectors of length L, the compo-

nents of Y(n) for an example case of M = 2 is given by (6.32):
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As it can be seen from (6.32), the classical PAPA algorithms take into account

the history of the last P samples of the sensor signal xm(n), but do not use the history

of the step-size control matrix Gm(n − 1). The modified MC-PAPA algorithm exploits

the histories of both the sensor signal and the proportionate step-size control. Thus,for

M = 2, (6.32) becomes

Ỹ(n) =

[
g1(n− 1)� x2(n) g1(n− 2)� x2(n− 1) · · · g1(n− P )� x2(n− P + 1)

g2(n− 1)�−x1(n) g2(n− 2)�−x1(n− 1) · · · g2(n− P )�−x1(n− P + 1)

]
,

(6.33)

and it can be generalized for M -channels as

Ỹ(n) = G̃T (n− 1)�RT (n), (6.34)

where

G̃(n− 1) =







g1(n− 1) g2(n− 1) · · · gM (n− 1)
...

...
...

g1(n− 1) g2(n− 1) · · · gM (n− 1)




M(M−1)
2

×ML


g1(n− 2) g2(n− 2) · · · gM (n− 2)
...

...
...

g1(n− 2) g2(n− 2) · · · gM (n− 2)




M(M−1)
2

×ML

...


g1(n− P ) g2(n− P ) · · · gM (n− P )
...

...
...

g1(n− P ) g2(n− P ) · · · gM (n− P )




M(M−1)
2

×ML



PM(M−1)

2
×ML

.

(6.35)

The modification entails not only an improved convergence performance, but also

a reduction in the computational complexity. Since only the latest reverberant signals are

multiplied by the new proportionate gains at each time instant, Ỹ(n) can be computed

recursively. Hence, the computational complexity, in terms of number of multiplications,

is decreased by a factor of P ((6.32) needs PLM2(M − 1)/2 multiplications while the

recursive relation on (6.34) requires only LM2(M − 1)/2 multiplications) at the cost of

increased memory requirement, compared to that in implementing (6.32). Thus, with
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a proper choice of gm(n − 1), the generalized MC-PAPA algorithm, for M-channels, is

described by (6.20)-(6.23), (6.34), (6.35) and

ĥ(n) = ĥ(n− 1)− µ Ỹ(n)
[
R(n)Ỹ(n) + δI

]−1
e(n). (6.36)

In the next section, two particular choices of gm(n) are employed into this framework for

robust performance in identifying AIRs blindly.

6.5.4 The MC-SCP-APA and MC-SCMP-APA algorithms

Drawing on techniques originally developed for sparseness-controlled PNLMS-type algo-

rithms in Chapter 3, a class of time domain algorithms are proposed for blind SIMO

system identification that can not only work well in both sparse and dispersive circum-

stances, but also adapt dynamically to the level of sparseness. The elements of gm(n) can

be formulated as

gm,l(n) =
κm,l(n)

1
L

∑L−1
l=0 κm,l(n)

0 ≤ l ≤ L− 1, (6.37)

κm,l(n) = max
{
ρm(n)×max{γ, (6.38)

F (|ĥm,0(n)|), F (|ĥm,1(n)|), . . . , F (|ĥm,L−1(n)|)}, F (|ĥm,l(n)|)
}
,

where F (|ĥm,l(n)|) is specific to the algorithm, γ is a small positive small which prevents

the filter coefficients from stalling and

ρm(n) = e−λξ̂m(n), λ ∈ R+ (6.39)

ξ̂m(n) =
L

L−
√
L

{
1− ‖ĥm(n)‖1√

L ‖ĥm(n)‖2

}
. (6.40)

Similar to the SC-PNLMS algorithm, the multichannel sparseness-controlled pro-

portionate APA (MC-SCP-APA) algorithm achieves a high rate of convergence by employ-

ing step-sizes that are proportional to the magnitude of the estimated impulse response

coefficients where elements F (|ĥm,l(n)|) are given by

F (|ĥm,l(n)|) = |ĥm,l(n)|, (6.41)
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Figure 6.2: Sparse (left) and Dispersive (right) acoustic impulse responses of a single-
input three-output system used in the simulation for blind identification.

whereas the multichannel sparseness-controlled µ-law proportionate APA (MC-SCMP-

APA) algorithm employs

F (|ĥm,l(n)|) = ln(1 + ν|ĥm,l(n)|). (6.42)

The MC-SCP-APA algorithm is thus described by (6.20)-(6.23), and (6.34)-(6.41),

whilst MC-SCMP-APA is described by (6.20)-(6.23), (6.34)-(6.40) and (6.42).

6.6 Performance evaluation

In this section, simulation results are presented to investigate the effectiveness of MC-

APA and the proposed MC-SCP-APA and MC-SCMP-APA algorithms in a blind SIMO

system identification problem. The randomly generated sparse and dispersive AIRs for
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Figure 6.3: Relative convergence of MC-APA, MC-SCP-APA and MC-SCMP-APA
using WGN input signal with an echo path change at 4 s. Impulse response is
changed from that shown from Fig. 6.2 (left) to (right) and µMC−APA = µMC−SCP−APA

= µMC−SCMP−APA = 0.2, P = 2, SNR = 50 dB.

M = 3, with length L = 15, are shown in Fig. 6.2. The AIRs were obtained such that

their transfer functions do not share any common zeros. The sparseness measure of these

AIRs are computed using (6.40) giving ξ(n) = 0.36, 0.55 and 0.46 for the sparse AIRs and

ξ(n) = 0.18, 0.16 and 0.23 for the dispersive AIRs. Employing the modified normalized

projection misalignment, given by [98]

NPM(n) = 20 log10

[
1

‖h(n)‖

(
h(n)− hT (n)ĥ(n)

ĥT (n)ĥ(n)
ĥ(n)

)]
, (6.43)

as the performance measure, the multichannel algorithms were then tested using a zero

mean WGN as the source signal s(n) (from the 5th random ‘state’ in Matlab) while another

three WGN sequences bm(n) were added for the three sensor signals to give SNR of 50 dB

in all channels. It was also assumed that the length of ĥ(n) is equivalent to that of the

unknown h(n).

Figure 6.3 shows the relative convergence of MC-APA, MC-SCP-APA and MC-

SCMP-APA with an echo path change at 4 s. Impulse responses were changed from that
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shown in Fig. 6.2 sparse to Fig. 6.2 dispersive. The step-size parameter for each algorithm

was chosen such that all algorithms achieve the same steady-state. This was achieved by

setting µMC−APA = µMC−SCP−APA = µMC−SCMP−APA = 0.2. The projection order was

set to P = 2, while the parameters γ = 0.01, ρ(n) = 0.1 for n < L, λ = 1 and ν = 1000

were set experimentally for the MC-SCP-APA and MC-SCMP-APA algorithms. As can

be seen, the proposed MC-SCP-APA algorithm performs better than MC-APA, giving

approximately 3 dB improvement during the initial convergence for the sparse AIRs. At

the same time, the MC-SCMP-APA algorithm achieves the highest rate of convergence

performance giving approximately 12 dB improvement compared to MC-APA. On the

other hand, they perform almost similar for the dispersive AIRs. The ability of the class

of sparseness-controlled multichannel algorithms to achieve good convergence performance

for both sparse and dispersive AIRs is achieved by incorporating the beneficial properties

of both proportionate and non-proportionate step-size control techniques. However, their

computational complexities are increased, as they estimate the sparseness measure of the

AIRs at each iteration for each channel.

6.7 Summary

In this chapter, a class of novel adaptive schemes based on SOS for blind estimation of

a SIMO channel model has been derived. The proposed framework exploits the affine

projection technique with the history of proportionate step-size control mechanism, in

order to enhance the convergence performance in sparse BSI by providing a control over

the tradeoff between the computational complexity and rate of convergence. Moreover,

the particular choices for the step-size control by employing the sparseness-controlled

technique, gives overall better performance compared to the conventional MC-APA. This is

because the proposed algorithms take into account the sparseness measure of the estimated

impulse response of each channel at each iteration.
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Chapter 7

Conclusions and Future Work

IN this final chapter, the work presented in this thesis is summarized and concluded,

where major challenges addressed in this thesis are reviewed and the important achieve-

ments are highlighted. Finally, some feasible future work is proposed according to the

current demands in such fields.

7.1 Summary

In this thesis, new time and frequency domain adaptive algorithms were developed, by

employing sparseness measure exploitation and partitioned block techniques, and the

IPNLMS algorithm was theoretically analyzed for single channel time-varying AEC appli-

cation.

In Chapter 2, the existing time- and frequency domain adaptive algorithms in the

context of AEC were studied. The AEC setup with a FIR adaptive filter in a LRMS

was first introduced, along with the notations and the standard assumptions. Then, the

derivation of LMS and NLMS algorithms were looked at in detail, to solve the Wiener-Hopf

equation recursively using the method of steepest descent. As their convergence perfor-

mances degrade when the impulse response is spare, many different intuitions were intro-

duced in the literature to overcome this problem. In this work, the PNLMS, MPNLMS

and IPNLMS sparse adaptive filtering algorithms were briefly reviewed, with their relative

computational complexities for filter coefficient adaptation. Mainly to reduce the compu-

tational complexity of large adaptive FIR filters, frequency domain algorithms, including
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FLMS, MDF and IPMDF, were presented next with their computational costs.

In Chapter 3, it was shown how to use a priori information on sparseness of the

impulse response, in the design of adaptive algorithms, in order to make them perform

better (in terms of initial convergence and tracking) than the aforementioned classical

adaptive algorithms. By considering a particular example case, it was first shown that the

variation in the sparsity of the impulse response exists when the loudspeaker to microphone

distance is varied within an enclosed room. Exploiting the sparseness measure into the

PNLMS adaptation equation, it was revealed through simulations that there exists a

deterministic relationship between the sparseness measure of the impulse response and the

optimal step gain matrix that can guarantee fastest convergence speed. Then, a class of

new sparseness-controlled algorithms were proposed to incorporate the sparseness measure

of the impulse response into PNLMS, MPNLMS and IPNLMS, via adaptively modified

coefficient update functions. Simulation results were shown to evaluate the convergence

performances of the proposed algorithms, using WGN and speech input signals, with

instantaneously and slowly time-varying echo paths in the context of the AEC. With

only a modest increase in computational complexity, it has been shown that the proposed

algorithms (SC-PNLMS, SC-MPNLMS and SC-IPNLMS) perform well, compared to their

classical ones, by utilizing the beneficial properties of the non-proportionate algorithm

when identifying a dispersive AIR and the proportionate algorithm when identifying a

sparse algorithm. Hence, they are especially suitable to a time-varying AIR. The idea of

exploiting the sparseness measure was also exhibited in frequency domain, by incorporating

it into the proportionate/nonproportionate control parameter of IPMDF. The simulation

results with WGN and speech input signals were shown, which show improved performance

for SC-IPMDF.

In Chapter 4, a novel partitioned block technique was developed in time domain

to improve the performance of IPNLMS for time-varying echo path. The AIR was parti-

tioned into two blocks, by including the direct path and a few early reflections in the first

block and the later reverberant parts for the second block. An adaptive filter structure

that consists of two time domain partition blocks was used with different proportion-

ate/nonproportionate control factor for each partitioned block, such that a more propor-

tionate step-sizes were allocated to the first block compared to the second block. With

fixed block sizes, two different strategies were presented to impose the step-size control
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matrices. The resultant non-proportionate and proportionate weighting techniques have

shown to achieve good convergence performance over the IPNLMS algorithm with sin-

gle proportionate/nonproportionate control factor, where the former technique works well

only if the norms of the two blocks’ filter coefficients are almost equal. When the nature of

the AIR is not known or the AIR is highly time-varying, a partitioned block algorithm was

developed with an efficient control mechanism for the dynamic adjustment of the block

size. Utilizing the self-configuration method, it was further shown through simulations

that the proposed VLPB-IPNLMS improves the robustness of the PB-IPNLMS to the

variable bulk delay.

In Chapter 5, both the transient and steady-state misalignment analysis for the

IPNLMS algorithm was presented, under both sparse and dispersive time-varying unknown

system conditions modelled using the modified Markov model. Simulation results were

presented and have shown to verify that the analysis accurately describes the performances

of the algorithms. It was noted that, for a time-varying system, the performance of

IPNLMS in terms of steady-state misalignment degrades with increasing time-variation.

It was also noted that, due to the specific assumption in this prediction of a stochastic

process, the theoretical and experimental results are very close but not exactly the same

for the sparse time-varying cases.

In Chapter 6, the research then moved to multichannel unsupervised scenario for the

development of time domain blind SIMO system identification algorithms based on SOS

and CR method. The chapter began by introducing the signal model for an acoustic FIR

SIMO system. Extending the conventional definition of PAPA for the multichannel BSI,

a generalized framework was developed together with the history of the proportionate

step-size control. The sparseness-controlled technique proposed in Chapter 3 was then

employed into this framework as the particular choice for the step-size control matrix.

Results demonstrate the advantage of the proposed MC-SCP-APA and MC-SCMP-APA in

that they provide control on the convergence performance in terms of NPM for both sparse

and dispersive BSI problems. In addition, it was noted that the computational complexity

of such algorithms is lower, compare to the similar technique without incorporating the

proportionate history, using a recursive implementation
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7.2 Conclusion

This research has addressed the significant problem caused by undesirable echoes that

result from coupling between the loudspeakers and microphones in the near end room and

also for the blind identification of SIMO acoustic systems. This thesis has mainly focused

on the development of the adaptive filtering algorithms for sparse and dispersive systems

in time- and frequency domains, emphasizing on the achievement of fast convergence rate

with a modest increase in the computational cost.

A class of sparseness-controlled algorithms were developed which achieves improved

convergence compared to classical NLMS and typical sparse adaptive filtering algorithms.

The sparseness measure was incorporated into PNLMS, MPNLMS, IPNLMS and IPMDF

for AEC to achieve fast convergence that is robust to the level of sparseness encoun-

tered in the impulse response of the echo path. The resulting SC-PNLMS, SC-MPNLMS,

SC-IPNLMS and SC-IPMDF algorithms take into account the sparseness measure via a

modified coefficient update function. It has been shown that the proposed sparseness-

controlled algorithms are robust to variations in the level of sparseness in AIR with only

a modest increase in computational complexity.

Due to the properties of an acoustic enclosure, it was shown that the early part

(i.e., direct path and early reflections) of the acoustic echo path is sparse while the late

reverberant part of the acoustic path is dispersive. Hence, it was validated through sim-

ulation results that, allocating larger individual step-sizes for the filter coefficients in the

first block with the early part of the AIR gives faster initial convergence performance and,

distributing almost equal step-sizes for the second block with the later part of the AIR

gives better steady-state performance.

The transient and steady-state performances of IPNLMS was analyzed. Analyti-

cal results were shown to be accurate to within a very small estimation error compared

with simulated results hence validating the analysis presented. Specifically, the error in

prediction was noted only for the sparse time-varying system identification.

A class of novel proportionate adaptive algorithms for blind SIMO system identifi-

cation was derived, based on the affine projection principle and the sparseness-controlled

method. These algorithms take into account the history of the proportionate step-size
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Figure 7.1: Acoustic impulse responses obtained using the method of images [1].

control for each filter coefficient, with lower computational complexity (compared to the

classical technique without the proportionate history) using a recursive implementation

in excess of additional memory requirement. Simulation results indicate that the pro-

posed MC-SCP-APA and MC-SCMP-APA perform well for both sparse and dispersive

BSI problems, providing robustness to the sparseness variation in AIR.

7.3 Future Work

In this very last section, the following prospective ideas of future work are presented:

• The technique developed in Chapter 4 partitioned the AIR into two blocks such that

first block contained the early dominant peaks, whereas the second block contained

the later parts. However, partitioning into two blocks may not be an optimum way.

For example, consider the AIR shown in Fig. 7.1, which was generated employing

the method of images [1] using room dimensions of 8 × 10 × 3 m and 0.3 as the

reflection coefficient. The loudspeaker was fixed at 7.5 × 0.5 × 1.6 m in the LRMS

while the microphone was positioned at 0.5 × 9.5 × 1.6 m. As it can be seen that

partitioned into more blocks would give better convergence performance. It would

be an interesting extension to the work in this thesis.
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• The development of the sparseness-controlled concept in this thesis, and in the re-

cent works published in [99, 100, 101], has also opened several directions of future

research. Since it is well-known that a sparse echo path can be identified faster than

a dispersive echo path with same length, when the filter coefficients are initialized

to zeros. Therefore, transforming a dispersive echo path into a sparse path, using

existing or possibly a new transformation, will improve the convergence speed of a

dispersive system identification. Hence, it is interesting to examine the possibility

of exploiting the sparseness measure of the estimated impulse response at that time

instance into an automated mechanism to efficiently switch between the different

domains.
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[10] J. Benesty, T. Gänsler, D. R. Morgan, M. M. Sondhi, and S. L. Gay, Advances in

Network and Acoustic Echo Cancellation. Springer-Verlag, 2001.
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[14] J. Benesty and T. Gänsler, “New insights into the RLS algorithm,” EURASIP Jour-

nal on Applied Signal Processing, vol. 2004, no. 3, pp. 331–339, Mar. 2004.

[15] N. J. Bershad, S. McLaughlin, and C. F. N. Cowan, “Performance comparison of RLS

and LMS algorithms for tracking a first order Markov communications channel,” in

Proc. IEEE Int. Symposium on Circuits and Systems, vol. 1, 1990, pp. 266–270.

[16] K. Ozeki and T. Umeda, “An adaptive filtering using an orthogonal projection to

an affine subspace and properties,” Electronics and Communications in Japan, vol.

67-A, no. 5, 1984.

[17] S. L. Gay and S. Tavathia, “The fast affine projection algorithm,” in Proc. IEEE

Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP), vol. 5, 1995, pp.

3023–3026.

[18] S. L. Gay, “Affine projection algorithms,” in Least-mean-square adaptive filters,

S. Haykin and B. Widrow, Eds. John Wiley & Sons Inc., 2003, ch. 7, pp. 241–291.

[19] A. Mader, H. Puder, and G. U. Schmidt, “Step-size control for acoustic echo can-

cellation filters - an overview,” Signal Processing, vol. 80, pp. 1697–1719, 2000.

[20] P. A. Naylor and N. D. Gaubitch, “Speech dereverberation,” in Proc. Intl. Workshop

Acoust. Echo Noise Control (IWAENC), 2005.



Bibliography 161

[21] T. Nakatani, M. Miyoshi, and K. Kinoshita, “One microphone blind dereverbera-

tion based on quasi-periodicity of speech signals,” in Neural Information Processing

Systems (NIPS), 2003.

[22] Y. Lin, J. Chen, Y. Kim, and D. D. Lee, “Blind channel identification for speech

dereverberation using l1-norm sparse learning,” in Neural Information Processing

Systems (NIPS), 2007.

[23] P. M. Peterson, “Simulating the response of multiple microphones to a single acoustic

source in a reverberant room.” Journal of the Acoustical Society of America, vol. 80,

no. 5, pp. 1527–1529, Nov. 1986.

[24] D. L. Duttweiler, “Proportionate normalized least mean square adaptation in echo

cancellers,” IEEE Trans. Speech Audio Process., vol. 8, no. 5, pp. 508–518, Sep.

2000.

[25] H. Deng and M. Doroslovacki, “Improving convergence of the PNLMS algorithm for

sparse impulse response identification,” IEEE Signal Process. Lett., vol. 12, no. 3,

pp. 181–184, Mar. 2005.

[26] J. Benesty and S. L. Gay, “An improved PNLMS algorithm,” in Proc. IEEE Intl.

Conf. on Acoustics, Speech and Signal Processing (ICASSP), vol. 2, 2002, pp. 1881–

1884.

[27] E. R. Ferrara, “Fast implementations of LMS adaptive filters,” IEEE Trans. Acoust.,

Speech, Signal Process., vol. 28, pp. 474–475, 1980.

[28] J. S. Soo and K. K. Pang, “Multidelay block frequency domain adaptive filter,”

IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 373–376, Feb. 1990.

[29] A. W. H. Khong, P. A. Naylor, and J. Benesty, “A low delay and fast converging im-

proved proportionate algorithm for sparse system identification,” EURASIP Journal

on Audio, Speech, and Music Processing, vol. Article ID 84376, p. 8 pages, 2007.

[30] K. Wagner and M. Doroslovacki, “Towards Analytical Convergence Analtsis of

Proportion-type NLMS Algorithms,” in Proc. IEEE Intl. Conf. on Acoustics, Speech

and Signal Processing (ICASSP), 2008, pp. 3825–3828.



Bibliography 162

[31] M. H. Hayes, Statistical Digital Signal Processing and Modeling. Wiley, 1996.

[32] B. Widrow, J. R. Glover, Jr., J. M. McCool, J. Kaunitz, C. S. Williams, R. H.

Hearn, J. R. Zeidler, E. Dong, Jr., and R. C. Goodlin, “Adaptive noise cancelling:

Principles and applications,” in Proc. IEEE, vol. 63, 1975, pp. 1692–1716.

[33] D. P. Mandic, “A generalized normalized gradient descent algorithm,” IEEE Signal

Process. Lett., vol. 11, pp. 115–118, 2004.

[34] R. H. Kwong and E. Johston, “A variable step-size LMS algorithm,” IEEE Trans.

Signal Process., vol. 40, pp. 1633–1642, 1992.

[35] C. Rusu and F. N. Cowan, “The convex variable step size (CVSS) algorithm,” IEEE

Signal Process. Lett., vol. 7, pp. 256–258, 2000.

[36] J. Sanubari, “A new variable step size method for the LMS adaptive filter,” in IEEE

Asia-Pacific Conference on Circuits and systems, 2004.

[37] S. Roy and J. J. Shynk, “Analysis of the data-reusing LMS algorithm,” in Proceedings

of the 32nd Midwest Symposium on Circuits and Systems, vol. 2, Aug. 1989, pp. 1127

–1130.

[38] B. A. Schnaufer and W. K. Jenkins, “New data-reusing LMS algorithms for improved

convergence,” in Proc. Asilomar Conf. on Signals, Systems and Computers, 1993.

[39] J. A. Apolinario, M. L. R. de Campos, and P. S. R. Diniz, “The binormalized data-

reusing LMS algorithm,” IEEE Trans. Signal Process., vol. 48, pp. 3235 – 3242, Nov.

2000.

[40] A. W. H. Khong and P. A. Naylor, “Selective-tap adaptive algorithms in the solution

of the non-uniqueness problem for stereophonic acoustic echo cancellation,” IEEE

Signal Process. Lett., vol. 12, no. 4, pp. 269–272, Apr. 2005.

[41] P. A. Naylor and A. W. H. Khong, “Affine projection and recursive least squares

adaptive filters employing partial updates,” in Proc. Asilomar Conf. on Signals,

Systems and Computers, vol. 1, Nov. 2004, pp. 950–954.

[42] H. Deng and M. Doroslovacki, “New sparse adaptive algorithms using partial up-

date,” in Proc. Intl. Conf. on Signal Processing, vol. 2, May 2004, pp. 845–848.



Bibliography 163

[43] A. Gilloire and M. Vetterli, “Adaptive filtering in subbands with critical sampling:

Analysis, experiements, and application to acoustic echo cacnellation,” IEEE Trans.

Signal Process., vol. 40, no. 8, pp. 1862–1875, Aug. 1992.

[44] D. R. Morgan and J. C. Thi, “A delayless subband adaptive filter architecture,”

IEEE Trans. Signal Process., vol. 43, no. 8, pp. 1819–1830, Aug. 1995.

[45] Y. Bendel, D. Burshtein, O. Shalvi, and E. Weinstein, “Delayless frequency domain

acoustic echo cacnellation,” IEEE Trans. Speech Audio Process., vol. 9, no. 5, pp.

589–597, Jul. 2001.

[46] J. Homer, I. Mareels, R. R. Bitmead, B. Wahlberg, and A. Gustafsson, “LMS es-

timation via structural detection,” IEEE Trans. Signal Process., vol. 46, p. 2651

2663, Oct. 1998.

[47] S. Makino, Y. Kaneda, and N. Koizumi, “Exponentially weighted step-size NLMS

adaptive filter based on the statistics of a room impulse response,” IEEE Trans.

Speech Audio Process., vol. 1, pp. 101 – 108, Jan. 1993.

[48] A. Sugiyama, H. Sato, A. Hirano, and S. Ikeda, “A fast convergence algorithm

for adaptive FIR filters under computational constraint for adaptive tap-position

control,” IEEE Trans. Circuits Syst. II, vol. 43, p. 629 636, Sep. 1996.

[49] S. L. Gay, “An efficent, fast converging adaptive filter for network echo cancellation,”

in Proc. Asilomar Conf. on Signals, Systems and Computers, vol. 1, Nov. 1998, pp.

394–398.

[50] A. Deshpande and S. L. Grant, “A new multi-algorithm approach to sparse system

adaptation,” in Proc. European Signal Processing Conf. (EUSIPCO), 2005.

[51] M. A. Mehran Nekuii, “A fast converging algorithm for network echo cancelation,”

IEEE Signal Process. Lett., vol. 11, pp. 427–430, 2004.

[52] H. Deng and M. Doroslovacki, “Proportionate adaptive algorithms for network echo

cancellation,” IEEE Trans. Signal Process., vol. 54, no. 5, pp. 1794–1803, May 2006.

[53] M. Martinez-Ramon, J. Arenas-Garcia, A. Navia-Vazquez, and A. R. Figueiras-

Vidal, “An adaptive combination of adaptive filters for plant identification,” in 14th

International Conference on DSP, Jul. 2002, p. 1195 1198.



Bibliography 164

[54] J. Arenas-Garca, V. Gmez-Verdejo, and A. R. Figueiras-Vidal, “New algorithms

for improved adaptive convex combination of LMS transversal filters,” IEEE Trans.

Instrum. Meas., vol. 54, pp. 2239 – 2249, 2005.

[55] M. Dentino, J. M. McCool, and B. Widrow, “Adaptive filtering in the frequency

domain,” in Proc. IEEE, Dec. 1978, pp. 1658–1659.

[56] A. W. H. Khong, J. Benesty, and P. A. Naylor, “Stereophonic acoustic echo cancella-

tion: Analysis of the misalignment in the frequency domain,” IEEE Signal Process.

Lett., vol. 13, pp. 33–36, 2006.

[57] M. Doroslovacki and H. Fan, “Wavelet based time-varying linear system modeling

and adaptive filtering,” in Proc. Intl. Symp. on Circuits and Systems, vol. 2, 1994,

pp. 49 –52.

[58] ——, “Wavelet-based linear system modeling and adaptive filtering,” IEEE Trans.

Signal Process., vol. 44, no. 5, pp. 1156–1167, May 1996.

[59] R. Gray, “On the asymptotic eigenvalue distribution of toeplitz matrices,” IEEE

Trans. Inf. Theory, vol. 18, no. 6, pp. 725–730, Nov. 1972.

[60] J. J. Shynk, “Frequency-domain and multirate adaptive filtering,” IEEE Signal Pro-

cess. Mag., vol. 9, no. 1, pp. 14–37, Jan. 1992.

[61] J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation of

complex Fourier series,” Math. Comp., vol. 19, pp. 297–301, Apr. 1965.

[62] J. G. Proakis and D. G. Manolakis, Digital Signal Processing- Principles, Algorithms

and Applications, 3rd ed. Upper Saddle River, New Jersey: Prentice Hall, 1996.

[63] S. K. Mitra, Digital Signal Processing- A Computer-Based Approach, 2nd ed.

McGraw-Hill, 2001.

[64] R. Ahmad, A. W. Khong, and P. A. Naylor, “Proportionate frequency domain adap-

tive algorithms for blind channel identification,” in Proc. IEEE Intl. Conf. on Acous-

tics, Speech and Signal Processing (ICASSP), vol. 5, May 2006, pp. V29–V32.

[65] B. B. Farhang, Adaptive Filters: Theory and Applications. Chicester: Wiley, 1998.



Bibliography 165

[66] J. Benesty, M. M. Sondhi, and Y. Huang, Speech Processing. Springer, 2008.

[67] P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A

method based on time averaging over short, modified periodograms,” IEEE Trans.

Audio Electroacoust., vol. 15, no. 2, pp. 70–73, Jun. 1967.

[68] J. Lee and S.-C. Chong, “On the convergence properties of multidelay frequency

domain adaptive filter,” in Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal

Processing (ICASSP), vol. 4, 1999, pp. 1865 – 1868.

[69] P. Loganathan, A. W. H. Khong, and P. A. Naylor, “A sparseness-controlled pro-

portionate algorithm for acoustic echo cancellation,” in Proc. European Signal Pro-

cessing Conf. (EUSIPCO), 2008.

[70] ——, “A class of sparseness-controlled algorithms for echo cancellation,” IEEE

Trans. Audio, Speech, Lang. Process., vol. 17, no. 8, pp. 1591 – 1601, Nov. 2009.

[71] P. Loganathan, X. S. Lin, , A. W. H. Khong, and P. A. Naylor, “Frequency-domain

Adaptive Multidelay algorithm with sparseness-control for acoustic echo cancella-

tion,” in Proc. European Signal Processing Conf. (EUSIPCO), 2009.

[72] H. Deng and M. Doroslovacki, “Wavelet-based MPNLMS Adaptive Algorithm for

Network Echo Cancellation,” EURASIP Journal on Audio, Speech, and Music Pro-

cessing, 2007.

[73] P. Loganathan, E. A. P. Habets, and P. A. Naylor, “A partitioned block proportion-

ate adaptive algorithm for acoustic echo cancellation,” in Proceedings of APSIPA

Annual Summit and Conference 2010, Biopolis, Singapore, Dec. 2010.

[74] ——, “A proportionate adaptive algorithm with variable partitioned block length

for acoustic echo cancellation,” in Proc. IEEE Intl. Conf. on Acoustics, Speech and

Signal Processing (ICASSP), 2011.

[75] F. das Chagas de Souza, O. Tobias, R. Seara, and D. Morgan, “A PNLMS algorithm

with individual activation factors,” IEEE Trans. Signal Process., vol. 58, pp. 2036–

2047, 2010.

[76] C. Paleologu, J. Benesty, and S. Ciochina, Sparse Adaptive Filters for Echo Cancel-

lation. Morgan & Claypool Publishers, 2010.



Bibliography 166

[77] M. Zeller, L. Azpicueta-Ruiz, and W. Kellermann, “Adaptive FIR filters with au-

tomatic length optimization by monitoring a normalized combination scheme,” in

Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,

Oct. 2009, pp. 149 –152.

[78] P. Loganathan, E. A. P. Habets, and P. A. Naylor, “Performance analysis of IPNLMS

for identification of time-varying systems,” in Proc. IEEE Intl. Conf. on Acoustics,

Speech and Signal Processing (ICASSP), 2010.

[79] A. W. H. Khong and P. A. Naylor, “Selective-tap adaptive filtering with performance

analysis for identification of time-varying systems,” IEEE Trans. Audio, Speech,

Lang. Process., vol. 15, pp. 1681–1695, Jul. 2007.

[80] B. Widrow, J. M. McCool, M. G. Larimore, and C. R. Johnson, “Stationary and

non-stationary learning characteristics of the LMS adaptive filter,” in Proc. IEEE,

vol. 64, 1976, pp. 1151–1162.

[81] A. W. H. Khong and P. A. Naylor, “A family of selective-tap algorithms for stereo

acoustic echo cancellation,” in Proc. IEEE Intl. Conf. on Acoustics, Speech and

Signal Processing (ICASSP), vol. 3, Mar. 2005, pp. 133–136.

[82] A. H. Sayed, Fundamentals of adaptive filtering. Wiley, 2003.

[83] C. Paleologu, J. Benesty, and S. Ciochina, Sparse Adaptive Filters for Echo Cancel-

lation. Morgan & Claypool publishers, 2010.

[84] Y. Sato, “A method of self-recovering equalization for multilevel amplitude-

modulation,” IEEE Trans. Commun., vol. COM-23, pp. 679 – 682, 1975.

[85] L. Tong, G. Xu, and T. Kailath, “Blind identification and equalization based on

second-order statistics: a time domain approach,” IEEE Trans. Inf. Theory, vol. 40,

p. 340 349, Mar. 1994.

[86] A. Benveniste, M. Goursat, and G. Ruget, “Robust identification of a nonminimum

phase system: blind adjustment of a linear equalizer in data communications,” IEEE

Trans. Autom. Control, vol. 1, pp. 385 – 399, Jun. 1980.

[87] G. Xu, H. Liu, L. Tong, and T. Kailath, “A least-squares approach to blind channel

identification,” IEEE Trans. Signal Process., vol. 43, pp. 2982–2993, 1995.



Bibliography 167

[88] P. A. Naylor and N. D. Gaubitch, Speech Dereverberation. Springer, 2010.

[89] E. Moulines, P. Duhamel, J.-F. Cardoso, and S. Mayrargue, “Subspace methods

for the blind identification of multichannel fir filters,” IEEE Trans. Signal Process.,

vol. 43, no. 2, pp. 516–525, Feb. 1995.

[90] D. Slock, “Blind fractionally-spaced equalization, perfect reconstruction filterbanks,

and multilinear prediction,” in Proc. IEEE Intl. Conf. on Acoustics, Speech and

Signal Processing (ICASSP), vol. 4, 1994.

[91] Y. Hua, “Fast maximum likelihood for blind identification of multiple FIR channels,”

IEEE Trans. Signal Process., vol. 44, pp. 661 – 672, Mar. 1996.

[92] Y. A. Huang and J. Benesty, “Adaptive multi-channel least mean square and Newton

algorithms for blind channel identification,” Signal Processing, vol. 82, p. 1127 1138,

2002.

[93] Y. Huang and J. Benesty, “A class of frequency-domain adaptive approaches to blind

multichannel identification,” IEEE Trans. Signal Process., vol. 51, no. 1, pp. 11–24,

Jan. 2003.

[94] E. A. P. Habets, J. Benesty, and P. A. Naylor, “A cross-relation based affine pro-

jection algorithm for blind single-input multiple-output system identification,” sub-

mitted to IEEE Signal Process. Lett., Oct. 2010.

[95] Y. Huang, J. Benesty, and J. Chen, Acoustic MIMO Signal Processing. Springer,

2006.

[96] L. R. Vega, H. Rey, J. Benesty, and S. Tressens, “A family of robust algorithms

exploiting sparsity in adaptive filters,” IEEE Trans. Audio, Speech, Lang. Process.,

vol. 17, pp. 572 – 581, 2009.

[97] R. E. Mahony and R. C. Williamson, “Prior knowledge and preferential structures

in gradient descent learning algorithms,” Journal of Machine Learning Research,

vol. 1, pp. 311 – 355, 2001.

[98] D. R. Morgan, J. Benesty, and M. M. Sondhi, “On the evaluation of estimated

impulse responses,” IEEE Signal Process. Lett., vol. 5, pp. 174 – 176, 1998.



Bibliography 168

[99] L. Liao and A. W. H. Khong, “Sparseness-controlled affine projection algorithm for

echo cancelation,” in Proceedings of APSIPA Annual Summit and Conference 2010,

Biopolis, Singapore, Dec. 2010.

[100] F. das C. de Souza, O. J. Tobias, R. Seara, and D. R. Morgan, “Alternative approach

for computing the activation factor of the PNLMS algorithm,” in Proc. European

Signal Processing Conf. (EUSIPCO), Glasgow, Scotland, Aug. 2009.

[101] J. Yang, X. Zhu, G. E. Sobelman, and K. K. Parhi, “Sparseness-controlled adaptive

tap algorithms for partial update adaptive filter,” in 7th International Conference

on Information, Communications and Signal Processing, Dec. 2009, pp. 1 –5.


	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Mathematical Symbols
	Chapter 1.  Introduction
	1.1 Overview
	1.2 Research objectives
	1.3 Thesis structure
	1.4 Statement of originality
	1.5 Publications

	Chapter 2.  Literature Review
	2.1 Overview of adaptive algorithms for echo cancellation
	2.2 Acoustic echo cancellation
	2.2.1 Notations and definitions
	2.2.2 Assumptions
	2.2.3 Adaptive echo cancellation process

	2.3 Performance measures
	2.3.1 Mean square error
	2.3.2 Normalized misalignment

	2.4 Time domain adaptive algorithms for echo cancellation
	2.4.1 The LMS and NLMS algorithms
	2.4.2 The PNLMS and MPNLMS algorithm
	2.4.3 The IPNLMS algorithm
	2.4.4 Computational complexity

	2.5 Frequency domain adaptive algorithms for echo cancellation
	2.5.1 Notations and definitions
	2.5.2 The FLMS algorithm
	2.5.3 The MDF algorithm
	2.5.4 The IPMDF algorithm
	2.5.5 Computational complexity

	2.6 Summary
	2.6.1 Time domain algorithms
	2.6.2 Frequency domain algorithms


	Chapter 3.  A Class of Sparseness-controlled Algorithms
	3.1 Introduction
	3.2 Sparseness measure
	3.3 Characterization of framework for robust convergence in the time domain
	3.3.1 Variation of sparseness in AIRs
	3.3.2 Effect of  on step-size control matrix Q(n) for PNLMS

	3.4 Time domain sparseness-controlled algorithms
	3.4.1 The SC-PNLMS and SC-MPNLMS algorithm
	3.4.2 The SC-IPNLMS algorithm
	3.4.3 Performance evaluation
	3.4.4 Computational complexity

	3.5 Frequency domain sparseness-controlled algorithms
	3.5.1 The SC-IPMDF algorithm
	3.5.2 Performance evaluation
	3.5.3 Computational complexity

	3.6 Summary
	3.6.1 Sparseness-controlled time domain algorithms
	3.6.2 Sparseness-controlled frequency domain algorithms


	Chapter 4.  A Partitioned Block Proportionate Adaptive Algorithm
	4.1 Introduction
	4.2 Motivation
	4.3 Fixed length partitioned block IPNLMS
	4.3.1 Non-proportionate weighting
	4.3.2 Proportionate weighting
	4.3.3 Performance evaluation

	4.4 Variable length partitioned block IPNLMS
	4.4.1 Automatic control of the block length L1
	4.4.2 The proposed VLPB-IPNLMS algorithm
	4.4.3 Performance evaluation

	4.5 Summary
	4.5.1 The partitioned block IPNLMS algorithms


	Chapter 5.  Performance Analysis for Time-Varying System Identifications
	5.1 Introduction
	5.2 Time-varying system model
	5.3 Recursive mean-square error analysis
	5.3.1 General formulation
	5.3.2 Assumptions
	5.3.3 Recursive mean-square error analysis for IPNLMS
	5.3.4 Steady-state analysis for IPNLMS

	5.4 Performance evaluation
	5.4.1 Experimental setup
	5.4.2 Performances prediction under different rates of time-varying systems
	5.4.3 Performances prediction using different step-sizes
	5.4.4 Performances prediction using different input signal variances
	5.4.5 Performances prediction using different additive noise variances

	5.5 Summary

	Chapter 6.  A Class of Sparseness-controlled Affine Projection Algorithms for Blind SIMO System Identification
	6.1 Introduction
	6.2 Signal model
	6.3 Cross relation method
	6.4 General cost function for SIMO BSI using the CR error
	6.4.1 Dual channel (M=2)
	6.4.2 Multichannel (M2)

	6.5 Multichannel sparseness-controlled PAPA
	6.5.1 General formulation
	6.5.2 The MC-APA algorithm
	6.5.3 The MC-PAPA formulation
	6.5.4 The MC-SCP-APA and MC-SCMP-APA algorithms

	6.6 Performance evaluation
	6.7 Summary

	Chapter 7.  Conclusions and Future Work
	7.1 Summary
	7.2 Conclusion
	7.3 Future Work

	Bibliography

