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Abstract—Due to the properties of an acoustic enclosure, the
early part (i.e., direct path and early reflections) of the acoustic
echo path is sparse while the late reverberant part of the
acoustic path is dispersive. In this contribution, an adaptive filter
structure that consists of two time-domain partition blocks is used
such that different adaptive algorithms can be used for each
part. Specifically, the improved proportionate normalized least-
mean-square (IPNLMS) algorithm is used for which the filter
update is a combination of non-proportioned and proportionated
updates. By properly controlling the mixing parameter for the
partitioned blocks separately, the proposed partitioned block
IPNLMS (PB-IPNLMS) algorithm works well in both sparse and
dispersive circumstances and in practical applications involving
time-varying systems. Simulation results using a white Gaussian
noise (WGN) sequence show improved performance compared to
using a single IPNLMS adaptive filter.

I. INTRODUCTION

The acoustic impulse responses (AIRs), and hence the

sparseness of AIRs, are time-varying and depend on factors

such as air temperature and pressure and reflectivity of the

acoustic environment [1]. The level of sparseness in AIR also

varies with the location of the receiving device in an open

or enclosed environment. Hence, algorithms developed for

acoustic echo cancellation (AEC) are required to be robust

to the variations in the sparseness of the acoustic path.

The normalized least-mean-square (NLMS) algorithm is

traditionally used in adaptive filters to achieve AEC. One of

the main drawbacks of the NLMS algorithm is that its conver-

gence rate reduces significantly when the impulse response is

sparse [2]. Sparse adaptive filtering algorithms, such as propor-

tionate NLMS (PNLMS) [3], have been proposed to identify

sparse impulse responses. However, PNLMS suffers from

slow convergence when the unknown system is dispersive [2],

[4]. Improved PNLMS (IPNLMS) [5] proposed to exploit

the ‘proportionate’ idea by introducing a controlled mixture

of proportionate (i.e., PNLMS) and non-proportionate (i.e.,

NLMS) adaptation controlled by a single proportionate/non-

proportionate factor α. A sparseness measure has been ex-

ploited within IPNLMS in [6], [7], [8]. This adaptively detects

the sparsity of the adaptive filter, therefore the factor α of the

IPNLMS algorithm is adjusted accordingly.

For sparse and dispersive AIRs, the partitioned block of the

echo path that consists of the direct path and a few early reflec-

tions is almost always sparse while the other partitioned block

is always dispersive. To validate this, consider an example case

where two AIRs of length L = 1024 were simulated using the
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Fig. 1. Acoustic impulse responses obtained using the method of images [9].
ξ(h), ξ(h1) and ξ(h2) respectively denote the sparseness measures [6], [10]
of the full impulse response, the first block with size of 256 and the second
block.
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Fig. 2. Adaptive system for acoustic echo cancellation in a Loudspeaker-
Room-Microphone system.

method of images [9] in a room of dimension 8 × 10 × 3 m

at a sampling frequency of 8 kHz. Figure 1(a) shows the

AIR obtained when the loudspeaker-microphone distance is

0.85 m in the loudspeaker-room-microphone system (LRMS)

with 0.3 reflection coefficient. Figure 1(b) illustrates the AIR

attained when the loudspeaker-microphone distance is 5 m in

the LRMS with 0.53 reflection coefficient. As can be seen

from the figure and the sparseness measure [6], [10], the first

block is always sparser than the second block. Hence, a sparse

algorithm is desired for the first block, whereas a non-sparse

algorithm is desired for the second block.

In this paper, we propose to use two IPNLMS algorithms

each with a different proportionate/non-proportionate factor α
for the two corresponding time-domain partitioned blocks and



develop a fast tracking time-domain adaptive algorithm for

AEC. The classic IPNLMS is first reviewed in Section II. We

then show, in Section III, how the sparseness of AIRs varies

when we partition the echo path into two blocks with different

sizes. Incorporating the findings, the proposed partitioned

block IPNLMS (PB-IPNLMS) algorithm is developed, using

two different ways to compose the step-size control matrix

of each block. Simulation results shown in Section IV, in the

context of AEC, demonstrate a faster tracking performance

for both sparse and dispersive AIRs compared to the IPNLMS

algorithm with single mixing factor α.

II. REVIEW OF IPNLMS

Figure 2 shows a LRMS and an adaptive filter ĥ(n) =
[ĥ0(n) ĥ1(n) . . . ĥL−1(n)]T , with L coefficients, deployed to

cancel acoustic echo in, for example, a hands-free phone

application. The output of the LRMS is expressed as

y(n) = hT (n)x(n) + w(n), (1)

where x(n) = [x(n) x(n−1) . . . x(n−L+1)]T is the input

signal, h(n) = [h0(n) h1(n) . . . hL−1(n)]T is the unknown

impulse response and w(n) is additive noise. The general

computations of many adaptive algorithms can be described

by the following equations:

e(n) = y(n)− ĥT (n− 1)x(n), (2)

ĥ(n) = ĥ(n− 1) +
μQ(n− 1)x(n)e(n)

xT (n)Q(n− 1)x(n) + δ
, (3)

Q(n− 1) = diag
{
q0(n− 1) . . . qL−1(n− 1)}, (4)

where μ is a step-size and δ is the regularization parameter.

The diagonal step-size control matrix Q(n) determines the

step-size of each filter coefficient and is dependent on the

specific algorithm.

The NLMS algorithm is one of the most popular for AEC,

with Q(n) = IL×L. The PNLMS [3] has been proposed for

sparse system identification, with the diagonal elements of

Q(n) proportional to the magnitude of the estimated impulse

response coefficients.

The IPNLMS algorithm [5] employs a combination of non-

proportionate (i.e., NLMS) and proportionate (i.e., PNLMS)

adaptation, with the relative significance of each controlled by

a factor α such that the diagonal elements of Q(n) are given

by

ql(n) =
1− α

2L
+

(1 + α)|ĥl(n)|
2‖ĥ(n)‖1 + δIP

, 0 ≤ l ≤ L− 1. (5)

where ‖ · ‖1 is the �1-norm. It can be seen that IPNLMS

reduces to NLMS when α = −1 and PNLMS when α = 1. For

most AEC applications, α = 0, −0.5 or −0.75 are favorable

choices [5]. It is important to note that tr{Q(n)}, where tr{}
is the trace operator, for IPNLMS is almost 1, when δIP is

very small.

It has been shown that regardless of the impulse response

nature, the IPNLMS algorithm has faster convergence than

NLMS and PNLMS with the above choices of α [5]. However,

we note from our simulations that the choice of α influences

the tracking performance of IPNLMS for sparse and dispersive

AIRs.

III. THE PARTITIONED BLOCK IPNLMS (PB-IPNLMS)

ALGORITHM

In this Section, we provide an illustrative example to show

how the sparseness of AIRs varies when we partitioned the

echo path into two blocks with different sizes. This serves as

a motivation for us to develop a new algorithm which improves

the robustness and the tracking performance of IPNLMS. In

addition, we also demonstrate how the sums of the composite

diagonal elements of Q(n) for the two blocks affect the overall

performance of the proposed algorithm.

A. Motivation

Let us first express the echo path as

h(n) = [hT
1 (n) hT

2 (n)]T , (6)

with

h1(n) = [h0(n) . . . hL1−1(n)]T , (7)

h2(n) = [hL1(n) . . . hL−1(n)]T . (8)

Here, h1(n) with length L1 includes the direct path and a few

early reflections, which is sparser than h2(n) that includes all

other reflections. The sparseness measures of these AIRs are

computed using [6], [10]

ξ(w) =
N

N −√N

{
1− ‖w‖1√

N ‖w‖2

}
, (9)

where N is the length of the vector w and ‖w‖1 and ‖w‖2
represent �1 and �2-norms of w. Figure 1(a) and (b) show

illustrative AIRs for substantially sparse and dispersive cases

respectively. With L = 1024, the sparseness measure, ξ(h), of

the AIR shown in Fig. 1(a) equals 0.76. The measures of the

first and second blocks with L1 = �L
4 � are ξ(h1) = 0.71 and

ξ(h2) = 0.37. The AIR shown in Fig. 1(b) gives ξ(h) = 0.40,

ξ(h1) = 0.60 and ξ(h2) = 0.28. As can be seen, the first block

is in both cases substantially sparser than the second block.

Figure 3 shows the convergence performance of IPNLMS

measured using the normalized misalignment defined by

NM[w(n), ŵ(n)] =
‖w(n)− ŵ(n)‖22

‖w(n)‖22
, (10)

for the sparse AIR shown in Fig. 1(a), with α = −1 and 0.9. A

zero mean white Gaussian noise (WGN) sequence is used as

the input signal while another WGN sequence w(n) is added

to give an SNR of 20 dB and μ = 0.3. It can be seen from

Fig. 3(a)-(c) that, IPNLMS with α = 0.9 is better for the first

block during the initial phase and therefore giving an overall

faster initial convergence, while α = −1 (NLMS) is better for

the second block and thus giving an improved overall steady-

state performance. The same observation is seen from Fig. 4

for the dispersive AIR shown in Fig. 1(b), under the same

experimental setup as before. As the first block of the AIR
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Fig. 3. Normalized misalignments (NM) of IPNLMS with different mixing
parameters, α, for identification of a sparse impulse response.

contains the dominant parts of the echo path, allocating larger

individual step-sizes for the coefficients in the block gives

faster initial convergence performance. Moreover, through our

simulations, we found that distributing almost equal step-sizes

for the second block gives better steady-state performance. As

a consequence of this important observation, we propose a

new adaptation approach for IPNLMS as described below.

B. Proposed algorithm

To achieve the desired effect explained in Section III-A, we

propose IPNLMS with the mixing parameter α1 close to 1 as

the sparse algorithm for the first block of length L1, where the

diagonal elements ql of the step-size control matrix of the first

block Q1(n) for the proposed partitioned block IPNLMS (PB-

IPNLMS) algorithm can be expressed as

ql(n) =
(1− α1)

2L1
+

(1 + α1)|ĥl(n)|
2‖ĥ1(n)‖1 + δIP

,

0 ≤ l ≤ L1 − 1, (11)

Q1(n− 1) = diag
{
q0(n− 1), . . . , qL1−1(n− 1)}, (12)

where diag{} is the diagonal operator. For the second block,

as it is more dispersive compared to the first block, we propose

to employ IPNLMS with the mixing parameter α2 (α2 < α1)

close to −1, where ql of the second block Q2(n) for PB-
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Fig. 4. Normalized misalignments (NM) of IPNLMS with different mixing
parameters, α, for identification of a dispersive impulse response.

IPNLMS can be formulated as

ql(n) =
(1− α2)

2(L− L1)
+

(1 + α2)|ĥl(n)|
2‖ĥ2(n)‖1 + δIP

,

L1 ≤ l ≤ L− 1, (13)

Q2(n− 1) = diag
{
qL1(n− 1), . . . , qL−1(n− 1)}. (14)

When using different update rules, the constraint on

tr{Q(n)} of PB-IPNLMS, which is composed of Q1(n) and

Q2(n), still needs to be 1 for very small values of δIP.

Although this constraint can be satisfied in many ways, we

propose the following two different approaches in this work.

1) PB-IPNLMS with non-proportionate block weighting:
In the first approach, we allocate equal weights as

Q(n− 1) =

⎡⎣ 0.5 Q1(n− 1) 0L1×(L−L1)

0(L−L1)×L1 0.5 Q2(n− 1)

⎤⎦ ,

(15)

to satisfy the constraint on Q(n) of PB-IPNLMS. This ap-

proach has been dubbed the ‘non-proportionate PB-IPNLMS’.

Thus, the non-proportionate PB-IPNLMS algorithm is de-

scribed by (2), (3) and (11)-(15), as specified in Table I.

It is worthwhile noting that the non-proportionate approach

works well only if ‖h1(n)‖1 ≈ ‖h2(n)‖1, but in practice this

condition is seldom met.



2) PB-IPNLMS with proportionate block weighting: As

h1(n) and h2(n) are unobservable, we propose to allocate

weights proportional to the ratio between ‖ĥ1(n)‖1 and

‖ĥ(n)‖1, while satisfying tr{Q(n)} is close to 1 for very

small values of δIP. We refer to this approach as the ‘pro-

portionate PB-IPNLMS’. It is noted that, for a sparse system

identification with ĥ(0) = 0, the ratio between ‖ĥ1(n)‖1 and

‖ĥ(n)‖1 is close to 1 during the initial stage and decays to a

value κ (0 ≤ κ ≤ 1), which on average is greater than 0.5, due

to the fact that the first block contains almost all the dominant

echo. However, for a dispersive AIR, the ratio quickly decays

to a value less than κ, as the second block also has many

weaker reflections. In this approach, the proportionality is

controlled by β(n) which is defined as follows, for n > 1,

in order to calculate the composed step-size control matrix

Q(n− 1):

β(n) =

⎧⎪⎪⎨⎪⎪⎩
λ‖ĥ1(n)‖1
‖ĥ(n)‖1

, ‖ĥ1(n)‖1
‖ĥ(n)‖1

> κ,

λ−1 ‖ĥ1(n)‖1
‖ĥ(n)‖1

, otherwise

(16)

Q(n− 1) =

⎡⎣ β(n) Q1(n− 1) 0L1×(L−L1)

0(L−L1)×L1 [1− β(n)] Q2(n− 1)

⎤⎦ .

(17)

With the formulation of β(n) in (16) for the first block,

we allocate a weight that is directly proportional to the ratio

between ‖ĥ1(n)‖1 and ‖ĥ(n)‖1 when the ratio is above a

threshold value κ, where λ (0 < λ < 1) is introduced to

allocate almost equal weights for the two blocks after the

initial convergence. The factor λ also ensures that 1 − β(n)
for the second block is always greater than zero, and therefore

avoids stalling the adaptation of ĥ2. Likewise, λ−1 (which

is ≥ 1) ensures that β(n) is never very small, thereby

avoiding stalling the adaptation of ĥ1. When the ratio is

below or equal to κ, the first block gets higher weight

during the initial stage of a dispersive system identification

and gradually reduces such that the second block gets more

weight. With the experimentally determined values of λ = 0.8
and κ = 0.5, proportionate PB-IPNLMS not only works

well in both sparse and dispersive circumstances, but also

performs well when the scenario involves a time-varying

system. The proposed proportionate PB-IPNLMS algorithm is

thus described by (2), (3), (11)-(14), (16) and (17), as specified

in Table I.

IV. PERFORMANCE EVALUATION

We present simulation results to evaluate the performance of

the proposed PB-IPNLMS algorithm. Throughout our simula-

tions, algorithms were tested using a zero mean WGN signal

as input while another WGN sequence w(n) was added to

give an SNR of 20 dB. We assumed that the length of the

adaptive filter L = 1024 is equivalent to that of the unknown

system. Two receiving room impulse responses h(n) for AEC

TABLE I
PARTITIONED BLOCK IPNLMS (PB-IPNLMS) ALGORITHM

Initialisation
ĥ(0) = 0L×1

General Computations
e(n) = y(n)− ĥT (n− 1)x(n)

ĥ(n) = ĥ(n− 1) +
μQ(n− 1)x(n)e(n)

xT (n)Q(n− 1)x(n) + δ

PB-IPNLMS
ĥ1(n) = [ĥ0(n) . . . ĥL1−1(n)]T

ĥ2(n) = [ĥL1(n) . . . ĥL−1(n)]T

ĥ(n) = [ĥ1(n)T ĥ2(n)T ]T

ql(n) =
(1−α1)

2L1
+ (1+α1)|̂hl(n)|

2‖ĥ1(n)‖1+δIP
, 0 ≤ l ≤ L1 − 1

Q1(n− 1) = diag
{

q0(n− 1), . . . , qL1−1(n− 1)}

ql(n) =
(1−α2)

2(L−L1)
+ (1+α2)|̂hl(n)|

2‖ĥ2(n)‖1+δIP
, L1 ≤ l ≤ L− 1

Q2(n− 1) = diag
{

qL1 (n− 1), . . . , qL−1(n− 1)}

Non-proportionate PB-IPNLMS

Q(n− 1) =

[
0.5 Q1(n− 1) 0L1×(L−L1)

0(L−L1)×L1 0.5 Q2(n− 1)

]
L×L

Proportionate PB-IPNLMS

β(n) =

⎧⎪⎨⎪⎩
λ
‖ĥ1(n)‖1
‖ĥ(n)‖1

,
‖ĥ1(n)‖1
‖ĥ(n)‖1

> κ,

λ−1 ‖ĥ1(n)‖1
‖ĥ(n)‖1

, otherwise

Q(n− 1) =

[
β(n) Q1(n− 1) 0L1×(L−L1)

0(L−L1)×L1 [1− β(n)] Q2(n− 1)

]
L×L

simulations have been used, with an echo path change at 4 s.

The AIR is changed from that shown in Fig. 1 (a) to (b) and μ
= 0.3. For PB-IPNLMS, L1 was fixed to 256 such that the first

partitioned block contained the direct path and early reflections

and, α1 = 0.9 and α2 = −1 were used, while λ = 0.8 and

κ = 0.5 were employed specifically for the proportionate PB-

IPNLMS algorithm.

Figure 5 compares the overall performance of IPNLMS,

in terms of normalized misalignment, with α = −1 and

0.9 and PB-IPNLMS using the non-proportionate and pro-

portionate weight allocation approaches, while Fig. 6 shows

the normalized misalignments of the first and second blocks.

As it can be seen that the proposed non-proportionate PB-

IPNLMS achieves approximately 3 dB improvements over

the IPNLMS with α = −1, and performs similar to the

IPNLMS with α = 0.9 during the initial stage of the sparse

system identification. After the echo path change, a similar
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performance pattern was observed between 4− 5 s. However,

below the −10 dB NM level, the non-proportionate PB-

IPNLMS algorithm performs similar to the IPNLMS with

α = −1, and achieves approximately 3 dB better convergence

performance over the IPNLMS with α = 0.9. Moreover, the

proportionate PB-IPNLMS gives better performance compared

to all the algorithms, notably a 2 dB improvement over the

non-proportionate PB-IPNLMS after the echo path changes

to dispersive AIR. PB-IPNLMS achieves this better initial

performance by exploiting the beneficial properties of the

IPNLMS with α = 0.9 for the first block and allocates step-

sizes similar to the IPNLMS with α = −1 for the second

block, as illustrated in Fig. 6.

Figure 7 shows a detailed study on the evolution of β
in (16), which is equivalent to ‖ĥ1(n)‖1 for the IPNLMS

algorithm with α = −1 and α = 0.9 and 0.5 for the non-

proportionate PB-IPNLMS algorithm, throughout the simu-

lation time for the overall performance illustrated in Fig. 5.

As can be seen, the IPNLMS with α = −1 gives a small

weight, β, for the first block at all time, therefore gives higher

weight, (1 − β), for the second block to achieve a better

steady-state performance. While, the IPNLMS with α = 0.9
allocates higher weight during the early stages of before

and after the echo path change, giving faster convergence

performance initially. The proportionate PB-IPNLMS exploits

both of the beneficial properties and achieves the better overall

performance.

The same experiment was repeated with the exact parameter

settings using a correlated unity-variance AR(2) process given

by [11]

x(n) = 0.73 x(n− 1)− 0.8 x(n− 2) + s(n), (18)

where s(n) is a white Gaussian noise with σ2
s = 0.3, and
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the relative performances are shown in Fig. 8. As observed

in the WGN input signal case, the proportionate PB-IPNLMS

outperforms all the aforementioned algorithms before and after

the echo path change.

V. CONCLUSION

We presented a partitioned block IPNLMS algorithm, with

two different approaches to allocate weights for the com-

position of the step-size control matrix of the two blocks.

The proposed algorithm achieves improved convergence com-

pared to classical IPNLMS with fixed single proportional/non-

proportionate factor α. For the proposed PB-IPNLMS algo-
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rithm with proportionate weighting, we incorporated the ratio

between the �1-norm of the first block’s estimated filter coef-

ficients and that of the overall filter coefficient into IPNLMS

for AEC to achieve fast convergence for both sparse and

dispersive acoustic echo paths. As a future work, the length of

the partitioned block (L1) can be considered time-dependent

to improve the robustness of PB-IPNLMS.
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