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Smooth signal extraction from instantaneous

mixtures
Nikolaos Mitianoudis, Tania Stathaki and Anthony G. Constantinides

Abstract

The problem of blind separation of statistically independent sources from instantaneous mixtures,

using the efficient framework of Independent Component Analysis (ICA), has been widely addressed

in the literature. In this paper, the authors propose a sequential blind signal extraction algorithm that

attempts to identify smooth sources in instantaneous mixtures. The approach incorporates smoothness

constraints in the traditional negentropy cost function to extract smooth components, using an approximate

second-order optimisation method.

Index Terms
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I. INTRODUCTION

Let x(n) = [x1(n), x2(n), . . . , xM (n)]T model M observation signals that monitor a phenomenon and

also s(n) = [s1(n), s2(n), . . . , sN (n)]T model N factors that influence the monitored phenomenon. In

this study, each factor influences the observing signals instantaneously and possible corruption by additive

noise is considered insignificant. The following model connects the observed with the source signals.

x(n) = As(n) (1)

where A is a full-rank mixing matrix denoting instantaneous transmission. The mixing matrix will be

considered square (i.e. N = M ) in our analysis.
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The source separation problem is to estimate the underlying factors s(n), given the observation signals

and some general statistical priors for these factors. Introducing the assumption of statistical independence

between the source signals, led to the development of Independent Component Analysis (ICA) [4]. One can

separate nonGaussian sources, using different interpretations of statistical independence. Some methods

interpret statistical independence as maxima of nonGaussianity and perform separation by estimating the

directions of the most nonGaussian components using kurtosis or negentropy.

In several applications, it is essential to identify signals with specific temporal properties along with

independence. Smoothness can be imposed as a desired signal property, especially when identifying

components in an environment with interference. In ECG and EEG signals, the electrodes pick up several

interfering signals that might satisfy the nonGaussianity criteria of ICA algorithms, however, may not

convey useful information. Instead, components that have some “smooth” temporal structure (slowly

varying profile) may need to be identified in the mixture.

The identification of signals with special properties can always be performed as a post-processing step

after a conventional source separation algorithm. However, adding a constraint to the estimation criterion

can identify the desired components with some additional computational overhead, but without separating

and testing all present independent components, especially when N is large. The concept of constrained

ICA has been previously introduced in [6], however, in the concept of global search for independent

components that resembles several reference signals. In [1], the extraction of components with temporal

periodic structure is introduced assuming a priori knowledge of the sources’ autocorrelation function.

In this paper, we derive a negentropy-based deflation signal extraction algorithm [5] with smoothness

constraints. The extra smoothness constraint is incorporated in the original negentropy cost function,

using Lagrange multipliers, in order to identify smooth components. The proposed approach derives an

approximate Newton-step algorithm, following the approximation and derivation of FastICA [5].

II. SOURCE SEPARATION OF SMOOTH SIGNALS

A. Definition of smoothness

In mathematics, a function is defined as smooth when it is infinitely (indefinitely) differentiable, i.e.,

has derivatives of all finite orders. Here, the definition of smoothness is extended to describe signals that

feature a slowly-varying temporal structure. This can also be described by absense of high-frequency

content in the Fourier transform domain. In order to avoid possible processing of complex numbers and

the additional computational complexity of a transformation, temporal criteria are defined to describe

smoothness.
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The consecutive samples of a slowly varying (“smooth”) signal should not be much different on

average. Equivalently, the rate of change (usually described by the first derivative) should be relatively

small. Consequently, a signal u(n) can be considered smooth, if the following condition holds:

E{(u(n)− u(n− 1))2} ≤ ρE{u2(n)} (2)

where 0 < ρ < 1 is empirically set. This definition simply states that the squared difference between two

successive samples can not exceed a portion ρ of the average squared amplitude of the signal. Similarly,

the average rate of change (first derivative) in square should not exceed a percentage of the signal’s

energy (variance, in the case of zero-mean signals).

However, this definition may not necessarily be an adequate criterion to identify smooth components

in a linear mixture. If there are many smooth components, any linear combination of them may also

satisfy the smoothness condition, as well as the individual components. Therefore, the extra assumption

of independence is needed, so as to identify only the original smooth components.

B. Principal Component Analysis

A Principal Component Analysis (PCA) step will orthogonalise (decorrelate) and normalise the data to

unit variance [4]. Assuming zero-mean signals, the prewhitening matrix V is formed by the eigenvectors

of the covariance matrix C = E{xxT } and scaled by the inverse square root of their corresponding

eigenvalues. The “whitened” data z are given by:

z = V x (3)

where E{zzT } = I . Decorrelation is not sufficient to separate independent signals [4]. In order to extract

L (L ≤ N ) smooth components ui from the mixture, we need to estimate L projection operators wi:

ui = wT
i z ∀ i = 1, . . . , L (4)

C. Smooth signal extraction

The next step is to formulate a cost function J(w) that will be able to identify smooth orthogonal

projections. The main criterion for the separation will be nonGaussianity, expressed in terms of negentropy.

The smoothness criterion will be added as a constraint to the optimisation problem. The nonGaussianity

cost function is defined [5]:

J1(w) ∝ |E{G(u)} − E{G(v)}| (5)
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where G is a non-quadratic function and v is a zero-mean unit-norm Gaussian variable. The smoothness

criterion is defined by the following cost function:

J2(w) = E{(u(n)− u(n− 1))2} − ρE{u2(n)} (6)

Defining ∆z = z(n)− z(n− 1), the above equation is written as follows:

J2(w) = E{(wT ∆z)2} − ρE{(wT z)2} (7)

In addition, we have to ensure that we are only performing rotation and not any scaling deformation.

Therefore, we impose the following unit-norm constraint to the estimated components u.

J3(w) = ||u||2 − 1 = wT w − 1 (8)

Consequently, the inequality constrained optimisation problem is the following:

max
w

J1(w) (9)

subject to J2(w) ≤ 0 (10)

J3(w) = 0 (11)

The inequality constraint in (10) can be replaced with the equality constraint max(J2(w), 0) = 0, as

introduced for solving Zero Tolerance Problems (ZTP) [2]. To solve this equality constrained optimisation

problem, the method of Lagrange Multipliers is employed. The objective is to formulate an approximate

Newton-type method, following a derivation similar to the original FastICA algorithm [5] and [6]. As

traditionally performed by these methods, the unit-norm constraint (11) is enforced by projection of the

estimated w on the unit-sphere in each iteration (12), therefore, it is not considered in the optimisation

cost function.

w+ ← w+/||w+|| (12)

The constrained optimisation problem is transformed to an unconstrained maximisation problem, using

the Lagrangian function:

J(w, λ) = J1(w) + λmax(J2(w), 0) (13)

The above optimisation problem is addressed using alternate optimisation. Hence, estimates for w and λ

are updated in an alternating manner. That is, given the current estimate for λ, a new estimate for w is
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calculated and given the estimate for w, we update λ. Following the strategy proposed in [8], we perform

gradient ascent to update w and gradient descent to estimate λ.

w+ ← w + η1
∂J(w)

∂w
(14)

λ+ ← λ− η2 max(J2(w), 0) (15)

where η1, η2 are the corresponding learning rates and w+ denotes the new estimate of w. To accelerate

the estimation of w, we can use an approximate Newton step to replace the gradient ascent optimisation

method. A Newton-step is given by the following update:

w+ ← w −
[

∂2J

∂w2

]−1
∂J

∂w
(16)

where, in this case, the gradient vector and the Hessian matrix are estimated, using the following updates

(see Appendix):

∂J

∂w
= µE{zG′(wT z)} (17)

+ λ(E{(wT ∆z)∆z − ρ(wT z)z})(sgn(J2) + 1)

∂2J

∂w2
= µE{G′′(wT z)}I (18)

+ λ(C∆z − ρI)(sgn(J2) + 1)

where µ = sgn(E{G(u)} − E{G(v)}). After calculating the estimate for w, we calculate estimates for

the Lagrange multiplier λ via (15) and then normalise the unmixing vector to unit-norm via (12).

The same procedure can be used to extract other smooth components that exist in the linear mixture.

The above rule is randomly re-initialised but should not converge to the same component. As all solutions

lie in an orthonormal structure, due to prewhitening, the new components should always be orthogonal

to the already estimated components [5]. Hence, the update for the i− th component w+
i should always

be orthogonal to the space spanned by the vectors w1, w2, . . . , wi−1.

w+
i ← w+

i −BBT w+
i (19)

where B = [w1 w2 . . . wi−1].

The proposed method resembles Constrained ICA, proposed in [6]. The difference is that the inequality

constraint is treated as a ZTP problem that results into a simpler approach and seems to be stable. In

addition, the proposed constraint aims at separating “smooth” components, instead of components that

follow some reference signals. Moreover, the proposed smoothness constraint can also be formulated as
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one-lag autocorrelation and therefore one can find connections with second-order methods that exploit

time-structure, such as AMUSE [7]. Nonetheless, the proposed combination of negentropy and second-

order information generally avoids several shortcomings of second-order methods, such as susceptibility

to Gaussian noise and non-distinct eigenvectors of the lag-covariance matrix for certain time-lags [4].

III. EXPERIMENTS

To evaluate the performance of the proposed algorithm, we create an artificial mixture of four signals,

using the following random mixing matrix A. We used two Laplacian noise signals and two “smooth”

signals, a sinusoidal signal of normalised frequency 0.04π rad/sample and an exponentially decaying

saw-tooth signal (Fig. 1), providing a valid example of slowly varying temporal profile, compared to the

Laplacian noise signals. The exponential saw-tooth signal demonstrates that the source signals may not

necessarily be periodic. The dataset consisted of 2000 samples of each source.

A =




2.0128 0.7539 1.1149 0.5482

−0.5079 −0.3650 1.5789 −1.4763

0.1326 0.9526 2.0719 −0.5666

0.9986 −0.4279 −0.2595 1.1143




(20)

The proposed algorithm is used to identify and separate the two “smooth” signals from the mixture.

We used a random initialisation of w, a learning rate η2 = 0.9, µ = 1 for subGaussian sources, ρ = 0.02

and an initial value λ = 60 for the Lagrange multiplier. In addition, the non-quadratic function G(·) =

log cosh(·) was used in the adaptation of w. The algorithm managed to isolate the two desired signals

(Fig. 1) with Signal-to-Noise Ratio of 36.08dB and 35.3dB respectively. The convergence performance of

the algorithm is depicted in Fig. 2 (top), in terms of |wT w+|. The algorithm features similar performance

with random selection of the mixing matrix A and several smooth synthetic signals. The performance

is similar to the FastICA algorithm, despite the addition of another constraint. The estimation of the

Lagrange multiplier λ is slower, due to the gradient update. The algorithm converges even for random

initialisations of λ, however, different choices for λ will influence the speed of convergence. The algorithm

also converges, in the case that µ is estimated during the adaptation, however, the convergence seems to

be less smooth and fast, compared to the previous case.

The choice of ρ can also influence the selection of different smooth components. Some values of ρ may

not fulfill the smoothness constraint for several desired components. In the previous synthetic example,

we estimated the “smoothness” of the two smooth components ρ = E{∆u2}/E{u2}. We measured
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Fig. 1. Four artificial input sources (left), the four mixed signals (middle) mixed using the matrix in (20) and the two “smooth”

sources (sine-wave and exponential sawtooth) identified by the proposed algorithm (right).

ρ1 = 0.0168 for the sine wave and ρ2 = 0.000265 for the exponential saw-tooth. Using the same initial

values for λ and η2 as previously, a choice for ρ > 0.02 will extract both smooth components. A choice

for ρ < 0.02 will extract only the exponential saw-tooth, as the sine-wave does not approximately fulfill

the smoothness constraint. This shows that selectivity of smooth components is possible, using different

values for ρ.

The algorithm is also applied on some real biomedical data. The electrocardiogram (ECG) of a pregnant

woman, used in [1] and initially distributed by De Moor [3], is processed by the proposed algorithm.

The source separation problem is to separate smooth ECG components, belonging to the mother or the

foetus, because they are mixed in the observation signals. The eight input signals are depicted in Fig. 3.

The same initial values for λ and η2 were used, however, ρ was set to 0.4, due to previous smoothness

measurements of the independent components. The algorithm managed to identify two components,

describing the ventricular activity of the mother and a third component capturing both the ventricular

and the atrial activity of the foetus (Fig. 4).

Finally, in the case that the number of requested “smooth” components is greater than their actual

number, the algorithm tended to identify as extra “smooth” components either the Laplacian noise

sources in the synthetic example (as the negentropy term dominated the constraint) or synthetic mixture

components that were not independent in the biomedical example. For more accurate results, the actual
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Fig. 2. Convergence of the estimated unmixing vectors w (top) and the Lagrange multiplier λ (bottom) for the two sources.
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Fig. 3. ECG signals taken by abdominal (x1 − x5) and thoracic (x6 − x8) measurements from a pregnant woman [1], [3].
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Fig. 4. Three smooth components extracted, the first two describe mainly the ventricular activity of the mother and the third

describes the heart activity of the foetus.
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number of “smooth” sources should be known.

IV. CONCLUSION

In this paper, the authors have extended current work in the field of constrained Independent Component

Analysis. A novel constraint was imposed on the negentropy cost function, employed in the original

FastICA algorithm, in order to identify “smooth” components (components of slowly-varying temporal

profile) in instantaneous mixtures. The proposed algorithm imposes the constraint using Lagrange mul-

tipliers, leading to an approximate Newton method that features the stability and performance of the

original FastICA algorithm, with a small delay in convergence due to the adaptation of the Lagrange

multiplier.
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APPENDIX

The first and second-order derivatives of J1(w) and J2(w) are calculated, as follows:

∂J1

∂w
= µE{zG′(wT z)} (21)

∂2J1

∂w2
= µE{G′′(wT z)zzT } ≈ µE{G′′(wT z)}E{zzT }

= µE{G′′(wT z)}I (22)

where µ is the sign of the expression E{G(u)}−E{G(v)}, which can be either manually set or estimated

during the adaptation. The above approximation is viable, due to the prewhitened solution space [5]. The

max(·) function can be expressed, as follows:

max(J2, 0) =





J2, if J2 > 0

0, if J2 ≤ 0
(23)

Therefore, one can derive the following derivatives:

∂

∂w
max(J2, 0) =

∂J2

∂w
(sgn(J2) + 1)/2 (24)

∂2

∂w2
max(J2, 0) =

∂2J2

∂w2
(sgn(J2) + 1)/2 (25)

where
∂J2

∂w
= 2E{(wT ∆z)∆z} − 2ρE{(wT z)z} (26)

∂2J2

∂w2
= 2E{∆z∆zT } − 2ρE{zzT } = 2C∆z − 2ρI (27)
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