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Abstract— In this work, the problem of moment-based shape
orientation and symmetry classification is jointly considered.
A generalization and modification of current state-of-the-art
geometric moment-based functions is introduced. The properties
of these functions are investigated thoroughly using Fourier series
analysis and several observations and closed-form solutions are
derived. We demonstrate the connection between the results
presented in this work and symmetry detection principles sug-
gested from previous complex moment-based formulations. The
proposed analysis offers a unifying framework for shape orienta-
tion/symmetry detection. In the context of symmetry classification
and matching, the second part of this work presents a frequency
domain method, aiming at computing a robust moment-based
feature set based on a true polar Fourier representation of
image complex gradients and a novel periodicity detection scheme
using subspace analysis. The proposed approach removes the
requirement for accurate shape centroid estimation, which is
the main limitation of moment-based methods, operating in the
image spatial domain. The proposed framework demonstrated
improved performance, compared to state-of-the-art methods.

Index Terms— geometric moments, complex moments, shape
orientation, symmetry classification, polar Fourier transform,
SVD
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I. INTRODUCTION

THERE is strong evidence that shape orientation iden-
tification is an important task, performed during the

pre-attentive stage of the human visual processing system,
which activates object-oriented mechanisms and helps in scene
interpretation [1]. Shape orientation is also an important object
visual attribute useful in many image processing and computer
vision applications, such as shape analysis and representation,
image retrieval, image normalization and object recognition.
Over the past years, significant effort has been made by the
computer vision community to develop robust and efficient
algorithms which aim at defining and computing the orienta-
tion of a 2D shape. Unfortunately, the large shape variability
hinders the formulation of a common approach for all possible
shapes.

It seems reasonable that efficient orientation estimation
techniques for machine vision applications should possess the
following favorable properties:

1) Reasonable geometric interpretation.
2) Robustness to noise/outliers.
3) Low computational complexity.
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4) Flexibility in a sense that important parameters should
be automatically computed in a blind environment.

5) Robust performance for a large number of shapes.
In this work, moment-based shape orientation methods are

pursued, as they offer a good compromise among the above
requirements. Unlike any other methods (see [2],[3] for a
detailed review), a moment-based formulation appears to be
the only one which provides a complete solution to the shape
orientation problem. Additionally, moments are useful features
that can be employed to other pattern analysis tasks, such as
recognition.

It was shown in [4] that the traditional approach to defining
a pattern’s orientation based on second-order central geometric
moments [5] will fail for all shapes which are rotationally
symmetric of order n with n > 2. Defining and computing
the orientation of symmetric shapes is the main scope of
this work. More specifically, we jointly consider the problem
of shape orientation and symmetry detection/classification.
Such an approach appears to have a reasonable geometrical
interpretation and, therefore, it may be useful for higher level
processing such as pattern analysis and classification [6].
In contrast, moment-based methods which compute a single
orientation for symmetric patterns [7], [8], [9], [10], [11], [12],
[13] have no clear geometric meaning and therefore their use
is mainly limited to image normalization tasks.

In the first part of this work, the focus is on the shape orien-
tation/symmetry classification problem based on a geometric
moment-based approach. In particular, we introduce a novel
modification and generalization of the objective functions
proposed in [4],[6], such that a reflection symmetry criterion
is satisfied. The properties of these functions are thoroughly
investigated using Fourier series analysis which simplifies
mathematical manipulations and enables the derivation of
closed-form solutions. Furthermore, we demonstrate that shape
orientation principles suggested in previous complex moment
formulations [2], [14] can be naturally extended to the case of
the proposed geometric moment-based functions. In the light
of the presented analysis, moment-based shape orientation can
be unified in a single framework.

In the context of moment-based symmetry classification and
matching, in the second part of this work, a novel scheme is
proposed, aiming at computing moment features in a more
stable and robust way than the currently considered state-
of-the-art method given in [2]. The core of our method is
based on the computation of a moment-based feature set in the
image Fourier domain; an approach motivated by the recent
development of a fast and accurate algorithm for computing
a true polar Fourier representation [15]. The shift invariance
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property of the Fourier transform removes completely the
requirement for the accurate shape centroid estimation, which
is the main limitation of the method in [2]. Further robustness
is achieved by considering the edge map of the original pattern
solely and employing a novel periodicity detection scheme
based on subspace analysis.

This work is organized as follows. In the next section,
the necessary definitions, that are used throughout in this
work, are provided. A brief introduction to the methods which
constitute the basis of our approach is presented in section III.
In section IV, a detailed description of the proposed novel
unifying approach is provided. Section V introduces the novel
polar frequency domain moment-based formulation. In section
VI, the performance of the proposed framework is evaluated.
Finally, section VII outlines the contributions and offerings of
this work.

II. DEFINITIONS

A. Types of symmetry

Definition 1. An image I(x), x = [x, y]T ∈ R2 is
rotationally symmetric of order n (or n−fold rotationally
symmetric) about the symmetry center x0 = [x0, y0]T if:

I(x) = I(D(δλ)(x− x0)) (II.1)

where δλ = 2(λ− 1)π/n, λ = 1, . . . , n and D is the rotation
matrix operator:

D(δ) =
[

cos(δ) sin(δ)
− sin(δ) cos(δ)

]
(II.2)

Given a polar representation of I with respect to the symmetry
center x0, (II.1) takes the form:

I(r, θ − δλ) = I(r, θ), λ = 1, . . . , n. (II.3)

Additionally, the pattern can be expressed as a repetition of
one fold as follows:

I(r1, θλ), λ = 1, . . . , n (II.4)

where I(r1, θ1) represents one fold of the pattern and θλ =
θ1 + 2(λ− 1)π/n, λ = 1, . . . , n.

Definition 2. An image I is reflection symmetric about a
line y = tan α(x− x0) + y0 that passes through x0 if:

I(x) = I(L(α)(x− x0)) (II.5)

where L is the reflection matrix operator:

L(α) =
[

cos(2α) sin(2α)
sin(2α) − cos(2α)

]
(II.6)

Equivalently, in polar coordinates, it holds:

I(r, α + θ) = I(r, α− θ) (II.7)

An image I is both n−fold rotationally and reflection symmet-
ric about x0, if there exist n lines αλ = α0+(λ−1)π/n, λ =
1, . . . , n satisfying Eq. (II.5).

B. Optimal axes for shape orientation
Given a 2D pattern, its orientation can be naturally defined

from the direction angle of one or more half lines originating
from the pattern’s centroid.

Definition 3. Let φi, i = 1, . . . , l be the direction angles
of a set of half lines originating from the pattern’s centroid.
Then, the set {φi} can be used to define the orientation of the
pattern optimally, if it possesses the following two properties:

1) the set can be detected independently of the coordinate
system [14].

2) the set is not redundant.
The first property ensures that the set {φi} will be invariant if
the pattern is translated or scaled, while rotation of the pattern
by an angle β will result in a set {φi+β}. The second property
ensures that the orientation of the pattern is unique, that is
rotation of the pattern by any φi will normalize the pattern to
the same position. The second property also implies that the
set of angles {φi} must be equally-spaced over the interval
[0, 2π).

Figure 1 shows an example which demonstrates the con-
nection between reflection symmetry identification and shape
orientation considered in this work. In Fig. 1 (a), the axes of
reflection symmetry for a symmetric pattern of order 6 are
sketched. For the same pattern, the optimal axes are shown in
Fig. 1 (b). It can be observed that the set of axes in Fig. 1 (b)
is a subset of the reflection symmetry directions in Fig. 1 (a).
For the rotationally symmetric shape of Fig. 1 (c), reflection
symmetry does not exist, nevertheless optimal axes may well
be defined.

(a) (b) (c)

Fig. 1. Identification of reflection symmetry and detection of optimal axes.
(a): 6 lines indicate the reflection symmetry directions. (b), (c): 6 half-lines
define the optimal axes.

C. Geometric and complex moments
The Geometric and Complex moments, that will be used in

the analysis, are defined in this section:
Definition 4. The geometric central moments of an image

I are defined as:

µpq =
∫

x

∫

y

(x− µ10)
p(y − µ01)

qI(x, y)dydx (II.8)

where µpq =
∫

x

∫
y
xpyqI(x, y)dydx. In the remaining of this

paper, we will assume that the pattern’s centroid is used as
the origin of the coordinate system and consequently µpq ≡
µpq. Of particular interest in this work is the moment-based
objective function obtained by rotating I by δ ∈ [0, 2π] and
evaluating µpq as follows:

Mpq(δ) =
∫

x

∫

y

xpyqI(D(δ)x)dydx (II.9)
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A change of variables yields:

Mpq(δ) =
∫

x

∫

y

dx(δ)pdy(δ)qI(x, y)dydx (II.10)

where [
dx(δ)
dy(δ)

]
=

[
x cos δ − y sin δ
x sin δ + y cos δ

]
(II.11)

The function Mpq is said to be degenerate, if Mpq(δ) =
constant, ∀δ ∈ [0, 2π). Assuming K samples of I , we may
estimate (II.10) as follows:

M̃pq(δ) =
K∑

i=1

dxi

p(δ)dyi

q(δ)I(xi, yi) (II.12)

Definition 5. The complex moments of an image I are defined
in the polar domain as:

cpq =
∫ ∞

r=0

∫ 2π

θ=0

rp+1ejqθI(r, θ)dθdr (II.13)

We estimate (II.13) as follows:

c̃pq =
K∑

i=1

rp+1
i ejqθiI(ri, θi) (II.14)

III. MOMENT-BASED SHAPE ORIENTATION: A BRIEF
REVIEW

In this section, the main results of [2], [4],[5],[6],[14] are
summarized, constituting the basis of our work. For most
irregular patterns (including patterns with a single axis of re-
flection symmetry and 2−fold rotationally symmetric shapes),
orientation can be naturally derived from the direction of
the pattern’s axis of elongation. The principal axis method
[5] estimates this direction by seeking the minima of the
second-order moment-based function M02. It can be shown
that if M02 is non-degenerate, the minimization problem has
two solutions, namely φpa and φpa + π. Note that with
the exception of 2−fold rotationally symmetric shapes, the
set {φpa, φpa + π}, provides a sub-optimal solution to the
orientation problem, since the second property of Def. 3 is
not satisfied.

For n−fold (n > 2) rotationally symmetric shapes, it can be
proved that M02 is degenerate [4], [6]. More specifically, it was
shown that the moment function M0N will be non-degenerate
only if N ≥ n. In this case, minimizing M0n yields n
generalized principal axis solutions uniformly distributed over
[0, 2π), namely φgpa

λ = φgpa +2(λ− 1)π/n, λ = 1, . . . , n. It
can be seen that the set {φgpa

λ } provides an optimal solution to
the shape orientation problem, by associating each fold with a
unique half line. It was additionally shown in [6], that in the
case that n is odd, the set {φgpa

λ } will not coincide with the
directions of reflection symmetry if those exist. The authors
showed that, in this case, minimizing M0N with N > n even
is likely to provide a solution to this problem.

In addition to geometric moments, complex moments have
also been employed as useful features to define the orientation
of symmetric patterns. The authors in [10] showed that for
an n−fold rotationally symmetric shape the complex moment
cq−1q will be non-zero only if q is an integer multiple of the

fold number, that is q = sn, s ∈ N ∗ 1. If qmin is the smallest
integer such that cq−1q 6= 0 and φupa = ∠cqmin−1qmin

, the
universal principal axes [14] are defined as φupa

λ = (φupa +
2(λ − 1)π)/qmin, λ = 1, . . . , qmin. Note that the set of
{φupa

λ } is optimal only if qmin = n.
The framework given in [2] is a generalization of the univer-

sal principal axes method and is considered state-of-the-art in
moment-based shape orientation and symmetry classification.
First, a method for the automatic selection of the order p
is presented in [2]. Then, it is shown that classification of
both rotational and reflection symmetry can be performed by
considering all non-zero complex moments cpqi

, i = 1, 2, . . . .
The phase of each non-zero generalized complex moment
φgcm

i = ∠cpqi
is used to define a set of directions φgcm

i,λ =
(φgcm

i +(λ−1)π)/qi, λ = 1, . . . , qi. The reflection symmetry
axes are obtained from the intersection of the axis sets {φgcm

i,λ }.
Additionally, the fold number is estimated as the biggest
common factor of the orders qi. Optimal axes are obtained
by solving a simple linear programming problem.

IV. A UNIFYING FRAMEWORK FOR SHAPE ORIENTATION

In this section, a novel methodology is presented that
extends previous work on geometric moment-based functions
and attempts to unify most of the results of the methods
described above in a single framework and perspective.

Two modifications to the geometric moment-based approach
presented in [4] are introduced. Firstly, an one-to-one mapping
f : R → R which operates on the distance r of each point
from the origin is introduced:

f(r) = f
(√

x2 + y2
)

= f

(√
dx

2(δ) + dy
2(δ)

)
(IV.1)

It should be noted that the above mapping does not modify the
angle distribution θ. Then, a modified moment-based function
Wpq can be defined, as follows:

Wpq(δ) =
∫

x

∫

y

{f
(√

dx
2(δ) + dy

2(δ)
)

dx
p(δ)dy

q(δ)I(x, y)dydx} (IV.2)

Since f is an one-to-one function and operates only on r,
inferring symmetry from either Mpq or Wpq is equivalent.

Secondly, moment-based functions of order p + q larger
than n are examined. Such an attempt was also made in
[6]; however, the presented approach neither guarantees the
detection of possible reflection symmetry axes nor provides a
closed-form solution. In general, optimizing Wpq for arbitrary
p, q does not result in reflection symmetry identification [6].
Nevertheless, the orders p, q can be selected such that Wpq

satisfies a reflection symmetry criterion. Indeed, if we set
p = N1 = 2i1 + 1, q = N2 = 2i2 + 1, where i1, i2 ∈ N ,
then for a reflection symmetric pattern of order n, WN1N2

will necessarily have at least 2n zero-crossing points equally
spaced over the interval [0, 2π). The estimated zero-crossing
points in this case will indicate the reflection symmetry
directions.

1N ∗ is the set of non-negative integers
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In the remaining of this section, an analysis of the functions
WN1N2 based on Fourier series decomposition is introduced.
Using the proposed formulation all symmetry information
(fold number estimation, axes of reflection symmetry/optimal
axes for shape orientation and type of symmetry) can be
extracted from WN1N2 , and via straightforward mathematical
manipulations, one can employ solely closed-form solutions
and formulas to tackle these tasks. Proposition 1 provides a
way to estimate the order of symmetry. Proposition 2 is related
to the proper selection of the orders N1 and N2. Finally,
proposition 3 proposes a method to estimate the possible axes
of reflection symmetry and identify the type of symmetry.

Proposition 1. Let WN1N2 be a non-degenerate moment-
based function derived from a rotationally symmetric pattern
of order n and let ŴN1N2(l), l = 1, 2, . . . , be the correspond-
ing Fourier series coefficients. Then, n can be estimated as the
frequency bin of the first-non zero coefficient, or alternatively,
as the biggest common factor of the bins corresponding to all
non-zero coefficients.

The above proposition proposes a viable method to estimate
the fold number n of rotationally symmetric patterns from the
Fourier expansion of the non-degenerate geometric moment-
based function WN1N2 (for a proof of this proposition, please
see Appendix A). Proposition 1 bares in mind the fold number
estimation principles suggested in [2],[14].

Assume now that we are given K = mn samples of I in
polar coordinates as follows:

I(rk, θkλ), κ = 1, . . . , m, λ = 1, . . . , n (IV.3)

where m is the total number of points in one fold. Let p, q
be non-negative integers such that pmax = N1−1

2 and qmax =
N2−1

2 . Let also, for a fixed s = ln, l ∈ N ∗, ps,i, qs,i be
the integers which satisfy the conditions 2(p − q) = sn or
2(p + q + 1) = sn. Finally, we denote g the function g(r) =
f(r)rN1+N2 . Then, it can be shown (see Appendix B) that
the Fourier series expansion ŴN1N2(s) of the non-degenerate
moment-based function WN1N2 is given by:

ŴN1N2(s) = πejπ/2{BN1N2(s)
m∑

κ=1

I(rk, θκ1)g(rκ)ejsnθκ1}, s = ln

(IV.4)

where BN1,N2(s) =
∑

i(−1)qs,iA(N1−1
2 , ps,i)A(N2−1

2 , qs,i)
and A(a, b) is a weighting coefficient depending solely on
a, b.

In the case that N1 + N2 < n, a slightly modified version
of the theorem given in [4], [6] can be proposed (for proof
see Appendix C), as follows:

Proposition 2. Let WN1N2 be a moment-based function
derived from a rotationally symmetric pattern of order n. In
the case that N1 + N2 < n, then WN1N2 will be degenerate .

For N1 + N2 > n, WN1N2 will be degenerate only in
the case that {BN1N2(s)}smax

s=1 = 0, where smax = b(N1 +
N2)/nc. Nonetheless, a thorough investigation of this scenario
is out of the scope of this work.

Summarizing the results of this section so far, we have
provided a methodology to estimate the order of symmetry

through the Fourier series expansion of geometric moment-
based functions of appropriate order. Analytical expressions
for the Fourier coefficients are provided by (IV.4). Next, the
focus is on reflection symmetry identification. This problem
is closely related to the determination of the zero-crossing
points of the cosine terms defined by ŴN1N2(s) in (IV.4).
To tackle this task, WN1N2 is expressed as the superposition
of the cosine terms (Fourier series) defined by ŴN1N2(s), as
follows:

WN1N2(δ) =
smax∑
s=1

2|ŴN1N2(s)| cos[snδ + ∠ŴN1N2(s)]

(IV.5)
We also denote ΞN1N2(s, δ) = 2|ŴN1N2(s)| cos[snδ +
∠ŴN1N2(s)] and ξ(s, δ) = ΞN1N2(s, δ)/πBN1N2(s). The
zero-crossing points of ΞN1N2(s, ; ) and ξ(s, ; ) are given by:

zs,λ =
π/2− ∠ŴN1N2(s) + (λ− 1)π

sn
,

=
π − ∠ŵ(s) + (λ− 1)π

sn
, λ = 1, . . . , 2sn

(IV.6)

where ŵ(s) is defined as the normalized Fourier coefficient:

ŵ(s) =
ŴN1N2(s)

πe−jπ/2BN1N2(s)
=

m∑
κ=1

I(rk, θκ1)g(rκ)ejsnθκ1

(IV.7)
Proposition 3. Let ŴN1N2(s), s = 1, 2, . . . be the

non-zero Fourier Coefficients of the moment-based functions
WN1N2 with N1 = 2i1+1, N2 = 2i2+1, i1, i2 ∈ N , computed
from a reflection symmetric pattern of order n. Then, the cosine
terms defined from ŴN1N2(s), ΞN1N2(s, ; ) and WN1N2 will
necessarily have the same subset of 2n zero-crossing points.

Thus, reflection symmetry can be derived from the identi-
fication of the subset {zi} in {zs,λ} (for proof of Proposition
3, see Appendix D). More specifically, the axes of reflection
symmetry will be included in the set of directions:

αs,λ =
π

sn
− zs,λ

=
∠ŵ(s)− (λ− 1)π

sn
, λ = 1, . . . , sn (IV.8)

In addition, the observation that WN1N2 will necessarily
include the same subset of a total of 2n zeros independently of
the order selection (see Appendix D) is not valid for n−fold
rotationally symmetric patterns with no reflection symmetry.
Therefore, considering the derived Fourier series expansion of
WN1N2 enables us to apply the reflection symmetry identifi-
cation principle, suggested in [2], in the proposed framework.

Similarly to [14], if |ŵ(1)| 6= 0, a set of optimal axes can
be defined as:

φoa
λ =

∠ŵ(1)− 2(λ− 1)π
sn

, λ = 1, . . . , n (IV.9)

In the rare case that |ŵ(1)| vanishes, then optimal axes can be
obtained by solving the linear programming problem given in
[2].

Equations (IV.8) and (IV.9) suggest that both problems of
reflection symmetry identification and shape orientation reduce



SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 5

to the computation of the normalized Fourier coefficient ŵ(s).
This establishes a more clear connection of the proposed
approach with the methods given in [2],[14]. It should be noted
that ŵ(s) is computed using only the points contained in one
fold of the pattern2. Knowledge of the number of points in one
fold implicitly assumes knowledge of the fold number. This
dependency can be alleviated by averaging over all points as
follows:

ŵav(s) =
K∑

i=1

I(ri, θi)g(ri)ejsnθi , s = 1, 2, . . . (IV.10)

Let us now consider the term:

q̂(l) =
K∑

i=1

I(ri, θi)g(ri)ejlθi , l = 1, 2, . . . (IV.11)

Clearly, for l = sn, the term q̂(l) ≡ ŵav(s). Now for l 6= sn,
using the methodology presented in [10], it can be shown that
q̂(l) = 0. Thus, evaluating q̂(l), l = 1, 2, . . . and finding
q̂(l) 6= 0 is equivalent to computing the Fourier transform of
all non-degenerate moment-based functions and picking the
non-zero normalized Fourier coefficients ŵav(s) in one step.
Finally, it can be observed that, in the special case where
g(r) = rl and g(r) = rp+1, we obtain q̂(l) ≡ c̃l−1l and
q̂(l) ≡ c̃pl respectively. Thus, the methods in [14] and [2] can
be derived as special cases of the general approach presented
in the section.

V. ROBUST FEATURE SELECTION IN THE POLAR
FREQUENCY DOMAIN

An important conclusion that can be drawn from the analy-
sis presented in the previous section is that the performance
of moment-based shape orientation largely depends on a
feature set where the difference between the zero and non-
zero coefficients is emphasized as much as possible. It should
also be noted that the same feature set can be additionally
used for further pattern analysis tasks, such as classification.
Thus, the aim of this section is to introduce a robust moment-
based feature extraction methodology for symmetric patterns,
that can be used for several pattern analysis tasks.

In general, moments are global features that appear to
be quite insensitive to uniform distortions of the symmetric
pattern. In the context of shape orientation and complex
moments, this was experimentally verified in [12], where the
boundaries of shapes were contaminated by Gaussian noise.
Nevertheless, the accurate computation of the moment-based
feature set and consequently the identification of non-zero
coefficients in a stable and robust manner strongly depends
on the accurate computation of the shape centroid. Inaccurate
calculation of the symmetry center results in a non-uniform
change of the angular distribution θ, thus rendering the values
of zero and non-zero coefficients comparable. Errors in center
estimation may be caused due to digitization errors, non-
uniform illumination conditions, poor segmentation or partial
occlusion. Although the symmetric patterns are assumed to

2This result also establishes a connection of our approach with the method
discussed in [7].

be already segmented in this work, such distortion cases may
well be encountered.

To alleviate the aforementioned problem of erroneous cen-
troid estimation, the core of the approach is based on the
computation of a feature set from the image Fourier domain.
Let Î(k), k = [kx, ky]T ∈ R2 be the 2D Fourier transform of
I and M be the magnitude of Î , that is M(k) = |Î(k)|. The
following lemmas are directly derived from the properties of
the Fourier transform of symmetric images:

Lemma A. If I satisfies (II.1), then M will be also
rotationally symmetric of order n or 2n around the origin,
if n is even or odd respectively.

Lemma B. If I satisfies (II.5), then M will also be reflection
symmetric about the line y = tan αx.
Thus, (IV.11) in the image Fourier domain takes the form:

q̂M (l) =
∑

kr,kθ

M(kr, kθ)g(kr)ejlkθ , l = 1, 2, . . . (V.1)

where M(kr, kθ) is the polar representation of M . Lemmas
A and B suggest that a feature set computed from the image
Fourier domain may well be used for symmetry classification.
Additionally, the computation of the features does not employ
the estimation of the pattern’s centroid, due to the shift
invariant property of the Fourier transform. In the remaining of
this section, we provide a detailed description of the proposed
method based on the above principles.

The proposed approach starts with computing a gray level
edge map G of the given image I , which retains both magni-
tude and phase information, as follows:

G = Gx + jGy (V.2)

where Gx = ∇xI and Gy = ∇yI are the gradients along
the horizontal and vertical direction respectively. This step
provides the location, magnitude and orientation of the image
high-activity structures which can be used as salient features
to characterize symmetry. Areas of constant intensity level
also provide symmetry information, nevertheless such areas
are very sensitive to possible uneven lighting conditions. At
the same time, low spatial frequency components inherent
to the low pass nature of images will be filtered out as
well. For real images, in most cases, the contribution of low
spatial frequencies rather shadows the existence of periodicity
than facilitates the symmetry detection process. Additionally,
it should be noted that a band-pass filtered version of the
original image, as suggested by the use of practical differential
operators, eliminates possible noise and aliasing effects [16].

The next step is to compute the Fourier transform of G, Ĝ,
and consider its magnitude solely. In this case, we have:

Ĝ(k) = jkxÎ(k)− ky Î(k) (V.3)

Thus, for the magnitude MG we get:

MG(k) =
√

(k2
x + k2

y)M(k) = krM(k) (V.4)

which shows that MG retains all the symmetric properties of
M . In the remaining of this paper, we denote M the magnitude
of the Fourier transform computed from either I or G, to
simplify notation.
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Equation (V.1) indicates the use of a polar representation.
A traditional approach to obtain such a representation is
to evaluate the Fourier Transform of the image over the
Cartesian grid using the standard FFT and then interpolate the
outcome over a polar grid. In general, this method is unstable
and sensitive to interpolation errors due to possible image
noise [17]. Additionally, in the context of moment-based
orientation and matching, such an approach will be biased
towards moments that are largely affected by the Cartesian
structure of the original FFT. More specifically, moments of
order multiple of two or four are expected to have relatively
significant values regardless of the real order of symmetry.
The last observations emphasize the importance of using a
true polar Fourier representation. Therefore, in this work, we
adopt a fast and accurate polar Fourier transform recently
proposed in [15]. The method is algebraically stable while
the algorithm’s computational complexity is on the order of
the standard Cartesian FFT.

To improve the robustness of the proposed method, a noise
reduction scheme is also employed, based on the classical sin-
gular value decomposition (SVD) of the polar representation
M(kr, kθ) in a set of eigenimages [18]. More specifically, the
magnitude of the polar Fourier transform M is decomposed
to the following matrices:

M = USV T =
R∑

j=1

sjMj (V.5)

where the columns of U and V are the eigenvectors of the
subspace spanned by the columns and rows of M respectively
and S is a diagonal matrix containing the corresponding
eigenvalues. Mj = ujvT

j is the jth eigenimage, sj is the
corresponding eigenvalue and R is the rank of M . Observing
that {vj}R

j=1 is the subspace spanned by the rows of M , the
following lemmas are given without proof:

Lemma C. Let M be the polar representation of a ro-
tationally symmetric image of order n and let Mj be the
corresponding jth eigenimage. Then, Mj will be rotationally
symmetric of order sn, s ∈ N ∗.

Lemma D. If M is reflection symmetric about a line y =
tan ax, then Mj will also be reflection symmetric about the
same line.

Evaluating (V.1) using Mj only yields:

q̂Mj (l) =
∑

kr,kθ

Mj(kr, kθ)g(kr)ejlkθ

=
∑

kr

uj(kr)g(kr)
∑

kθ

vj(kθ)ejlkθ , l = 1, 2, . . .

(V.6)

The above equation suggests that the computation of the coef-
ficients q̂Mj (l), l = 1, . . . simply reduces to the computation
of the DFT of vj(kθ).

In the context of this work, the scheme suggested above can
be interpreted as follows. Firstly, the estimation of each eigen-
vector combines all symmetry information provided by the
rows of M . In contrast to simple averaging schemes [9],[19],
where a periodic pattern is constructed by averaging the polar
representation over r, the estimation in our case will be biased

towards the rows of M , that capture periodic components of
large magnitude. This comes directly from the fact that SVD
projects the input image on eigenimages that minimize the
mean squared reconstruction error. This property is favorable
since such components are likely to provide more robust
estimations of the true periodicity. Secondly, it is suggested in
[20] that SVD-based processing of an image results in noise
filtering along the image vertical and horizontal lines. This
is also a favorable property in our case, since symmetry is
inferred solely from the rows of M .

Elementary matrix approximation theory suggests that the
best approximation M̃ of the matrix M , in terms of mini-
mizing the mean squared error and under the constraint that
rank(M̃) = L, is given by reconstructing M using the L
most significant eigenvectors according to (V.5). In our case,
we are not interested in optimal compact representations and,
given the L most important eigenvectors, we wish to estimate
their fundamental frequency which is equal to the order of
symmetry. Assuming that the image is corrupted by white
noise isotropically distributed in all signal dimensions, the
signal-to-noise ratio for the jth eigenvector will be equal to
sj/σ2, where σ2 is the power of noise. In this case, the first
eigenvector is guaranteed to be the least noisy periodic pattern
achieving the highest signal-to-noise ratio. Any combination
of eigenvectors will result in a more noisy periodic pattern and
therefore in less reliable estimates of the pattern’s periodicity.

For cluttered images (for example images where the sym-
metric pattern is embedded in a complex background) which
result in cluttered Fourier transforms, noise is not white and
the above analysis does not hold. Assuming that there exists a
range of values of kr, such that the corresponding rows of M
are strong periodic patterns with dominant frequency equal to
the order of symmetry, it is still expected that this periodicity
will be captured by one of the most important eigenvectors.
In particular, when the amount of clutter is not large, the
periodic signal will be captured by the first eigenvector.
Experimentation suggested that the remaining eigenvectors are
noisy and therefore do not constitute a positive contribution
to the order estimation process.

As the amount of distortion increases, there might be a
case that the first eigenvector captures the effect of clutter
(in most cases this is a pattern with strong very low frequency
components) and the desired periodic pattern appears as one of
the remaining eigenvectors. In this case, considering the first
L eigenvectors, as described in the algorithm given below,
equips the proposed scheme with further robustness at the
cost of additional computational complexity. Note that if the
desired periodic pattern does not appear as one of the very
first few most significant eigenvectors, then the assumption
for the existence of a strong periodic pattern along the rows
of the M probably does not hold and the method is likely to
fail. Therefore, one should check only for small values of L;
however, we note that we have not devised an algorithm for
the automatic selection of the exact number of the eigenvectors
to be examined.

In the following, the basic steps of the proposed frequency
domain moment-based symmetry detection algorithm are
described in detail. An image registration technique is used to
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resolve the order ambiguity induced by the frequency domain
formulation. If more than one eigenvectors are considered,
the same method is employed to recover the true order of
symmetry. In general, image registration methods can provide
the basis of a brute force approach for symmetry detection,
since we can always rotate the input image by 2π/l, l ∈ N ∗

and check if the original image and its rotated version can
be registered successfully. Once the order has been identified,
the center of symmetry can be estimated using the approach
suggested in [3],[19]. The method is based on the observation
that symmetric images of order n, when rotated by 2π/n,
are related to each other by a pure translation. Once the
translation is recovered, a simple geometric inspection reveals
that both the distance and the direction of the center of
symmetry with respect to the image center can be easily
computed. Finally, the frequency domain formulation also
induces a further ambiguity when the pattern’s orientation
axes are to be computed, as described in the last step of our
algorithm. To resolve the problem, an additional moment
feature computed from the image spatial domain is used. The
same feature is also used to classify the pattern as rotationally
or reflection symmetric. We note that, at this point, both the
symmetry order and center are available, and therefore the
particular feature can be computed with good accuracy.

Frequency domain moment-based symmetry detection
algorithm

Inputs: The image I , the number L of eigenvectors to
be considered and the value of a threshold ε. I(δ) is the
image obtained from the input image after rotation by δ.
Step 1. Using any image registration technique [21], check
if the registration process between the input image I and its
rotated version I(π) provides a valid solution. If this is the
case, then the order of symmetry is even, otherwise it is odd.
Step 2. Compute the polar Fourier representation of the
complex gradient edge map G, and keep its magnitude
M(kr, kθ). Perform3 the SVD of M and keep the L most
important eigenvectors vj(kθ), j = 1, . . . L.
Step 3. Compute v̂j(l) = DFT{vj(kθ)}. Obtain a set of
possible solutions n′j = argl max |v̂j(l)|, j = 1, . . . L. Set
nj ← n′j or nj ← n′j/2, if n is even or odd respectively.
Recover the true order of symmetry n by checking if
I(2π/nj) can be registered with I . Denote vn the eigenvector
which corresponds to the correct solution.
Step 4. For the correct solution of Step 3, use the approach
suggested in [3],[19], to estimate the center of symmetry.
Step 5. Use the phase ∠v̂n(n′) to obtain a set of n′ direction
angles φa

λ, λ = 1, . . . , n′ according to (IV.9). Note that if n
is odd, a total of 2n solutions is obtained, since n′ = 2n.
In this case, denote {φa,1

λ }, λ odd and {φa,2
λ }, λ even the

two possible subsets. Compute the phase ∠wav(n) from the
image spatial domain according to (IV.10) and obtain a set of
n direction angles φb

λ, λ = 1, . . . , n. Compute the difference
∆ = |φa

λ − φb
λ| if n is even and similarly ∆1 = |φa,1

λ − φb
λ|

and ∆2 = |φa,2
λ − φb

λ| if n is odd. Define the pattern’s

3each row of M is normalized to zero mean to remove the local DC bias.

orientation from the set {φa} if n is even and from the
subset {φa,k}, where k = argi min ∆i, if n is odd. Finally, if
∆ < ε and similarly ∆k < ε, classify the pattern as reflection
symmetric.

For the image registration method used in our scheme, we
suggest the use of fast FFT-based correlation schemes [16].
The values of L and ε should be adjusted depending on the
application. Note that the very last step of the algorithm can
be modified such that no threshold selection is employed at the
cost of additional computational complexity. This can be done
by computing a reflected version of the input image about any
of the axes which define the pattern’s orientation. Then, one
needs to check if the original image and its reflected version
can be registered successfully.

VI. RESULTS

The main target of this section is to draw a comparison
between Shen’s complex moment formulation which operates
on the image spatial domain [2] and the frequency domain
moment-based approach proposed in section V. For this
purpose we have considered more than 150 patterns taken
from two different databases used in [3] and in [2],[12]. A
representative sample of the images used is shown in Fig.
2. The section is organized in a way such that performance
is assessed for progressively increased shape distortions and
more challenging situations.

A. A study of the effect of erroneous symmetry center estima-
tion

In this part of the experimental section, we study the
performance of moment-based symmetry detection methods
in the case where no shape distortion exists, but the shape
centroid is artificially displaced. Let us first denote by {F} any
moment-based feature set computed from a symmetric pattern
of order n, that is {F} = {cpq}, {q̂}, {q̂M} or {v̂1}. We also
write {F} = {Fnz}∪{Fz}, where {Fnz} and {Fz} is the set
of the expected non-zero and zero coefficients respectively 4.
For example, given a 5−fold rotationally symmetric pattern,
the set {Fnz} includes the moment features which correspond
to moment orders multiples of 5, while all the remaining
moments are gathered in the set {Fz}.

For each tested pattern, we assume that the symmetry order
is known. Given that the total energy of {F} is normalized
to one, that is

∑
i=1 |Fi|2 = 1, the evaluation is based on

computing the following metric:

R =
∑
nz

|Fnz|2 (VI.1)

The above simple metric can be used to measure the effect
caused by deviations from perfect symmetry on the various
moment-based symmetry detection methods. For example, for
perfect symmetries, it is expected that the set {Fz} contains
negligible values and therefore R ' 1. As the amount of
symmetry distortion increases, the moments included in the

4The indices nz and z here stand for non-zero and zero respectively.
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(a) (b) (c) (d) (e)

Fig. 2. A sample of the patterns used in our experiments taken from the database used in [3].

set {Fz} will no longer be zero, and therefore the value of R
is expected to decrease. The amount of decrease reflects the
robustness of each method in relation to the type of symmetry
distortion.

We study the performance of Shen’s method [2] which
operates on the image spatial domain and therefore it is
affected by the erroneous symmetry center estimation. We
have examined displacements ∆r from the real symmetry
center of size up to 3 pixels. More specifically, for a fixed
∆r, we define ∆x = ∆r cos(γ) and ∆y = ∆r sin(γ), where
γ is uniformly distributed over [0, 2π]. We then compute a
polar representation of the image using c′x(∆r, γ) = cx + ∆x

and c′y(∆r, γ) = cy + ∆y, where cx, cy are the standard
estimates of the pattern’s centroid coordinates. Finally, we
compute R(∆r) = (1/Nγ)

∑
γ R(∆r, γ), where Nγ is the

number of angles used.
The method in [2] is compared with the proposed frequency

domain moment-based scheme with L = 1 which does not
employ any centroid estimation. Figure 3 shows a qualitative
comparison of the two methods by plotting the distribution of
the ratio R(∆r), for ∆r = {1, 2, 3} in the same histogram.
The width of each histogram bin is 0.1 units, while its center
is indicated by the numbering of the x−axis in each plot. It
can be seen that the performance of the method in [2] rapidly
deteriorates with respect to increasing values of ∆r.

B. Classification accuracy for the case of local distortions and
noise

The main purpose of this section is to draw a comparison
between the performance of Shen’s method and that of the
proposed scheme in the presence of controlled local distortions
and noise. To generate the corrupted test images, we have used
a linear degradation model [5]:

Ic = (1−WG)I + n (VI.2)

where I and Ic is the original and the corrupted image
respectively. The image I is assumed to be normalized in
the range [0, 1], while the image domain is supposed to be
[-1/2, 1/2]x[-1/2, 1/2]. WG = e−|x−xc|2/2σ2

c is a 2D Gaussian
function of standard deviation σc centered at the point xc =
[xc, yc]T of the image plane, while n is zero mean white
Gaussian noise.

The term 1−WG models local shape distortions controlled
by the parameter σc. For small values of σc, very local and
relatively abrupt changes of the image intensity values around
the point xc are modeled. As σc increases, the number of pixels

affected also increases but the change in the intensity values
becomes smoother. Fig. 4 (a),(b) and (c) shows three corrupted
images for three representative values of σc = 0.2, 0.5 and 1
respectively. It can be observed that the term 1−WG attempts
to model the effect of inefficient image segmentation.

Since the effect of the local distortion model will be
generally different for each pattern, we have chosen a set of
5 representative shapes (shown in Fig. 2 (a)-(e)) of various
symmetry orders and we present classification results for each
pattern separately. Figures 2 (a),(d) and (e) illustrate examples
of doughnut-like, disk-like and garland-like symmetric pat-
terns. Figure 2 (b) shows a radial shape, while the pattern in
Fig. 2 (c) represents more typical examples of symmetry. For
each pattern, a set of test images is generated as follows. Given
a fixed value of σc and signal-to-noise ratio (SNR), a point on
the pattern’s boundary is randomly selected and used as the
center of WG. Boundary points are considered solely, since the
outer part of the shape is more likely to be corrupted by local
distortions such as segmentation errors. The term (1−WG)I
is computed and then white Gaussian noise of fixed power
is added to the result to obtain Ic. The power of noise is
calculated according to the given SNR value and the energy of
the original image I . Finally, for each σc and SNR, to assure
the validity of the classification results, a total of 100 test
images is generated. We have considered σc = 0.2, 0.5 and 1
and SNRs in the range [−6, 12] dBs (see Fig. 4 (d) and (f) for
an example).

Classification results are presented for 4 different cases.
The first is the proposed scheme based on the first eigen-
vector solely. The classification is said to be correct if the
symmetry order is given by argl max |v̂1(l)|. The second is
the proposed scheme based on the combination of the first
and second eigenvectors. In this case, the classification is
said to be correct if any of n′j = argl max |v̂j(l)|, j = 1, 2
coincides with the expected symmetry order. The third is a
simple averaging scheme suggested as part of the works in
[9],[19]. More specifically, we replace SVD with averaging
over kr, that is we compute a(kθ) =

∑
kr

M(kr, kθ) and
its spectrum â = DFT(a). Similarly, the pattern is classified
correctly if the order of symmetry is argl max |â(l)|. Since
two possible solutions are examined by our combined scheme,
we also consider the second largest peak for a more balanced
comparison. Finally, in a similar spirit, the performance of
Shen’s method is evaluated.

The classification rate for each method and pattern is illus-
trated in Fig. 5. Each row of the figure gives the classification
rate for each pattern for σc = 0.2, 0.5 and 1 respectively. The
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Fig. 3. (a)-(c): The distributions of R(1), R(2) and R(3) respectively plotted together with the distribution of R evaluated with our method. Blue colour:
proposed method, red colour: Shen’s method [2].

(a) (b) (c) (d) (e)

Fig. 4. (a)-(c): An example of locally distorted patterns for σc = 0.2, 0.5 and 1 respectively. (d)-(f): The pattern in Fig. 4 (b) for SNR=12 and 0 dB
respectively.

robustness of the proposed combined scheme is evident. For
σc = 0.2 and for SNR as low as -3 dB, the classification rate
is higher than 0.8 for all patterns. For σc = 0.5 and SNR =
3 dB, the method achieves a minimum classification rate of
0.9. Good performance for most patterns is achieved for SNR
in the range [3, 12] dB and σc = 1, with the exception of the
fourth pattern (Fig. 5 (l)) where the method fails. With few
exceptions, the scheme based on the first eigenvector solely,
outperforms the rest of the methods examined. A characteristic
case where the scheme fails is for the second pattern and
σc = 0.5 (Fig. 5 (e)). It can be observed that using the second
eigenvector, in this case, is highly beneficial. The scheme
based on averaging is, in general, unstable. For the first and
fifth pattern, the method achieves relatively good performance,
while for the second and third pattern, the classification rate
is very low for all values of σc. The method in [2] fails
badly for the majority of the cases examined. Finally, the
proposed scheme was also tested for the case of the first three
eigenvectors. The gain in performance was not significant (for
example, the method still fails for the the fourth pattern and
σc = 1). For simplicity, the obtained results are omitted.

In addition to classification accuracy, Fig. 6 shows the
mean value of the orientation error in degrees defined as
e = |φ1 − φ′1|, where {φλ} and {φ′λ} is the set of orientation
axes computed from the noisy and noise-free versions of each
pattern respectively. It can be observed that, in most cases, the
proposed scheme achieves the smallest error.

C. Experiments with real images

The last part of the experimental section illustrates some
examples where the proposed scheme is used to detect symme-
tries in real images. The patterns depicted in Fig. 7 (a),(c),(d)

and (f) are cases of non-perfect symmetries embedded in a
complex background. Figure 7 (b) shows an example of partial
occlusion, while Fig. 7 (e) gives an example of symmetry
distorted by projective distortion. In general, moment-based
methods which operate in the image spatial domain are unable
to handle such cases, since they are not robust.

For simplicity, we do not assess the effectiveness of the
image registration method employed in our scheme. The
algorithm was able to detect the correct order of symmetry for
the first five patterns. The true order was recovered from the
spectrum of the first eigenvector, with the exception of Fig. 7
(c), where the correct solution was provided by the additional
use of the second eigenvector. For each case, the spectrum of
the extracted periodic pattern is shown in Fig. 8. Depending
on the type of symmetry, Fig. 9 shows the estimated axes of
orientation and reflection symmetry.

For the last pattern in Fig. 7 (f), a visual inspection reveals
that the true order of symmetry is 3. However, it can be
observed that only a very small number of image features
indicate the existence of symmetry and, therefore, global
schemes, such as the one presented in this work, are likely
to fail.

For the example of the projective distortion, Fig. 8 (e)
shows that the extracted periodic pattern is noisy, while the
estimated axes of symmetry as sketched in Fig. 9 (e) do
not accurately match with the true axes of symmetry. In
general, for complex geometric transforms, such as affine,
the assumption for the existence of a global periodic pattern
implied by the definition of rotational symmetry is violated.
For example, affine transformations induce directionality in
the 2D space and potentially change of the order of symmetry.
To illustrate this, consider the three patterns in Fig. 10 (a)-(c)
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Fig. 5. Classification rates. Each row shows the rate for the patterns of Fig. 1 for σc = 0.2, 0.5, 1. The range of SNR is [−6, 12] dBs. Blue, diamond: first
and second eigenvectors. Green, circle: first eigenvector. Red, asterisk: averaged pattern. Cyan, square: Shen’s method.
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Fig. 6. Mean value of the orientation error in degrees. Each row shows the error for the patterns of Fig. 1 for σc = 0.2, 0.5, 1. The range of SNR is [−6, 12]
dBs. Blue, diamond: first and second eigenvectors. Red, asterisk: averaged pattern. Cyan, square: Shen’s method.
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(a) (b) (c) (d) (e) (f)

Fig. 7. The real images used in our experiments. The proposed method was able to detect the correct order of symmetry for the first five patterns (see Fig.
8). The orientation axes for each pattern are sketched in Fig. 9. The symmetric image in Fig. 7 (f) contains only a very small number of features indicating
the existence of symmetry and, therefore, global schemes, such as the one presented in this work, are likely to fail.
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Fig. 8. The Fourier spectrum of the extracted periodic pattern using the proposed scheme for the symmetric images shown in Fig. 7 (a)-(e). Up to a factor
of two, the order of symmetry is estimated as n′j = argl max |bvj(l)|. By checking n′j and n′j/2, the true order is recovered.

(a) (b) (c) (d) (e)

Fig. 9. The orientation axes obtained using the proposed scheme for the first five patterns shown in Fig. 7.

obtained by applying an affine transform to the image shown
in Fig. 7 (c). For each case, the affine transformed image IA is
related to the original I according to the following equation:

IA(x) = I(Ax) (VI.3)

where A =
[

1 s
0 1

]
and s is the skew parameter. The values

of s used were 0.1, 0.2 and 0.35. As s increases the induced
orientation that the pattern exhibits is more evident and the
deviation from rotational symmetry becomes more significant.
The algorithm was able to detect the real order of symmetry for
the first two cases for which the obtained orientation axes are
sketched in Fig. 10 (d) and (e). For s = 0.35, the examination
of the spectrum of the extracted periodic pattern (for simplicity
not shown here) revealed that the peak indicating the correct
order of symmetry was largely attenuated and the dominant
peak was located at the frequency equal to two. This is well
justified since a careful examination of Fig. 10 (c) shows
that the image depicts a well-oriented 2−fold rotationally
symmetric pattern. The pattern’s orientation axes, in this case,
are sketched in Fig. 10 (e).

Table I summarizes the results obtained by applying a
range of affine distortions to the synthetic patterns taken

from [3] and [2]. The skewness parameter was varied in the
range [0.05, 0.35] with step equal to 0.05. The percentage
of patterns for which the method was able to identify the
order of symmetry correctly for s ≤ si is defined as p(si).
The performance of the proposed scheme was evaluated for
two different scenarios: affine transformations solely (σc =
0) and affine transformations plus local distortions (σc =
0.2, 0.5 and 1). In the noise-free case and for a considerable
amount of affine distortion si = 0.2, 72% of the tested patterns
were classified correctly. For the same affine distortion and
σc = 1, the classification rate decreased by 16%. Much better
performance was observed for moderate amount of affine and
local distortions. For example, for si = 0.1 and σc = 0.5, the
algorithm detected the real order of symmetry for the 83% of
the total number of patterns considered.

In conclusion, the algorithm is capable of handling some
amount of affine distortion; nevertheless more robust per-
formance can be expected only when affine or other more
complex geometric transformations are explicitly modeled.
The example of Fig. 10 illustrates that such distortions may
change the symmetry properties of the observed objects and
algorithms designed for the detection of rotational symmetries
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(a) (b) (c) (d) (e) (f)

Fig. 10. (a)-(c): The affine transformed images obtained from the image in Fig. 7 (c) using s = 0.1, 0.2 and 0.35 respectively. (d)-(f): The orientation axes
obtained using the proposed scheme.

Skewness Parameter si

0.05 0.10 0.15 0.20 0.25 0.30 0.35
p(si)(σc = 0.0) 100% 96% 80% 72% 59% 43% 33%
p(si)(σc = 0.2) 100% 95% 78% 70% 55% 38% 30%
p(si)(σc = 0.5) 94% 83% 66% 57% 48% 34% 28%
p(si)(σc = 1.0) 85% 74% 63% 56% 45% 36% 25%

TABLE I
CLASSIFICATION RESULTS FOR THE CASE OF AFFINE TRANSFORMATIONS

AND LOCAL DISTORTIONS.

do not adapt to these changes. Note that such phenomena were
not taken into consideration for the results given in Table I.

VII. CONCLUSIONS

The problem of moment-based shape orientation and sym-
metry classification was considered. In the first part of this
work, we presented a study which attempts to unify many
popular moment-based approaches in a single framework.
In particular, we showed that results given from a complex
moment formulation also apply to the case of appropri-
ately defined geometric moment-based functions. Analytical
expressions were derived based on Fourier series analysis.
In the second part of this work, we presented a moment-
based symmetry classification and matching algorithm which
operates on the image Fourier domain and therefore does not
require the accurate estimation of the symmetry center which
is the main limitation of current approaches. Our formulation
was based on a true polar Fourier representation of the
extracted image gradients. Further robustness was achieved
by using a periodicity estimation scheme based on subspace
analysis. Simulation results demonstrated the efficiency of our
approach.
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APPENDIX
PROOFS OF PROPOSITIONS OF SECTION IV

A. Proof of Proposition 1

From the very definition of rotational symmetry, we may
observe that if the moment-based function WN1N2 is not
degenerate, then it will be periodic with period 2π/n. Let
ŴN1N2 be the Fourier series coefficients of WN1N2 :

ŴN1N2(l) =
1
2π

∫ 2π

0

WN1N2(δ)e
−jlδdδ , l = 0, 1, 2 . . . ,

Then, ŴN1N2 will be non-zero only if l = sn, s ∈ N ∗ and
potentially for l = 0. Therefore, the order of symmetry can be
estimated as the frequency bin of the first-non zero coefficient,
or more robustly, as the biggest common factor of the bins
corresponding to all non-zero coefficients. ¤

B. Calculation of Fourier series expansion for WN1N2

Assume that we are given K = mn samples of I in polar
coordinates as follows:

I(rk, θkλ), κ = 1, . . . ,m, λ = 1, . . . , n

where m is the total number of points in one fold. Additionally,
we have:

dxi(δ) = xi cos δ − yi sin δ

≡ rκ cos θκλ cos δ − rκ sin θκλ sin δ

= rk cos[θκλ + δ]

where r =
√

x2 + y2 and θ = arctan y/x 5. Similarly, we
have dyi(δ) = rk sin[θκλ + δ]. Therefore, WN1N2(δ) can be
expressed, as follows:

WN1N2(δ) =
K∑

i=1

f(ri)dxi

N1(δ)dyi

N2(δ)I(ri, θi)

=
m∑

κ=1

g(rκ)
n∑

λ=1

I(rk, θkλ)t[θκλ + δ]

where g(r) = f(r)rN1+N2 and t(u) = cosN1 u sinN2 u.
By definition I(rk, θk1) = I(rk, θkλ), ∀λ and therefore we
have:

WN1N2(δ) =
m∑

κ=1

I(rk, θk1)g(rκ)
n∑

λ=1

t[θκλ + δ]

5arctan denotes the extended arctan function such that θ ∈ [0, 2π)
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Using Fourier series decomposition, we get:

ŴN1N2(s) =
n

2π

∫ 2π/n

0

WN1N2(δ)e
−jsnδdδ

=
n

2π
{

m∑
κ=1

I(rk, θk1)g(rκ)

n∑

λ=1

∫ 2π/n

0

t[θκλ + δ]e−jsnδdδ}

Let us consider the term IN1N2(s):

IN1N2(s) =
∑n

λ=1

∫ 2π/n

0
t[θκλ + δ]e−jsnδdδ

Changing of variables u = θκλ + δ yields:

IN1N2(s) =
n∑

λ=1

ejsnθκλ

∫ θκλ+2π/n

θκλ

t(u)e−jsnudu

= {
n∑

λ=1

ejsnθκ1e−js(λ−1)2π

∫ θκλ+2π/n

θκλ

t(u)e−jsnudu}

= ejsnθκ1

n∑

λ=1

∫ θκλ+2π/n

θκλ

t(u)e−jsnudu

= ejsnθκ1

∫ θκ1+2π/n+2(n−1)π/n

θκ1

t(u)e−jsnudu

= ejsnθκ1

∫ 2π

0

t(u)e−jsnudu (.1)

The function t can be expanded as follows [22]:

t(u) = cosN1 u sinN2 u

= {
i1∑

p=0

A(i1, p) cos[(2p + 1)u]

i2∑
q=0

A(i2, q) sin[(2q + 1)u]}

=
1
2
{

i1∑
p=0

i2∑
q=0

(−1)qA(i1, p)A(i2, q)

(sin[2(p− q)u]− sin[2(p + q + 1)u])} (.2)

where A(a, b) is a weighting coefficient depending only on a
and b. Plugging (.2) into (.1), it is straightforward to see that,
for a fixed s, IN1N2(s) is non-zero only for 2(p− q) = sn or
2(p + q + 1) = sn. Let, for a fixed s, ps,i, qs,i be the integers
which satisfy the above conditions6. Then, the final expression
for ŴN1N2(s) is:

ŴN1N2(s) = πejπ/2BN1N2(s)
m∑

κ=1

I(rk, θk1)g(rκ)ejsnθκ1

where
∫ 2π

0
sin(snu)e−jsnudu = πe−jπ/2 and BN1,N2(s) =∑

i(−1)qs,iA(N1−1
2 , ps,i)A(N2−1

2 , qs,i).

6Note that, if n is odd, the coefficients cWN1N2 (s) for s odd will not
appear in the Fourier expansion of WN1N2 , since there are no integers p, q
satisfying the above conditions. Nevertheless, it can be similarly shown, that
the odd Fourier coefficients will appear from the Fourier expansion of the
function W0N2 . The function W0N2 satisfies a reflection symmetry criterion
for n odd, while for n even, it is degenerate independently of the order N2

C. Proof of Proposition 2

By definition, the first non-zero ŴN1N2(l) is for l = n, or
equivalently for s = 1. In this case, there should exist p, q
satisfying 2(p− q) = n or 2(p + q + 1) = n. Since pmin = 0,
qmin = 0, pmax = i1, qmax = i2, we have 2(pmax− qmin) =
2i1 < N1 < n, 2(qmax − pmin) = 2i2 < N2 < n and
2(pmax+qmax+1) = 2(i1+i2+1) = N1+N2 < n. Therefore,
there are no p, q satisfying the necessary conditions. ¤

D. Proof of Proposition 3

Our proof is based on mathematical induction. First observe
that for a reflection symmetric pattern of order n, the set of
zero-crossing points of WN1N2 will necessarily include the
same subset of a total of 2n zeros {zi}2n

i=1, independently of
the order selection. This is because the orders N1 and N2 are
chosen such that a reflection symmetry criterion is satisfied.
We have:
Step 1. Let N1 = a1,N2 = b1 be chosen such that Ŵa1b1(s) 6=
0 only for s = 1. In this case, Wa1b1 ≡ Ξa1b1(1, ; ) is a pure
sinusoidal function with 2n zeros {zi}.
Step ρ. Let N1 = aρ,N2 = bρ be chosen such that Ŵaρbρ

(s) 6=
0 only for s = 1, . . . , ρ. We have:

Waρbρ(δ) =
ρ∑

s=1

Ξaρbρ(s, δ) =
ρ∑

s=1

πBaρbρ(s)ξ(s, δ)

Assume that Waρbρ and Ξaρbρ(s, ; ), s = 1, . . . , ρ have
the same subset of 2n zero-crossing points {zi}, that is
Waρbρ(zi) = 0 and Ξaρbρ(s, zi) = 0. This also implies that
ξ(s, zi) = 0.
Step ρ + 1. Let N1 = aρ+1,N2 = bρ+1 be chosen such that
Ŵaρ+1bρ+1(s) 6= 0 only for s = 1, . . . , ρ + 1. We have:

Waρ+1bρ+1(δ) =
ρ+1∑
s=1

Ξaρ+1bρ+1(s, δ)

=
ρ∑

s=1

Ξaρ+1bρ+1(s, δ) + Ξaρ+1bρ+1(ρ + 1, δ)

= S(δ) + Ξaρ+1bρ+1(ρ + 1, δ)

Now, S(zi) =
∑ρ

s=1 πBaρ+1bρ+1(s)ξ(s, zi) = 0 from step ρ.
Since Waρ+1bρ+1(zi) = 0, then necessarily Ξaρ+1bρ+1(ρ+1, zi)
= 0. ¤
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