A SPARSENESS CONTROLLED PROPORTIONATE ALGORITHM FOR ACOUSTIC ECHO CANCELLATION

Pradeep Loganathan, Andy W.H. Khong, Patrick A. Naylor

pradeep.loganathan@ic.ac.uk, andykhong@ntu.edu.sg, p.naylorg@ic.ac.uk

Contents

- Introduction
- Review of NLMS & PNLMS
- The SC-PNLMS algorithm
- Simulation Results
- Complexity
- Conclusion

Introduction

Acoustic echo appeared due to the coupling between the loudspeaker and microphone. x(n)

- Acoustic echo cancellation (AEC) applications:
 - Hands-free car phone systems
 - Standard speakerphone
 - Teleconferencing systems
- Adaptive filters employed in AEC
 - Two signals are available
 - input signal to LRMS x(n)
 - output signal from LRMS y(n)
 - Predict $\mathbf{h}(n)$ so that e(n) is minimised at each iteration.

Motivation

- Loudspeaker-Room-Microphone system (LRMS)
 - room dimension of 8×10×3 m
 - loudspeaker fixed at 4×9.1×1.6 m
 - microphone positioned at
 - a) 4×8.2×1.6 m
 - b) 4×1.4×1.6 m
- Sparse reduces with increasing separation between loudspeaker and microphone.

⇒ Algorithms for AEC are required to be robust to the variations in the sparseness of the impulse response.

Adaptive filtering framework (NLMS)

General formulation $e(n) = y(n) - \hat{\mathbf{h}}^T (n-1)\mathbf{x}(n)$ w(n) $\mathbf{h}(n)$ $\hat{\mathbf{h}}(n) = \hat{\mathbf{h}}(n-1) + \mu \frac{\mathbf{Q}(n-1)\mathbf{x}(n)e(n)}{\mathbf{x}^{T}(n)\mathbf{O}(n-1)\mathbf{x}(n) + \delta}$ LRMS $\mathbf{Q}(n-1) = \text{diag} \{ q_0(n-1), q_1(n-1), \dots, q_{L-1}(n-1) \}$ NLMS: $\mathbf{Q}(n) = \mathbf{I}_{L \times L}, \quad \delta_{\text{NLMS}} = \sigma_r^2$ step-size straight forward implementation, low complexity - slow convergence for sparse impulse response

 $\hat{h}_l(n)$

Imperial College London

Adaptive filtering framework (PNLMS)

- General formulation $e(n) = v(n) - \hat{\mathbf{h}}^T (n-1)\mathbf{x}(n)$ $\hat{\mathbf{h}}(n)$ w(n)**h**(*n*) $\hat{\mathbf{h}}(n) = \hat{\mathbf{h}}(n-1) + \mu \frac{\mathbf{Q}(n-1)\mathbf{x}(n)e(n)}{\mathbf{x}^{T}(n)\mathbf{O}(n-1)\mathbf{x}(n) + \delta}$ $\hat{v}(n)$ LRMS $\mathbf{Q}(n-1) = \operatorname{diag} \{ q_0(n-1), q_1(n-1), \dots, q_{L-1}(n-1) \}$ y(n)• PNLMS: $q_l(n) = \frac{\kappa_l(n)}{L-1}$, l = 0, 1, ..., L-1 $\sum_{i=0}^{L-1} \kappa_i(n) = \max\left\{ \rho \times \max\left\{ \gamma, |\hat{h}_0(n)|, ..., |\hat{h}_{L-1}(n)| \right\}, |\hat{h}_{L-1}(n)| \right\}$ $\gamma = 0.01, \quad \rho = 5/L$
 - faster convergence for sparse impulse response
 - slower convergence for dispersive impulse response

Imperial College London

 $\hat{h}_l(n)$

x(n)

e(n)

Sparseness measure

Qualitative measure: ranging from strongly dispersive to strongly sparse

• Quantitative measure:
$$\xi(n) = \frac{L}{L - \sqrt{L}} \left[1 - \frac{\|\mathbf{h}(n)\|_1}{\sqrt{L} \|\mathbf{h}(n)\|_2} \right]$$

Imperial College London

Improving the performance of PNLMS

The SC-PNLMS formulation

- low value of $\rho \rightarrow$ step-size α magnitude of coefficient \rightarrow good for sparse
- high value of $\rho \rightarrow$ step-size = constant \rightarrow good for dispersive

The SC-PNLMS formulation

- Desired: $\log \rho$ for high $\hat{\xi}(n)$ high ρ for $\log \hat{\xi}(n)$
- Exponential function allows SC-PNLMS to inherit proportionality step-size control over large range of $\hat{\xi}(n)$

Imperial College London

The SC-PNLMS formulation

$$e(n) = y(n) - \hat{\mathbf{h}}^{T}(n-1)\mathbf{x}(n)$$

$$\hat{\mathbf{h}}(n) = \hat{\mathbf{h}}(n-1) + \mu \frac{\mathbf{Q}(n-1)\mathbf{x}(n)e(n)}{\mathbf{x}^{T}(n)\mathbf{Q}(n-1)\mathbf{x}(n) + \delta}$$

$$\mathbf{Q}(n-1) = \text{diag}\left\{q_{0}(n-1), q_{1}(n-1), \dots, q_{L-1}(n-1)\right\}$$

$$q_{l}(n) = \frac{\kappa_{l}(n)}{\sum_{i=0}^{L-1} \kappa_{i}(n)}, \quad l = 0, 1, \dots, L-1$$

$$\kappa_{l}(n) = \max\left\{\rho \times \max\left\{\gamma, |\hat{h}_{0}(n)|, \dots, |\hat{h}_{L-1}(n)|\right\}, |\hat{h}_{L-1}(n)|\right\}, \gamma = 0.01,$$

• For
$$n < L$$
, $\rho(n) = 5/L$

• For
$$n \ge L$$
, $\rho(n) = e^{-\lambda \hat{\xi}(n)}$, $\lambda = 6$
 $\hat{\xi}(n) = \frac{L}{L - \sqrt{L}} \left\{ 1 - \frac{\|\hat{\mathbf{h}}(n)\|_1}{\sqrt{L} \|\hat{\mathbf{h}}(n)\|_2} \right\}$

Imperial College London

A Sparseness Controlled Proportionate Algorithm for AEC

standard PNLMS

modification

Simulation set-up

Simulation results of SC-PNLMS for different $\boldsymbol{\lambda}$

Imperial College London

Simulation results using WGN

Simulation results using speech signal

Complexity

Complexity for the case of L=1024

Algorithms	(+)	(X)	(/)
NLMS	1027	2051	1
PNLMS	2051	5124	1025
SC-PNLMS	4100	6150	1026

Imperial College London

Conclusion

Algorithms developed for mobile hands-free terminals are required to be

robust to the variations in the sparseness of the acoustic path.

SC-PNLMS: Sparseness measure has been incorporated into PNLMS.

^o Sparseness measured using estimated impulse response.

- Modest increase in computational complexity
- ^o Outperformed across all sparseness levels.

Additional slide 1

 Sparseness measure Vs. Distance between loudspeaker and microphone – room dimensions of 8x10x3 m

Additional slide 2

Sensitivity of λ in ρ(n)

Imperial College London

Additional slide 3

Linear function for ρ(n)

