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ABSTRACT

The tracking performance of adaptive filters is crucially important in
practical applications involving time-varying systems. We present
an analysis of the tracking performance for IPNLMS, one of the best
known and best performing algorithms originally targeted at sparse
system identification. We then validate our analytic results in practi-
cal simulations for echo cancellation for sparse and dispersive time-
varying unknown echo path systems. These results show the analysis
to be highly accurate in all the cases studied.

Index Terms— Sparse and dispersive impulse responses,
Adaptive algorithms, Convergence analysis, Time-varying system
identification, IPNLMS algorithm

1. INTRODUCTION

With the growing popularity of hands-free mobile telephony, effec-
tive acoustic echo cancellation (AEC) is vital to control the acous-
tic echo generated due to the coupling between the loudspeaker and
microphone. The impulse response of the acoustic echo path is typ-
ically of length 100-400 ms [1]. Acoustic impulse responses (AIRs)
are sensitive to movements of the acoustic source or changes in
the acoustic environment and variations in temperature or pressure
within an enclosed space. For this reason, adaptive filters have been
used to achieve AEC in time-varying environments by tracking the
acoustic echo path and thereby continuously predicting the acoustic
echo that is received by the microphone.

The normalized least-mean-square (NLMS) algorithm is one
of the most popular algorithm for AEC. Since its conver-
gence performance reduces significantly in sparse system iden-
tification, sparse adaptive algorithms have been derived from
NLMS, including proportionate NLMS (PNLMS) [2] and improved
PNLMS (IPNLMS) [3]. By introducing a controlled mixture of
proportionate (PNLMS) and non-proportionate (NLMS) adaptation,
IPNLMS is a favorable choice as it performs well regardless of the
level of sparseness in the AIR [3].

The sparseness of the AIR is dependent on (a) the distance from
the loudspeaker to the microphone and (b) the nature and num-
ber of sound reflecting surfaces in the vicinity of the microphone.
Both (a) and (b) may vary with time when a wireless microphone
is used and when the terminal is mobile, respectively, and therefore
the sparseness will also be time-varying. An everyday example of
time-varying sparseness in the AIR is during a hands-free phone call
when the caller starts in an elevator, then moves through the lobby of
a building and finally moves outside onto the street. An illustration
is shown in Fig. 1 using the image model [4], with different dis-
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Fig. 1. Acoustic impulse responses obtained using the method of
images [4] in a room with dimension of 8 × 10 × 3 m where the
distances between the loudspeaker and microphone are (a) 0.9 m
and (b) 7.7 m.

tances between loudspeaker and microphone in a room dimensions
of 8× 10× 3 m.

In order to explore the algorithms’ performances under such
continuously time-varying condition, first-order Markov process [5,
6] is commonly used to model the unknown AIR. Tracking capa-
bility of time-variations by the LMS algorithm has already been the
subject of several studies including [6, 7]. Recently, the transient
behavior of a modified PNLMS algorithm was studied in [8].

The main contribution of this paper is the analysis of the track-
ing performance of IPNLMS for sparse and dispersive time-varying
system. For the analysis we adopt the methodology proposed in [8].
The IPNLMS algorithm is first reviewed in Section 2. We then de-
rive an expression to predict the mean-squared error performance of
IPNLMS algorithm, in Section 3, for time-varying systems that can
be described by a modified first-order Markov model. Simulation re-
sults shown in Section 4 demonstrate that the predicted performance
and the actual performance (i.e., ensemble average of simulations)
are very similar when the system changes in the context of AEC.

2. REVIEW OF IPNLMS

Defining the input signal x(n) = [x(n) x(n−1) . . . x(n−L+1)]T

and h(n) = [h1(n) h2(n) . . . hL(n)]T as the unknown impulse
response, the desired output with additive noise w(n) is given by

y(n) = hT (n)x(n) + w(n), (1)

where L is the length of the room impulse response and [·]T is
the transposition operator. The impulse response can be estimated
by employing an adaptive filter ĥ(n) = [ĥ1(n)ĥ2(n) . . . ĥL(n)]T .



Many adaptive algorithms are described by the following set of equa-
tions:

e(n) = y(n)− ĥT (n)x(n), (2)

ĥ(n+ 1) = ĥ(n) +
µQ(n+ 1)x(n)e(n)

xT (n)Q(n+ 1)x(n) + δ
, (3)

Q(n+ 1) = diag {q1(n+ 1) . . . qL(n+ 1)} , (4)

where µ is a step-size and δ is the regularization parameter. The di-
agonal step-size control matrix Q(n), which is algorithm dependent,
enables the step-size control for each filter coefficient independently.
Therefore, ql(n) is commonly proportional to hl(n).

The IPNLMS [3] algorithm employs a combination of propor-
tionate and non-proportionate adaptation, with the relative signifi-
cance of each controlled by a factor α such that the diagonal ele-
ments of Q(n+ 1) are given as

ql(n+ 1) =
1− α

2L
+

(1 + α) |ĥl(n)|
2‖ĥ(n)‖1 + δip

, 1 ≤ l ≤ L. (5)

where ‖ · ‖1 is defined as the l1-norm. Using a higher weighting
towards the non-proportionate term, such as α = 0, −0.5 or −0.75,
is a favorable choice for most applications [3].

3. CONVERGENCE ANALYSIS OF IPNLMS

In this Section we analyze the convergence performance of IPNLMS
for time-varying systems. In Section 3.1, we described a time-
varying system model that will be used in Section 3.2 for the the-
oretical analysis.

3.1. Time-varying System Model

The modified first-order Markov model [5, 6] is widely employed to
represent a time-varying system

h(n+ 1) = εh(n) +
√

1− ε2s(n), (6)

where s(n) is a random sequence of length L with elements drawn
from a normal (Gaussian) distribution with zero mean and variance
σ2
s . The parameter ε (0� ε < 1) controls the relative contributions

to the instantaneous values of the “system memory” and “innova-
tions” [5]. It can be noted that ε = 1 represents a time-invariant en-
vironment. As time progresses, this dynamic model keepsE{h(n)}
constant and the covariance matrix of h(n) tends to a finite steady-
state value that is equal to the covariance matrix of the sequence
{s(n)}. Hence, the model always gives a dispersive system as
n → ∞. However, by initializing h(0) to a sparse system and
choosing a value close to 1 for ε, this model can be employed to
simulate a slowly time-varying sparse system.

3.2. Recursive Mean-square Error Analysis

With the weight deviation vector defined as

z(n+ 1) = h(n+ 1)− ĥ(n+ 1), (7)

using (1) and (2), e(n) can be rearranged as

e(n) = w(n) + ΣLj=1xj(n)zj(n), (8)

where xl(n) , x(n − l + 1). Hence, the mean-square output er-
ror (MSE) can be written as

MSE(n) = E
{
e2(n)

}
= σ2

w + σ2
x

L∑
l=1

E
{
z2
l (n)

}
, (9)

where σ2
w and σ2

x are the variances of the additive noise and the input
signal, respectively. Now, we proceed to find the expected values of
the square weight deviations, E

{
z2
l (n)

}
, in order to calculate (9).

By substituting (3) and (6) into (7), with e(n) defined as in (8),
the component-wise weight deviation is given by

zl(n+ 1) = zl(n) + (ε− 1)hl(n) +
√

1− ε2sl(n)−[
µql(n+ 1)xl(n)

xT (n)Q(n+ 1)x(n) + δ

] [
w(n) + ΣLj=1xj(n)zj(n)

]
.

(10)

It then follows from (10) that
z2l (n+ 1) = z2l (n) + 2zl(n)(ε− 1)hl(n) +

(ε− 1)2h2
l (n) + 2zl(n)

√
1− ε2sl(n) + (11)

2(ε− 1)hl(n)
√

1− ε2sl(n) + (1− ε2)s2l (n)−[
2µ(ε− 1)hl(n)ql(n+ 1)xl(n)

xT (n)Q(n+ 1)x(n) + δ

] [
w(n) + ΣLj=1xj(n)zj(n)

]
−[

2µzl(n)ql(n+ 1)xl(n)

xT (n)Q(n+ 1)x(n) + δ

] [
w(n) + ΣLj=1xj(n)zj(n)

]
+ µ2q2l (n+ 1)x2

l (n)(
xT (n)Q(n+ 1)x(n) + δ

)2

[w(n) + ΣLj=1xj(n)zj(n)
]2
−

[
2µ
√

1− ε2sl(n)ql(n+ 1)xl(n)

xT (n)Q(n+ 1)x(n) + δ

] [
w(n) + ΣLj=1xj(n)zj(n)

]
.

For the subsequent theoretical analysis, we will rely on the fol-
lowing assumptions [8, 9, 10] that have been extensively used in the
adaptive filtering literature to match reasonably well with their actual
performance:

I) The step-size µ is chosen sufficiently small such that zl(n)
changes slowly relative to xl(n).

II) The length of the adaptive filter L is equivalent to that of the
unknown system.

III) The expected value of the denominator term in (11) and the
expected valued of its squared can be assumed to be [8]

E
{
xT (n)Q(n+ 1)x(n) + δ

}
=σ2

x + δ (12)

E

{(
xT (n)Q(n+ 1)x(n) + δ

)2
}

=
(
σ2
x + δ

)2
. (13)

IV) Using the ‘separable approach’ theory developed in [8], for
a, b ∈ {1, 2},

E {qal (n)}=E {ql(n)}a (14)

E
{
qal (n+ 1)zbl (n)

}
=E {ql(n+ 1)}a E

{
zbl (n)

}
.(15)

V) The lth component of the weight deviation at each iteration,
zl(n), follows a normal distribution with z̄l(n) , E{zl(n)}
and variance σ2

l (n) [8]. This implies that the each adaptive
filter coefficient ĥl(n) is also distributed as

ĥl(n) ∼ N
(
ml(n), σ2

l (n)
)
, (16)



with p.d.f

f
(
|ĥl(n)|

)
=

1√
2πσ2

l (n)

[
e
−

(|ĥl(n)|−ml(n))2

2σ2
l
(n)

+ e
−

(|ĥl(n)|+ml(n))2

2σ2
l
(n)

]
U
(
ĥl(n)

)
,(17)

where ml(n) = hl(n) − z̄l(n), σ2
l (n) , E

{
z2
l (n)

}
−

E2 {zl(n)} and

U
(
ĥl(n)

)
=

{
0, ĥl(n) < 0

1, ĥl(n) ≥ 0;
(18)

It follows from (17) that the mean of this distribution is given
by

E
{
|ĥl(n)|

}
=

∫ ∞
−∞
|ĥl(n)| f

(
|ĥl(n)|

)
d|ĥl(n)| (19)

=ml(n) erf

(
ml(n)√
2σ2

l (n)

)
+

√
2

π
σl(n)e

−
m2
l (n)

2σ2
l
(n) ,

with erf(x) , 2√
π

∫ x
0
e−t

2
dt.

By employing these assumptions, the expectations E{.} of the
weight deviation in (10) and the square weight deviation in (11) are
respectively given by the following recursive forms:

E {zl(n+ 1)} = E{zl(n)} −
µσ2

x

σ2
x + δ

E{ql(n+ 1)} E{zl(n)}, (20)

E
{
z2
l (n+ 1)

}
= E

{
z2
l (n)

}
+ 2(1− ε)σ2

s −
2µσ2

x

σ2
x + δ

E{ql(n+ 1)} E
{
z2
l (n)

}
+

µ2σ2
xσ

2
w

(σ2
x + δ)2

E {ql(n+ 1)}2 + (21)

µ2σ4
x

(σ2
x + δ)2

E {ql(n+ 1)}2
L∑
j=1

E
{
z2
j (n)

}
,

with their initial values assigned to E{zl(0)} = hl(0) and
E
{
z2
l (0)

}
= h2

l (0), and

E{ql(n+ 1)} =
1− α

2L
+

(1 + α)E
{
|ĥl(n)|

}
2
∑L
j=1E

{
|ĥj(n)|

}
+ δip

. (22)

Given (19)-(22), we can now recursively compute the MSE us-
ing (9).

4. SIMULATIONS

The theoretical result derived in the previous Section is confirmed
with the Monte Carlo simulations with 100 independent trials, for
different time-varying systems scenarios in the context of AEC. In
all simulations, the adaptive filter length was set to L = 1024,
a zero mean white Gaussian noise (WGN) was used as the input
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Fig. 2. MSE of IPNLMS with a sudden echo path change at 10 s.
Impulse response is changed from that shown from Fig. 1 (a) to (b)
and µ = 0.1, α = −0.75, σ2

x = 10−2, σ2
w = 10−6, δ = δip =

10−4.

signal x(n) while another WGN sequence w(n) was used with
σ2
w = 10−6. The proportionality control factor for IPNLMS was

set to α = −0.75 and the regularization parameters were set to
δ = δip = 10−4. Room impulse responses h(n) have been used
as described in Fig. 1. The sparseness measure of these impulse re-
sponses are computed using [11]

ξ(n) =
L

L−
√
L

{
1− ‖h(n)‖1√

L ‖h(n)‖2

}
(23)

giving (a) ξ(n) = 0.83 and (b) ξ(n) = 0.59 respectively.
First, we compare the theoretical and simulated MSEs for two

types of echo path changes. The step-size µ = 0.1, ε = 1, and
σ2
x = 10−2 were used. In Fig. 2, we show the results obtained when

the echo path changes from sparse to dispersive. It can be seen that
the predicted MSE corresponds very well with the simulated MSE,
even during the echo path change. In Fig. 3, the results are shown
when the echo path changes from dispersive to sparse.

Now we assess the performance under few different first order
Markov systems. The parameters were µ = 0.7, σ2

s = 1 and
σ2
x = 10−3, while the other parameters were equal to those used

in the previous experiment. The sparse and dispersive time-varying
systems were modeled by initializing h(0) to the sparse impulse re-
sponse shown in Fig. 1(a) and the dispersive impulse response shown
in Fig. 1(b). By setting the time-varying rate ε to 1 − 10−9 for the
sparse case and 1−10−7 for the dispersive case, the systems change
slowly over time such that the sparseness measure in the first 3 sec-
onds of the sparse response ranges between 0.69 and 0.83 and of
the dispersive response ranges between 0.34 and 0.59. As shown in
Fig. 4, the MSE can be accurately predicted by (9). We also observed
that the predicted MSE slightly deviates from the simulated MSE for
the sparse time-varying system, during the initial stage. This is at-
tributed in [8] to the assumption in (14).

Fig. 5 shows the MSEs for different ε, including ε = 1, which
models a time-invariant system, and ε = 1− 10−8 which models an
equivalent scenario of a source moving approximately at 0.35 ms−1

in a room dimensions of 8×10×3 m. In all cases, h(0) was initial-
ized to a sparse impulse response. For these values of ε the predicted
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Fig. 3. MSE of IPNLMS with a sudden echo path change at 10 s.
Impulse response is changed from that shown from Fig. 1 (b) to (a)
and µ = 0.1, α = −0.75, σ2

x = 10−2, σ2
w = 10−6, δ = δip =

10−4.
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Fig. 4. MSE of IPNLMS for a sparse and a dispersive time-varying
systems with µ = 0.7, α = −0.75, ε = 1 − 10−9, σ2

x = 10−3,
σ2
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MSE provides results close to the MSE obtained by the simulations.
In addition, we notice that the steady-state MSE increases when ε
decreases (i.e, the system becomes more time-variant).

5. CONCLUSION

A performance analysis has been presented for IPNLMS, one of the
best known sparse adaptive filtering algorithms. The analysis con-
siders the tracking case in which the unknown system to be identified
is not only sparse and dispersive but also time-varying. The analysis
has been validated against simulation results in the context of AEC
and shown to be accurate. The cases of step-changes in the echo path
as well as slowly time-varying echo paths have been included in the
study with varying levels of sparseness.
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trol, E. Hänsler and G. Schmidt, Eds. Springer, 2006, ch. 5,
pp. 125–153.


	1  Introduction
	2  Review of IPNLMS
	3  CONVERGENCE ANALYSIS of IPNLMS
	3.1  Time-varying System Model
	3.2  Recursive Mean-square Error Analysis

	4  SIMULATIONS
	5  CONCLUSION
	6  References

