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ABSTRACT
Sparseness variation in acoustic impulse response arises due
to changes in temperature, pressure, acoustic source move-
ments and changes in the acoustic environment. Therefore,
the algorithms employed in acoustic echo cancellation have
to perform well for both sparse and dispersive unknown
systems. The well-known algorithms, normalised least
mean square (NLMS) or proportionate NLMS (PNLMS),
are limited to perform well either in dispersive or sparse
cases, respectively. The proposed sparseness-controlled
PNLMS (SC-PNLMS) algorithm inherits the beneficial
properties of both PNLMS and NLMS by employing the
sparseness measure into the PNLMS algorithm. Simula-
tion results presented show improved performance over the
PNLMS algorithm even for dispersive impulse responses.

1. INTRODUCTION

Hands-free communication is regarded as an essential tool
due to their flexibility. As the use for in-car telephony gain
much popularity in recent years due to the rise in safety con-
cerns, digital wireless subscribers are becoming more criti-
cal of the voice quality they receive from network providers.
In the case of hands-free mobile telephony, acoustic echoes
can seriously degrade user experience. For this reason, effec-
tive acoustic echo cancellation (AEC) is important to main-
taining and improving the perceived voice quality of a call.
Traditionally, adaptive filters have been deployed in acous-
tic echo cancellers, as illustrated in Fig. 1. These cancellers
achieve echo cancellation by estimating the acoustic impulse
responses (AIRs) using adaptive algorithms such as the nor-
malized least-mean-square (NLMS) algorithm. As AIRs are
time-varying in nature, these adaptive algorithms track vari-
ations in the impulse response to achieve sufficient level of
echo cancellation.

The time variation of AIRs may arise due to, for exam-
ple, a change in temperature [1], pressure, movement of the
acoustic source [2][3] and changes in the acoustic environ-
ment. It is well known that the reverberation time of an AIR
is proportional to the volume of the enclosed space and in-
versely proportional to the absorption area [4]. For an out-
door environment, the reverberation time is reduced signifi-
cantly due to the lack of reflections from the walls. As a con-
sequence, the AIR of an outdoor environment can be consid-
ered to be more sparse than that of an enclosed space. Hence,
algorithms developed for mobile hands-free terminals have
to be robust to changes in the sparseness of the acoustic path.

Variation in the sparseness of AIRs can also occur in
AEC within an enclosed space. Consider an example case
where the distance, a, between a fixed position loudspeaker
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Figure 1: Adaptive system for acoustic echo cancellation.
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Figure 2: Acoustic impulse responses h(n) obtained from the im-
age model [5] using room dimensions of {8×10×3} m where the
distances between the loudspeaker and microphone are (a) 0.9 m
and (b) 7.7 m.

and the user using a wireless microphone is varying. Figure 2
shows two AIRs, generated using the method of images [5],
for the cases when (a) a = 0.9 m and (b) a = 7.7 m. As can be
seen, the sparseness of these AIRs vary with the loudspeaker-
microphone distance. Hence, performance of the AECs are
required to be robust to the variation in sparseness of the
AIRs.

Sparse system identification, such as occurs in packet-
switched telephone networks for network echo cancella-
tion (NEC), has been the focus of research in recent voice
over IP (VoIP) applications. Network echo response in such
systems is, typically of length 64-128 ms, characterised by
an unknown bulk delay due to network loading, encoding
and jitter buffer delays [6]. This results in an ‘active’ re-
gion in the range of 8-12 ms duration and consequently, the
impulse response is dominated by ‘inactive’ regions where
magnitudes are close to zero, making the impulse response
sparse. For such applications, the NLMS algorithm suffers
from slow convergence and therefore new algorithms have



been proposed for sparse adaptive filtering. One of the first
algorithms for NEC is the proportionate NLMS (PNLMS)
algorithm [7] where each filter coefficient is updated with
an independent step-size that is proportional to the magni-
tude of that estimated filter coefficient. It is well known that
PNLMS suffers from slow convergence when estimating dis-
persive AIRs. To address this, subsequent improved versions
such as the improved PNLMS (IPNLMS) [8] algorithm was
proposed. The IPNLMS achieves improved convergence by
introducing a controlled mixture of proportionate (PNLMS)
and non-proportionate (NLMS) adaptation. A sparseness
controlled IPNLMS (SC-IPNLMS) algorithm was proposed
in [3] to improve the robustness of IPNLMS to the sparseness
variation in AIRs.

In this paper, we propose an algorithm that is robust to
the sparseness variation of AIRs. This algorithm employs
the PNLMS for the estimation of sparse AIRs. We then pro-
pose to improve the convergence of PNLMS by incorporat-
ing the sparseness control factor for dispersive AIRs. As will
be shown, the proposed sparseness-controlled PNLMS (SC-
PNLMS) algorithm achieves fast convergence for both sparse
and dispersive AIRs which is effective for AEC.

2. ALGORITHMS FOR ECHO CANCELLATION

Figure 1 shows an AEC set up in a Loudspeaker-Room-
Microphone system (LRMS) and an adaptive filter ĥ(n) de-
ployed to cancel acoustic echo. Defining the input sig-
nal x(n) = [x(n) x(n− 1) . . . x(n− L + 1)]T and h(n) =
[h0(n) h1(n) . . . hL−1(n)]T as the unknown impulse response,
the output of the LRMS is given by

y(n) = hT (n)x(n)+w(n), (1)

where [·]T is the transposition operator, w(n) is the additive
noise and L is the length of h(n). The AEC employs an adap-
tive filter with coefficients ĥ(n) = [ĥ0(n) ĥ1(n) . . . ĥL−1(n)]T
in order to estimate h(n) using the error signal

e(n) = y(n)− ĥT (n−1)x(n). (2)

Several adaptive algorithms such as those described below
have been developed for AEC and NEC.

2.1 The NLMS algorithm
The NLMS algorithm is one of the most popular algorithm
for AEC due to its simplicity in implementation and its rel-
atively lower complexity compared to the better performing
recursive least squares algorithm. The NLMS algorithm can
be described by (2) and the following set of equations:

ĥ(n) = ĥ(n−1)+
µQ(n−1)x(n)e(n)

xT (n)Q(n−1)x(n)+δ
, (3)

Q(n−1) = diag
{

q0(n−1) . . . qL−1(n−1)}, (4)

where µ is the step-size and δ is the regularization parameter.
The diagonal step-size control matrix Q(n) determines the
step-size of each filter coefficient and is dependent on the
specific algorithm. For NLMS, since the step-size is the same
for all filter coefficients, Q(n) = IL×L with IL×L being an
L×L identity matrix.

One of the main drawbacks of the NLMS algorithm is
that its convergence rate reduces significantly, compared to

an NLMS algorithm that updates only the active region of
the impulse response, when the impulse response is sparse
such as occur in network impulse response. This is due to
the adaptation noise that occurs for the inactive region of the
estimated impulse response.

2.2 The PNLMS algorithm
The PNLMS algorithm, originally developed in NEC for
sparse system identification, achieves high convergence rate
by allocating step-sizes that are proportional to the magni-
tude of the estimated impulse response coefficients. The
PNLMS employs the following set of equations for com-
puting elements of the time varying step-size control matrix
Q(n) during adaptation:

ql(n)=
κl(n)

1
L ∑

L−1
i=0 κi(n)

, 0≤ l ≤ L−1, (5)

kl(n)=max{ρ×max{γ,

|ĥ0(n)| . . . |ĥL−1(n)|}, |ĥl(n)|}. (6)

The parameter γ in (6), with a typical value of 0.01, prevents
filter coefficients ĥl(n) from stalling when ĥ(0) = 0L×1 at
initialisation and ρ , with a typical value of 0.01, prevents
coefficients from stalling when they are much smaller than
the largest coefficient. As can be seen from (5) and (6), the
PNLMS algorithm allocates larger step-sizes to the “active”
coefficients and hence, PNLMS converges faster than NLMS
for sparse impulse responses. However, the PNLMS expe-
riences fast initial convergence, follow by a slower second
phase convergence [9]. This slower phase adaptation is due
to the slower convergence for the small magnitude filter co-
efficients.

It is important to note that PNLMS suffers from slow
convergence when the unknown system h(n) is disper-
sive [10][11]. This is because when h(n) is dispersive, κl(n)
in (6) becomes significantly large for most 0≤ l ≤ L−1. As
a consequence, the denominator of ql(n) in (5) is large giving
a small step-size for each large coefficient. This causes a sig-
nificant degradation in convergence performance for PNLMS
when the impulse response is dispersive.

3. A SPARSENESS CONTROLLED
PROPORTIONATE ALGORITHM

We propose to improve the robustness of PNLMS to the
sparseness of impulse response for AEC. As will be shown
in the following, this is achieved by incorporating the sparse-
ness measure of the estimated AIRs into the adaptation for
PNLMS, in a different manner compared to SC-IPNLMS [3],
since it employs single term in (5), instead of proportionate
and NLMS terms for IPNLMS.

3.1 Variation of sparseness in AIRs
The degree of sparseness for an impulse response can be
quantified by [3][12]

ξ (n) =
L

L−
√

L

{
1− ‖h(n)‖1√

L ‖h(n)‖2

}
(7)

where ‖ · ‖1 is defined as the l1-norm while L is the length
of the unknown filter h(n). It can be shown [3][12] that
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Figure 3: Sparseness measure against the distance between loud-
speaker and microphone, a. The impulse responses are obtained
from the image model proposed in [5] using a fixed room dimen-
sions of {8×10×3} m.

0≤ ξ (n)≤ 1 such that if the impulse response is sparse with
h(n) = [k 0 . . . 0]T and k ∈ ℜ, then ξ (n) = 1. On the other
hand, for a dispersive impulse response with h(n) =±k, then
ξ (n) = 0. In reality, as explained in Section 1, h(n) is time-
varying and depends on factors such as temperature and pres-
sure.

Consider an example case where the distance, a, between
a fixed position loudspeaker and the talker using a wireless
microphone is varying. Figure 3 illustrates how ξ (n) varies
with a for a room of dimension {8×10×3} m and the loud-
speaker is placed in {4×9.1×1.6}m. For each loudspeaker-
microphone distance a, the microphone is directly in-front of
the loudspeaker. As can be seen, ξ (n) reduces with increas-
ing a and hence, we propose to incorporate ξ (n) into PNLMS
for fast convergence in AEC. Since h(n) is unknown during
adaptation, we employ ξ̂ (n) to estimate the sparseness of an
impulse response, where

ξ̂ (n) =
L

L−
√

L

{
1− ‖ĥ(n)‖1√

L ‖ĥ(n)‖2

}
. (8)

3.2 Effect of ρ on step-size control matrix Q(n)

As explained in Section 2.2, the parameter ρ in (6) was orig-
inally introduced to prevent freezing of the filter coefficients
when they are much smaller than the largest coefficient. Fig-
ure 4 shows the effect of ρ =0.001, 0.01 and 0.1 on the step-
size control element ql(n). It can be seen from this illustra-
tion that a higher value of ρ will ensure that all filter coef-
ficients will be updated with the same step-size while for a
smaller ρ , the step-size gain is proportional to the magnitude
of filter coefficients |ĥl(n)|. Hence, for a dispersive unknown
system h(n), we desire a high value of ρ while for a sparse
h(n), we desire a low value of ρ .

3.3 The proposed SC-PNLMS algorithm
In order to address the problem of slow convergence in
PNLMS for dispersive AIR, we require the step-size control
elements ql(n) to be robust to the sparseness of the impulse
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Figure 4: Magnitude of ql(n) for 0≤ l ≤ L−1 against the magni-
tude of tap coefficients ĥl(n).
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Figure 5: Variation of ρ against sparseness measure ξ̂ (n) of im-
pulse response.

response. We now propose to incorporate ξ̂ (n) into the com-
putation of ρ for PNLMS. Several choices can be employed
to obtain the desired effect of achieving a high ρ when ξ̂ (n)
is small in estimating dispersive AIRs. We consider two ex-
ample functions where

ρ(n)=(ε̃−1)ξ̂ (n)+1, (9)

ρ(n)=e−λ ξ̂ (n), λ ∈ R+, (10)

such that ε̃ in (9) is a small value to prevent ρ(n) = 0 when
ξ̂ (n) = 1. The variation of ρ(n) for these functions are plot-
ted in Fig. 5 for the cases where λ = 4, 6 and 8.

As can be seen from Fig. 5, the linear function as de-
scribed by (9) will not achieve our desired effect of allocating
large step-size to coefficients with large magnitudes when the
AIR is sparse such as for 0.8≤ ξ̂ (n)≤ 1. This is because, as
can be seen from Fig. 4, the value of ρ(n) is not low enough
to achieve the desired proportionality control determined by
ql(n).



Figure 5 also illustrates how ρ(n) varies with ξ̂ (n) for
different values of λ . Comparing to the linear function,
lower values of ρ(n) are allocated for a larger range of
sparse impulse responses such as for 0.8 ≤ ξ̂ (n) ≤ 1. As
a result, the proposed sparseness-controlled PNLMS algo-
rithm (SC-PNLMS) using (10) inherits the proportionality
step-size control over a larger range of sparse impulse re-
sponse. When the impulse response is dispersive, such as
for ξ̂ (n) < 0.4, the proposed SC-PNLMS algorithm inher-
its the NLMS adaptation control with larger values of ρ(n).
This gives a more uniform step-size across hl(n) as can be
seen from Fig. 4. Hence, the exponential function described
by (10) will achieve our overall desired effect of the robust-
ness to sparse and dispersive AIRs.

Although the exponential function described in (10) is
favorable compared to the linear function, the choice of λ

is important. As can be seen from Fig. 5, a larger choice
of λ will cause the proposed algorithm to inherit more of
PNLMS properties compared to NLMS. As a consequence,
the performance of SC-PNLMS is reduced when the AIR is
dispersive. A good compromise must be made and as will
be shown in Section 5, a good choice of λ is 6. In addition,
we note that when n = 0, ‖ĥ(0)‖2 = 0 and hence to prevent
division by a small number or zero, ξ̂ (n) can be computed for
n ≥ L. The SC-PNLMS algorithm is thus described by (2)-
(6) and (10) with λ = 6.

4. COMPUTATIONAL COMPLEXITY

The relative complexity of NLMS, PNLMS and SC-PNLMS
in terms of the total number of additions, multiplications, di-
visions and comparisons per iteration is assessed in Table 1.
The additional complexity of the SC-PNLMS algorithm, on
top of the PNLMS, arises from the computation of the sparse-
ness measure ξ̂ (n). Given that L/(L−

√
L) in (7) can be

computed off-line, the remaining l-norms require an addi-
tional 2L additions and L multiplications. The SC-PNLMS
algorithm additionally requires some computations for (10).
Alternatively, a look-up table with values of ρ(n) defined
in (10) can be computed for 0 ≤ ξ̂ (n) ≤ 1. For an example
case of L = 1024, SC-PNLMS requires only a modest 33%
more computations than PNLMS.

5. SIMULATION RESULTS

We present simulation results to evaluate the performance of
the proposed SC-PNLMS algorithm in the context of AEC.
We assumed throughout our simulation that the length of the
adaptive filter L = 1024 is equivalent to that of the unknown
system. The receiving room impulse response h(n) is gen-
erated synthetically using the image model [5] with a room
dimension of {8×10×3}m and sampling frequency 8 kHz.
A reflection coefficient of 0.57 is used. The loudspeaker is
fixed at {4× 9.1× 1.6} m in the LRMS while the micro-
phone is positioned at {8× 8.2× 3} m and {8× 1.4× 3} m
giving impulse responses shown in Fig. 2 (a) and (b) respec-
tively. The sparseness measure of these AIRs are computed
using (7) giving (a) ξ (n) = 0.83 and (b) ξ (n) = 0.59 respec-
tively. The performance of each algorithm is then quantified
using the normalised misalignment defined by

η(n) =
‖h(n)− ĥ(n)‖2

2
‖h(n)‖2

2
. (11)
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Figure 6: Convergence of the SC-PNLMS for the exponen-
tial function with different values of λ and the linear func-
tion using WGN input signal with echo path changes at
4.5 s. Impulse response is changed from Fig. 2 (a) to (b)
and µSC−PNLMS = 0.3, SNR = 20 dB.

For the first result shown in Fig. 6, linear function (9) and
different λ values in (10) were employed to illustrate the per-
formance of SC-PNLMS. A zero mean white Gaussian noise
(WGN) sequence is used as the input signal while another
WGN sequence is added to give an SNR of 20 dB. An echo
path change was introduced using impulse responses shown
from Fig. 2 (a) to (b) at 4.5 s. As explained in Section 3.3,
the exponential function achieves better convergence perfor-
mance than the linear function. Moreover, the proposed al-
gorithm inherits properties of the NLMS for a small λ value.
As a result, a faster rate of convergence can be seen after the
echo path is changed to a dispersive AIR. For a high λ , the
SC-PNLMS inherits properties of the PNLMS giving good
performance for sparse AIR before the echo path change. As
can be seen, a good compromise of λ is given by λ = 6.

Figure 7 illustrates the performance of NLMS, PNLMS
and SC-PNLMS using WGN as the input signal. The step-
size parameters for all algorithms are adjusted so that they
reach the same steady state performance. This corresponds
to µNLMS = µPNLMS = µSC-PNLMS = 0.3. As before an
echo path change was introduced using AIRs as shown from
Fig. 2(a) to 2(b). It can be seen from Fig. 7 that the conver-
gence rate of SC-PNLMS is the highest for both sparse and
dispersive AIRs. More importantly, the SC-PNLMS inherits
the beneficial properties of both PNLMS and NLMS. This
can be seen from the result that SC-PNLMS achieves high
rate of convergence similar to PNLMS giving approximately
5 dB improvement in normalised misalignment during ini-
tial convergence compared to NLMS for a sparse AIR. After
the echo path change, for a dispersive AIR, the SC-PNLMS
is close to the performance of NLMS giving approximately
4 dB improvement in normalised misalignment compared to
PNLMS. The ability to achieve good convergence perfor-
mance for both sparse and dispersive AIR for SC-PNLMS is
due to the beneficial properties of both PNLMS and NLMS.

Figure 8 shows simulation results for a male speech sig-
nal where we used the same parameters as before. As can be
seen, the proposed SC-PNLMS algorithm achieves the high-



Table 1: Complexity of algorithms

Algorithm Addition Multiplication Division Comparison
NLMS L+3 2L+3 1 0

PNLMS 2L+3 5L+4 L+1 2L

SC-PNLMS 4L+6 6L+8 L+3 2L
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Figure 7: Relative convergence of NLMS, PNLMS and SC-
PNLMS using WGN input signal with an echo path change
at 3.5 s. Impulse response is changed from that shown from
Fig. 2 (a) to (b) and µNLMS = µPNLMS = µSC−PNLMS = 0.3,
SNR = 20 dB.

est rate of convergence giving approximately 7 dB improve-
ment in normalised misalignment during initial convergence
compared to NLMS for the sparse AIR and approximately
2 dB improvement for dispersive AIR compared to PNLMS.

6. CONCLUSION

The NLMS algorithm achieves good convergence in disper-
sive AIRs, whereas PNLMS performs well in sparse impulse
response. We propose to incorporate the sparseness measure
into PNLMS for AEC to achieve fast convergence that is
robust to sparse and dispersive impulse response. The pro-
posed SC-PNLMS algorithm takes into account the sparse-
ness measure via the coefficient update function. Simulation
results show that the SC-PNLMS algorithm exhibits robust-
ness to sparse and dispersive AIRs than PNLMS and NLMS
for a modest increase in computational complexity.
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