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Abstract

Audio source separation is the problem of automated separation of audio

sources present in a room, using a set of differently placed microphones,

capturing the auditory scene. The whole problem resembles the task a

human can solve in a cocktail party situation, where using two sensors (ears),

the brain can focus on a specific source of interest, suppressing all other

sources present (cocktail party problem).

In this thesis, we examine the audio source separation problem using

the general framework of Independent Component Analysis (ICA). For the

greatest part of the analysis, we will assume that we have equal number

of sensors and sound objects. Firstly, we explore the case that the audi-

tory scene is modeled as instantaneous mixtures of the auditory objects, to

establish the basic tools for the analysis.

The case of real room recordings, modeled as convolutive mixtures of the

auditory objects, is then introduced. A novel Fast Frequency Domain ICA

framework is introduced, using two possible implementations. In addition,

a robust Likelihood Ratio Jump solution to the permutation problem of or-

dering sources along the frequency axis is presented. The idea of exploiting

the extra geometrical information, such as the microphone spacing, in or-

der to perform permutation alignment using beamforming is then examined.

Moreover, the idea of “intelligent” source separation of a desired source

is introduced. Previous work on instrument recognition is combined with

source separation, as an attempt to emulate the human brain’s selectivity of

sources. The problem of more sources than sensors is also addressed along

with other extensions of the original framework.

A great number of audio source separation problems can be addressed

successfully using Independent Component Analysis. The thesis concludes

by highlighting some of the as yet unsolved problems to tackle the actual

audio source separation problem in full.
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Chapter 1

Introduction

1.1 What is Audio Source Separation ?

Humans exhibit a remarkable ability to extract a sound object of interest

from an auditory scene. The human brain can perform this everyday task

in real time using only the information acquired from a pair of sensors, i.e.

our ears. Imagine the situation of walking down a busy street with a friend.

Our ears capture a huge variety of sound sources: car noise, other people

speaking, a friend speaking, mobile phones ringing. However, we can focus

and isolate a specific source that is of interest at this point. For example,

we may listen to what our friend is saying. Getting bored, we can overhear

somebody else’s conversation, pay attention to an annoying mobile ringtone

or even listen to a passing car’s engine, only to understand it is a Porsche.

The human brain can automatically focus on and separate a specific source

of interest.

Audio source separation can be defined as the problem of decomposing

a real world sound mixture (auditory scene) into individual audio objects.

The automated analysis using a computer that captures an auditory scene

through a number of sensors is the main objective of this thesis. Although

this is a relatively simple task for the human auditory system, the automated

audio source separation can be considered one of the most challenging topics
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in current research.

A number of different methods were proposed to solve the problem.

1.1.1 Computational Auditory Scene Analysis (CASA)

A possible approach to address the problem will be to analyse and finally

emulate the way humans perform audio source separation using a computer.

Psychoacoustics is a special area of research studying how people perceive,

process and deduce information from sounds. Such studies construct exper-

imental stimuli consisting of a few simple sounds such as sine tones or noise

bursts, and then record human subjects interpretation/perception of these

test sounds [Bre99, Ell96]. Audio source separation may be regarded as one

aspect of a more general process of auditory organization of these simple

structures, which is able to untangle an acoustic mixture in order to retrieve

a perceptual description of each constituent sound source [vdKWB01].

Computational Auditory Scene Analysis (CASA) was one of the first

methods that tried to “decrypt” the human auditory system in order to per-

form an automatic audio source separation system [Ell96, Sma01, vdKWB01,

BC94]. Conceptually, CASA may be divided into two stages.

In the first stage, the acoustic mixture is decomposed into sensory ele-

ments (“segments”). CASA employs either computer vision techniques or

complete ear models (outer and middle ear, cochlear filtering etc) in order

to segment the auditory scene into several audio elements.

The second stage (“grouping”) then combines segments that are likely

to have originated from the same sound source [vdKWB01]. Psychological

and psychoacoustic research of this kind has uncovered a number of cues or

grouping rules which may describe how to group different parts of an audio

signal into a single source, such as i) common spatial origin, ii) common

onset characteristics, i.e., energy appearing at different frequencies at the

same time, iii) amplitude or frequency modulations in the harmonics of a

musical tone, iv) harmonicity or periodicity, v) proximity in time and fre-

quency, vi) continuity (i.e. temporal coherence). Usually, CASA employs
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one or two sensor signals, as the main goal is to emulate humans way of

performing auditory scene analysis [Ell96, Sma01].

1.1.2 Beamforming

Array signal processing is a research topic that developed during the late

70s and 80s mainly for telecommunications, radar, sonar and seismic ap-

plications. The general array processing problem consists of obtaining and

processing the information about a signal environment from the waveforms

received at the sensor array (a known constellation of sensors). Commonly,

the signal environment consists of a number of emitting sources plus noise.

Exploiting time difference information from the observed signals, one can

estimate the number of sources present in the environment, plus the angles

of their arrival towards the array sensor [Sch86]. The use of an array allows

for a directional beam pattern. The beam pattern can be adapted to null

out signals arriving from directions other than the specified look direction.

This technique is known as spatial filtering or adaptive beamforming [FMF92,

VK96].

The reception of sound in large rooms, such as conference rooms and

auditoria, is typically contaminated by interfering noise sources and rever-

beration. One can set up an array of microphones and apply the techniques

of adaptive beamforming in the same way as in telecommunications to per-

form several audio processing tasks. We can enhance the received amplitude

of a desired sound source, while reducing the effects of the interfering sig-

nals and reverberation. Moreover, we can estimate the direction or even the

position of the sound sources in the near field [HBE01] present in the room

(source localisation). Most importantly, if the auditory scene contains more

than one source, we can isolate one source of interest, whilst suppressing the

others, i.e. perform source separation.

Beamforming assumes some prior knowledge on the geometry of the ar-

ray, i.e. the distance between the sensors and the way they are distributed

in the auditory scene. Usually, linear arrays are used to simplify the compu-
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tational complexity. In addition, optimally the array should contain more

sensors than the sources in the auditory scene. Exploiting the information

of the extra sensors using subspace methods, we can localise and separate

the audio sources.

1.1.3 Blind Source Separation

In contrast to CASA and beamforming, blind source separation is a statisti-

cal technique that draws inspiration neither from the mechanisms of auditory

function nor from the geometry of the auditory scene. Blind source sepa-

ration systems can identify sound objects, simply by observing the general

statistical profile of the audio sources.

By definition, in blind separation there is no available a priori knowl-

edge concerning the exact statistical distributions of the source signals; no

available information about the nature of the process by which the source

signals were combined (mixing process). In reality, some assumptions must

be made regarding the source signal distributions and a model of the mixing

process must be adopted. However, these assumptions remain fairly general

without undermining the strength of the method.

A special case of blind source separation is Independent Component Anal-

ysis (ICA), a blind estimation framework that assumes that the sound ob-

jects in the scene are statistically independent. This assumption together

with a relatively general source statistical profile (source prior) can perform

audio source separation. To model the mixing procedure, usually FIR filters

are employed to describe the room’s transfer function between the sources

and the sensors.

In the thesis, we are mainly going to focus on this analysis method and

more specifically on Independent Component Analysis (ICA). However, as

all the aforementioned approaches try to solve essentially the same problem,

it might be beneficial to find some links between these methods in order to

produce a more complete audio source separation system. In the thesis, we

also explore whether blind source separation can incorporate elements from
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beamforming.

1.2 Applications of Audio Source Separation

There are many applications where an audio source separation system can

be useful:

• Noise Suppression for mobile phones/hearing aids. Having unmixed

the sources that exist in an auditory scene, one can remove the un-

wanted noise sources in a multiple source environment. This can serve

as a denoising utility for mobile phones, hearing aids or any other

recording facility.

• Music transcription. Unmixing a recording to the actual instruments

that are playing in the recording is an extremely useful tool for all

music transcribers. Listening to an instrument playing solo rather

the actual recording facilitates the transcription process. This applies

to all automated polyphonic transcription algorithms that have ap-

peared in research. Combining a source separation algorithm with a

polyphonic transcriber will lead to a very powerful musical analysis

tool.

• Efficient coding of music. Each instrument has different pitch, attack,

timbre characteristics, requiring different bandwidth for transmission.

Decomposing a musical signal into sound objects (instruments) will

enable different encoding and compression levels for each instrument,

depending on its characteristics. The result will be a more efficient,

high quality audio codec. This will be more in line with the general

framework of MPEG-4 for video and audio [Aud].

• Medical applications. There are medical applications where an audio

source separation algorithm might be useful, such as the separation of

foetus’s heartbeat from the mother’s in the womb.
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• Surveillance applications. The ability of discriminating between the

audio objects of an auditory scene will enhance the performance of

surveillance applications.

• Remixing of studio recordings. In tomorrow’s audio applications, with

all the powerful tools that can search for songs similar to the ones

we like or that sound like the artist we want, a personal remixing

of a studio recording according to our liking will be possible with

audio source separation. In addition, current stereo recordings can be

remixed in 5.1 speaker configuration (five satellite speakers and one

subwoofer) without using the original masters.

• Post-processing of film recordings. Source separation tools will be very

useful for editing and effects in the film industry. A source separation

algorithm will help post-adjust actors’ voice levels in a film take. Dub-

bing in different languages and any kind of post-processing will also

be facilitated.

1.3 Thesis Overview

This thesis is focused on the audio source separation of real world record-

ings. In this attempt, we address a couple of specific open problems in the

field, as it is explained further on. Our solutions are based on a statistical

method called Independent Component Analysis aiming to decompose linear

mixtures of statistical independent signals.

In Chapter 2, we establish the basic background needed for our anal-

ysis. We decompose the audio source separation problem in three basic

subproblems. First of all, we examine the case of instantaneous mixtures of

equal number of sources and sensors, where we introduce Independent Com-

ponent Analysis (ICA) as a tool to perform source separation. Subsequently,

the problem of more sources than sensors is introduced. Current approaches

on this underdetermined problem based on ICA are presented. Finally, we

define convolutive mixtures as a way to model real world recordings and we
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examine the way solutions for the two previous subproblems have evolved

to address the convolutive mixtures problem.

In Chapter 3, we focus on the frequency-domain ICA (FD-ICA) ap-

proaches to tackle the convolutive mixtures problem. We analyse the scale

and permutation ambiguity in frequency-domain ICA in full, providing a

novel approach to solve these ambiguities, based on superGaussian source

modelling and a Likelihood Ratio correcting mechanism. In addition, a

novel fast Frequency Domain framework is introduced, consisting of two

fast “fixed-point” algorithms, adapted to work in the frequency domain.

The new framework is benchmarked with various real-world recordings. The

aliasing between the frequency bands, introduced by the Fourier transform

is under investigation, as well as the effect of the frame size used on the

estimator’s performance.

In Chapter 4, we investigate the idea of using frequency-domain beam-

forming to eliminate the permutation ambiguity. The idea of interpreting

FD-ICA as a FD-beamformer is examined. Various limitations on the cur-

rently proposed methods are discussed in this chapter, along with novel

Directions of Arrival mechanisms to help align the permutations for FD-

ICA. A preliminary study on the behaviour of source separation algorithm

to sources’ movement is conducted. A novel method to use subspace meth-

ods in the case of equal number of sources and sensors is presented.

In Chapter 5, we explore the novel idea of performing “intelligent”

source separation, i.e. a selective extraction of a specific audio source from

the auditory scene. Previous instrument/speaker modelling techniques are

combined with traditional source separation algorithms to tackle this prob-

lem. A fundamental limitation of traditional instrument recognisers in the

case of source separation is highlighted.

In Chapter 6, we conclude by outlining several of the issues that were

posed, analyzed or introduced in this thesis. Emphasis is given to the novel

ideas presented throughout the text. In addition, some of the current open

problems in the Audio Source Separation framework are presented. Some
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possible routes and solutions for future work in the field are also discussed.

1.4 Publications derived from this work

The following publications have arisen from this work.

Journal papers

• Mitianoudis N. and Davies M., “Audio Source Separation: Problems

and Solutions”, International Journal of Adaptive Control and Signal

Processing, Volume: 18, Issue: 3, pages: 299-314, April 2004.

• Davies M., Mitianoudis N., “A simple mixture model for sparse over-

complete ICA”, IEE proceedings in Vision, Image and Signal Process-

ing, Volume: 151, Issue: 1, pages: 35-43, February 2004.

• Mitianoudis N. and Davies M., “Audio source separation of convolu-

tive mixtures”, IEEE Transactions on Speech and Audio processing,

Volume: 11, issue: 5, pages 489-497, September 2003.

Conference papers

• Mitianoudis N. and Davies M., “Using Beamforming in the Audio

Source Separation Problem”, Seventh International Symposium on Sig-

nal Processing and its Applications, Paris, France, July 2003.

• Mitianoudis N. and Davies M., “Intelligent audio source separation

using Independent Component Analysis”, Audio Engineering Society

Conference, Munich, May 2002.

• Mitianoudis N. and Davies M., “New fixed-point solutions for con-

volved mixtures”, 3rd International Conference on Independent Com-

ponent Analysis and Source Separation, San Diego, California, De-

cember 2001.

• Mitianoudis N. and Davies M., “A fixed point solution for convolved

audio source separation”, IEEE workshop on Applications of Signal
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Processing on Audio and Acoustics, New Paltz, New York, October

2001.

• Reiss J., Mitianoudis N. and Sandler M., “A generalised method for the

calculation of mutual information in time-series”, Audio Engineering

Society Conference, Amsterdam, May 2001



Chapter 2

Blind Source Separation

using Independent

Component Analysis

2.1 Introduction

Assume there are N sources transmitting the signals s1(n), s2(n), . . . , sN (n)

via a medium (air, cable, network etc), where n defines the discrete time

index. At different points of this medium, there are M sensors that capture

the signals x1(n), x2(n), . . . , xM (n), conveyed by the medium.

Source Separation is the process aiming to separate a number of source

signals from a set of observations signals.

We introduce the vectors s(n) = [s1(n) s2(n) . . . sN (n)]T and x(n) =

[x1(n) x2(n) . . . xM (n)]T , representing the source signals and the observed

signals respectively. We can generally model the mixing procedure, intro-

duced by the medium, with an operator A[·]. Assuming there is some addi-

tive noise ε(n), we can express the signals captured by the microphones as

follows:

x(n) = A[s(n)] + ε(n) (2.1)
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Figure 2.1: The general noiseless audio source separation problem.

Assuming that the system is invertible, we can perform separation by

estimating an operator W [·] that can invert the mixing operator A[·].

u(n) = W [x(n)] = W [A[s(n)] + ε(n)] ≈ s(n) (2.2)

More often, the separation procedure is called Blind Source Separation

(BSS). The term blind refers to the fact that the method employs only the

observed signals to perform separation. No other prior knowledge on the

source signals is used. Although this may be considered a drawback, it

is in fact the strength of BSS methods, making them a versatile tool for

exploiting the spatial diversity provided by an array of sensors [Car98a].

In practice, all BSS methods are semi-blind, as some knowledge about the

source models is often used. However, these models tend to be quite general,

thus preserving the versatility of the method.

BSS methods can be applied to other interesting cases as well. In finance,

we can use BSS to find independent factors in financial data [CC01]. In

biomedical applications, BSS is sometimes used to remove artifacts from

biomedical signals, like EEG [MBJS96], or for analysis. In image processing,

BSS can be used to estimate the best independent basis for compression or

denoising [HCO99]. However, one very interesting application is the source

separation of audio signals.

The cocktail party problem is a real-life illustration of the audio source

separation problem, we address in the thesis. The situation of being in a
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cocktail party and using our ears to focus on and separate a specific sound

source out of all the sound sources present in the room (people talking,

background music etc) is defined as the cocktail party problem. Research

has looked into the way our brain tackles this problem in order to emulate

human behaviour on a computer to achieve automatic separation of the

sound objects present in the auditory scene.

In order to tackle the audio source separation problem, researchers have

divided it to many subproblems. Each subproblem can provide with tools to

address the full source separation task. A lot of research has been carried out

over the past years in this field. In this thesis, we will look into three of the

basic subproblems. First of all, we consider the case of having equal number

of sources and sensors in the auditory scene and that the sensors capture

weighted versions of each sound source (instantaneous mixtures). Then, we

look in the case of instantaneous mixtures with fewer sensors than sources

(overcomplete case). Finally, we explore the case of equal number of sources

and sensors but we consider that the sensors capture room reflections as

well (convolutive mixtures). Other subproblems that can be addressed are

dealing with noise and possible dereverb of the sources.

In the following sections, we analyse the basic approaches that were pro-

posed to address the three subproblems mentioned earlier on. This analysis

focuses on the particular methods that influenced our approach on source

separation later on.

2.2 Instantaneous mixtures

2.2.1 Model formulation

One crude approximation is to assume that the mixing system A[·] in (2.1)

is instantaneous, i.e. the microphones capture instantaneous mixtures of the

audio sources present in the auditory scene (see figure 2.2). Assuming that

A is a mixing matrix and ε(n) models some additive noise, the observed

signals x(n) can be modeled as follows:
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x(n) = As(n) + ε(n) (2.3)

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
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


s1(n)

s2(n)

. . .

sN (n)




+ ε(n) (2.4)

In the cocktail party concept, this assumption implies that each micro-

phone captures a portion of each source. Consequently, each observation

is modeled by adding portions of each source. This seems to be a rather

simplified model. However, if we are referring to studio recordings, where

audio signals are mixed using a mixing desk, the mixed signals can be mod-

elled as summed portions of the original sources. In addition, it is a good

starting point for Blind Source Separation algorithms and provides sufficient

background for developing more sophisticated models.

For the rest of the analysis in this section, we will assume that we have

equal number of microphones and audio sources, i.e. N = M . Equally,

we have to assume that the mixing matrix A is a full rank matrix, as in

the opposite case, our problem drops to the more sources than sensors case

(N > M). In addition, we assume that there is no additive noise in the

mixtures. BSS in the presence of noise is usually addressed as a special

separate case of the problem.

2.2.2 Problem Definition

The Blind Source Separation problem is concentrated on retrieving the orig-

inal sources given the observations. In the instantaneous mixtures case, we

only have to estimate the unmixing matrix W . We can easily see that if

W = A−1, we can retrieve the original signals s(n) almost directly.

Given a set of observations x, estimate the unmixing matrix W ≈ A−1,

that can separate the individual sources present via the linear transform:

u(n) = Wx(n) ≈ s(n) (2.5)
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Figure 2.2: The instantaneous mixtures source separation problem.

Usually, our estimate of W should approximate A−1, denoting the quality

of our separation. In order to measure the performance of the separation

algorithm, we introduce the performance matrix P .

P = WA (2.6)

Ideally, we would expect the matrix P to be close to an identity matrix

for an efficient separation algorithm. However, as the separated sources may

not come with the same order and scale as the original sources, the matrix P

should ideally be an identity up to a permutation and scale. We will discuss

the use of the matrix P for measuring source separation performance later

on.

We will now discuss the essentials of two techniques used to perform

source separation of instantaneous mixtures : Principal Component Analysis

(PCA) and Independent Component Analysis (ICA). PCA is essentially a

decorrelation tool, however, not sufficient to perform source separation. On

the other hand, ICA can perform source separation assuming statistical

independence of the sound objects.

2.2.3 Principal Component Analysis

Principal Components Analysis (PCA) is a statistical tool used in many

applications, such as statistical data analysis, feature extraction and data

compression. Its objective is to find a smaller set of variables with less
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redundancy that would represent the original signal as accurately as possi-

ble [HKO01]. In PCA, the redundancy is measured in terms of correlation

between the observed data series. This will be much more emphasised in

the next chapter, where ICA is introduced.

Suppose we have a random vector x with N elements and there are T

observations of this vector. We are going to apply PCA to transform the

signal into uncorrelated components.

For the rest of the thesis, the first analysis step will be to remove possible

bias (DC offset from microphones in the audio case) from the observed data.

This will simplify the calculation of statistical measures further on.

x ← x− E{x} (2.7)

The operator E{} denotes expectation. In the thesis, we will use ex-

pectation for the theoretical analysis. For the practical implementation of

the described algorithms, we will substitute the expectation with the sample

mean or the actual expression inside the expectation, depending on the type

of learning (batch or stochastic respectively), as it will be explained later on.

Assume a random variable u1, which can always be expressed as the

linear product of a “weight” vector w1 and x:

u1 = wT
1 x (2.8)

The variable u1 can be the first principal component of x, only if the variance

of u1 is maximally large. Therefore, we have to estimate the vector w1 that

maximises the variance of u1. However, we have to impose the constraint

that the norm of w1 is always equal to 1, as we are only interested in the

orientation of the vector. This will also ensure the stability of the algorithm.

The optimisation problem is stated as follows:

max
w1

J1(w1), subject to ||w1||2 = wT
1 w1 = 1 (2.9)

where J1(w1) = E{u2
1} = wT

1 E{xxT }w1 = wT
1 Cxw1 (2.10)
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The solution to this optimisation problem is given by the eigenvectors of

the covariance matrix Cx = E{xxT }. Assume that the eigenvalues of Cx are

d1, d2, . . . , dN , where d1, d2, . . . , dN > 0 and e1, e2, . . . , eN are the eigenvec-

tors of Cx, each corresponding to the same index eigenvalue. The solution

maximising (2.9) is :

w1 = e1 (2.11)

We can generalise the problem of (2.7) to m principal components. How-

ever, the constraint that should be added in this case is that each principal

component um should be uncorrelated with all the previously found principal

components. The solutions are the eigenvectors of Cx.

wi = ei for all i = 1, . . . , m (2.12)

As a result, we have found a linear transform to map our observed signals

to m uncorrelated signals (bases) of ascending importance. This decomposi-

tion can have many applications. It can be used for compression, as we can

keep the most important principal components (bases) of the decomposition

and reconstruct the signal using only these.

To calculate the eigenvalues and eigenvectors of the covariance matrix,

we use the Single Value Decomposition method [MS00]. Multiplying the ob-

servations x with a matrix containing the eigenvectors of Cx, we transform

the observations to a set of orthogonal (decorrelated) signals. Multiplying

also with a diagonal matrix containing the inverse square root of the corre-

sponding eigenvalues, we transform the observations to a set of orthonormal

signals (unit variance). This procedure is also known as prewhitening or

decorrelation of the input data.

PCA is also known as the Karhunen-Loéve or Hotelling transform. PCA

can also be applied in feature extraction, in order to reduce the correla-

tion between the elements of the feature vector. It is also proposed as a

pre-processing tool to enhance the performance of Gaussian Mixture Models

(GMM) [LH99] (see also section 5.2.3). If we use all the principal compo-

nents, then this procedure is also known as prewhitening or decorrelation of
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Figure 2.3: Scatter plot of 2 linearly mixed superGaussian data sets (left),

PCA applied to the data sets (right).

the input data.

The whole procedure can be summarised, as follows:

1. Calculate the eigenvalues d1, d2, . . . , dN and the eigenvectors e1, e2, . . . , eN

of the covariance matrix Cx. Ensure that d1, d2, . . . , dN > 0.

2. Form the matrices Vx = [e1, e2, . . . , eN ]T and D = diag(d1, d2, . . . , dN )−0.5.

3. Apply PCA by

uPCA = DVxx = V x (2.13)

In figure 2.3, we can see the scatter plot of two observed audio mixtures

and the effect of PCA on the mixtures. Scatter plot in the 2 × 2 case is a

plot of one observation signal against the other. As we can see after PCA,

the principal components are uncorrelated (i.e. they are orthogonal).

However, we can see that PCA did not separate the sources present in

the mixtures. The sources would have been separated, if their orientations

matched the axis u1, u2. This implies that uncorrelatedness is not a sufficient

criterion for performing source separation.

2.2.4 Independent Component Analysis

Independent Component Analysis (ICA) was firstly introduced as a con-

cept in the early 1980s by J. Herault and C. Jutten without the same
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name [AHJ85]. Many researchers around the world worked on BSS and

contributed to this field. However, it was not until 1994 that P. Com-

mon [Com94] released a paper describing the essentials of this technique

and giving its final name. Hitherto, ICA has been applied in many diverse

fields, as a tool that can separate linearly mixed independent components.

The general ICA framework

ICA assumes the same instantaneous mixtures model, as described in (2.3).

The general ICA framework makes the following assumptions:

1. The source signals s are assumed to be statistically independent. This

implies that:

p(s) = p(s1, s2, . . . , sN ) = p(s1)p(s2) . . . p(sN ) (2.14)

2. At most one of the independent components can have Gaussian statis-

tics. This is mainly because the mixing matrix A is not identifiable for

more than one Gaussian independent components [HKO01, EK03].

For the rest of the analysis in the section, we will assume that A is square

and there is no additive noise. The noisy problem and the more sources than

sensors case are examined separately as special ICA cases.

Ambiguities in the ICA framework

In addition, there are certain ambiguities that characterise all ICA methods.

1. We cannot determine the order of the independent components. This

is also known as the permutation ambiguity. In the instantaneous

mixtures case, this is not a great problem, it becomes rather serious

in other cases (see section 2.4).

2. We cannot determine the variances (energies) of the independent com-

ponents. This is also known as the scale ambiguity. As both A and s

are unknown, any scalar multiplication on s will be lost in the mixing.
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The ambiguities of the ICA model can be expressed mathematically as

follows:

x = As = (AΛΠ)(Π−1Λ−1s) = Aeqseq (2.15)

where Λ is a diagonal matrix with nonzero diagonal elements, illustrating the

scale ambiguity and Π is an identity matrix with permuted rows, illustrating

the permutation ambiguity. As we are only observing x, our estimates u can

be unique up to a permutation and scale. Observation signals x can always

be decomposed into many different Aeq and seq. However, the possible esti-

mates seq will only be different in scale and permutation. In instantaneous

ICA, the ambiguities are not so important, however, we will see that there

are some applications, where these ambiguities need to be addressed.

In section 2.2.3, we saw that prewhitening is actually half ICA. Prewhiten-

ing manages to orthogonalise the sources present in the mixtures, using

second-order statistics. However, PCA is not capable of separating the

sources, as nonGaussian signals are not identifiable using second-order statis-

tics only. The rotation needed to separate the mixtures is achieved using

ICA.

In the next sections, we are going to analyse some of the basic approaches

for performing ICA of instantaneous mixtures.

2.2.5 ICA by Maximum Likelihood Estimation

In this part, we will employ Maximum Likelihood (ML) estimation to sepa-

rate the sources present in the instantaneous mixtures [Car97, PP97]. As-

suming that W ≈ A−1 is the unmixing matrix then, we can write:

x = As and u = Wx (2.16)

Following a basic property of linear transformed random vectors

px(x) = | det(A−1)|ps(s) (2.17)

Assuming that pu(u) ≈ ps(s) and statistical independence between the
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estimated sources u, we can write:

px(x) = |det(W )|pu(u) = | det(W )|
N∏

i=1

pi(ui) (2.18)

Let W = [w1, w2, . . . , wN ]T . Therefore, we can write:

px(x) = |det(W )|
N∏

i=1

pi(wT
i x) (2.19)

We can present the likelihood of W , as a product of the densities at each

observation and optimise the expectation of the log-likelihood. More specif-

ically,

L(W ) =
N∏

i=1

pi(wT
i x)| det(W )| (2.20)

E{log L(W )} = E{
N∑

i=1

log pi(wT
i x)}+ log | det(W )| (2.21)

G(W ) = E{
N∑

i=1

log pi(wT
i x)}+ log |det(W )| (2.22)

We will now try to maximise this likelihood expression with respect to

W . Using a gradient ascent approach, one can show that:

∂G(W )
∂W

= (W T )−1 + E{φ(Wx)xT } (2.23)

where φ(u) = [φ1(u1), . . . , φi(ui), . . . , φn(un)]T and

φi(ui) =
∂

∂ui
log p(ui) =

1
p(ui)

∂p(ui)
∂ui

(2.24)

The update rule for ML estimation can then be:

W ← W + η∆W (2.25)

∆W ∝ (W T )−1 + E{φ(Wx)xT } (2.26)

where η is the learning rate and ∆W is the update of W .
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Amari [ACY96] came to the same result minimising the Kullback-Leibler

(KL) divergence between the joint and the product of the marginal distri-

butions of the estimates. More importantly, he realised that the parameter

space in this optimisation scheme is not Euclidean but has a Riemannian

metric structure. In such a case, the steepest direction is given by the natural

gradient instead. The rule tracing the natural gradient is given by multiply-

ing the right-hand side of (2.26) by W T W . This can also be considered an

attempt to perform a Newton-type descent by approximating the Hessian

inverse (∇2G)−1 ≈ W T W . The proposed natural gradient update algorithm

is:

∆W ∝ (I + E{φ(u)uT })W (2.27)

Activation function choice - Source modelling

The next issue is the choice of the nonlinear function φ(·). Looking at (2.24),

we can see that the activation function is defined by the source signal model

of our source signals. There are many possible choices for the activation

function φ(·). Hyvärinen [Hyv99d] proposes the following:

1. For superGaussian sources (signals with positive kurtosis, e.g. a Lapla-

cian signal):

φ+(u) = −2 tanh(u) (2.28)

2. For subGaussian sources (signals with negative kurtosis, e.g. a uniform

signal):

φ−(u) = tanh(u)− u (2.29)

Learning the update

The learning procedure in these update rules can be divided into two cate-

gories:

Batch Learning In the learning rules described above, the update re-

quires the calculation of several expectations. In addition, we have a number
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of observations of x that will be used to train the algorithm. In practice, the

expectation is approximated by the sample mean of this function over the

observations. This kind of algorithm, where the entire training set is used at

every step of the iteration to form the expectation is called batch learning.

The common batch learning ML-ICA can be summed up, as follows:

1. Assume a training set of Ns vectors x. For each one, calculate u(n) =

Wx(n). Moreover, choose a suitable learning rate η for the data.

2. Calculate ∆W = (I + 1
Ns

∑Ns
n=1 φ(u(n))uT (n))W

3. Update W , i.e. W ← W + η∆W

4. Repeat steps 2,3 until W convergence.

Online Learning For these update rules, it is necessary to compute the

mean values or sample averages of the appropriate functions at each iteration

step. This becomes more difficult, as new observation samples keep on

coming during the iterations. The statistics of the observation vectors may

also be changing and the algorithm should be able to track this. The kind of

algorithms, where the whole data set is not used in batch in each iteration,

but only the latest observation vector, are called on-line algorithms. This

implies that the expectation in the learning rule is dropped. The learning

rule in (2.27) takes a new form, called stochastic gradient, as introduced by

Bell and Sejnowski [BS95].

∆W ∝ (I + φ(u)uT )W (2.30)

This algorithm does not converge deterministically, as it generally tries

to follow the gradient.

These training strategies can be used in every learning rule according to

the application.
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2.2.6 ICA by Entropy Maximisation

Suppose we have a random vector s with density p(s). We can define differ-

ential entropy as follows [CT91]:

H(s) = −
∫

p(s) log p(s)ds (2.31)

A normalised version of entropy is given by negentropy J . Negentropy

measures the distance of a random variable from the Gaussian distribution

of the same covariance. It is defined as follows:

J(s) = H(sGauss)−H(s) (2.32)

Another metric from information theory is mutual information:

I(s1, s2, . . . , sN ) =
N∑

i=1

H(si)−H(s) (2.33)

Mutual Information can be a good metric of statistical dependence [Com94].

If the random variables s1, s2, . . . , sN are statistically independent, the Mu-

tual Information is equal to zero.

Bell-Sejnowski method

Bell and Sejnowski [BS95] proved that we can perform Independent Com-

ponent Analysis by minimising the Mutual Information. Assume that the

unmixing matrix is W and u = Wx. Using certain properties of differential

entropy, we can say that:

I(u1, u2, . . . , uN ) =
N∑

i=1

H(ui)−H(x)− log | det(W )| (2.34)

The optimisation problem is as follows: We have to estimate the unmixing

matrix W that minimises the mutual information in (2.34). In other words,

estimate the W that makes separated components more statistically inde-

pendent. Looking at the definition of differential entropy, we can rewrite it

as follows:

H(ui) = −E{log p(ui)} (2.35)
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Now we can rewrite (2.34) as follows:

I(u1, u2, . . . , uN ) = −
N∑

i=1

E{log p(ui)} −H(x)− log | det(W )| (2.36)

Assuming that our separated sources are statistically independent, thus they

are uncorrelated. Assuming unit variance (can be any constant), we can

write that:

E{uuT } = I ⇒

WE{xxT }W T = I ⇒

det(W ) det(E{xxT }) det(W T ) = 1 (2.37)

which means that det(W ) must be constant, since det(E{xxT }) is not a

function of W .

If we compare equation (2.36) and (2.22), we can say that they look really

similar, apart from the minus sign and the constant term H(x). Hence, if we

try to minimise (2.36), we will end up with the well-known ML estimation

learning rule. Of course, ∂H(x)/∂W = 0, as H(x) is not dependent on W .

Starting from a different criterion of independence, we ended up with

the same learning rule:

∆W ∝ (W T )−1 + E{φ(Wx)xT } (2.38)

This demonstrates that even though we started from different metrics of

statistical independence (mutual information, Kullback-Leibler (KL) diver-

gence, Maximum Likelihood estimation), we conclude to the same update

algorithm for the estimation of Independent Components.

2.2.7 ICA by Maximisation of nonGaussianity

Another way to perform ICA is by using another criterion for indepen-

dence: nonGaussianity. It is strange how we can combine nonGaussianity

with independence, but we will use the Central Limit Theorem to support

this [Hyv99d, HKO01, HO97]. Assume that x = As and a “weight” vector
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w. The following linear product of x and w can be one of the independent

components, if wT was one of the rows of A−1.

u = wT x = qT s (2.39)

As we can see u is a linear combination of the source vectors. The central

limit theorem states that the sum of two (or more) independent random

variables tends to be more Gaussian than any of the independent component

si and becomes least Gaussian when it equals one of the si. Therefore, if

we try to maximise the nonGaussianity of u in terms of w, we will estimate

one of the independent components present in x.

These algorithms are often deflationary. This means that we calculate

the first independent component or unmixing vector w. For the rest, we

initiate the learning rule and after every iteration we try to keep the vector

orthogonal to the previously estimated vectors wi. This is achieved using

an orthogonalisation scheme, like Gram-Schmidt orthogonalisation [MS00].

Moreover, this implies that data are prewhitened before applying ICA.

There are many ways for measuring nonGaussianity.

Measuring kurtosis

Kurtosis is a fourth order cumulant of a random variable. For a random

variable with zero mean, the normalised kurtosis is calculated through the

formula:

kurt(u) =
E{u4}

(E{u2})2 − 3 (2.40)

The basic property of the normalised kurtosis is that for Gaussian ran-

dom variables, kurtosis is zero. For most nonGaussian random variables,

kurtosis is nonzero. As the signals become more superGaussian, kurtosis

becomes positive and increasing in value. In contrast, if the signals become

more subGaussian, kurtosis becomes negative and decreasing in value. For

the rest of the analysis, we will refer to the normalised kurtosis as kurtosis.
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Figure 2.4: Scatter plot of 2 linearly mixed superGaussian data sets (left),

ICA applied to the data sets (right).

Hyvärinen introduced a simplified expression for kurtosis. Multiplying

(2.40) with the data’s squared variance (E{u2})2 (always positive), we get

the following definition (2.41). This expression is easier to optimise, lacking

the denominator.

kurt(u) = E{u4} − 3(E{u2})2 (2.41)

In this approach, we are going to prewhiten the data. This ensures that

the sources are uncorrelated and with unit variance, i.e. that the source sig-

nals are orthonormal. Then we will have to find the angle of wT x, where the

kurtosis is maximised, i.e. the angle of the most nonGaussian component.

Then the orthogonal projection wT x will give us the separated component.

Gradient algorithm using kurtosis First of all, the observation signals

are prewhitened according to (2.13).

z = V x (2.42)

In practice, to maximise the absolute value of kurtosis, we start from a

random vector w and compute the direction at which the absolute value of

the kurtosis of wT z is increasing. Maximising the absolute value of kurtosis

caters for both superGaussian and subGaussian signals. Performing gradient
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Figure 2.5: Scatter plot of 2 linearly mixed subGaussian (uniform) data sets

(left), ICA applied to the data sets (right).
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ascent, under the constraint that ||w||2 = 1 produces the following:

∂|kurt(wT z)|
∂w

= 4sgn(kurt(wT z))[E{z(wT z)3} − 3w||w||2] (2.43)

Since we are interested actually only in the direction of the gradient vector,

we can obtain the following update:

w ← w + η∆w (2.44)

∆w ∝ sgn(kurt(wT z))E{z(wT z)3} (2.45)

w ← w/||w|| (2.46)

Newton-type algorithm using kurtosis (“Fixed-point” algorithm)

To increase speed and robustness, we can develop a Newton-type algorithm

for maximising the kurtosis. The derivation of this algorithm is discussed

in depth in [HO97]. Using the technique of Lagrange multipliers, one can

derive the following fixed-point algorithm

w+ ← E{z(wT z)3} − 3w (2.47)

This is registered by Hyvärinen as the “fixed-point algorithm” for ICA

[HO97]. The algorithm can be summed up as follows:

Estimate one component

1. Prewhiten data, i.e. z = V x.

2. Begin with a random initial vector w that has ||w|| = 1

3. Update w+ ← E{z(wT z)3} − 3w.

4. Normalise w+ ← w+/||w+||

5. Go to step 3, until convergence.

Estimate many components

We can apply the previous algorithm N -times to get all the components

that exist in the mixtures. However, we have to ensure that we are looking
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for different components each time. Even though we randomly initiate the

update rule each time, we may as well fall into the same component. A

solution would be to keep the new estimated component, always orthogonal

to the previously estimated in the N -dimensional space.

1. Prewhiten data, i.e. z = V x.

2. Begin with a random initial vector w that has ||w|| = 1

3. Update w+ ← E{z(wT z)3} − 3w

4. Set w+ ← w+ −BBT w+

5. Normalise w+ ← w+/||w+||

6. Go to step 3, until w+ converges to a value with desired accuracy.

More specifically, B is a projection matrix containing all the vectors w cal-

culated for previous components. The transformation in step 4 forces the

algorithm to converge to a different component from the ones discovered.

This algorithm is basically much faster than the natural gradient or the

Bell-Sejnowski approaches to ICA.

Measuring Negentropy

In section 2.2.6, we defined negentropy as the distance of a random variable

from the Gaussian distribution. It is evident that it can be used as a measure

of nonGaussianity. For a Gaussian random variable, negentropy is zero and

nonnegative for all other types of random variables. Negentropy is more

justified as a measure of nonGaussianity by statistical theory [HKO01].

One problem is that we can not calculate negentropy directly, but instead we

estimate negentropy through approximations. A very good approximation

is:

J(u) ≈ 1
12
E{u3}2 +

1
48

kurt(u)2 (2.48)

In order to generalise this definition using general higher-order cumulants

and not solely kurtosis, we can use a nonquadratic function G and obtain
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an approximation of negentropy as follows:

J(u) ∝ [E{G(u)} − E{G(v)}]2 (2.49)

where v is a Gaussian variable of zero mean and unit variance. Hyvärinen es-

tablished a fixed-point algorithm of maximising negentropy, called FastICA

and is analysed in depth in [Hyv99a].

In order to produce a Newton-type (“fixed-point”) algorithm, one has to

estimate the gradient algorithm. Of course, prewhitening is essential before

any processing. The gradient law maximising (2.49) is

∆w ∝ γE{zg(wT z)} (2.50)

w ← w/||w|| (2.51)

where γ = E{G(wT z)} − E{G(v)}. In addition, g(u) = dG(u)/du. A com-

mon choice for this function, amongst others, can be the following:

g(u) = tanh(au),where 1 ≤ a ≤ 2 (2.52)

To derive the fixed-point algorithm, note that the maxima of the approx-

imation of the negentropy of wT z are typically obtained at certain op-

tima of E{G(wT z)}. The optima of E{G(wT z)}, under the constraint that

||w||2 = 1, are obtained at the point where the gradient of the Lagrangian

is zero (Kuhn-Tucker conditions).

F (z, w) = E{zg(wT z)}+ βw = 0 (2.53)

Applying Newton’s method to solve the equation, we have:

∂F

∂w
= E{zzT g′(wT z)}+ βI ≈ E{zzT }E{g′(wT z)}+ βI = (2.54)

(E{g′(wT z)}+ β)I

Since the data is prewhitened, E{zzT } = I. According to Newton’s method,

the update rule is given by the equation:

w+ ← w − [
∂F

∂w
]−1F (2.55)
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After some work on (2.55), we can finally get the following learning rule,

which is known as FastICA.

w+ ← E{zg(wT z)} − E{g′(wT z)}w (2.56)

The whole FastICA algorithm can be summed up as follows:

Estimate one component

1. Begin with a random initial vector w that has ||w|| = 1

2. Calculate the covariance matrix C of the observed vectors x.

3. Update w+ ← C−1E{xg(wT x)} − E{g′(wT x)}w.

4. Normalise w+ ← w+/
√

(w+)T Cw+

5. Go to step 3, until convergence.

Estimate many components

To estimate all the components, we run the one-unit algorithm N times,

keeping the new estimates orthogonal to the previously estimated compo-

nents.

1. Begin with a random initial vector w that has ||w|| = 1

2. Calculate the covariance matrix C of the observed vectors x.

3. Update w+ ← C−1E{xg(wT x)} − E{g′(wT x)}w.

4. Correct w+ ← w+ −∑p
j=1 w+T Cwiwj

5. Normalise w+ ← w+/
√

(w+)T Cw+

6. Go to step 3, until w+ converges to a value with desired accuracy.

Instead of calculating every independent component separately, some-

times it is more efficient to calculate all components simultaneously. We

can use different learning rules (2.56) for all independent components and

apply a symmetric decorrelation to prevent the algorithms from converging
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to the same components. This can be accomplished by using a symmetric

decorrelation:

W ← W (W T W )−1/2 (2.57)

where W = [w1, w2, . . . , wN ] is the matrix of the vectors wi.

2.2.8 ICA by Tensorial Methods

Assume a zero mean random variable x and the characteristic function

f̂(ω) = E{exp(jωx)}. We expand the function log f̂(ω) to a Taylor series,

as follows:

log f̂(ω) = κ1(jω) + κ2(jω)2/2! + · · ·+ κr(jω)r/r! + . . . (2.58)

The coefficients κi are called ith-order cumulants. In multivariate situations,

cumulants are called cross-cumulants, similar to cross-covariances. Assume

we have the BSS scenario, as introduced in section 2.2.1. Kurtosis of the sep-

arated signals can be expressed as a fourth-order cross-cumulant. Following

some properties, we get:

kurt(
∑

i

wixi) = cum(
∑

i

wixi,
∑

j

wjxj ,
∑

k

wkxk,
∑

l

wlxl) (2.59)

=
∑

ijkl

w4
i w

4
j w

4
kw

4
l cum(xi, xj , xk, xl) (2.60)

The tensor is a multi-linear operator defined by the 4th order cumulants,

and it is analogous to the covariance matrix for second order moments. The

tensor F = [Fij ] of a matrix Ξ = [ξkl].

Fij =
∑

kl

ξklcum(xi, xj , xk, xl) (2.61)

As the tensor is a multi-linear operator and due to the symmetry of the cu-

mulant structure, eigenvalue decomposition is always possible [Car90]. As-

sume that Υ is an eigenmatrix and λ the corresponding eigenvalue, we have

that the tensor F can be decomposed as follows.

F = λΥ (2.62)
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Assume V is the prewhitening matrix and z = V As = W T s are the prewhitened

data. After prewhitening, the matrices W and W T = V A will be orthog-

onal, where W is the estimated unmixing matrix. Assume that wm is the

mth row of W .

One can show that any matrix in the form Υ = wmwT
m can be an eigen-

matrix of the following tensor F = [Fij ], while the corresponding eigenvalues

being the kurtoses of the independent components [Car90, CS93, HKO01].

Fij =
∑

kl

Υklcum(zi, zj , zk, zl) =
∑

kl

wmkwmlcum(zi, zj , zk, zl) = (2.63)

= · · · = wmiwmjkurt(sm) (2.64)

As a result, if we knew the eigenmatrices of the tensor, we could esti-

mate the rows of the unmixing matrix W , i.e. the independent components.

However, if we do not have distinct eigenvalues, then the eigenmatrices are

not uniquely defined and consequently the problem is difficult to solve.

Joint Approximate Diagonalisation of Eigenmatrices (JADE)

To overcome this problem, one can view eigenvalue decomposition as diag-

onalisation. Assuming that the ICA model holds, then the matrix W can

diagonalise the tensor F of any matrix Ξ, i.e. the matrix Q = WFW T is

diagonal. This is because F is a linear combination of terms wiwi
T [CS93].

To approximately diagonalise the matrix Q, we can either minimise the en-

ergy of the off-diagonal terms, or maximise the energy of the diagonal terms.

Therefore, Cardoso [CS93] proposed to optimise the following cost function:

max
W

JJADE(W ) = max
W

∑

i

||diag(WFiW
T )||2 (2.65)

where Fi denotes the tensor of different matrices Ξi. For the choice of Ξi,

one optimal choice can be the eigenmatrices of the tensor, as they span the

same subspace as the tensor, thus retaining all the information about the

cumulants. It can be shown that this method is equivalent to minimising
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nonlinear correlations (see 2.2.9) [HKO01]. This is the basic principle be-

hind the JADE algorithm. JADE can be very slow and computationally

expensive with high dimensional data. However, for low dimensional data,

it offers a very accurate alternative to the “fixed-point” and natural gradient

algorithms.

2.2.9 ICA by Nonlinear Decorrelation

Assume two random variables u1 and u2 and two functions f(u1) and g(u2),

where at least one is nonlinear. We can say that u1 and u2 are nonlinearly

decorrelated [HKO01], if

E{f(u1)g(u2)} = 0 (2.66)

Nonlinear decorrelation can be a criterion for statistical independence. The

variables u1 and u2 are statistically independent if

E{f(u1)g(u2)} = E{f(u1)}E{g(u2)} = 0 (2.67)

for every continuous function f, g that are zero outside a finite interval. We

can also show that, in order to satisfy the independence criterion, the func-

tions f, g should be odd and u1, u2 must have symmetrical probability density

functions. In this general framework, we need to address the following: a)

how can we choose f, g to satisfy (2.67) and b) how can we nonlinearly decor-

relate the variables u1, u2. In the next paragraph, we examine two attempts

to address these questions.

Hérault-Jutten Algorithm

Assume the 2 × 2 BSS case of (2.3). Hérault and Jutten [AHJ85] devised

the following feedback network to unmix the sources.


 u1

u2


 =


 x1 −m12u2

x2 −m21u1


 =


 x1

x2


−


 0 m12

m21 0





 u1

u2


 (2.68)
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u = x−Mu ⇒ u = (I + M)−1x (2.69)

Hérault and Jutten adapt m12,m21 to reduce nonlinear correlation.

∆m12 = ηf(u1)g(u2) (2.70)

∆m21 = ηf(u2)g(u1) (2.71)

A common choice for f(u) = u3 and g(u) = tan−1(u). This is a very elegant

pioneering solution, however, the inversion is computationally expensive (al-

though (I + M)−1 ≈ (I −M). In addition, the number of sources has to be

small and the global behaviour is not guaranteed.

Cichocki-Unbehauen Algorithm

Based on the previous approach, Cichocki et al [CUMR94] proposed a feed-

forward network to estimate the unmixing matrix W . The update is given

by

∆W = η[Λ− f(u)g(uT )]W (2.72)

The matrix Λ is diagonal, whose elements determine the amplitude scal-

ing for the unmixed signals. For the two nonlinear functions, the authors

propose the hyperbolic tangent and a polynomial. Moreover, they proved

that:

Λii = E{f(ui)g(ui)} (2.73)

If the algorithm converges to a nonzero unmixing matrix, then the sepa-

rated sources are nonlinearly decorrelated and hopefully independent. Again,

using f(u) = tanh(u) and g(u) = u, we get the natural gradient algorithm,

starting from a different perspective.
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2.2.10 Performance Evaluation of ICA methods for instan-

taneous mixtures

Performance metrics

Performance Matrix P One can use the Performance Matrix P, de-

scribed in (2.6), to evaluate ICA algorithms. Observing the performance

matrix, one can get the new permutation of the separated sources and also

get an estimate of the separation quality. An example follows: Assume we

have 3 speakers, linearly mixed, using the following random mixing ma-

trix A. Running the fixed-point algorithm (see 2.2.7), we get the following

unmixing matrix W .

A =



−0.72 0.20 −0.96

−0.59 −0.45 0.49

−0.60 −0.60 −0.10


 ,W =




0.62 −0.76 0.13

0.39 0.16 −0.90

−0.67 −0.61 −0.40




P = WA =



−0.07 0.40 −1.00

0.15 0.54 −0.20

1.09 0.38 0.39




Looking at P more closely, we can see that there is a dominant value

in every row or column. That corresponds to the separated component.

Ideally, the other values in the matrix should be zero. Usually they are not,

which implies that the separation is not perfect. The relation between the

dominant terms in every row/column with the other can be actually a metric

for performance evaluation. Moreover, P shows us the relation between

the permutation of the original and separated sources. The position of the

greatest term of every row in the matrix denotes the mapping. For example,

in the first row (separated source u1), the greatest term is in column 3. This

implies that the third original signal s3 came out as the first separated signal.

Equally, u2 corresponds to s2 and u3 to s1.

SNR measurement In addition, one can use Signal-to-Noise Ratio (SNR)

as a separation quality measurement. In other words, we compare the energy
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of the original signal with the energy of the difference, using the formula:

SNRICA = 10 log
∑

n s2(n)∑
n(s(n)− u(n))2

(2.74)

Due to the ICA scale ambiguity (amplitude and sign), we must ensure that

we compare signals with the same variance and polarity.

Performance Index Moreover, another statistical performance metric

was established, exploiting the performance matrix P [HKO01]. As previ-

ously mentioned, an ideal matrix P is defined so that on each of its rows

and columns, only one of the elements is equal to unity, while all the other

elements are zero. Clearly, the following index is minimum for an ideal

permutation matrix. The larger the value E is, the poorer the statistical

performance for the algorithm.

E =
m∑

i=1

(
m∑

j=1

|Pij |
maxk |Pik| − 1) +

m∑

j=1

(
m∑

i=1

|Pij |
maxk |Pkj | − 1) (2.75)

Separation quality Schobben et al [STS99] discussed the various prob-

lems involved with the measurement of BSS methods’ performance and pro-

posed a series of performance indexes. However, their indexes require extra

calculations, as they actually intervene in the model. The separation quality

of the jth separated output can be defined as:

Sj = 10 log
E{u2

j,sj
}

E{(∑i6=j uj,si)2}
(2.76)

with uj,si the jth output of the whole mixing-unmixing system when only si

is active.

Mutual Information measurement Moreover, one could use the mu-

tual information, as a measurement of statistical independence and therefore

as a performance index, as proposed by Reiss et al [RMS01]. A fast method

to estimate the mutual information of time-series was developed to facilitate

the calculation.
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However, all these metrics can be used only in the case that both the

original sources and the mixing matrix are known. Just in the case of SNR,

only the original and the separated sources are required.

2.3 More sources than sensors

2.3.1 Problem Definition

In the following analysis, we will assume the instantaneous mixtures problem,

as introduced in section 2.2.1. However, we will assume that the number of

microphones M is less than the number of sources N (overcomplete case).

Our model can be represented by:

x(n) = As(n) (2.77)

where A = [a1, a2, . . . , aN ] is a M ×N mixing matrix.

In overcomplete source separation, however, you can not estimate the

unmixed sources using the inverse of the mixing matrix, as in this case A

is not square. One can use the pseudoinverse of A to get an approximate

estimate by u(n) ≈ A+x(n) = AT (AAT )−1x(n). In literature, however, the

pseudoinverse is mainly used to initialise the actual estimation algorithm.

As a result, in overcomplete ICA, there are two simultaneous problems, one

has to solve:

1. Estimate the mixing matrix A, given an estimate of u(n).

2. Estimate the source signals u(n), given an estimate of A.

2.3.2 Is source separation possible?

The linear blind source separation problem, in general, has two theoretical

issues: the identifiability and the separability of the problem. Identifiability

describes the capability of estimating the structure of the linear model up

to a scale and permutation and separability the capability of retrieving the

sources using the estimate of the mixing model. According to Eriksson and
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Koivunen [EK03], the “square” linear ICA model (N = M) is identifiable if

a) all source signals are nonGaussian or b) A is full rank and at most one

source is Gaussian.

In the case of overcomplete ICA, it is still possible to identify the mixing

matrix from the knowledge of x alone, although it is not possible to uniquely

recover the sources s. Although, assuming a probability distribution for s,

one could obtain estimates of the sources, by maximising the likelihood of

p(x|A, s). Eriksson and Koivunen [EK03] proved that the general linear ICA

model is unique up to the following assertions: a) The model is separable,

b) all source variables are nonGaussian and rank(A) = M and c) none of

the source variables have characteristic function featuring a component in

the form exp(Q(u)), where Q(u) is a polynomial of degree at least 2 .

As it is evident from the above analysis, Gaussianity is something that

can inhibit the identifiability and separability of the linear ICA model. In the

overcomplete case, nonGaussianity (especially superGaussianity) is much

more essential to facilitate the source separation task. In the case of audio

signals, that will be our main interest, we have certain time-domain statis-

tical profile. Speech signals tend to have a Laplacian distribution, due to

the many pauses that exist in the nature of speech. Musical signals tend to

have a more Gaussian-like structure that might not affect the ICA algorithm

in the square case, however, in the overcomplete case the extra Gaussian-

ity may affect the identifiability of the problem (see figure 2.7(left)). The

solution for signals with such statistics for overcomplete ICA is to use a

linear, sparse, superGaussian, orthogonal transform Tsparse{·}. A sparse

transform linearly maps the signal to a domain where most of the values are

very small, i.e. concentrates the energy of the signals to certain areas. This

sparse transform should also be linear. As a result, the mixing matrix A

remains unchanged by the signal transformation.

x = As ←→ Tsparse{x} = ATsparse{s} (2.78)

where Tsparse{x} = [Tsparse{x1} . . . Tsparse{xM}]T .
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Figure 2.7: 3 audio sources 2 sensors scenario in the time domain (left) and

the sparse MDCT domain (right).

It is clear that the estimation of A in the transform domain is equivalent

to the estimation in the time-domain, however, with sparser statistics. If the

transform is invertible, one can perform the estimation of u in the transform

domain, otherwise the estimation has to be performed in the time-domain,

given the estimate of A.

There are many candidate transforms for this task. The Fourier trans-

form is a sparse, linear, orthogonal transform, however, it is not preferred

due to the complex outputs. The Discrete Cosine Transform (DCT) is an

even sparser, linear, orthogonal transform and can be much more preferable

to the Fourier transform as it is real. Using the Modified DCT (MDCT) [DS03],

a transform that is applied on shorter frames to account for stationarity, can

enhance sparsity. In figure 2.7(right), we can see a mixture in the MDCT

domain. Sparsity facilitates the estimation of A, as now the orientation of

the components is visible. Another candidate can be the Wavelet transform,

as proposed by Zibulevsky et al [ZKZP02]. Using the sparsest subset of the

wavelet decomposition, one can estimate the mixing matrix in a sparse envi-

ronment, assuming that the sources are all active in that subset. We should

note that the choice of sparse transform is clearly signal class dependent.

In our analysis, we will use the MDCT transform as a sparse transform,

unless otherwise stated. Next, we will look at methods that try to tackle
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the two subproblems of overcomplete ICA.

2.3.3 Estimating the sources given the mixing matrix

This is a problem that does not exist when M = N , as you can invert the

matrix and get accurate estimates of your sources. In the M ≥ N case,

the pseudoinverse can give accurate estimates of the sources. However, in

the overcomplete case, the estimates one can get from the pseudoinverse are

not accurate. Therefore, we have to resort to other methods to solve the

problem.

ML estimation

One solution is to use Maximum Likelihood (ML) or Maximum A Posteri-

ori (MAP) estimation to retrieve our sources, given the mixing matrix A.

Imposing a source model, our sources can be retrieved by:

u = arg max
u

P (u|x, A) = arg max
u

pu(u)P (x|A, u)P (u) (2.79)

Therefore, in the noiseless case the sources can be retrieved by

∆u ∝ −∂ log P (u)/∂u (2.80)

However, this gradient based algorithm is not very fast.

Linear Programming

As explained earlier on, usually we employ sparse linear transforms to en-

hance the quality of separation. Therefore, a Laplacian model for the sources

p(u) ∝ exp−|u| can be applied. A good starting point for the algorithm can

always be the pseudoinverse solution. However, as we are dealing with very

sparse sources, we can initialise the algorithm with zero signals (very sparse

source) that might be closer to the model than the pseudoinverse, or any

other random initialisation. Lewicki [LS98] proved that source estimation,
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assuming Laplacian priors, can be reduced to minimising the L1-norm of

the estimated sources.

min
u
||u||1 = min

ui

∑

i

|ui| = min
u

[1 1 . . . 1]|u| (2.81)

subject to x = Au

This can be transformed and solved as a linear programming problem.

However, solving a linear programming problem for every time sample can be

quite computationally expensive and very slow. This can be quite important

when you are updating the mixing matrix as well, and you want to find an

estimate for the sources, for each estimate of A. In that case, we aim for a

solution that can be fast and accurate.

Simplified L1-norm minimisation

In order to reduce the computation load of L1-norm minimisation (linear

programming), it is equivalent to solve the problem as follows: Assume that

only M sources at maximum can be active at each time sample. Now, we

only have to find which of the N sources are more likely to be active in

each time slot. As a measure of likelihood for sparse sources, we will use

the L1-norm ||u||1 =
∑

i |ui(n)|. For example, for the case of 2 microphones

and 3 sources, assuming that A = [a1 a2 a3], we will have:

ũ1(n) = [a1 a2]
−1x(n)

ũ2(n) = [a2 a3]
−1x(n)

ũ3(n) = [a1 a3]
−1x(n) (2.82)

Then form

ÃLi(n) = ||ũi(n)||1 (2.83)

Then, the ML solution would be the one that mini Li(n). Then, you recon-

struct the separated sources for each time slot, by using the corresponding

ui(n) and pad the other M −N sources with zeros.
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This scheme is less computationally expensive than linear programming

for small number of sources and sensors. As the number of sources and

sensors increases, finding all possible combinations of active sources becomes

rather complicated and a proper linear programming solution might be more

appropriate in this case.

2.3.4 Estimating the mixing matrix given the sources

Clustering Approaches

Hyvärinen’s Approach Hyvärinen [Hyv98] in his analysis shows that

maximising the log p(A, s) is not an approximation but equivalent to the

log-likelihood that Lewicki tries to maximise in [LS98].

Moreover, Hyvärinen forms a very efficient clustering algorithm for su-

perGaussian components. In order to perform separation, he assumes that

the sources are very sparse. Therefore, for sparse data you can claim that at

most only one component is active at each sample. In other words, we at-

tribute each point of the scatter plot to one source only. This is a competitive

winner-take-all mechanism.

1. Initialise A = [a1, a2, . . . , aN ].

2. Collect the points that are close to the directions represented by ai.

For all ai find the set of points Si of x that

|aT
i x(n)| ≥ |aT

j x(n)|, ∀ j 6= i (2.84)

3. Update

ai ←
∑

nεSi

x(n)(aT
i x(n)) (2.85)

ai ← ai/||ai||, ∀ i = 1, . . . , N (2.86)

4. Repeat 2,3 until convergence.

As we can see, this is a clustering approach, as we force the direction

of the mixing matrix to align along the concentration of the points in the

scatter plot.
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Figure 2.8: Hyvärinen’s clustering algorithm results for the 2 sensors-3

sources scenario.

To estimate the sources in this case, all we have to do is construct the

vectors xSi(t) that contain all the vectors from x(t) corresponding to each

Si. Then, the estimates are given by:

ui = aT
i xSi (2.87)

Zibulevsky’s Approach Zibulevsky et al [ZKZP02] proposed another

clustering solution for overcomplete source separation. As discussed earlier,

the use of a linear sparse transform is required to enhance the performance of

overcomplete ICA. One could use the very sparse Modified Discrete Cosine

Transform (MDCT). Zibulevsky proposes the use of the sparsest subset of

the wavelet decomposition. His approach

1. Assume a sparse transform Tsparse{x} and

z = Tsparse{x} (2.88)
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2. Normalise vectors to unit sphere (M-dimensional sphere)

z ← z/||z|| (2.89)

A useful hint is to remove data points with ||z|| ≈ 0.

3. Map all the points to the half unit sphere, by taking the absolute value

of the first element of the vector z:

z(1) ← |z(1)| (2.90)

4. Use a clustering algorithm (K-means, Fuzzy C-means) to find the cen-

ter of clusters formed on the unit half-sphere. The centers of the

clusters will give you approximately the columns of A.

5. Estimate sources using linear programming or the simplified linear pro-

gramming, as explained earlier on. We can even use other clustering

algorithms.

The drawback of this method is that it is not accurate enough, as by

projecting the data point to the unit-sphere, we are losing information. For

example, if two sources are located very closely, even if they are very sparse,

the projection to the unit sphere might create a single cluster instead of

two separate clusters. An example of the 2D case can be seen in figure 2.9,

where although we can visually separate the two sparse signals from their

scatter plot, the projection on the unit circle forms one cluster.

Bayesian Approaches

Maximising joint likelihood In [LS98], Lewicki formed a Bayesian ap-

proach to overcomplete ICA. He also explored the general case with additive

noise ε.

x = As + ε (2.91)
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Figure 2.9: Zibulevski’s clustering approach can be confused when two

sources are very closely located.

Assuming that the noise is Gaussian and isotropic with covariance matrix

Cε = σ2
ε I, one can write down that:

log p(x|A, s) ∝ − 1
2σ2

ε

(x−As)2 (2.92)

Now, we have to deal with two problems, as stated before: a) estimate

A, b) estimate u. We have discussed so far various methods for getting an

estimate of the sources, given an estimate of A. Now, Lewicki explored a

way to get an estimate of A, given an estimate of the sources. Thus, Lewicki

thought of maximising the following:

max
A

p(x|A) = max
A

∫
p(u)p(x|A, u)du (2.93)

After approximating p(x|A) with a Gaussian around u and a mathemati-

cal analysis, Lewicki derives a gradient algorithm that resembles the natural

gradient.

∆A ∝ −A(φ(u)uT + I) (2.94)

where φ(u) represents the activation function. Assuming sparse priors,

Lewicki proposed φ(u) = tanh(u). Lewicki claims that this approach can

work for sources captured in the time-domain, however, it is bound to have

better performance in a sparser domain, as analysed earlier. The algorithm

can be summarised as follows:
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1. Randomly initialise A.

2. Initialise source estimates u either with the pseudoinverse or with zero

signals.

3. Given the estimated u, get a new estimate for A.

A ← A− ηA(φ(u)uT + I) (2.95)

where η is the learning rate.

4. Given the new estimate for A, find a new estimate for u either by

solving the linear programming problem for every sample n, or the

simplified linear programming, as explained earlier on.

5. Repeat steps 3,4 until convergence.

As this is a gradient algorithm, its convergence depends highly on the choice

of learning rate and on signal scaling. This two-step method demonstrated

slow convergence in our simulations.

Mixtures of Gaussians - Attias’ approach Attias [Att99] proposed to

model the sources as a Mixture of Gaussian (MoG) and used an Expectation-

Maximisation (EM) algorithm to estimate the parameters of the model. A

MoG is defined as:

p(si) =
K∑

k=1

πikNsi(µik, σ
2
ik) (2.96)

where K defines the number of Gaussians used, µik and σik denote the

mean and standard deviation of the kth Gaussian and πik ∈ [0, 1] the weight

of each Gaussian. Always,
∑K

k=1 πik = 1. To model the joint density func-

tion p(s), we issue a vector q(t) = [q1(t), q2(t), . . . , qN (t)]. Each qk(t) can

take a discrete value from 1 to K and represents the state of the mixture of

the kth source at time t. The joint density function p(s) is itself a MoG in

the following form:

p(s) =
N∏

i=1

p(si) =
∑
q1

· · ·
∑
qN

π1,q1 . . . πL,qN

N∏

i=1

Nsi(µi,qi , σ
2
i,qi

) (2.97)
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Assuming additive Gaussian noise of zero mean and covariance J , one

can exploit the Gaussian structure to express p(x|A). Attias shows that

p(x|A, J) =
K∑

q1=1

· · ·
K∑

qN=1

π1,q1 . . . πN,qN
× . . . (2.98)

×Nx(a1µ1,q1 + · · ·+ aNµN,qN
, J + a1a

T
1 σ2

1,q1
+ · · ·+ aNaT

Nσ2
N,qN

)

where A = [a1 . . . aN ]. In order to estimate the parameters of this model

µi,qi , σi,qi , πi,qi , A, J , Attias chose to minimise the Kullback-Leibler distance

between the model sensor density p(x|A, J) and the observed one po(x).

He developed an Expectation - Maximisation (EM) algorithm to train the

parameters of the model. Again, the whole training procedure is divided

into two steps that are repeated for each iteration: a) Adapt the parameters

of the model, b) estimate the sources.

Adapt the model

A = E{xuT }(E{xxT })−1 (2.99)

J = E{xxT } − E{xuT }AT (2.100)

µi,qi =
E{p(qi|ui)ui}
E{p(qi|ui)} (2.101)

σ2
i,qi

=
E{p(qi|ui)u2

i }
E{p(qi|ui)} − µ2

i,qi
(2.102)

πi,qi = E{p(qi|ui)} (2.103)

p(qi|ui) =
πi,qip(ui)∑N

j=1 πj,qjp(uj)
(2.104)

Estimate the sources

Attias proposed a MAP-estimator, maximising the source posterior p(u|x).

More specifically,

u = arg max
u

log p(x|u) +
N∑

i=1

log p(ui) ⇒ (2.105)

∆u = ηAT J−1(x + Au)− ηφ(u) (2.106)

where η is the learning rate and φ(u) = ∂ log p(u)/∂u, incorporating the

source model.



2.4 Convolutive mixtures 49

All the Bayesian approaches tend to give complete and more general

solutions. However, they tend to be very slow in convergence, compared to

the clustering approaches.

2.4 Convolutive mixtures

2.4.1 Problem Definition

In the previous sections, we have mentioned a lot of methods based on the

ICA framework that can perform high-quality separation of linearly mixed

sources. However, if we try to apply these techniques on observation signals

acquired from microphones in a real room environment, we will see that

all actually fail to separate the audio sources. The main reason is that the

instantaneous mixtures model does not hold in the real room scenario.

Looking at figure 2.10, we can see that in a real recording environment

sensors (microphones) record delayed attenuated versions of the source sig-

nals, apart from direct path signals. This is mainly due to reflections on the

surfaces inside the room (multipath signals). In this sense, the observation

signals can be more accurately modelled as:

x1(n) = a11(1)s11(n− T 1
11) + · · ·+ a11(K1)s11(n− TK1

11 ) +

+a12(1)s12(n− T 1
12) + · · ·+ a12(K2)s12(n− TK2

12 )

x2(n) = a21(1)s21(n− T 1
21) + · · ·+ a21(K3)s21(n− TK3

21 ) +

+a22(1)s22(n− T22) + · · ·+ a22(K4)s22(n− TK4
22 ) (2.107)

where T k
ij model the kth time delay from the jth source, as observed by the

ith microphone. In addition, the coefficients aij(k) model the room transfer

function between the jth source and the ith microphone. Subsequently, we

can generalise for the M microphones - N sources case. Assuming the

maximum delay of all transfer functions is K, we can write that
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Figure 2.10: The real room source separation scenario.

x1(n) =
∑K

k=1 a11(k)s11(n− k) + · · ·+ ∑K
k=1 a1N (k)s1N (n− k)

x2(n) =
∑K

k=1 a21(k)s21(n− k) + · · ·+ ∑K
k=1 a2N (k)s2N (n− k)

. . . . . . . . . . . . . . . . . . . . .

xM (n) =
∑K

k=1 aM1(k)sM1(n− k) + · · ·+ ∑K
k=1 aMN (k)sMN (n− k)

(2.108)

Equivalently, we can write

x1(n) = a11 ∗ s1(n)+ . . . +a1N ∗ sN (n)

. . . . . . . . .

xM (n) = aM1 ∗ s1(n)+ . . . +aMN ∗ sN (n)

(2.109)




x1(n)

x2(n)

. . .

xM (n)




=




a11 . . . a1N

a21 . . . a2N

. . . . . . . . .

aM1 . . . aMN



∗




s1(n)

s2(n)

. . .

sN (n)




(2.110)

x(n) =




a11 . . . a1N

a21 . . . a2N

. . . . . . . . .

aM1 . . . aMN



∗ s(n) (2.111)
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The above equation describes the observation signals in the real room

case. These mixtures are often referred to as convolutive mixtures. In our

case and in most ICA applications, the room transfer function aij is usually

modelled by a high-order FIR filter. To increase accuracy, we could use

lower-order IIR filters to model room acoustics. However, as IIR filters are

less stable and require minimum-phase mixing, we will model the channel

using FIR filters [Chr92]. The length of an average room transfer function

is usually > 250msec, depending on the actual room size and positions of

the sources/sensors in the room [Sma97].

The problem we are called to solve in the real room case is how we

can unmix the convolutive mixtures using the general ICA framework, as

described in 2.2.4. Assuming FIR mixing procedures, we will look for FIR

unmixing solutions as well. As a result, we want to estimate FIR filters wij

that can unmix the sources.

u(n) =




w11 . . . w1N

w21 . . . w2N

. . . . . . . . .

wM1 . . . wMN



∗ x(n) (2.112)

In our analysis, we will always assume equal number of microphones and

sensors for the convolutive case, i.e. N = M . Again, we will assume no

additive noise in our model.

2.4.2 Time-Domain Methods

A typical time domain method tries to estimate the unmixing coefficients

using the signals in the time domain. An equivalent form of the convolutive

mixtures model in (2.112) is :

xi(n) =
N∑

j=1

K∑

k=1

aijksj(n− k) ∀i = 1, . . . , N (2.113)

We can separate the mixtures, by estimating unmixing filter wij , follow-

ing a feedforward or equally an FIR filter architecture, as expressed by the
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following equation.

ui(n) =
N∑

j=1

K∑

k=1

wijkxj(n− k) ∀i = 1, . . . , N (2.114)

Torkkola [Tor96] proposed a feedback architecture to solve the delay-

compensation problem. He also generalised the feedback architecture to

remove temporal dependencies, stabilising the cross-weights. Lee [LBL97]

proposed the following IIR separation structure, assuming that this struc-

ture can only invert minimum-phase acoustic environments (all zeros of the

mixing system and consequently all poles of the unmixing system are inside

the unit circle).

ui(n) = xi(n)−
N∑

j=1

L∑

k=0

wjkuj(n− k) ∀i = 1, . . . , N (2.115)

or equivalently

u(n) = x(n)−W0u(n)−
L∑

k=1

Wku(n− k) (2.116)

The learning procedure, i.e. the estimation of W , is performed by max-

imising the joint entropy H(g(u)), where g(·) is a sigmoid function. In a

similar sense to Bell-Sejnowski’s rule, taking into account Amari’s natural

gradient approach, Lee proposes the following learning rule:

∆W0 ∝ −(I + W0)(I + E{φ(u)uT }) (2.117)

∆Wk ∝ −(I + Wk)E{φ(u)uT (n− k)}, ∀ k = 1, . . . , L (2.118)

where φ(u) = −∂ log p(u)/∂u. All these updates are performed in the

time-domain.

There are certain drawbacks in using time-domain methods in the source

separation context. From adaptive filter theory [Hay96], we know that time

domain algorithms are very efficient for small mixing filters (communica-

tion channels etc), however they can be computationally expensive for long

transfer functions, such as a room transfer function. The solution of using
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smaller IIR filter, instead of long FIR filters, will always be prone to numeri-

cal instability and the inability to invert non-minimum phase filters [Sma97].

In addition, the problem of spectral whitening introduced by a feedforward

architecture, was observed and solved by Torkkola [Tor96] using a feedback

architecture, however, it showed there are interdeterminacies in the time-

domain methods. All these led researchers to search for a new domain to

work on the convolutive mixtures problem.

2.4.3 Frequency-Domain Methods

One of the recent methods for performing ICA of convolutive mixtures is

the Frequency Domain ICA. Smaragdis [Sma98], Lee et al [LBL97], Parra

and Spence [PS00b] proposed moving to the frequency domain, in order to

solve the convolution problem.

Looking at the FIR feedforward convolutive mixtures model, one can

use the convolutive model in (2.110). The notation used in (2.110) is also

known as FIR matrix algebra [Lam96]. From adaptive filter theory, we know

that such problems can be addressed with a general multichannel, subband

filterbank. However, there are certain benefits by choosing a Fourier basis

filter bank, i.e. the Fourier transform. One motivation is that the signals

become more superGaussian in the frequency domain, which will be bene-

ficial for any ICA learning algorithm. Another motivation is that applying

the Fourier Transform on the previous equation, we can approximate the

linear convolution with multiplication. More specifically:

STFT








x1(n)

. . .

xN (n)








= STFT








α11 ∗ s1(n) . . . α1N ∗ sN (n)

. . . . . . . . .

αN1 ∗ s1(n) . . . αNN ∗ sN (n)







⇒

(2.119)

⇒




x1(f, t)

. . .

xN (f, t)


 =




A11(f) . . . A1N (f)

. . . . . . . . .

AN1(f) . . . ANN (f)







s1(f, t)

. . .

sN (f, t)


 (2.120)
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x(f, t) = Afs(f, t), ∀ f = 1, . . . L (2.121)

where x(f, t) = STFT{x(n)} and L is the number of FFT points. The

Short Time Fourier Transform (STFT) is used instead of the Fourier Trans-

form, in order to divide the signal into shorter overlapping frames and

preserve signal’s stationarity. Using the Fourier transform and assuming

statistical independence between frequency bins, we have transformed a con-

volutional problem into L instantaneous mixtures problems, i.e. an instan-

taneous mixtures problem for each frequency bin. In order to transform

the convolution into multiplication, one has to use windows larger than the

maximum length of the transfer functions, i.e. L À K. Hence, we can

use the very well established theory on separation of instantaneous mix-

tures and solve this problem. However, this case is not as simple as ICA of

instantaneous mixtures. This is due to the following reasons:

1. The dataset in this case are instantaneous mixtures of complex num-

bers, which implies that we have to ensure the stability and conver-

gence of the original algorithms with complex data.

2. The scale and permutation ambiguity, which had negligible effect in

the instantaneous mixtures case, now play a very important role in

this approach, as it will be explained later on.

In the next subsections, we will have a closer look at three basic ap-

proaches on Frequency Domain ICA and explain the permutation and scale

ambiguity in detail.

Lee’s approach

Continuing from the time-domain approach, Lee at al [LBL97] claimed that

a FIR unmixing structure would be more beneficial in the audio case, mainly

because real room acoustics usually involve non-minimum phase mixing (ze-

ros outside the unit circle). In addition, they proposed moving to the fre-
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Figure 2.11: Lee’s frequency domain framework: Unmixing in the frequency

domain, source modelling in the time domain.

quency domain and unmix the sources there, in order to avoid the convolu-

tion in the time-domain. Hence, an update rule, similar to Amari’s natural

gradient (see eq. 2.27), was developed. The unmixing matrix Wf for every

frequency bin is estimated in the frequency domain using the following rule:

∆Wf ∝ (I + E{STFT{φ(u(n))}fuH(f, t)})Wf (2.122)

The proposed framework is illustrated in figure 2.11. The key point in

Lee’s approach, apart from unmixing in the frequency domain, is that he

prefers to apply the nonlinearity φ(u) in the time domain. As the nonlinear-

ity contains information about the source models, Lee et al prefer to model

their sources in the time-domain. This can have some advantages and disad-

vantages as it will be explained further on. The main obvious disadvantage

of this method is the extra computational complexity introduced by moving

the estimated signals from and to the frequency domain for every update,

in order to apply the nonlinearity. One advantage is that Lee et al did not

encounter the permutation problem, however, this might not always be the

case, as it will be discussed later on.
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Figure 2.12: Smaragdis’ frequency domain framework: Unmixing and source

modelling in the frequency domain.

Smaragdis’ approach

Smaradgis [Sma98] proposed to work solely in the frequency domain for the

convolutive problem, i.e. perform the unmixing and the source modelling in

the frequency domain, in order to avoid the extra complexity of moving from

the frequency to the time domain and vice versa. Therefore, the system is

adapting solely in the frequency domain, independently for each frequency

bin. The proposed framework can be seen in figure 2.12.

For each frequency bin, one can assume superGaussian priors for our

signals. Signals tend to be more superGaussian in the frequency domain

in nature (see paragraph 3.3.3). Starting with a complex prior ps(s), one

can minimize the Kullback-Leibler divergence between the prior and the

probability distribution of the actual data pu(u) and following Amari’s paper

[ACY96] derive the natural gradient for complex data.

∆Wf = η(I + E{φ(u(f, t))u(f, t)H})Wf (2.123)

where η is the learning rate and φ(u) = ∂ log pu(u)/∂u. Smaragdis ob-

served that we can not apply the sigmoid tanh(u) = (eu + e−u)/(eu − e−u)

function for complex data, as it has singularities for u = jπ(k + 1/2), where

k ∈ Z. These singularities can cause instability to the natural gradient

rule. As a result, Smaragdis proposed the following split-complex sigmoid



2.4 Convolutive mixtures 57

function that is smooth, bounded and differentiable in the complex domain.

φ(u) = tanh(<{u}) + j tanh(={u}) (2.124)

The natural gradient algorithm is robust and converges in relatively easy

acoustic environments. Smaragdis observed the problems arising from scale

and permutation ambiguity and proposed some solutions. In addition, he

proposed the use of zero-padding before the FFT, as a tool to smooth the

spectra, to facilitate the separation algorithm. On the whole, the proposed

framework seems to be a robust, general solution to the convolutive mixtures

problem.

Parra’s approach

Parra and Spence [PS00b] exploited non-stationarity and second order

statistics of audio signals with additional constraints in the time and fre-

quency domain to propose a new ICA method for separation of convolutive

mixtures.

A signal s(n) is considered non-stationary, if Cs(n) 6= Cs(n + τ), where

Cs(n) = E{s(n)s(n)T } is the covariance matrix of s and τ a constant. That

is to say that a signal is considered non-stationary, if its statistics change

along time. Assume a noisy convolutive mixtures model, as follows:

x(n) = A ∗ s(n) + ε(n) ⇒ (2.125)

x(f, t) = A(f)s(f, t) + ε(f, t), ∀ f = 1, . . . , L (2.126)

We form the covariance matrix and obtain:

Cx(f, k) = E{xxH} = AfCs(f, k)AH
f + Cε(f, k) (2.127)

Assuming the estimated sources u(f, t), C̃ε(f, k) the estimated noise covari-

ance, C̃u(f, k) the estimated sources covariance and Cx(f, k) the covariance

of the observed data. An appropriate error measurement is :
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E(k) = Cx(f, k)−Af C̃u(f, k)AH
f − C̃ε(f, k) (2.128)

As a result, a good cost function to minimise is

J(Af , C̃ε, C̃u) =
∑

k

||E(k)||2F (2.129)

Using the derivatives ∂J/∂A, ∂J/∂C̃ε, ∂J/∂C̃u, one can find estimates

for each of the parameters AF , C̃ε, C̃u.

Assuming a stable FIR unmixing filter Wf , we can rewrite the above

equations, in terms of Wf , as follows:

Ĉu(f, k) = Wf [Cx(f, k)− Cε(f, k)]WH
f (2.130)

The cost function that can be employed in this case:

J(Wf , C̃ε, C̃u) =
∑

k

||Ĉu(f, k)− C̃u(f, k)||2F (2.131)

One can obtain estimates for Wf formulating the gradients of the above

contrast function in terms of Wf , Cu and Cε, according to the analysis in

[PS00b].

In order to estimate u(f, t), one can use Wf in the square case. As

Parra tries to cater for the non-square case as well, he proposes a Least

Squares (inverse filtering), a Maximum likelihood or a MAP estimate to

retrieve the sources. Methods to retrieve sources, given the mixing matrix

Af , were discussed earlier on. Parra also observed the scale and permutation

ambiguity and proposed solutions that are analysed in the next paragraph.

In addition to exploiting nonstationarity, for periodic signals with known

statistical profile, one can exploit other second-order information to solve

the separation problem, such as cyclostationarity. Wang et al [WJSC03]

proposed a solution combining fourth order and second order information

to perform separation of cyclostationary convolutive mixtures.
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Scale ambiguity in frequency domain methods

The scale ambiguity in ICA of instantaneous mixtures was analyzed in para-

graph 2.2.4. The ICA algorithms are not able to determine the variances

(energies) of the independent components. As a result, the algorithms un-

mix the original signals up to a scaling factor. For instantaneous ICA in the

time domain, this is not a problem, as the unmixed signals may be amplified

or attenuated after separation, however a normalisation can always rectify

the problem.

In frequency domain ICA, we adapt L independent algorithms, one for

each frequency bin. Thus, any arbitrary scaling change to each individual

update rule will cause spectral deformation to our unmixed signals. In

addition, it is not guaranteed that the scaling will be uniformly distorted

along frequency, changing the signal envelope after separation.

Smaragdis [Sma98] proposed to keep the unmixing matrix normalised

at unit norm, i.e. ||Wf || = 1. This implies that the unmixing matrix

does not scale the data. This step can be beneficial for the convergence of

the algorithm, as it prevents the gradient descent (natural gradient) from

diverging much from the optimum.

Wf ← Wf ||Wf ||−1/N (2.132)

Parra thought of constraining the diagonal elements of the unmixing

matrix to unity, i.e. W ii
f = 1, in order to avoid any scale deformation of

the array. Other methods are proposed to tackle the scale ambiguity in the

next chapter.

Permutation ambiguity in frequency domain methods

The permutation ambiguity in ICA of instantaneous mixtures was analyzed

in paragraph 2.2.4. The ICA algorithms are not able to determine the

permutation of the independent components. As a result, the order of the

unmixed components is totally random. For instantaneous ICA in the time

domain, the order of the unmixed signals is not a problem. Usually, we
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Figure 2.13: An illustration of the permutation problem in frequency domain

ICA. The arbitrary permutation of the successfully separated components

along frequency results in the reconstructed sources remain mixed.

are interested in retrieving all sources, therefore the permutation is not

important at all.

In frequency domain ICA, we adapt L independent algorithms, one for

each frequency bin. Therefore, any arbitrary permutation of the sources

along the frequency axis, will result in the sources remaining mixed, when

reconstructed in the time domain (see figure 2.13). As a result, we must

impose some coupling between frequency bins to align the permutations

along frequency. Many solutions have been proposed for the permutation

ambiguity and will be analyzed in detail in the following chapter, along with

a new proposed solution.

Lee et al never experienced the permutation ambiguity. The main reason

being that they apply the source model, i.e. the nonlinearity in the time-

domain, and as a result they do not have to assume statistical independence

between the frequency bins in the frequency-domain source model. This as-

sumption is mainly the cause of the permutation ambiguity in the frequency

domain, although there is evidence that even using time domain models, the

permutation problem can still exist [PA02].

Smaragdis tried to couple neighbouring bins, assuming that the unmix-

ing matrices of two neighbouring bins should be similar, and proposed the

following coupling rule:
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∆Wf+1 ← ∆Wf+1 + α∆Wf (2.133)

where 0 ≤ α ≤ 1 is constant that weights the influence of the neighbouring

bin.

In order to solve the permutation problem, Parra et al put a constraint

on the length K of the unmixing FIR filter W . Basically, assuming the FIR

structure for the unmixing filter, we expect the frequency response of that

filter to be a smooth function as the FIR frequency response is basically

polynomial. Therefore, this projection operator tries to keep the unmixing

filter as smooth as possible, lining up the correct permutations accordingly.

2.5 Conclusion

In this chapter, we have analysed some of the techniques that have been

developed to solve the ICA problem in the case of instantaneous, overcom-

plete and convolutive mixtures. The aim of this chapter was not to perform

a thorough review of the methods developed on the subject but on the other

hand, give an overview of the area, emphasizing the approaches that influ-

enced our work. For a more thorough review on ICA problems, applications

and methods, one can always refer to Hyvärinen, Oja and Karhunen’s book,

titled Independent Component Analysis [HKO01], or to T.W. Lee’s book,

titled Independent Component Analysis - Theory and Applications [Lee98].

In the next chapters, we will look into a fast frequency domain ICA

framework that was introduced to solve the convolutive mixtures problem.

A method to solve the permutation problem was introduced. Further on,

we will look into a channel modelling solution for the permutation ambi-

guity, such as beamforming. The idea of performing “intelligent” ICA, i.e.

automatically extracting a single source of interest from the mixtures will

be explored further on. Finally, some more extensions and considerations

on the general frequency domain framework will be presented.



Chapter 3

Fast ICA solutions for

convolutive mixtures

3.1 Introduction

In this chapter, we are going to examine fast unmixing solutions for the

square convolutive mixtures under the frequency domain framework. The

permutation and scale ambiguity are going to be analysed in depth and a

novel source modelling solution for the permutation is presented. In addi-

tion, in the search for a fast unmixing algorithm in the frequency domain

framework, two novel unmixing approaches are presented and evaluated. Fi-

nally, we will examine the effect of frame size and the aliasing introduced in

the frequency domain framework.

3.2 Solutions for the scale ambiguity

In the previous chapter, we defined the scale ambiguity of instantaneous ICA

and explained how this interdeterminancy can cause spectral deformation of

the separated signals. However, there are methods to remove this ambiguity

from the ICA framework.
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3.2.1 Previous approaches

The element that can cause the scale ambiguity is the unmixing matrix Wf .

Following gradient based laws to update the unmixing matrix without any

constraint, the estimate can change in scale (sign and magnitude). As a

result, the unmixed sources will be altered in scale.

An obvious approach is to apply a constraint on the unmixing matrix.

Smaragdis [Sma98] proposed to constrain the matrix by normalising it to

unit determinant.

Wf ← Wf/||Wf ||1/N (3.1)

where N is the number of the sensors and sources. This constrains the

matrix to perform rotations but not scaling. This action is also beneficial for

the convergence of the algorithm, as this normalisation prevents the algo-

rithm from overshooting. In a similar effort, Parra and Spence [PS00b] con-

strained the diagonal elements of the unmixing matrix to unity, i.e. W ii
f = 1.

This can constrain the scaling of the unmixing matrix Wf .

Another approach would be to constrain the variance of the data. In the

frequency domain framework, the signal will have different signal levels at

each frequency bin. The updates to Wf are calculated passing through the

data at each frequency bin. Therefore, different energy levels may lead the

unmixing matrix to different scaling. Normalising the data to unit variance

can enforce uniform scaling of the unmixing matrix along frequency.

3.2.2 Mapping to the observation space

A valid solution to address the scale ambiguity is mapping the sources back

to the observation space, i.e. the microphones’ space. The idea is mentioned

by Cardoso [Car98b]. In this study, Cardoso mentions that “instead of fo-

cusing on the columns of the mixing matrix A, we can focus on the spaces

containing each component and then we can get the same separation result,

without the ambiguity of scale (sign and magnitude)”. In other words, by

mapping the separated sources back to the observation space of the micro-

phones, we can undo any scale deformation, performed by the unmixing
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matrix W , preserving separation though. We can support this argument

mathematically with the following analysis. At first, we will assume that

the permutation ambiguity is sorted. The 2×2 case will be used for simplic-

ity, but it is straightforward to generalise the analysis to the N × N case.

Assume the following mixing model.


 x1

x2


 =


 a11 a12

a21 a22





 s1

s2


 (3.2)

Define the signals xs1
and xs2

, as the signals s1, s2 observed by the micro-

phones each alone in the auditory scene, i.e.

xs1
=


 a11

a21


 s1, xs2

=


 a12

a22


 s2 (3.3)

As a result,

x = xs1 + xs2 (3.4)

We want to estimate the unmixing matrix W = A−1 that can separate

the sources. Having sorted out the permutation problem, the ICA finally

estimates the matrix Ŵ = (AΛ)−1, where Λ =


 λ1 0

0 λ2


 is a diagonal

matrix containing the arbitrary scaling introduced by the algorithm. As a

result, our separated outputs are scaled.

 u1

u2


 = Ŵx = (AΛ)−1As = Λ−1s =


 s1/λ1

s2/λ2


 (3.5)

Having estimated Ŵ , we can move the separated signals to the micro-

phones’ domain and undo the incorrect scaling. In other words we have to

calculate xs1, xs2.

xs1
=


 (Ŵ−1)11

(Ŵ−1)21


u1 =


 a11λ1

a21λ1


 s1/λ1 =


 a11

a21


 s1 (3.6)

xs2
=


 (Ŵ−1)12

(Ŵ−1)22


u2 =


 a12λ2

a22λ2


 s2/λ2 =


 a12

a22


 s2 (3.7)
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As we can see, we have removed the arbitrary scaling by projecting the

signals back to the microphone’s domain and still have the signals unmixed.

Similarly, we can prove that this scheme can remove the scale ambi-

guity, even when the permutation ambiguity is not sorted. Assume the

2 × 2 scenario that was proposed previously and a permutation matrix

Π =


 0 1

1 0


, denoting that the sources are flipped. As a result, the

ICA algorithm has estimated the following matrix Ŵ

Ŵ = (AΛΠ)−1 (3.8)

Ŵ =





 a11 a12

a21 a22





 λ1 0

0 λ2





 0 1

1 0






−1

=


 λ2a12 λ1a11

λ2a22 λ2a21



−1

(3.9)

The separated outputs will be:

 u1

u2


 = Ŵx = (AΛΠ)−1As = Π−1Λ−1s =


 s2/λ2

s1/λ1


 (3.10)

Moving the separated signals to the microphones’ domain, we can still

undo the incorrect scaling.

xs1
=


 (Ŵ−1)11

(Ŵ−1)21


u1 =


 a12λ2

a22λ2


 s2/λ2 =


 a12

a22


 s2 (3.11)

xs2
=


 (Ŵ−1)12

(Ŵ−1)22


u2 =


 a11λ1

a21λ1


 s1/λ1 =


 a11

a21


 s1 (3.12)

As we can see, the scale ambiguity is removed, despite the existing per-

mutation ambiguity.

3.3 Solutions for the permutation ambiguity

Solving the convolutive problem in the frequency domain, independently for

each frequency bin generates the permutation problem, since there is the
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inherent permutation ambiguity in the rows of Wf [PS00b, Sma98]. This

is more complicated than the ordering ambiguity in the instantaneous mix-

tures ICA, since the ordering of the sources must remain the same along

the frequency axis. As a result, the ICA algorithm produces different per-

mutations of separated sources along the frequency axis, and therefore the

sources remain mixed. In order to solve this problem, we need to impose

some sort of coupling between the “independent” unmixing algorithms, so

that they converge to the same order of sources.

Many solutions have been proposed to tackle the problem. In general,

these solutions fall into two categories: the source modelling and the channel

modelling approaches.

3.3.1 Source modelling approaches

In source modelling solutions, the aim is to exploit the coherence and the

information between frequency bands, in order to identify the correct align-

ment between the subbands. In fact, audio signals can rarely be considered

independent between frequency bands due to the actual audio structure

(harmonic stacks and transients) in both music and speech. As a result, any

rule that can group similar objects will align the permutations.

In Lee’s approach [LBL97], the signals are modelled in the time-domain

(the tanh(·) nonlinearity is applied in the time-domain). There is a benefit

from imposing time-domain source models: the permutation problem does

not seem to exist. When we apply the source model in the time-domain,

we do not assume that the signals are statistically independent along each

frequency bin. As a result, the permutations are coupled due to the source

model applied to the whole signal and not to its “independent decompo-

sitions”. However, there is evidence reported that problems similar to the

permutation problem do exist [PA02]. This method is computationally ex-

pensive, due to the mapping back and forth between the frequency and time

domains and do not take advantage of the strong nonGaussianity in the

frequency domain.
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Ikeda [IM99] tried to match the time envelopes of the signal along the

frequencies. This approach models the fact that at the same time index

we usually get similar energy stimulation along all frequencies. However,

even appropriate matching of energy envelopes along frequency might not

be accurate enough, as the energy profile is different for each frequency

band for the same signal. In a following subsection, we will see a novel,

more accurate way of modelling the idea of localising energy bursts along

time.

3.3.2 Channel modelling approaches

In channel modelling solutions, the aim is to exploit additional information

about the room transfer functions, in order to select the correct permu-

tations. These room transfer functions have certain properties. In source

separation, we usually employ long FIR (Moving Average, all-zero) models

to estimate the room transfer functions, as their stability is guaranteed. In

addition, most room transfer function have a dominant first delay (direct

path) term that can be used to identify the angular position of each source

signal to the sensor array.

Smaragdis proposed an adaptive scheme to apply some frequency cou-

pling between neighbouring frequency bins. Assuming that the unmixing

matrices between neighbouring bins Wf and Wf−1 should not be too dis-

similar, he proposed the following coupling scheme.

∆Wf ← ∆Wf + a∆Wf−1 (3.13)

where 0 < a < 1. This heuristic adaptive solution can be interpreted as

placing weakly coupled priors on Wf of the form:

p(Wf |Wf−1) ∝ exp(− 1
2σ2

||Wf −Wf−1||F ) (3.14)

This imposes some weak smoothness constraint across frequency. However,

it had limited effect, as it has been reported to fail in several separation

cases [Dav00].
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Parra et al [PS00b] also worked in the frequency domain using non-

stationarity to perform separation. Their solution to the problem was to

impose a constraint on the unmixing filter length K. This is achieved by

applying a projection operator P to the filter estimates at each iteration,

where P = FZF−1, F is the Fourier transform and Z is a diagonal op-

erator that projects on the first K terms. In other words, it imposes a

smooth constraint on the unmixing filters, as they are modelled as FIR fil-

ters (polynomials). Again mixed success has been reported for this method,

as it seems to get trapped in local minima [IM00]. Both approaches can

be characterized as gradient solutions, and problems similar to those noted

in [Dav00] tend to occur.

Another solution is to use beamforming to align the permutations along

the frequency axis. All BSS methods make no assumptions about the po-

sition of the sources in the 3D space. However, beamforming estimates the

directions of signal’s arrival (DOA) in order to steer the beam of an ar-

ray of sensors to focus on a specific source, as investigated by Saruwatari

et al [SKS01], Ikram and Morgan [IM02], Parra and Alvino [PA02]. The

extra geometrical information employed by beamforming is the sensors’ ar-

rangement, which is assumed to be fixed. We will analyse the application

of beamforming in the BSS concept in detail in the next chapter.

3.3.3 A novel source modelling approach

The next section describes a novel approach that imposes frequency coupling

in the source model. The method consists of two steps : a) a time-frequency

source model to force coupling between frequency bins and b) a likelihood

ratio jump to align the permutations.

A time-frequency source model

If we examine the statistical properties of an audio signal over shorter quasi-

stationary periods in the time-domain (frames of the STFT), the signal

is not always well modelled as superGaussian. Looking at the statistical
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Figure 3.1: Exploring the statistical properties of short audio segments. His-

tograms of three different 62.5msec segments in the time domain (a),(b),(c)

and the corresponding histograms in the frequency domain (d), (e), (f).

properties of these segments in the frequency domain, they can be better

modelled as superGaussian, as these sections have very heavy tailed distri-

butions [Dav00]. Figure 3.1 exhibits the histograms of some audio signal

segments in the time-domain and the histograms of the real part of Fourier

transform of these segments.

This implies that the frequency domain is a better candidate for source

modelling. This will provide a better achievable performance, since as noted

by various authors (e.g. [Car98a]), the Cramer-Rao bound (the performance

bound for an estimator) for the estimation of the unmixing matrix in ICA

algorithms is related to how close the source distributions are to Gaussian.

That is that the more nonGaussian the distributions are, the better the

achievable performance of the ICA algorithm.
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In addition, most of the superGaussianity measured in the time domain

comes from the fluctuating amplitude of the audio signal. The slowly varying

amplitude profile also gives us valuable information that can be exploited for

source separation and is not affected by the permutation problem. There-

fore, we can exploit this property to introduce frequency coupling within

the STFT structure.

Motivated by this, we introduce the following time-frequency model. We

will generally assume that the STFT coefficients of the separated sources

follow an exponential nonGaussian distribution. In addition, the model

needs to incorporate some information about the scaling of the signal with

time (i.e. the signal envelope), assuming that it is approximately constant

over the analysis window. This can be modelled by a nonstationary time

varying scale parameter βk.

p(uk(f, t)) ∝ βk(t)−1e−h(uk(f,t)/βk(t)) (3.15)

where h(u) defines the general statistical structure (i.e. superGaussianity),

the index t represents the time-frame index, f the frequency bin and k is

the source index. The key feature is that the βk term is not a function of

frequency, but only a function of time. This restriction provides us with suf-

ficient coupling between frequency bins to break the permutation ambiguity.

The βk term can be interpreted as a volume measurement. Literally, it mea-

sures the overall signal amplitude along the frequency axis (all frequencies),

emphasising the fact that one source is “louder” at a certain time slot. This

“energy burst” indication can force alignment of the permutations along the

frequency axis.

To incorporate this model to the Frequency Domain ICA framework,

we need to see how the proposed time-frequency model alters the natural

gradient algorithm in (2.123). Effectively, the source model is represented

by the activation function φ(u). Recall we have:

φ(u) =
∂

∂u
log p(u) =

1
p(u)

∂p(u)
∂u

(3.16)
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The proposed model gives the following activation function:

φ(uk(f, t)) ∝ βk(t)−1h′(uk(f, t)/βk(t)) (3.17)

The natural gradient algorithm is then altered as follows:

∆Wf = η(I + β(t)−1E{g(u(f, t))uH(f, t)})Wf (3.18)

where β(t) = diag(β1(t), β2(t), . . . , βN (t)), g(u) = h′(u) and η is the learning

rate. The value for βk(t) is estimated adaptively from the separated signals

u(f, t).

We note that care needs to be taken in defining activation functions

for complex data. Below, we will consider activation functions of the form

(u/|u|)f(|u|). Although a variety of other activation functions are valid,

such as g(u) = tanh(<{u}) + j tanh(={u}) (split non-linearity), proposed

by Smaragdis [Sma98], it seems more intuitive to impose no preference on

the phase angles. That is to introduce circularly symmetric priors on com-

plex variables without phase preference. This is essentially the same as the

priors on subspaces as proposed by Hyvärinen et al in Independent Subspace

Analysis (ISA) [HH00]. Assuming complex Laplacian priors in the form of

p(u) ∝ exp(−|u|) ⇒ h(u) = |u|, we set f(|u|) = 1. The activation function

in (3.18) is then the following:

g(u) = u/|u|, ∀|u| 6= 0 (3.19)

Although the discontinuity due to |u| implies the cost function will not

be smooth at certain points, in practice, the performance of the algorithm

appears to be unaffected. MacKay [Mac02] also supported that the above

“Laplacian” function can have the same robustness property as the tanh

function. Alternatively, we could use a “smoothed” Laplacian prior p(u) ∝
exp(−|u|+ log |u|), as proposed by Zibulevsky [ZKZP02].

Assuming complex Laplacian priors, we can use the following estimate

for βk(t):

βk(t) =
1
L

∑

f

|uk(f, t)| (3.20)
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Permutation Problem Revisited - The likelihood Ratio Jump

Let us now investigate the effect of this time-frequency model upon the

permutation symmetries. Without the β(t) term the log likelihood function

has an identical maximum for every permutation of the sources at each

frequency. Incorporating β, we weight the likelihood of an unmixing matrix

at a given frequency with the time envelope induced by the components at

other frequencies. Thus, β allows the matching of time envelopes, providing

us with a discriminator for the different permutations.

Nonetheless, a direct application of (3.18) does not guarantee that the

correct permutation will be found. The β term will break the symmetry,

however, it will not necessarily change the cost function enough to com-

pletely remove spurious minima. Thus, a gradient optimisation scheme is

likely to get trapped in a local minimum. This may explain the poor per-

formance of Parra’s solution [PS00b] in certain examples, as observed by

Ikram et al [IM00].

As a result, we introduce a post processing mechanism in the algorithm

by which the correct permutations are sorted. Fortunately, due to the sym-

metry of the problem, if we know where one minimum is, we know where

they all are. As the sources are separated and therefore statistical indepen-

dent, if we know where one is, then all the others will be orthogonal to the

first one in the N th dimensional space. It is therefore possible to introduce a

jump step into the update that chooses the permutation that is most likely.

Here we describe a solution for N = 2, using the Laplacian prior. Sup-

pose that for a given set of known Wf , βk(t) and u(f, t) = Wfx(f, t), we

wish to compare two possible choices for source estimates of u:

1.


 γ11 0

0 γ22


 ũ(f, t) = u(f, t) (3.21)

2.


 0 γ12

γ21 0


 ũ(f, t) = u(f, t) (3.22)

where γij are rescaling parameters that account for incorrect scaling. To
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compare these two possibilities, we will evaluate their likelihood over T time

frames.

1. log p(u|γ11, γ22) = −T log(γ11, γ22) + log p(ũ) (3.23)

2. log p(u|γ12, γ21) = −T log(γ12, γ21) + log p(ũ) (3.24)

with the values of γij chosen to maximise the likelihood. For the Laplacian

model these are:

γij =
1
T

∑
t

|ui(f, t)|
βj(t)

(3.25)

We can now evaluate the likelihood of the estimated u(f, t) in terms of the

known quantities u(f, t) and γ. For case 1, we have:

log p(ũ) ∝ −γ−1
11

∑
t

|u1(f, t)|
β1(t)

− γ−1
22

∑
t

|u2(f, t)|
β2(t)

(3.26)

which reduces to log p(ũ) ∝ −2T . The analysis for case 2 is identical. There-

fore, we get:

log
p(“case1”)
p(“case2”)

= −T log(γ11γ22) + T log(γ12γ21) (3.27)

and we can form the following likelihood ratio test (LR):

LR =
p(“case1”)
p(“case2”)

=
γ12γ21

γ11γ22
(3.28)

If LR < 1, we permute the rows of Wf before proceeding. This likeli-

hood ratio test is performed after calculating the update ∆Wf , lining up

permutations that were not sorted by the gradient step.

There are basically two drawbacks in this approach. Firstly, this becomes

more complicated for more than 2 sources, although one possible solution

would be to consider the sources in a pairwise fashion. Secondly, the algo-

rithm has to work only in batch mode, as usage of a one-sample likelihood

is not possible. On the other hand, the algorithm seems to perform well in

the majority of cases.
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Generalising the Likelihood Ratio Jump

In this section, we will try to generalise the Likelihood Ratio Jump solution

for the general N ×N case. In fact, the coefficient γij can model the proba-

bility that the ith source has moved to the jth position (of the original source

alignment). For example, the product γ31γ22γ13 can model the probability

of the following perturbation: sources 3 → 1, 2 → 2, 1 → 3, for the 3 × 3

case.

For the N×N case, we have to examine all different ordered combinations

of N sources. This gives us N ! cases in total that need to be compared. The

probability of each case is formed in a similar manner as described for the

2× 2 case.

We will briefly demonstrate the 3 × 3 situation, where we have 3! = 6

ordered combinations. Consequently, you have to form the following proba-

bilities:

L1 = log p(“case 1”) = − log(γ11γ22γ33) (3.29)

L2 = log p(“case 2”) = − log(γ11γ23γ32) (3.30)

L3 = log p(“case 3”) = − log(γ21γ12γ33) (3.31)

L4 = log p(“case 4”) = − log(γ21γ32γ13) (3.32)

L5 = log p(“case 5”) = − log(γ31γ22γ13) (3.33)

L6 = log p(“case 6”) = − log(γ31γ12γ23) (3.34)

The correct permutation should be given by the max(L1, L2, L3, L4, L5, L6).

As a result, we permute the rows of Wf according to the indices of γ in the

maximum L. For example, if L6 was the maximum, then we have to swap

the rows of Wf , as follows: row 3 → 1, row 1 → 2, row 2 → 3.

One could possibly reduce the computational complexity of this scheme

by performing a pairwise Likelihood Ratio, i.e. sort out the permutations

in pairs.
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3.4 Fast frequency domain ICA algorithms

So far, we have only considered a gradient-based optimisation scheme to pro-

duce maximum likelihood (or MAP) estimates of the original audio sources.

However, all gradient-based optimisation methods have two major draw-

backs.

1. Gradient algorithms converge relatively slowly. For a common fre-

quency domain ICA scenario, we found that the natural gradient would

require around 500 updates to each Wf (iterations) on average for some

decent separation quality.

2. Gradient-based algorithms’ stability depends on the choice of the learn-

ing rate. Natural signals have greater low frequency values; therefore

the time-frequency values tend to have different signal levels for ev-

ery frequency bin. Inevitably, keeping a constant learning rate for all

learning procedures may inhibit the separation quality at certain fre-

quency bands. This may also give a reason why the natural gradient

approach does not perform well at high frequencies, as observed by

Smaragdis [Sma98]. Other reasons for this behaviour come from the

beamforming point of view (see Chapter 4).

For these reasons, we want to replace the natural gradient scheme in the

FD-ICA framework with a Newton-type optimisation scheme. Their basic

feature is that they converge much faster than gradient algorithms with the

same separation quality and while they are more computationally expensive,

the number of iterations for convergence is decreased. In addition, they

tend to be much more stable, as their learning rate is defined by the inverse

of the Hessian matrix [MS00]. Hyvärinen et al [BH00, Hyv99d, Hyv99c]

introduced several types of Newton-type “fixed-point” algorithms in ICA of

instantaneous mixtures, using kurtosis or negentropy.
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3.4.1 A fast frequency domain algorithm

In [Hyv99c], Hyvärinen explored the relation between a generalised “fixed-

point” (approximate Newton method) ICA algorithm with the maximum

likelihood ICA approach on instantaneous mixtures. In the following analy-

sis, we show that it is elementary to extend the algorithm proposed in [Hyv99c]

to be applicable to the proposed time-frequency framework.

In the ML-ICA approach for instantaneous mixtures, we form and try to

maximise the following likelihood with respect to the unmixing matrix W :

F = log L(x|W ) = E{log p(u)}+ log |det(W )| (3.35)

Performing gradient ascent, we can derive the Bell-Sejnowski [BS95] algo-

rithm.

In [Hyv99c], Hyvärinen tries to solve the following optimisation problem:

max
W

E{G(Wx)} (3.36)

subject to E{uuT } = I

where G(u) is a non-quadratic function. The solution for this problem can

be estimated by finding the maximum of the following function:

K(W ) = E{G(Wx)} − α(E{uuT } − I) (3.37)

where α is the Lagrange multiplier. Performing a gradient ascent on K(W ),

we get:

∇K = E{G′(Wx)xT } − αCW (3.38)

where C = E{xxT }. If we choose G(u) = log p(u), then this update law is

almost identical to the Bell-Sejnowski law and the natural gradient, with a

different term controlling the scaling of the unmixing matrix W . In fact,

the algorithm in (3.38) can be viewed as solving a constrained Maximum

Likelihood problem. After a series of steps (see [Hyv99c]) and using G(u) =

log p(u), we end up to the following learning rule:

∆W = D[diag(−αi) + E{φ(u)uT }]W (3.39)
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where αi = E{uiφ(ui)}, D = diag(1/(αi − E{φ′(ui)})). In practice, we

observed that this algorithm converges at a faster rate than the gradient

based update rules, as it will be demonstrated further on.

Comparing the update rule in (3.39) with the original natural gradient

law, we can see that they are similar. Instead of a constant learning rate,

there is a learning rate (the D matrix) that adapts to the signal. Hence,

the algorithm is less dependent on signal levels and therefore more stable.

Hyvärinen states that replacing I with the adaptive term diag(−αi) is also

beneficial for convergence speed. If we use pre-whitened data x, then the

formula in (3.39) is equivalent to the original fixed-point algorithm [Hyv99d],

while it is still expressed in terms of the natural gradient algorithm. The

most important consequence for us, however, is that the nonlinear activation

function φ(u) in (3.39) has exactly the same interpretation as in the ML-

approach.

3.4.2 An alternative approach

Bingham and Hyvärinen proposed a “fast” fixed-point algorithm for inde-

pendent component analysis of complex valued signals [BH00]. It is an

extension of Hyvärinen’s FastICA algorithm [HO97, Hyv99a] for complex

signals.

First of all, we assume that the observed signals are prewhitened. Now,

the sources are orthogonal to each other in the N -dimensional space. Our

objective is to maximise a suitable contrast function JG(w) in terms of w.

The maxima of this function should give us the independent components.

In this optimisation problem, we constrain the contrast function to be in

the following form, in order to reduce the complexity of the optimisation:

JG(w) = E{G(|wHx|2)} (3.40)

where G(·) is a smooth even function that can help us identify the in-

dependent components. Choosing G(u) = u2 is equivalent of optimising the

kurtosis of the absolute value of the complex data. Bingham and Hyvärinen
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proposed a number of other possible candidates for G(·). In the same pa-

per, they prove that complex independent components can be estimated by

optimising the nonlinear function, as described by (3.40). Keeping JG(·) a

real-valued function facilitates this optimisation. Working instead directly

on complex values, we need to pay more attention to the choice of the con-

trast function, as reported by Smaragdis [Sma98] and Davies [Dav00].

In addition, we impose the constraint that E{|wHx|2} = 1 (i.e. orthonor-

mal components, due to prewhitening). The following optimisation problem

is set:

max
wj

N∑

j=1

JG(wj) j = 1, . . . , N (3.41)

subject to E{(wH
k x)(wH

j x)∗} = δkj

where δkj is the Kronecker delta. The proposed fixed-point algorithm by

Bingham and Hyvärinen is summarised by the following formula:

w+ ← E{x(wHx)∗φ(|wHx|2)}−E{φ(|wHx|2)+ |wHx|2φ′(|wHx|2)}w (3.42)

w+ ← w+/||w+|| (3.43)

where φ(u) is an activation function. Instead of calculating every indepen-

dent component separately, it is preferable for many applications to calculate

all components simultaneously. We can use different one-unit algorithms

(3.42) for all independent components and apply a symmetric decorrelation

to prevent the algorithms from converging to the same component. This

can be accomplished by using a symmetric decorrelation:

W ← W (WHW )−1/2 (3.44)

where W = [w1, w2, . . . , wN ] is the matrix of the vectors wi.

Bingham and Hyvärinen proposed a set of activation functions that can

be applied to this fixed-point algorithm. As we can see the problem involves

real data, therefore it is easier to choose an activation function. From the
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set of the proposed activation functions, we are going to use the following:

φ(u) = 1/(0.1 + u) (3.45)

The derivative of the above is:

φ′(u) = −1/(0.1 + u)2 (3.46)

This method achieves fast and accurate separation of complex signals. The

small number 0.1 in the denominator prevents singularities of the activation

functions for u → 0. We are going to adapt this method to a frequency-

domain separation framework. The main advantage of this algorithm is that

it was initially designed to perform separation of complex-valued mixtures,

therefore being easier to adapt directly in a frequency domain framework.

In other words, the observation signals are transformed into a time-

frequency representation using a Short-Time Fourier Transform. As before,

we prewhiten the x(f, t). Then, we have to calculate the unmixing matrix

Wf for every frequency bin. We randomly initialise N learning rules, as

described in (3.42) and (3.43) for every frequency bin and iterate until con-

vergence. However, there are no steps to tackle the permutation problem.

We can address the permutation problem firstly, by incorporating the

time dependent prior β(t) in the learning rule, in order to impose frequency

coupling. As we have seen in [BH00], the β(t) term can be actually in-

tegrated in the activation function φ(u). In section 3.4.1, we saw that

Hyvärinen transformed the basic fixed-point algorithm to a form that was

similar to the natural gradient algorithm and we gathered that we could in-

corporate β(t) in the activation function φ(u) of the fixed-point algorithm,

so as to impose frequency coupling. This is the main motivation behind

incorporating the β(t) term in the activation function of the second fixed-

point algorithm, although not with the same probabilistic interpretation.

Therefore, equations (3.45) and (3.46) are now transformed in the following

form.

φ(u) = 1/(βk(t)(0.1 + u)) (3.47)
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φ′(u) = ∂φ(u)/∂u = −1/(βk(t)(0.1 + u)2) (3.48)

where βk(t) refers to the corresponding separated component uk, as intro-

duced in (3.20). The second step is to apply the likelihood ratio jump solu-

tion, described in (3.25), (3.28), so as to keep the same source permutation

along the frequency axis. The likelihood ratio jump solution can be directly

applied to the second fixed-point algorithm, without any adaptation.

3.4.3 Similarities between the two Fast-ICA solutions

The difference between the two fixed-point algorithms lies in the different

contrast function employed in the optimisation problem. In the first fixed-

point algorithm, the contrast function is G1(wHx), where as in the second

fixed-point algorithm the contrast function is G2(|wHx|2), where φ(u) =

∂G(u)/∂u and preferably a definition of kurtosis.

In the first Fast-ICA approach, we try to solve the problem:

maxG1(wHx) subject to ||u||2 = 1 (3.49)

In the second Fast-ICA approach, we try to solve the problem:

maxG2(|wHx|2) subject to ||u||2 = 1 (3.50)

where G1, G2 are non-quadratic functions. In the thesis, we have shown

that the method derived from the first problem by Hyvärinen can be seen

as Maximum likelihood estimation, if we choose G1(u) = log p(u). For p(u),

we use a Laplacian prior for the separated sources, i.e. p(u) ∝ e−|u|.

We can show very easily that the second problem can be regarded as ML

estimation. Suppose we choose a non-quadratic function G2(u) = log q(u),

where q(u) ∝ e−
√
|u|. Then, we can show that:

G2(|wHx|2) = log e−
√
|wHx|2 = log e−|u| (3.51)
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In other words, the methods are similar in principle, however, they ad-

dress the problem using different mathematical formulations. This might

explain the similar performance in the source separation problem, as we will

see in the next section. They can both be interpreted as ML estimation.

Moreover, we can easily justify some of the activation functions proposed

by Hyvärinen for the second approach, i.e.

φ(u) =
∂

∂u
log q(u) =

−1
2
√

u + α
(3.52)

The α term is a small number added to stabilise the denominator of the

activation function.

3.5 A unifying frequency domain framework

We can now use all the previous analysis to form a unifying framework for

the convolutive mixtures problem.

First of all, we prewhiten the time-frequency STFT coefficients of the

mixtures x(f, t) and store the prewhitening matrices Vf for each frequency

bin.

The next step is to estimate the unmixing matrix for each frequency

bin. We will use either of the two “fixed-point” approaches, using random

initialisation for Wf . Moreover, he have to keep the rows of Wf orthogonal

with unit norm.

First fixed-point algorithm

∆Wf = D[diag(−αi) + E{φ(u(f, t))uH(f, t)}]Wf (3.53)

Wf ← Wf (WH
f Wf )−0.5 (3.54)

The parameters in this update rule are calculated as previously. In

addition, we will use the proposed time-frequency source model, as described

earlier, to impose frequency coupling. Therefore, the activation function

φ(uk) in (3.53) for all k = 1, . . . , N is:

φ(uk) = β−1
k (t)uk/|uk| ∀uk 6= 0 (3.55)



3.6 Evaluation 82

The derivative φ′(uk) used in the calculation of D can be approximated by:

φ′(uk) = β−1
k (t)(|uk|−1 − u2

k|uk|−3) ∀uk 6= 0 (3.56)

Alternate fixed-point algorithm

For every i = 1, . . . , N ,

w+
if ← E{x(wH

ifx)∗φ(|wH
ifx|2)} − E{φ(|wH

ifx|2) + |wH
ifx|2φ′(|wH

ifx|2)}wif

(3.57)

Wf ← Wf (WH
f Wf )−0.5 (3.58)

where Wf = [w1f , w2f , . . . , wNf ]. The time-frequency model is intro-

duced by:

φ(uk) = 1/(βk(t)(0.1 + uk)) φ′(uk) = −1/(βk(t)(0.1 + uk)2) (3.59)

The next step is to remove the permutation ambiguity by applying the

likelihood ratio jump solution.

An important issue is the spectral shape ambiguity. In [Car98b], Cardoso

shows that we can remove this ambiguity by focusing on the observation

spaces containing each source rather than on the columns of the mixing ma-

trix. We will use the analysis introduced earlier on to return the separated

sources to the observation space, and remove the introduced scaling ambigu-

ity. Thus, we will have N estimates of each source. Denoting the estimated

unmixing matrix as Wf , the prewhitening matrix as Vf for each frequency

bin f , then the separated sources, observed at each microphone, are given

by:

s̃i,xj (f, t) = [V −1
f W−1

f ]jiui(f, t), ∀i, j = 1, . . . , N (3.60)

where s̃i,xj is the i-th estimated source observed at the j-th microphone.

3.6 Evaluation

It is not our intention to provide an exhaustive comparison of the many

different approaches to BSS with convolutive mixtures. Instead, we present
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several experiments to demonstrate that the proposed fast FD-ICA frame-

work can produce fast and good quality separation, providing a robust so-

lution for the permutation problem.

3.6.1 Performance metrics for convolutive mixtures

We have to introduce a new set of metrics for the evaluation of convolu-

tive mixtures separation systems, mainly inspired by the ones introduced in

section 2.2.10. As a result, during the framework’s evaluation and in other

parts of our work, we used the following metrics.

• Improvement in Signal-to-Noise Ratio (ISNR) achieved at each micro-

phone. This metric is also referred to as Noise Reduction Rate (NRR)

in [SKS01]. Note that ISNR can be used as a performance metric, as

the sources are observed at the microphones.

ISNRi,j = 10 log
E{(si,xj (n)− xj(n))2}
E{(si,xj (n)− s̃i,xj (n))2} (3.61)

where xj is the mixed signal at the j-th microphone, s̃i,xj is the i-th

estimated source observed at the j-th microphone and si,xj is the i-th

original source observed at the j-th microphone. This actually com-

pares the signal before and after the unmixing stage with the original

signal simulated or recorded alone in the room. As ICA algorithms

do not perform dereverberation, it is fairer for the algorithm’s per-

formance to compare the estimated signals with the original signals

simulated/recorded alone in the room, rather than the original sig-

nals.

• Distortion along the frequency axis. This is based on the distortion

metric proposed by Schobben et al [STS99].

Di,j(f) = 10 log
E{|STFT{si,xj (n)} − STFT{λij s̃i,xj (n)}|2}

E{|STFT{si,xj (n)}|2} (3.62)

where λij = E{si,xj (n)2}/E{s̃i,xj (n)2} is just a scaling parameter, en-

suring that the two signals are normalised to the same scaling. This
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metric can visualise the performance of the metric along the frequency

axis. It can also be interpreted as 1/SNRi,j .

3.6.2 Experiment 1

In our initial experiment, we created a synthetic convolutive mixture of two

speech sources (3 secs at 16 kHz) that illustrates the permutation problem

in the Smaragdis algorithm. The synthesised acoustic paths consisted of an

initial delay followed by single echo. The echo times were between 1 and

5 milliseconds and echo strengths between 0.1 and 0.5 of the direct path

signal.

Spectrograms of the separated sources are given in figure 3.2 along with

equivalent separations for the Smaragdis algorithm. It is clear that the per-

mutation inconsistencies that occurred in the Smaragdis case are no longer

present. Omitting the LR step in our algorithm seems to produce the same

permutation errors as in Smaragdis’s case. In both cases, the frame size was

2048 samples (approximately 150ms) with a frame overlap of 50%. However,

while the Smaragdis algorithm required about 500 iterations (cycles through

all the data) to reach convergence, the fast FD-ICA framework required only

50. This is very typical of the dramatic improvement in efficiency that can

be achieved using Fast ICA techniques.

3.6.3 Experiment 2

The second experiment was chosen to test the algorithm’s ability in highly

reverberant conditions. To do this, we used Westner’s room acoustic data.

Westner [Wes] placed a number of microphones and loudspeakers in a con-

ference room and measured the transfer function between each speaker and

microphone position. Using his roommix function, one can simulate any of

the measured speaker-microphones configurations in that conference room,

generating a very challenging data set. For our experiment, we placed our

sources to speaker positions 1 and 2 and we used microphones 2 and 1 to

capture the auditory scene, according to Westner’s configuration [Wes].



3.6 Evaluation 85

Time (sec)

F
re

qu
en

cy
 (

H
z)

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

Time (sec)

F
re

qu
en

cy
 (

H
z)

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

Time (sec)

F
re

qu
en

cy
 (

H
z)

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

Time (sec)

F
re

qu
en

cy
 (

H
z)

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

Figure 3.2: Permutation problem illustrated. Separated sources using the

Smaragdis algorithm (left) and the algorithm proposed in section 3.4.1

(right). Permutation inconsistencies are highlighted with arrows.
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Figure 3.3: The four filters modelling the room acoustics created by West-

ner’s roommix function.

An example of the simulated room impulse responses used in this exper-

iment is depicted in figure 3.3. The room acoustics have substantial rever-

beration for several hundred milliseconds and therefore this experiment is

expected to be very challenging.

We applied the algorithm to speech data (around 7secs at 16KHz), using

a STFT frame size of around 500 msecs with 75% overlapping and a Ham-

ming window. The fast FD-ICA algorithm managed to reduce the crosstalk

by a considerable amount. Choosing a long frame length is inevitable, as

it needs to be much greater than the length of the mixing filters, so that

the convolution is actually transformed into multiplication in the frequency

domain. The fact that reverberation continued beyond the frame length

means that the transfer function can not be perfectly modelled.

It should be noted that one drawback of our current approach is that

we are attempting to reconstruct the signals at the microphones. Thus, the



3.6 Evaluation 87

reverberation is still present on the separated sources. One possible solution

to this problem has recently been proposed in [SD01].

3.6.4 Performance Measurements

To quantify the performance of our two fast implementations and compare

it against a natural gradient update scheme, we measured the Improvement

in Signal-to-Noise Ratio (ISNR) achieved at each microphone. The ISNR

results for the experiments described above are presented in table 3.1. These

clearly demonstrate the superiority of the fast learning algorithm when faced

with a challenging acoustical environment. In addition, we notice that the

two approaches have similar performance. Thus, for the rest of the analysis,

we will refer generally to the fast FD-ICA framework without specifying

which of the two versions we are using.

In figure 3.4, we compare the performance of the fast FD-ICA framework

with the natural gradient (NG) algorithm in the Westner case. We can see

the improvement in convergence speed and separation quality. In this plot,

we can also see that the actual speed of the proposed framework, as it

converges in around 20 iterations.

We can also measure the distortion along the frequency axis, as proposed

by Schobben et al [STS99]. In figure 3.5, we plot D1,1 and D1,2 for Exp. 2

using fast FD-ICA along frequency. We can see that the distortion remains

negative along the greatest part of the spectrum, (significantly lower com-

pared to the NG approach) except for some high-frequency areas and some

specific frequency bands. It may be that the source separation problem is

ill-determined at these frequency bands or the signal levels are low.

3.6.5 Computational Cost

The computational cost of the Fast FD-ICA framework is slightly increased,

compared to the natural gradient framework. We have to consider the extra

cost introduced by the fast algorithm and the Likelihood-Ratio jump. In

terms of floating point operations, the “fixed-point” algorithm requires 1.45
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Figure 3.4: Comparison of the fast FD-ICA algorithm with the natural

gradient approach in the Westner case. We can see the improvement in

convergence speed and in separation quality
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Figure 3.5: Measuring distortion along frequency for the NG FD-ICA and

the fast FD-ICA case.
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Table 3.1: ISNR (dB) measurements for the two versions of the fast FD-ICA

framework (after 50 iterations) and the natural gradient algorithm (after 500

iterations). We observe that the two algorithms perform similarly.

ISNR1,1 ISNR2,1 ISNR1,2 ISNR2,2

Exp.1

Fast FD-ICA 1 8.02 3.92 6.79 4.85

Exp.1

Fast FD-ICA 2 9.1 3.85 6.22 4.56

Exp.1

Nat.Grad. 5.33 1.21 4.92 2.40

Exp.2

Fast FD-ICA 1 4.19 3.09 4.18 3.40

Exp.2

Fast FD-ICA 2 3.94 2.98 3.92 3.26

Exp.2

Nat.Grad. 3.18 2.34 3.87 2.17

times more flops per iteration than the natural gradient algorithm. Including

the LR jump, it requires 2.02 times more flops per iteration. The above

preliminary evaluation was performed using MATLAB’s command flops that

counts the number of floating point operations performed. Considering that

the new framework converges in 10-30 times fewer iterations, we can all see

the overall gain in computational cost and convergence speed. However, the

computational cost of the LR jump increases significantly with more than

2 sources. Working on a pairwise basis with N sources, the cost of the LR

jump will scale quadratically with N .
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3.7 Other Extensions

In this section, we consider several problems encountered in the frequency-

domain ICA framework, concerning the aliasing introduced by the Fourier

transform and the effect of the frame length in the Short-Time Fourier Trans-

form on the estimator’s performance. Possible solutions to rectify these

problems and enhance the performance of the source separation algorithms

will be presented.

3.7.1 Aliasing in the Frequency domain framework

One of the first considerations of the convolutive source separation problem

is the choice of the unmixing domain, i.e. the domain of adaptive filtering. A

great part of the proposed solutions prefer not to work in the time-domain,

the main reason being the computational cost of the convolution. Although

using fast convolution schemes [LLYG03], it is possible to reduce the compu-

tational cost. However, performing the unmixing in a subband architecture,

we can use different adaptation rates in each subband, which is not possible

in a time-domain implementation. As mentioned earlier in this chapter, the

time-domain is not the ideal framework for source modelling either.

Following this analysis, filtering adaptation and implementation are usu-

ally performed in the frequency domain, mainly due to the following property

of the Fourier Transform:

x(n) = α(n) ∗ s(n) ­ X(f) = A(f)S(f) (3.63)

where n represents the time index, f frequency index and ∗ represents the

linear convolution.

Multiplication in the Short-Time Fourier Transform domain is equiva-

lent to circular convolution in the time domain. One can approximate the

linear convolution, as a circular convolution and therefore approximate this

property on (3.63) by applying the Short-Time Fourier Transform (STFT)
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giving:

Xi(f, t) ≈
N∑

j=1

Aij(f)Sj(f, t) i = 1, . . . , N (3.64)

However, the two types of convolution are equivalent only, if the DFT

length L is twice the length of the room transfer functions L = 2K [OS89]. In

a real room situation, we can not always ensure that the DFT length is twice

the length of the room transfer function. As a result, this approximation

usually introduces errors.

Aliasing introduced by the Fourier Transform

To understand the nature of this approximation, it is instructive to consider

the DFT (and more specifically the Short Time Fourier Transform) as a bank

of critically-sampled, narrow-band filters. Critical sampling implies that only

1 in P samples is used in each band (assuming a P -band uniform filterbank).

The approximation error then manifests itself in the form of aliasing between

neighbouring frequency bins [WP02, GV92]. In figure 3.6, one can see the

frequency response of a 16-point DFT filterbank. We can see that, in fact,

the Fourier Transform can be interpreted as a very poor filterbank. Aliasing

between neighbouring bins starts at relatively high signal levels (∼ 4dBs),

which can introduce distortion in the analysis and reconstruction part of the

source separation algorithm.

Possible solutions to suppress aliasing

There are several methods that can possibly help to overcome the aliasing

of the FFT.

If the length of the room transfer functions K is substantially shorter

than the DFT length K ¿ L then the filter will not change much between

frequency bins and the aliasing effect will be suppressed. However, room

acoustics tend to have long transfer functions such that we might expect

K > L. Thus, this argument does not apply in our case.

Aliasing can be reduced by simply oversampling the DFT filterbank



3.7 Other Extensions 93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Normalised frequency ω/π

|F
(e

jω
)|

 (
dB

)

Figure 3.6: Filter bank characteristic of a 16-point DFT.

[WP02, GV92]. Given the requirement for wide gain adjustment in source

separation, critical sampling is insufficient. Although oversampling increases

the data rate, it is the price that must be paid for gain adjustability without

aliasing [BS98]. Lambert also showed the effectiveness of oversampling in

alias cancelation, in terms of the filter’s Laurent series expansion [Lam96].

Further improvements can also be obtained through the careful selection

of subband filter parameters. This implies that we can replace the FFT

framework with a properly designed filterbank, featuring ideally “perfect”

bandpass filters. Although this is impossible, developments have led to fil-

terbanks with slightly overlapping subbands, designed in such a way that

they closely approximate ideal bandpass filters and only small amounts of

oversampling are necessary [WP02].

Another possible approach to aliasing reduction is to include adaptive

cross terms between neighbouring frequency bins [GV92]. This technique

seems to introduce additional complexity and is not very appropriate for the

already computationally expensive framework of audio source separation.



3.7 Other Extensions 94

Experiments

To see the effect of aliasing, we applied the first Frequency Domain algorithm

(see section 3.4.1) using a 4096 point windowed DFT filterbank with differing

amounts of oversampling to a mixture of speech signals recorded (separately)

in a real room environment. Performance is measured in terms of Distortion

as introduced by Schobben et al [STS99] and explained in section 3.6.1.

Di,j(f) = 10 log
E{|STFT{si,xj (n)} − STFT{λij s̃i,xj (n)}|2}

E{|STFT{si,xj (n)}|2} (3.65)

where λij = E{si,xj (n)2}/E{s̃i,xj (n)2}.
Our observations are broadly similar to those in [NGTC01]. The dis-

tortion was significantly improved with oversampling. Figure 3.7 shows the

increase in distortion introduced with 50% frame overlap in comparison to

that with 90% overlap as a function of frequency. It is clear that over-

sampling predominantly benefits the high frequency distortion. The overall

distortion values are summarised in Table 3.2.

Table 3.2: Average along frequency Distortion (dB) performance for differ-

ing amounts of oversampling.

D1,1 D2,1 D1,2 D2,2

Mixing

50% overlap -3.78 -4.45 -6.59 -2.69

Mixing

75% overlap -4.56 -4.90 -7.21 -3.43

Mixing

90% overlap -5.86 -6.26 -8.80 -4.99
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Figure 3.7: Difference in distortion between the case of 50% overlap and 90%

overlap for source 1 at microphone 1 (left plot), and microphone 2 (right

plot)

3.7.2 Effect of frame size

In audio source separation of signals recorded in a real room, the room

transfer functions are usually quite long (i.e. > 100ms). Therefore, to

adequately model these, we need to make the frame size large (>2048 at

16KHz sampling). However, as the frame size increases, the signal captured

by the frame tends to be less stationary and we end up averaging over

different quasi-stationary segments of audio. The result is the signal tends

to be more Gaussian (roughly via the central limit theorem). Even without

large frame sizes the presence of the reverberation itself will tend to make

the signal more Gaussian for the same reasons. As one of the arguments

for working in the frequency domain was to increase the nonGaussianity

of the signals, we see that there will be a trade-off between large frame

sizes that can fully describe the room acoustics and small frame sizes where

nonGaussianity is greatest.

To explore this trade-off, we examined the statistics of a single frequency

bin of a windowed DFT as a function of frame size. Specifically, we filtered

a speech signal with the following filter:

h(n) = w(n)e−jω0n n = 1, . . . , K (3.66)
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where w(n) represents the window, ω0 ∈ [−π, π] represents the frequency at

which we want to study our signal’s statistics and finally K is the analysis

frame length. We used a Hamming window and observed the signal at 1kHz.

We measured the signal’s nonGaussianity at frame lengths varying from 6ms

to 625ms. Kurtosis is used as a significant measure of nonGaussianity. As

our data are complex, the “normalised” kurtosis is given by the following

expression:

kurt(x) =
E{| x |4}
E{| x |2}2

− 2 (3.67)

We then repeated the measurement for a reverberant version of the same

speech signal (using an estimated room transfer function [Wes]). Figure 3.8

shows the level of estimated kurtosis of the signals as a function of frame

size.

The results follow our intuition. For very small frame sizes the estimated

kurtosis tends to that for the time domain source model. Although the

signals still have positive kurtosis they are only weakly nonGaussian. As

the frame size increases, we are able to exploit the sparsity of the sources in

the STFT domain.

For the speech signal with no reverberation the estimated kurtosis is

maximum for a frame size of about 20− 30ms (this is the frame size that is

commonly used for efficient speech coding). Note at this value the estimated

kurtosis is 10 times that for the time domain model. Finally, as the frame size

grows very large, we begin to average over a sufficient number of stationary

segments and the estimated signal kurtosis tends towards zero. The effect

of reverberation (dashed line) is to reduce the peak value of the estimated

kurtosis. However, the other general trends persist.

One conclusion is that when source modelling in the frequency domain we

cannot afford to choose long frame sizes with K À L since this will merely

render our signal statistics Gaussian. A similar conclusion was drawn by

Araki et al [AMNS01].

Instead, we can choose L ≈ K and use oversampling as explained in

section 3.7.1. However, when in a highly reverberant environment, even this
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Figure 3.9: A possible framework to solve the frame size problem.

condition may lead to poor performance.

In this situation a possible solution, often adopted in subband adaptive

filtering algorithms is to use a mixture of subband and convolutional filter-

ing, as depicted in Figure 3.9, where a P subband filterbank is replaced by

a smaller R subband structure and a short unmixing filter of size T (such

that P = RT ) [Mit98, HCB95]. This would enable us to work with highly

sparse signals, while also reducing to some extent the permutation problem.

A typical example would be to decompose a P = 4096 FFT filterbank into a

R = 1024 FFT filterbank and a T = 4 tap filter for each subband. Although

this might keep the frame size small, we will have to use a convolutive un-

mixing algorithm for small-size filters, instead of the instantaneous unmixing

algorithm. This might increase the computational complexity, however, the

effectiveness of this process is under current investigation.

3.8 Conclusion

In this chapter, we have addressed the problem of convolutive mixtures

source separation using Frequency-Domain Independent Component Anal-

ysis. A method to solve the scale ambiguity was proposed. A novel method

to solve the permutation ambiguity using a time-frequency source model

along with a Likelihood Ratio jump solution was proposed. The methods

seemed to rectify the permutation problem in the majority of the cases. Two
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fast “fixed-point” algorithms were adapted to work with complex numbers

and incorporate the solution for the permutation problem. All these mod-

ules were put together to form a unifying frequency domain ICA framework

that manages to perform fast and robust source separation in the major-

ity of the cases. Several tests were performed to test the efficiency of the

proposed framework with encouraging results.

Finally, we saw that the STFT can be considered a critically sampled

filterbank that introduces aliasing between the subbands. The use of over-

sampling to reduce the aliasing was investigated, plus other possible options

were discussed. The increase in Gaussianity due to the long FFT frames

(due to long room transfer functions), used in audio convolutive mixtures,

was also discussed. Possible solutions were also presented



Chapter 4

Using Beamforming for

permutation alignment

4.1 Introduction

The theory of Array Signal Processing was established in the late 70s and

early 80s with application to sonar, radar and telecommunication devices.

The use of a structured array of sensors rather than a simple sensor can

enhance the receiver’s capabilities in terms of identifiability of sources, di-

rectional tracking and enhanced reception [vVB88]. The idea of array signal

processing was introduced also in the case of audio signal analysis [GJ82].

The main areas of application for an audio beamformer are blind deverbera-

tion, source localisation, hearing aids, blind enhancement and speaker arrays.

A common application of many array signal processing systems was to steer

the overall gain pattern of the array sensors to focus on a desired source

coming from a specific direction, while suppressing possible sources coming

from other directions (beamforming).

In fact, the source separation systems, as described analytically in Chap-

ter 2, can be regarded as array signal processing systems. A set of sensors

arranged randomly in a room to separate the sources present is effectively

a beamformer. However, in source separation systems the sensors can be
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arbitrarily placed in the room and usually an equal number of sensors and

sources is sufficient to perform separation. In array signal processing sys-

tems, we assume a known arrangement of the sensors and usually the number

of sensors is greater than the number of sources. Using more sensors than

sources enables us to use “subspace techniques” to estimate the directions

of arrival for each source.

In this chapter, we investigate the relation between beamforming and

blind source separation in more detail. We will also look at the application of

beamforming for permutation alignment on Frequency-Domain Independent

Component Analysis for Blind Source Separation of convolutive mixtures. In

addition, we demonstrate that one can apply common “subspace techniques”

(such as MuSIC) even in the case of an equal number of sources and sensors.

4.2 Array Signal Processing

In this section, we give a brief background on Array Signal Processing theory

that will be used in our analysis later on.

4.2.1 Definition

Assume that you have an array of M sensors x(n) = [x1(n) x2(n) . . . xM (n)]T

capturing an auditory scene, where n represents discrete time index. Assume

there are N sources in the auditory scene s(n) = [s1(n) s2(n) . . . sN (n)]T .

Suppose that the distance of the sensors from the origin of the array is dk.

The source signals arrive at the origin of the array’s coordinates system at

an angle θi. These angles θi are called Directions of Arrival (DOA) of the

sources in the far-field approximation.

Assuming that we deal with narrowband signals, we can say that si(n) ≈
αej2πfcn, where fc is the carrier frequency. Considering only one source s1(n)

and no reverb, one can say that each sensor captures the incoming signal

with a time lag (phase difference) of Ti (see figure 4.1). The delays Ti are

functions of the signals’ DOA θi.
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 dk θ1 θ2 
Figure 4.1: An array signal processing setup: 3 sensors and 2 sources with

Directions of Arrival θ1 and θ2 respectively.

x1(n) = s1(n) (4.1)

x2(n) = s1(n− T1) ≈ αe−j2πfcT1s1(n) (4.2)

. . . . . . . . . . . . . . . (4.3)

xM (n) = s1(n− TM ) ≈ αe−j2πfcTM s1(n) (4.4)

Assuming equal distance d between the sensors, a far-field approximation

and discrete-time signals with time index n, we have

x(n) =




x1(n)

x2(n)

. . .

xM (n)



≈




1

αe−j2πfcT

. . .

αe−j2πfc(M−1)T )




s1(n) = a(θ1)s1(n) (4.5)

where T = dsinθ1/c, where c = 340m/sec is the velocity of sound in air.

For multiple sources, we have

x(n) =
N∑

k=1

a(θk)sk(n) = [a(θ1) a(θ2) . . . a(θN )]s(n) (4.6)
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where A = [a(θ1) a(θ2) . . . a(θN )] can be considered as an equivalent

to the mixing matrix A (see Chapter 2). As we can see the model of an

array is similar to the Blind Source Separation model. However, in array

signal processing, the model incorporates more geometrical information (i.e.

Directions of Arrival, position of sensors), whereas source separation the

mixing model is more general, employing statistical information about the

sources only.

The calibration of the array is an important parameter in array signal

processing. The performance of an array can be limited due to calibration

errors relating to the electrical and/or geometrical characteristics of the

array. Calibration errors may make it impossible to track the DOA of the

incoming sources. Therefore, array calibration is significant for any array

system.

The ultimate goal of the above mentioned array signal processing sce-

nario is to find a set of weights that can “steer” the gain pattern of the

array, so that we can isolate one source of interest and suppress the others.

This procedure is usually known as beamforming and the resulting filter a

beamformer.

The problem of beamforming is usually divided into many subproblems.

The first aspect is to identify the number of sources that are present. The

second subproblem is to identify the sources’ DOA θ1, θ2, . . . , θN . Finally,

we unmix the sources by steering the beampattern of the array to provide

maximum gain to the direction of the corresponding source or more accu-

rately to place nulls (zero gain) to all other sources present in the auditory

scene. More specifically,

ui(n) =
M∑

k=1

w∗k(θi)xk(n) = wH(θi)x(n) (4.7)

where w(θi) models the filter coefficients (beamformer) that maximize the

overall gain of the array towards the angle θi. To retrieve all sources

u(n) = [w(θ1) w(θ2) . . . w(θN )]Hx(n) (4.8)
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Figure 4.2: Directivity pattern of a three microphone array.

Having estimated the unmixing vector (beamformer), one can plot the

gain pattern of the array along θ ∈ [−π/2, π/2]. This constitutes the direc-

tivity pattern of the array. In figure 4.2, we can see the directivity pattern

of a three microphone array. We can see that the array’s gain pattern is

steered at 0◦, while two nulls are placed at ±49◦. A beamformer has M − 1

Degrees of Freedom (DOF), i.e. can suppress M − 1 unwanted sources.

In the following section, we are going to examine each of the subproblems

that constitute the full beamforming problem. As stated before, we have to

estimate the number of sources N , the Directions of Arrival θi and finally

the unmixing - beamforming vectors w(θi).

4.2.2 Number of sources and Directions Of Arrival (DOA)

estimation

If the number of sensors M is greater than the number of sources, we can es-

timate the number of sources and the DOA using subspace methods [MS00].

In the following analysis, we will also assume some additive, isotropic

noise ε(n) to our model, i.e. Cε = σ2
ε I, where σε is the standard deviation of
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the noise. Consider A = [a(θ1) a(θ2) . . . a(θN )], then the model is described

as follows:

x(n) = As(n) + ε(n) (4.9)

Calculating the covariance matrix for x. We have:

Cx = E{x xH} = AE{s sH}AH + E{ε εH} (4.10)

Cx = ACsA
H + σ2

ε I (4.11)

where Cx is the covariance matrix of x and Cs is the covariance matrix

of s.

As M > N the rank of Cx will be equal to N and its eigenvalues will

be λ1, λ2, . . . , λN , 0, . . . , 0 in the noiseless case. Assuming that the additive

noise is isotropic, i.e. Cε = σ2
ε I and σ2

si
À σ2

ε then the eigenvalues will be

shifted by σ2
ε . More specifically, the eigenvalues of Cx will be λ1 + σ2

ε , λ2 +

σ2
ε , . . . , λN + σ2

ε , σ
2
ε , . . . , σ

2
ε and the corresponding eigenvectors of Cx will be

e1, e2, . . . , eN , eN+1, . . . , eM .

As we can see, a criterion in order to determine the number of sources

N present in the auditory scene is counting the number of eigenvalues being

above a “noise floor”. In addition, the small eigenvalues can give an estimate

of the level of noise. That is the method usually followed to determine the

number of sources and noise level estimation in array processing problems.

Subspace Methods - MuSIC

DOA estimation can be performed in a number of different ways. However,

if M > N , then a number of subspace methods, such as MuSIC and ES-

PRIT can be used to provide very accurate estimates for the DOA. In this

section, we will briefly describe the Multiple Signal Classification (MuSIC)

method [Sch86].

Some useful theory from linear algebra can help us establish a practical

method to estimate the DOA. This is provided the model fits and the array

is calibrated. We can show [MS00] that the space spanned by the columns
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of matrix A = [a(θ1) a(θ2) . . . a(θN )] is equal to the space spanned by the

eigenvectors e1, e2, . . . , eN .

span{A} = span{[e1, e2, . . . , eN ]} = span{Es} (4.12)

This subspace can uniquely determine the DOA θ1, . . . , θN of the source

signals. To find the DOA, we have to estimate the angles θ that a(θ) ∈
span{Es}. Assuming that Es = [e1, e2, . . . , eN ] contains the eigenvectors

corresponding to the desired source and En = [eN+1, . . . , eM ] contains the

eigenvectors corresponding to noise, we can form P = EsE
H
s and P⊥ =

(I − EsE
H
s ) = EnEH

n . The DOAs should satisfy the following conditions

Pa(θ) = a(θ) or P⊥a(θ) = 0 (4.13)

In practice, we plot the following function

M(θ) =
1

|P⊥a(θ)|2 ∀ θ ∈ [−90, 90] (4.14)

The N peaks of the function M(θ) will denote the DOA of the N sources.

An example of the MuSIC algorithm can be seen in fig. 4.3. The MuSIC

algorithm is applied in the case of two sources being observed by a symmetric

array of three sensors. Plotting M(θ), we can clearly observe two main

peaks, denoting the two directions of arrival.

On the other hand, a well-known problem with some of these suboptimal

techniques, such as MuSIC, occurs when two or more sources are highly

correlated. Many variants of the MuSIC algorithm have been proposed to

combat signal correlation. In addition, in the audio separation setup, one

of the basic assumption is the statistical independence of the sources and

hence, the sources are considered uncorrelated. Another problem of the

MuSIC framework is to identify sources with great proximity. This case will

not be examined in our analysis.
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Figure 4.3: Example of the MuSIC algorithm in a 2 sources-3 sensors sce-

nario. The two sources emitting at 45o and 60o. Two directions of arrival

estimated by the MuSIC algorithm at θ1 = 45o, θ2 = 60o.

4.2.3 Beamforming - Separation

Having estimated the DOA, we have to estimate the coefficients of the beam-

forming filter, as the final objective is to unmix the sources. Assuming

narrowband signals, one can unmix the source deterministically , using the

pseudoinverse of the matrix A = [a(θ1) a(θ1) . . . a(θN )]. However, when

additive noise is present, we will still get post-processing additive noise us-

ing the pseudoinverse, as:

u(n) = A+x(n) + A+ε(n) (4.15)

In order to deal with noise, one can unmix the sources using a Wiener-

type method. Basically, we need to estimate the beamforming (unmixing)

vector wi that can separate the source coming from θi. From adaptive filter

theory, one way to estimate the filter’s coefficients is by minimising the mean

square error, i.e. the following cost function:

min
wi

E{|wH
i x|2} = min

wi

wH
i C−1

x wi (4.16)
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subject to aH(θi)wi = 1 (4.17)

The analytical solution is given by the following formula:

wi =
C−1

x a(θi)
aH(θi)C−1

x a(θi)
(4.18)

4.2.4 Frequency Domain Beamforming

A Frequency Domain beamformer performs beamforming for each frequency

bin. Instead of assuming a carrier frequency for narrow-band signals, we

form a(θi) for every frequency f . More specifically,

a(θi) =




1

αe−j2πfT

. . .

αe−j2πf(M−1)T )




(4.19)

As a result, we can estimate a beamformer wi(f) for every frequency bin

f and every source i.

Directivity patterns for Frequency Domain Beamformers

Having estimated the beamformers for each frequency f and source i, we

can plot the directivity pattern for each frequency f . A more simplified

expression for the directivity pattern follows:

Fi(f, θ) =
N∑

k=1

wph
ik (f)ej2πf(k−1)d sin θ/c (4.20)

where wph
ik = wik/|wik| and c is the velocity of sound. In figure 4.4,

we can see the directivity patterns of a FD-beamformer. In this case, we

simulated a single delay transfer function scenario between 2 sources and 2

sensors. The sensor spacing was d = 1m. We observed the following:

First of all, we can spot a consistent null along all frequencies that corre-

sponds to the DOA of the source we want to remove from the auditory scene.

This is something we expected. However, we notice that as the frequency f
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increases, we get multiple nulls, instead of a single null. More specifically,

around fripple ≈ c/2d we start getting multiple nulls in the directivity pat-

terns. This is due to the periodicity of the function Fi(f, θ), now that the

value of frequency f is increasing. This is also known as the spatial aliasing

condition d = λ/2, where λ = c/f .

A proof for this threshold in the 2 sensors case follows. The directivity

pattern is defined as:

Fi(f, θ) = w1 + w2e
j2πfd sin θ/c (4.21)

where w1 = ejφ1 and w2 = ejφ2 are the beamforming filter’s coefficients. We

will examine the amplitude square of the function Fi(f, θ).

|Fi(f, θ)|2 = Fi(f, θ)F ∗
i (f, θ) (4.22)

= (w1 + w2e
j2πfd sin θ/c)(w∗1 + w∗2e

−j2πfd sin θ/c) (4.23)

= w1w
∗
1 + w2w

∗
2 + w1w

∗
2e
−j2πfd sin θ/c + w2w

∗
1e

j2πfd sin θ/c (4.24)

As w1w
∗
1 = w2w

∗
2 = 1, we have

|Fi(f, θ)|2 = 2 + ej(φ1−φ2)e−j2πfd sin θ/c + e−j(φ1−φ2)ej2πfd sin θ/c (4.25)

|Fi(f, θ)|2 = 2 + 2 cos(φ1 − φ2 − 2πfd sin θ/c) (4.26)

We are interested in studying the periodicity of the above function. The

periodicity is controlled by the term 2πfd sin θ/c as the term ∆φ = φ1 − φ2

represents the offset of the cosine. As θ ∈ [−π/2, π/2], it follows that −1 ≤
sin θ ≤ 1 and −π ≤ z = π sin θ ≤ π.

Then, if we want to have only one ripple in |Fi|2 = 2 + 2 cos(∆φ +

2fdz/c) for all z ∈ [−π, π], we have to ensure that the cosine remains in its

first period, i.e. the argument of the cosine lies in the first period. More

specifically, we have to ensure that 2fdz/c ∈ [0, 2π] or 2fdz/c ∈ [−π, π]. As

z ∈ [−π, π] already, the condition for |Fi|2 to have only one ripple is

2fd/c ≤ 1 ⇒ (4.27)



4.3 ICA as a Beamformer 110

Angle θ

F
re

qu
en

cy
 (

H
z)

−80 −60 −40 −20 0 20 40 60 80

7000 

6000 

5000 

4000 

3000 

2000 

1000 

0 

Figure 4.4: Directivity pattern along frequency for a single delay case.

f ≤ c/2d (4.28)

Even with multiple nulls, there will always be a null around the DOA.

Directivity patterns can give us an efficient tool to estimate DOA in the case

that we do not have more sensors than sources and can not use subspace

methods. The null that appears in all frequencies should be a DOA. All

directivity patterns of a broadband beamformer that is adjusted to separate

a source with a specific DOA should feature a null around that DOA.

4.3 ICA as a Beamformer

Recently, the relationship between convolutive blind source separation and

beamforming has been highlighted. In the context of frequency domain ICA,

at a given frequency bin, the unmixing matrix can be interpreted as a null-

steering beamformer that uses a blind algorithm (ICA) to place nulls on the

interfering sources. However, we face the ICA permutation ambiguity of

ordering the permutations along the frequency axis.

The source separation framework, as described so far, does not utilize any

information concerning the geometry of the auditory scene (e.g. Directions
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Of Arrival (DOA) of source signals, microphone array configuration). In-

clusion of this additional information can help align the permutations using

the sources estimated DOA to align the permutations along the frequency

axis. Although in a real room recording, i.e. at a given frequency the “ap-

proved” DOA is only slightly perturbed, we assume that the main DOA

comes from the direct path signal. This is equivalent to approximating the

room’s transfer function with a single delay. As we will see later on, this

approximation is relatively true. In a similar manner to flipping solutions

for the permutation problem, the permutations of the unmixing matrices are

flipped so that the directivity pattern of each beamformer is approximately

aligned.

So far in the ICA model, the sensors could have a totally arbitrary con-

figuration. Hence, the idea of incorporating information about the sensors’

arrangement can be interpreted as a channel modelling technique. The DOA

information and directivity patterns are mainly channel modelling informa-

tion to our system.

More specifically, having estimated the unmixing matrix W (f) using a

fast frequency-domain algorithm as proposed in [MD03], we want to permute

the rows of W (f), in order to align the permutations along the frequency

axis. We form the following directivity pattern for each frequency bin f .

Fi(f, θ) =
N∑

k=1

W ph
ik (f)ej2πf(k−1)d sin θ/c (4.29)

where W ph
ik (f) = Wik(f)/|Wik(f)| is the phase of the unmixing filter coef-

ficient between the kth sensor and the ith source at frequency f , d is the

distance between the sensors and c is the velocity of sound in air.

However, in audio source separation we deal with signals that are recorded

in a real room. This implies that the sensors capture more than a single

delay and are modelled as convolutive mixtures. As a result, the directivity

patterns of these channels are a bit different to those corresponding to single

delay channels. In figure 4.5, we can present the directivity patterns of a

real room transfer function, as measured in a university lecture room with a
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two sensor one source setup. The sensor spacing was d = 1m and the source

was placed 2m from the origin of the array.

One can observe that in the real room case, the directivity pattern looks

more “smeared”. This is due to the fact that the DOA are slightly shifted

along frequency. In a real room case with reverb, apart from the direct path

signal that defines the “actual” DOA, we have other room’s reflections that

shift the “actual” DOA arbitrarily at each frequency (see figure 4.5).

On the other hand, the average shift of DOA along frequency is not so

significant . As a result, we can spot a main DOA (around 22◦). This implies

that we can align the permutations in the source separation application,

using the DOA.

At this point, we want to stress the reason why we want to use beamform-

ing for permutation alignment only and not for separation. In section 4.2.3,

we saw that if we know the DOA of the desired signal, we can form estima-

tors to separate it and suppress the other sources. However, this assumes

that we have a single delay scenario and therefore the DOA is consistent

along frequency. In a real room scenario, where the DOA is shifted arbitrar-

ily at each frequency, performing beamforming along an average DOA would

give very poor quality separation. Instead, the slightly “shifted” DOA can

help us identify the correct permutation of separated sources.

The questions that have to be answered are how we can get a good DOA

estimate from this directivity pattern and how we can perform permutation

alignment using DOA. In the next sections, we will try to address some

solutions proposed by other people and the shortcomings we spotted in

these problems, plus some novel ideas and a mechanism to apply subspace

techniques for permutation alignment.
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Figure 4.5: Directivity pattern along frequency for a real room transfer

function. We can spot a main DOA along frequency, however, it seems to

be slightly shifted due to the multipath of the real room transfer function.

4.4 Beamforming as a solution to the permutation

ambiguity

4.4.1 DOA estimation ambiguity

In the case of more sensors than sources, DOA estimation is not a difficult

task, as we can employ subspace techniques, such as MuSIC and ESPRIT

and get very accurate DOA estimates. In a previous paragraph, we saw that

exploiting the noise subspace, we can identify the number of sources and the

directions of arrival.

Saruwatari et al [SKS01] estimated the DOA by taking the statistics

with respect to the direction of the nulls in all frequency bins and then tried

to align the permutations by grouping the nulls that exist in the same DOA

neighbourhood. On the other hand, Ikram and Morgan [IM02] proposed to

estimate the sources DOA in the lower frequencies, as they don’t contain

multiple nulls. Parra and Alvino [PA02] used more sensors than sources
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along with known source locations and added this information as a geometric

constraint to their unmixing algorithm.

A mechanism for DOA estimation

In figure 4.6, we plot the average beampatterns along a certain frequency

range F , assuming a two sensor setup, where d = 1m. More specifically, we

plot the average beampatterns between 0 − 2KHz, 2 − 4KHz, 4 − 6KHz

and 6 − 8KHz. We can see that in the lower frequencies, we get clear

peaks denoting the directions of arrival. However, in higher frequencies, we

get peaks at the same angle, but also multiple peaks around the main DOA.

Observing the higher frequencies, we can not really define which of the peaks

is the actual DOA. As a result, we may want to use only the lower subband

(0− 2KHz) for DOA estimation.

We can show that averaging beampatterns over the lower frequencies,

we can get localised peaks around the DOA. Assume a two sensors setup.

Following the analysis in section 4.2.4, we have an expression for |Fi(f, θ)|2
(4.26). Averaging (4.26) over a frequency range F that contains K1 fre-

quency bins, we get:

1
K1

∑

f∈F
|Fi(f, θ)|2 =

2
K1

+
2

K1

∑

f∈F
cos(∆φf − 2πf sin θ/c) (4.30)

Assume that F represents the lower frequency band, where there are no

multiple ripples. If the beamformers follow the correct permutations, then

each of |Fi(f, θ)|2 will be cosines that feature a null around the DOA. Aver-

aging over these cosine functions will emphasize the position of the average

DOA. If we add |F1(f, θ)|2 and |F2(f, θ)|2, i.e. the beampatterns for the

two sources, we will get two nulls, one for each source. Therefore, averaging

|F1(f, θ)|2 + |F2(f, θ)|2 over the frequency band F will emphasize the posi-

tion of the two nulls, i.e. the position of the two DOAs. In addition, this

graph will be the same whether the permutations are sorted or not (due to

the commutative property of addition). Hence, this mechanism can be used

for DOA estimation, without sorting the permutations along frequency.
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As a result, we propose the following mechanism for DOA estimation:

1. Unmix the sources using the ICA algorithm

2. For each frequency bin f and source i estimate the beamforming pat-

tern Fi(f, θ).

3. Form the following expression for F = [0− 2KHz]

P (θ) =
∑

f∈F

N∑

i=1

|Fi(f, θ)|2 (4.31)

The minima of this expression will be an accurate estimate of the

Directions of Arrival.

In figure 4.7, we can see that plotting (4.31) can give us an accurate

estimate for the DOAs. The exact low-frequency range F we can use for

DOA estimation is mainly dependent on the microphone spacing d. If we

choose a small microphone spacing, the ripples will start to appear at higher

frequencies, as fripple ∼ c/2d. However, as the microphones will be closer,

the signals that will be captured will be more similar. Thus, the source

separation SNR will decrease considerably, as our setup will degenerate to

the overcomplete case. Therefore, the choice of sensor spacing is a tradeoff

between separation quality and beamforming pattern clarity.

4.4.2 Permutation alignment ambiguity

Once we have estimated the DOA, we want to align the permutations along

the frequency axis to solve the permutation problem in frequency domain

ICA. There is a slight problem with that. Basically, all nulls, as explained

in an earlier section, are slightly drifted due to reverberation. As a result,

the classification of the permutations may not be accurate.

One solution can be to look for nulls in a “neighbourhood” of the DOA.

Then, we can do some classification, however, it is difficult to define the

neighbourhood. Hu and Kobatake [HK03] observed that for a room impulse

response around 300ms, the drift from the real DOA maybe 1 − 3 degrees
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Figure 4.6: Average Beampatterns along certain frequency bands for both

sources.
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Figure 4.7: A plot of P (θ) as described in eq. 4.31 gives two distinct DOAs

θ1 and θ2.
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on average (this may be different at various frequencies). As a result, we

can define the neighbourhood as 3 degrees around the DOA.

An additional problem is that even in such a small interval, in mid-higher

frequencies there might be more than one null, making the classification even

more difficult in these frequency bands.

A remedy to this problem might be to use beamforming (phase informa-

tion) in lower-mid frequencies and the Likelihood Ratio (amplitude infor-

mation) for mid-higher frequencies. However, we need a mechanism to tie

the permutations between the lower and the higher frequency bands. This

idea is under current investigation.

4.5 A novel method for permutation alignment us-

ing beamforming

Another idea is to introduce more efficient Directivity Patterns in our frame-

work. The MuSIC algorithm is an alternative solution, used thoroughly in

literature. The MuSIC algorithm is actually not immune to the multiple

nulls ambiguity, however, the DOAs are more distinct and the permutation

alignment should be more efficient. Although, in theory, we need to have

more sensors than sources, it is possible to apply the MuSIC algorithm in

the case of equal number of sources and sensors !

In Chapter 3, we saw that in order to rectify the scale ambiguity, we need

to map the separated sources back to the microphones domain. Therefore,

we have an observation of each source at each sensor, i.e. a more sensors

than sources scenario. If we do not take any steps to solve the permuta-

tion problem, the ICA algorithm will unmix the sources at each frequency

bin, however, the permutations will not be aligned along frequency. As we

demonstrated in Chapter 3, mapping back to the observation space is not

influenced by the permutation ambiguity. Hence, after mapping we will

have observations of each source at each microphone, however, the order of

sources will not be the same along frequency. Using the observations of all



4.6 Experiments 118

microphones for each source, we can use MuSIC to find a more accurate

estimation for the DOAs, using (4.14).

We can form “MuSIC directivity patterns” using M(θ) (4.14), instead of

the original directivity patterns. To find the DOA estimates, we can form

P (θ) as expressed in (4.31), using M(θ) instead of the original directivity

pattern. Finally, we can use the DOAs to align the “sharper” “MuSIC

directivity patterns”.

The proposed algorithm can be summarised as follows:

1. Unmix the sources using the Fast Frequency Domain framework.

2. Map the sources back to the observation space, i.e. observe each source

at each microphone.

3. Having observations of each source at each microphone, we apply the

MuSIC algorithm to have more accurate DOA estimates along fre-

quency.

4. Align permutations now, according to the DOAs estimated by MuSIC.

4.6 Experiments

In this section, we perform a couple of experiments to verify the ideas anal-

ysed so far in this chapter. We will use two basic experiment sets, as in

Chapter 3. The first experiment will use artificial mixtures of a two sensor

- two sources using only single delays. The second experiment will contain

real room recordings of a two sensor - two sources setup.

4.6.1 Experiment 1 - Single Delay

In this section, we wanted to test our framework in terms of beamforming

performance using single delays. Two speech signals are mixed artificially

using delays between 6−5 msecs at 16KHz. In our experiments, we use the

basic fast frequency domain framework, as described in Chapter 3. We test
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the performance of the proposed solutions for the permutation problem, in

terms of beamforming.

In figure 4.8, we test the fast frequency domain framework, where no

solution for the permutation problem was used. We can see that even in

the case of a single and small delay, the permutation ambiguity is clearly

visible. Moreover, the ambiguity is also audible in the unmixed sources. We

can see that a solution is definitely needed.

In figure 4.9, we can see the performance of the Likelihood Ratio (LR)

solution. An amplitude-based solution seems to align the permutations along

frequency in the case of a single delay.

In figure 4.10, we can see a plot of P (θ) (4.31) for this case of a single

delay. We averaged the directivity patterns over the lower frequency band

(0− 2KHz) and as a result we can see two clear Directions of Arrival. The

estimated DOAs will be used to align the permutations along frequency.

Since we are modeling a single delay, we will not allow any deviations from

the estimated DOAs along frequency. As a result, we are going to align the

permutations according to the existence of a null along the estimated DOAs.

In figure 4.11, we can see the general performance of this scheme. We can

spot some mistakes in the mid-higher frequencies, verifying that it might be

difficult to align the permutations there.

In figure 4.12, we plot the MuSIC-generated Directivity Patterns for the

case of no solution for the permutation ambiguity. The problem manifests

itself very clearly in the figures. In addition, we emperically noticed that the

peaks in the MuSIC algorithm tend to be more distinct, than those created

by a normal directivity pattern.

Again in figure 4.13, we use the MuSIC Directivity Patterns to demon-

strate the performance of the Likelihood Ratio solution.

In figure 4.14, we can see a plot of P (θ) (eq. 4.31) using the MuSIC algo-

rithm. We averaged the MuSIC directivity patterns over the lower frequency

band (0− 2KHz) and as a result we can see two clear Directions of Arrival.

The difference with the graph in figure 4.10 is that the peaks indicating the
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Figure 4.8: Directivity patterns for the two sources. Permutation problem

exists even in the single delay case without any further steps.
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Figure 4.9: The Likelihood Ratio jump solution seems to align the permu-

tations in the single delay case.
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Figure 4.10: Plotting P(θ) (eq. 4.31) using the first 2KHz for the single

delay case. Two distinct DOAs are visible.

Directions of Arrival are now a lot more “distinct”. In figure 4.15, we can

see that the permutations are correctly aligned using the MuSIC directivity

plots. This seems to be due to the more “distinct” MuSIC directivity plots

that seem to be more efficient for permutation alignment.

4.6.2 Experiment 2 - Real room recording

In this section, we discuss the use of beamforming for permutation alignment

through a real world experiment. We used a university lecture room to

record a 2 sources - 2 sensors experiment. We used two speakers (source 1

and source 2) and two cardioid microphones (mic 1 and mic 2), arranged as

in figure 4.16. We investigate the nature of real room directivity patterns

as well as explore the performance of the proposed schemes for permutation

alignment.

We apply the Fast Frequency domain ICA algorithm, as described in

Chapter 3, without any algorithm for the permutation problem. As a re-

sult, the sources will be unmixed, but randomly permuted along the fre-
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Figure 4.11: Permutations aligned using the Directivity Patterns in the

single delay case. We can see some problems in the mid-higher frequencies.
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Figure 4.12: Using the MuSIC Directivity Patterns methodology for permu-

tation alignment. The permutation problem is demonstrated here.
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Figure 4.13: Plotting the MuSIC Directivity Patterns for the Likelihood

Ratio solution for the single delay case.
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Figure 4.14: Accurate DOA estimates using the MuSIC algorithm.

quency axis. In figure 4.17, we can see the directivity patterns of the result-

ing unmixing matrices. We can see nothing comprehensible, as the mixed

permutations create a scrambled image. The difficulty of the problem is

obvious.

In figure 4.18, we can see the directivity patterns of the unmixing sys-

tem, after applying the Likelihood Ratio Jump solution. We can see that

an almost consistent alignment along frequency. Certain mistakes in sev-

eral frequency bands are visible. Another observation is that although we

have a clearly multipath environment, we can a spot a main Direction of

Arrival, due to the strong direct path signal. The multipath environment

mainly causes a slight drift of the main direction of arrival along frequency.

However, the Likelihood Ratio is an amplitude criterion. In the next per-

mutation alignment attempts using the directivity patterns, we shall allow

a tolerance of ±3◦ for the actual position of the DOA, due to the multipath.

In figure 4.19, we can see a plot of P (θ) (4.31) for this case of real

room recording. Averaging over the lower 2KHz, we seem to get a very

clear image of where the main DOAs are, giving us an accurate measure
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Figure 4.15: Accurate permutation alignment using the MuSIC directivity

patterns.
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Figure 4.16: Experimental 2 sensor 2 sources setup in a real lecture room.

for this estimation task. We try to align to the permutations around the

estimated DOAs allowing ±3◦ deviation. In figure 4.20, we see the results.

We can spot that generally this scheme can perform robust permutation

alignment in the lower frequencies, but considerable confusion exists in the

higher frequencies, as expected from our theoretical analysis.

In figure 4.21, we plot the MuSIC-generated Directivity Patterns for the

case of the unmixed sources without permutation alignment. The figures

are more clear compared to figure 4.17 and we can still acknowledge the

difficulty of the problem. In figure 4.22, the performance of the Likelihood

Ratio solution is more clearly demonstrated using the MuSIC generated

patterns.

In figure 4.23, we can see a plot of P (θ) (4.31), averaging the MuSIC

directivity patterns over the lower frequency band (0 − 2KHz). The two

Directions of Arrival are clearly identified from this graph. In figure 4.24, we

can see that the permutations are correctly aligned using MuSIC directivity

plots. Again, the MuSIC directivity patterns seem to be more robust for

permutation alignment.
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Figure 4.17: Directivity patterns for the two sources. Permutation prob-

lem exists in the real room case. No steps were taken for the permutation

problem, resulting into nothing comprehensible.
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Figure 4.18: The Likelihood Ratio jump solution seems to align most of

the permutations. Certain mistakes are visible, especially in the higher

frequencies.



4.7 Sensitivity Analysis 131

−80 −60 −40 −20 0 20 40 60 80
1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Angle θ

P
(θ

)

θ
1
 

θ
2
 

Figure 4.19: Plotting P(θ) (eq. 4.31) using the first 2KHz for the single

delay case. Two distinct DOAs are visible for the real room case.

4.7 Sensitivity Analysis

All source separation algorithms assume stationary mixing. However, in

some applications the sources tend to move in the auditory scene. Having

described the source separation setup as a sort of adaptive beamforming,

in this section we will try to explore a simple case of source movement. In

order to test the sensitivity of our beamformer to movement, we recorded

two setups in a real room (see figure 4.16). As a result, a two microphone

- two speakers setup, as in figure 4.16, was initially recorded. Then, the

left speaker was displaced by 50cm and the whole setup was recorded again.

This source displacement attempts to simulate a small source movement.

Comparing the two recordings, we tried to make some preliminary investi-

gation into a) the beamformer sensitivity to movement and b) the distortion

introduced due to movement.
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Figure 4.20: Permutations aligned using the Directivity Patterns in the real

room case. We can see good performance in the lower frequencies but some

inconsistencies in the mid-higher frequencies.
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Figure 4.21: Using the MuSIC Directivity Patterns methodology for per-

mutation alignment. No steps for the permutation problem are taken. The

permutation problem is visible.
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Figure 4.22: Plotting the MuSIC Directivity Patterns for the Likelihood

Ratio solution for the real room case
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Figure 4.23: Accurate DOA estimates using the MuSIC algorithm in the

real room case.

4.7.1 Beamformer’s sensitivity to movement

We unmixed the two setups using the ICA algorithm and the LR algo-

rithm. We calculated the beamformer patterns for the two cases and we

tried to compare the two patterns to see the effect of misplacement. Com-

paring beamforming patterns along frequency, we see that the beamform-

ers sensitivity to movement is a function of frequency. At low frequencies

the beamformers null has been slightly shifted, due to movement. Figure

4.25(a) shows the directivity patterns at 160Hz for both the original and

displaced experiments. Whilst there will be some degradation due to the

misalignment, the original beamformer can still suppress the source at this

frequency quite effectively.

In contrast to this, even at moderate frequencies the directivity pattern

becomes more oscillatory, due to the shorter wavelength. Thus as the fre-

quency increases the source separation algorithm is unable to suppress the

interfering source. Figure 4.25(b) shows that, even at 750Hz, we have a

situation, where the null is almost replaced by a peak in the misaligned
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Figure 4.24: Permutation alignment using the MuSIC directivity patterns

in the real room case.
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Figure 4.25: Comparing beamforming patterns at (a) 160Hz and (b) 750Hz.

patterns. In this situation, our beamformer is rendered useless. Hence, in

mid-higher frequencies, possible source displacement can degrade the per-

formance dramatically.

To quantify this, we evaluated the change in distortion due to the move-

ment as a function of frequency. This is shown in figure 4.26 (we have used

a log-frequency scale to highlight the behaviour at low frequencies). As pre-

dicted, distortion is not significantly affected at low frequencies. However,

above about 200Hz the distortion increases by more than 5dB. The result

is that all practical source separation above about 300Hz has been lost.

4.7.2 Distortion introduced due to movement

We conclude this section by examining how the distortion, introduced by

the displacement of one source, is manifested in the separated signals. From

listening to the separated sources, it was clear that source 1 contained a con-

siderable amount of crosstalk. Source 2, however, contained no crosstalk,

but sounded substantially more “echoic”. These observations can again be

explained by considering the directivity patterns associated with the unmix-

ing filters. From our above arguments, we see that displacing source 2 will

introduce the observed crosstalk. However, since source 1 was not displaced

the unmixing filters adapted to cancel this source will still place a correct
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Figure 4.26: Distortion increases as a function of frequency in the case of a

misaligned beamformer.

null in the direction of source 1. As a consequence, despite the fact that

source 2 was moved, it is still correctly separated. The added reverberation

in source 2 comes about, due to mapping the signals back to the microphone

domain. This is more clearly illustrated in figure 4.27.

Specifically, if we assume that at a given frequency bin

X =


 A11A12

A21A22





 S1

S2


 (4.32)

represents the mixed signals. After separation, we map back to the mi-

crophone space, so we are trying to estimate the individual source signals

observed at the microphones Xs1, Xs2:

Xs1 =


 A11

A21


S1, Xs2 =


 A12

A22


S2 (4.33)

this introduces the following constraint into our source estimates:

X = Xs1 + Xs2 (4.34)
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However, due to misaligned beamforming, one source will get contamination

from the other source. Therefore,

Xs1 =


 A11

A21


S1 + ε


 G1

G2


S2 (4.35)

where ε and G1, G2 model the error due to misaligned beamforming. Because

(4.34) is a constraint to our reconstruction, this implies that the second

source will get no contamination from source 1, but instead will be distorted,

due to incorrect mapping to the observation space.

Xs2 =





 H12

H22


− ε


 G1

G2





S2 (4.36)

4.8 Conclusion

In this chapter, we interpreted the Frequency-Domain audio source sepa-

ration framework, described in Chapter 3, as a Frequency-Domain beam-

former. The main motive was to discover more solutions for the permuta-

tion problem, as the solution proposed in Chapter 3 was based on source

modelling or amplitude information in the frequency domain. Beamforming

employs phase information or effectively the channel information to align

the permutations.

We explored the directivity patterns produced by the ICA framework in

the case of a real room. The directivity patterns seem to feature a main

Direction of Arrival, however, it tends to drift slightly along frequency due

to room reflections. We have reviewed some of the proposed methods for

permutation alignment. This drift of the main DOA may hinder the qual-

ity of permutation alignment, especially in the mid-higher frequencies. We

also saw that the distance between the microphones plays an important role

in the effectiveness of these schemes. Large microphone spacing will result

in multiple nulls appearing even in lower frequencies, making permutation

alignment inaccurate. This problem can be rectified by using small micro-
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Figure 4.27: Distortion introduced due to movement.(a) Correct beamform-

ing for right source and correct mapping for left source, (b) left source moves,

correct beamforming for right source and incorrect mapping for left source,

(c) correct beamforming for left source and correct mapping for right source,

(d) left source moves, incorrect beamforming for left source and correct map-

ping for right source.



4.8 Conclusion 141

phone spacing, however, this might deteriorate the separation quality. A

mechanism for DOA estimation using directivity patterns was proposed.

In addition, a novel mechanism to employ subspace methods for permu-

tation alignment in the frequency domain source separation framework in

the case of equal number of sources and sensors was proposed. In order

to rectify the scale ambiguity, we need to map the separated sources back

to the microphone domain. As a result, we have different observations of

each source at each microphone, i.e. more sensor signals than sources. In

this case, a subspace method, i.e. MuSIC, can be employed for permutation

alignment. In our experiments, the MuSIC directivity patterns proved to be

more efficient compared to the original directivity patterns for permutation

alignment. In addition, such a scheme seems to be less computationally

expensive in the general N × N case, compared to the Likelihood Ratio,

as we do not have to work in pairs or even calculate the likelihood of all

permutations of the N sources.

Finally, in a preliminary attempt to explore how robust is the source sep-

aration framework to movement, we observed that the separation algorithm

seems to be more sensitive to movement in the higher frequencies than in the

lower frequencies. In addition, we can demonstrate that in cases of a moving

and a stationary source, we can always separate the moving source due to

correct null placement on the stationary source. In contrast, the misaligned

beamformer for the moving source will corrupt the stationary source with

the other source.



Chapter 5

Intelligent Audio Source

Separation

5.1 Introduction

Most source separation algorithms aim to separate all the sound objects

present in the auditory scene. In fact, humans can not really separate all the

sound objects that are present in the auditory scene simultaneously. Instead,

we tend to focus on a specific source of interest and suppress all the other

sources present in the auditory scene. We can hardly separate more than

one source simultaneously. As a result, current source separation algorithms

do not really try to emulate the human hearing system, but instead address

a more difficult problem. A more realistic objective for the source separation

scenario may be to separate a specific source of interest, especially in the

overcomplete source separation case (Blind Source Extraction).

In this chapter, we discuss the idea of “intelligent” source separation, i.e.

a more selective kind of algorithm. As blind source separation algorithms

tend to focus more on the actual signals’ statistics, we need to embed several

tools to allow the source separation system to discriminate between sound

objects. Previous research on instrument recognition can provide us with

all the essential tools to perform “intelligent” audio source separation using
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Independent Component Analysis.

5.2 Instrument Recognition

Automatic musical instrument recognition is the problem of automated iden-

tification of an instrument from a solo recording, using some previous knowl-

edge of the instrument. Instrument recognition can be a useful tool in

Musical Information Retrieval (MIR) applications (music indexing and mu-

sic summarisation) [HABS00] and of course in Automatic Music Transcrip-

tion. In addition, music compression algorithms may benefit from this kind

of analysis, as instruments tend to have different bandwidth requirements,

leading to a more appropriate compression scheme per instrument. Instru-

ment recognition is also similar to speaker recognition or verification, where

a person can be identified from his voice (Biometrics) [PBJ00].

An instrument/speaker recognition procedure is basically split into two

phases:

• Training phase. During the training phase, some audio samples from

the instrument or person are used to retrieve and store some infor-

mation about the instrument in a statistical/dynamical model. The

model is stored locally to form a database for each instrument.

• Recognition phase. During the recognition process, a smaller audio

sample from the instrument is shown to the system. The system ex-

tracts from the sample the same type of information as in the training

phase. The extracted information is compared with the information

available in the database and finally the system makes an inference

about the instrument or the person.

A general flow diagram for the training phase is depicted in figure 5.1

and the equivalent for the recognition phase in figure 5.3. We can see that

the two flow diagrams have some blocks in common: Preprocessing, Feature

extraction, Instrument Modelling and Instrument Recognition block. The

function of these blocks is investigated below:
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Figure 5.1: A general flow diagram for instrument recognition model train-

ing.



5.2 Instrument Recognition 145

5.2.1 Preprocessing

The training/testing audio is usually passed through a pre-processing stage.

This stage can have various steps, mainly depending on the application.

Usually, possible DC bias is removed from the signal to cater for different

recording sources. In addition, the signal is normalised to unit variance to

cater for different input signal levels. Moreover, the silent parts are usually

removed as they do not carry important information about the instrument

and may introduce inaccuracy to the instrument modelling and recognition

stage. Finally, the signal is pre-emphasised, using a first-order high-pass

filter, such as the one in (5.1), increasing the relative energy of the high-

frequency spectrum, emphasising formants and harmonics present in the

higher frequencies. The pre-emphasis filter was introduced mainly in speech

processing applications in order to cancel the glottal or lip radiation effects

on speech production, especially when modelling speech with Linear Predic-

tive Models [JPH93]. The effectiveness of pre-emphasis for musical signals

is not so clear.

H(z) = 1− 0.97z−1 (5.1)

5.2.2 Feature Extraction

This is the most important part of the whole instrument recognition proce-

dure. In this block, we extract several features from the signal that will be

used to identify the instrument. Usually, the signal is segmented into over-

lapping, windowed frames and for each of these we calculate a set of param-

eters that constitute the feature vector. The performance of the recogniser

is mainly determined by the feature set used in this step.

Many feature sets, capable of capturing the aural characteristics of an

instrument, were proposed for instrument recognition [Ero01, Mar99]. We

are going to outline some of the identifiers that are widely used in research.

The effectiveness of each feature vector is usually observed through exper-

iments without any theoretical justification of the superiority against the
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other. Sometimes, feature construction follows the researchers’ signal pro-

cessing intuition without any theoretical proof and indeed prove to be ef-

fective [PZ03]. In addition, some coefficients seem to be more suitable for

modelling certain kind of instruments. Finally, for the construction of the

full feature vector, one can use a concatenation of various sets of coefficients.

However, that will increase the complexity of the recogniser.

We will briefly present some of the features that can be used for instru-

ment recognition. For a more detailed description on these set of coefficients,

the reader can always refer to [Mar99, TC00].

• Spectral envelopes: A whole family of coefficients capture frequency en-

velopes. Among them, we encounter the Linear Predictive coefficients,

the Warped Linear Predictive coefficients, the Mel-Frequency Cepstral

coefficients (MFCC) and the Perceptual Linear Predictive coefficients

capture signal envelopes in the frequency, warped log-frequency, mel-

frequency and bark-frequency domain respectively. In addition, we can

have the Delta and Delta-Delta versions of the above sets, representing

the first and second order derivative of the coefficients.

• Spectral features: These include several other measurements that tend

to model certain frequency domain characteristics of the signal such

as spectral centroid, crest factor and spectral flatness measure.

• Pitch, Vibrato and Tremolo Features: these features try to capture ba-

sically some special characteristics of the instrument such as the pitch

(fundamental frequency) range. Another clue for the instrument’s iden-

tity is the variation of pitch (vibrato) introduced by the player and the

intensity of such variation (centroid modulation).

• Attack Features: these features try to capture other temporal charac-

teristics of the instrument, such as the attack transient of the signal.

Measurements include duration of transient, slope and curvature of

the energy profile and zero-crossing rate.
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Figure 5.2: MFCC triangular filterbank in the Mel-frequency domain (left)

and in the frequency domain (right)

The importance of all these features is discussed in [Ero01, Mar99,

KC01, TC00]. In our further analysis, we will use the Mel Frequency Cep-

strum Coefficients, as they featured robust performance in a study presented

in [Ero01] and also generally in speaker verification [Mit00].

Mel Frequency Cepstrum Coefficients (MFCC)

In this section, we are going to describe briefly the extraction of the Mel

Frequency Cepstrum Coefficients (MFCC) that will be used in our study, as

presented by Rabiner and Juang [RJ93]. This is a standard procedure in

feature extraction literature.

Basically, the MFCCs capture the signal energy levels in several fre-

quency bands. To achieve that we construct a filterbank of triangular,

equally-spaced and 50% overlapping in frequency filters (see figure 5.2). The

important feature is that the filterbank is designed in the Mel-frequency do-

main rather than the frequency domain, in order to emulate the almost

logarithmic human perception of frequency. Using the mapping between

the Mel and the frequency domain, we map the filters to the frequency do-

main, where they are actually applied on the signal. The average energy of

the filterbank outputs gives the signal energy levels along frequency.

The whole procedure is summarized as follows:
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1. Divide the training/test signal into overlapping frames and take the

FFT of these frames x(f, t).

2. Choose the number of filters Nfltr for the filterbank. Design the tri-

angular filter bank in the Mel-frequency domain and map it back to

the frequency domain.

3. Filter the input signal frames with the filterbank and calculate the

total energy of each filter’s output. As a result, for each frame we

have Nfltr values mf(k, t) (k = 1, . . . , Nfltr), representing the total

frame energy that exists in each subband .

4. Finally, in order to compress the information conveyed by the MFCCs,

we take the Discrete Cosine Transform (DCT) of the log mf(k, t),

i.e. MFCC(k, t) = DCTk{log mf(k, t)}. Usually, the first compo-

nent (MFCC(1, t)) is dropped and the feature vector is constructing

the first Nco < Nfltr coefficients.

5.2.3 Instrument Modelling

Finally, the feature vectors are used to build a model or reference template

for the instrument/person. There are many techniques that have been used

for instrument modelling in literature [Mar99]:

• Vector Quantisers,

• Neural Network classifiers

• Hidden Markov Models (HMM)

• Gaussian Mixture Models (GMM)

In the following analysis, we are going to use a Gaussian Mixture Models

(GMM) recogniser, as presented by Reynolds and Rose [RR95]. The GMM

will be used to describe the probability density function of the instrument’s

feature vectors, as a weighted sum of multivariate Gaussian distributions.
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If v is a feature vector, then the probability model built by a GMM is given

by the following equations:

p(v|λ) =
M∑

i=1

pibi(v) (5.2)

bi(v) =
exp(−0.5(v −mi)T C−1

i (v −mi))√
(2π)D|Ci|

(5.3)

where pi, mi, Ci are the weight, the mean vector and the covariance matrix

of each Gaussian and M is the number of Gaussians used. A GMM model

is usually described using the notation λ = {pi,mi, Ci}, for i = 1, .., M .

In our analysis, we will assume that each Gaussian has its own covariance

(nodal covariance), but each covariance matrix is diagonal, i.e. the elements

of the feature vector are uncorrelated. This approximation is used to reduce

the computational cost of the training procedure, as training full covariance

matrices might be computationally expensive. The GMM model is usually

trained using an Expectation Maximisation (EM) algorithm, as described

in [RR95]. The parameters of the model λk for each instrument are stored

in the database.

5.2.4 Instrument Recognition

A general flow-diagram for performing instrument recognition is shown in

figure 5.3. Basically, the preprocessing and the feature extraction stages are

identical to the ones used during training. Finally, in the instrument recog-

nition block, we compare the features extracted from the test samples with

the models stored in the database, in order to infer the type of instrument.

Suppose we have S instrument models λk stored and a set of T feature

vectors for the instrument to be identified V = {v1, v2, . . . , vT }. The correct

model should maximise the following probability:

max
1≤k≤S

p(λk|V ) = max
1≤k≤S

p(V |λk) (5.4)

In other words, the model maximising equation (5.2), given the data

V , gives us the identity of the instrument. Usually, the log-probability is

employed, i.e. we maximise the following function:
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Figure 5.3: A general flow diagram for performing instrument recognition.

max
1≤k≤S

log p(V |λk) = max
1≤k≤S

T∑

i=1

log p(vi|λk) (5.5)

5.3 Intelligent ICA

In this study, we explore the possibility of combining the efficient proba-

bilistic modelling performed by instrument/speaker verification in the ICA

of instantaneous mixtures framework of equal number of sources and sensors,

as described in Chapter 2. In other words, we impose high-level instrument

source models in the current ICA framework, aiming to perform “intelligent”

source separation. We propose two ways to perform intelligent separation:

• Combining nonGaussianity measurements and probabilistic inference

from the model (Intelligent FastICA).

• Estimating the direction that maximises the posterior probability of

the instrument’s model (Bayesian approach).
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One should point out that the instrument recognition problem that we

are called to solve is slightly different to the one usually tackled in the

literature before. In instrument recognition, we usually have an audio sam-

ple from an instrument/person and we compare the information acquired

from this sample with the templates in the database. In the Intelligent

ICA case, the problem is quite the opposite. We know the identity of the

instrument/person and we want to identify the audio source that is best rep-

resented by the instrument/person’s model. Mathematically speaking, this

can be formulated as follows.

Suppose we have N series of feature vectors V k, belonging to different

audio sources and the desired instrument model λdes. The correct audio

source should maximise the following likelihood:

max
1≤k≤N

p(Vk|λdes) (5.6)

5.3.1 Intelligent FastICA

In this section, we propose a method to separate the desired source using the

kurtosis-based one unit learning law as presented in (2.47) and the GMM

model λ that was trained for the specific instrument. We also assume the

noiseless, rectangular, instantaneous mixtures model as described in section

2.2.1.

x(n) = As(n) (5.7)

First of all, we prewhiten the observation signals x(n), i.e. perform Prin-

cipal Component Analysis. After this step, the sources become uncorrelated,

i.e. orthogonal to each other in the N -dimensional space. Assuming that V

is the prewhitening matrix, then

z(n) = V x(n) (5.8)

The next step is to randomly initiate a one-unit learning rule based

on nonGaussianity, for example Hyvärinen’s kurtosis-based algorithm, as
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Figure 5.4: A scatter plot of the two sources, two sensors case. Getting an

estimate of the most nonGaussian component can give an estimate of the

other component in the prewhitened 2D space.

described in [HO97].

w+ ← E{z(wT z)3} − 3w (5.9)

w+ ← w+/||w+|| (5.10)

Consequently, we need to get N orthogonal estimates w+
i towards the

N nonGaussian components in the mixture. This is performed by randomly

initialising N learning rules (5.9) and keeping the new estimates orthogonal

to each other, forming an orthonormal basis (see section 2.2.7). An example

of the 2× 2 case is illustrated in figure 5.4. The first estimate given by the

ICA algorithm is noted by w+. The direction of the orthogonal vector will

then be w+
⊥ ←


 0 1

1 0


w+.

The next step is to unmix the estimated sources at each direction and

perform instrument verification. In other words, extract the feature vectors

vi from each of the estimated signals and then calculate the probability

p(vi|λdes) given the desired instrument model λdes, as described by (5.2),

(5.3). The direction that maximises this probability is the best estimate of

the direction of the desired source.
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The same procedure is repeated until convergence. The likelihood com-

parison step enables us to choose the desired local maximum of kurtosis.

This method works in batch mode, i.e. processing all, or at least big blocks

of, the available data set. This is essential in order to perform fast estima-

tion of the nonGaussian components and accurate instrument recognition. A

stochastic gradient approach will not be suitable for instrument recognition.

The algorithm is summarised as follows:

1. Prewhiten the data, i.e. decorrelate the sources.

2. Randomly initialise the one-unit algorithm, getting N orthogonal es-

timates of nonGaussian components.

3. Extract features vi from each estimate and choose the one that max-

imises p(vi|λdes), where λdes is the desired instrument model.

4. Repeat until convergence

5.3.2 Bayesian Approach

In this section, we investigate whether the trained instrument probability

model can itself give us an efficient tool for performing “intelligent” source

separation. More specifically, we will maximise the posterior probability of

the model to form a Maximum Likelihood (ML) estimate of the unmixing

vector w. For our analysis, we will assume that the observed signals are

again prewhitened, to allow for orthogonal projections. The optimisation

problem is set as follows:

max
w

G(w) (5.11)

where G(w) = log p(v|x, λ) is defined by equation (5.2, 5.3).

We can form a gradient ascent solution to this problem, which is given

by the following law:

w+ ← w + ηE{∂G

∂w
} (5.12)

w+ ← w+/||w+|| (5.13)
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where η is the learning rate of the gradient ascent. Therefore, we have to

calculate the ∂G/∂w. Forming an expression connecting G(w) with wT x is

not so straightforward, as it is not easy to represent feature extraction with

a function f , i.e. v = f(wT x). However, we can split the derivative in the

following parts:
∂G

∂w
=

1
p(v)

∂p(v)
∂v

∂v

∂w
(5.14)

where
∂p(v)
∂v

= −
M∑

i=1

pibi(v)C−1
i (v −mi) (5.15)

The term ∂v/∂w is hard to define. In our analysis, we performed numerical

calculation of this derivative. Another approach can be to perform numerical

calculation of the whole derivative.

However, a Maximum Likehood estimate may not always be accurate. In

the following paragraph, we demonstrate that the Gaussian Mixtures esti-

mator can be sensitive to additive noise plus other perturbations in the time

domain. We generated an instrument recognition system using 18 MFCCs

and 16 Gaussian Mixtures. We trained models λ for three instruments:

violin, piano and acoustic guitar. We measured the log-likelihood p(v|λ)

(5.2), (5.3) for various test waveforms given the three trained models. The

results are summarised in table 5.1. First of all, we wanted to test the in-

strument recognition performance of this setup. In the first two lines, we

compare the likelihood of samples from the trained instruments with the

likelihood of accordeon samples given the corresponding instrument model.

We can see that in all cases, the estimator prefers the correct instrument

from the accordeon, i.e. performs correct instrument recognition. Then, we

examine the effect of additive Gaussian noise in the time domain on the

estimator. We compare the likelihood of the correct signal given the correct

model with the likelihood of the correct signal plus Gaussian noise of zero

mean and variance 0.01 (assuming that the instrument signals are scaled to

unit variance). We observe that in all cases, the estimator seems to prefer

the noise-corrupted version rather than the original version. We will see
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that this can have an effect on the Intelligent ICA approach, when we have

mixtures of different instruments. In line 4 of table 5.1, we calculate the

probability of a linear mixture containing 90% of the correct signal and 10%

of accordeon samples. We can see that the estimator, in almost all cases

prefers the mixture rather than the correct source. Note, however, that this

does not imply that the model prefers accordeon type features, e.g. final

row Table 5.1. In all cases, the estimator prefers the correct signal than the

mixture, which implies that we can use this criterion for source separation.

However, steps must be taken to control this inherent sensitivity to noise.

Table 5.1: Inaccuracy of Maximum Likelihood estimation in instrument

recognition. We also demonstrate the models’ performance in instrument

recognition and in presence of additive Gaussian noise and linear mixtures

of the three instruments individually with accordeon. All results scaled by

103 and vacc represents feature vectors from accordeon samples.

v, λ Violin Piano Acoustic

guitar

log p(v|λ) -4.80 -7.33 -5.36

log p(vacc|λ) -6.13 -9.18 -6.02

log p(v +N (0, 0.01)|λ) -4.61 -7.24 -4.94

log p(0.9v + 0.1vacc|λ) -4.75 -6.24 -5.26

log p(0.1v + 0.9vacc|λ) -5.76 -8.47 -5.59

It turns out that this problem is not new and was also observed in many

speaker verification approaches [CLY96, SZ97]. In order to deal with mis-

classification errors, the log-probability of the user claiming identification is

normalised to the mean of the log-probabilities of all the cohort speakers,

i.e. the speakers whose models are very similar (i.e. scoring equally well).

This operation similar to median filtering is usually known as cohort nor-

malisation [CLY96, SZ97]. Therefore, it would be beneficial for the Bayesian

Intelligent ICA to optimise the following cost function, in order to improve
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the performance.

G(w) = log P (v|x, λdes)− 1
N − 1

N∑

i=1
i6=des

log P (v|x, λi) (5.16)

where λdes is the model of the desired instrument and λi are the models

of the other instruments present in the mixture. In other words, we try to

maximise the difference between the desired instrument and all other instru-

ments present in the mixture. In fact, (5.16) is not restricted to “cohort”

models, as previously mentioned. As the number of sources and sensors N

used is small, it would be realistic to use all available models. In cases of

large N , we may have to restrict our search to the “cohort” models to reduce

computational complexity.

This function is difficult to optimise, therefore, we calculated numerically

the derivative of G. However, in the following section we demonstrate that

it is possible to perform intelligent blind separation by using the posterior

likelihood of the instrument/person model.

5.4 Experiments

In this section, we are going to test the proposed schemes using some basic

experiments. First of all, we had to configure the instrument identification

system. We tested several feature vectors - number of Gaussians configu-

rations. However, as the aim was to build a fairly simple, fast and robust

system, we ended up using a combination of 18 MFCCs and 16 Gaussian

Mixtures (M = 16). The MFCCs performed reasonably well in our study, as

well as in [Ero01]. One can argue in favour of other coefficients, depending

on the difficulty of the instrument recognition problem. We chose to dis-

criminate between 5 different family instruments, such as: violin, accordeon,

acoustic guitar, piano and tenor saxophone, in order to verify the idea of

intelligent source separation. A general system would possibly require more

Gaussians or more appropriate features for intra-instrument family discrim-

ination [Ero01].
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We trained our system using ∼ 6 minutes of solo recordings from each

instrument. The analysis frame size was 16msecs. The model was trained

using 18 MFCCs and 16 Gaussian Mixtures (M = 16) and the model was

stored locally. For the model training, we used the corresponding func-

tion from VOICEBOX [Bro]. For the recognition process, we used around

30 seconds of different solo instrument recordings. Random instantaneous

mixtures were created to test the intelligent ICA algorithms.

5.4.1 Intelligent FastICA

The Intelligent FastICA framework provided very fast, robust separation

of the desired source (see figure 5.5). Tests using all pairs of the trained

instruments were successful. Minor misclassification errors were due to the

recogniser’s inefficiency. A more complex and competent instrument recog-

nition system could rectify these mistakes. In addition, due to the good

convergence speed of the FastICA, we managed to demonstrate the effec-

tiveness of Intelligent FastICA. The algorithm would pick the desired source

in a couple of iterations (∼ 2− 3secs for an average Pentium III computer).

One of the advantages of this proposed framework is that it is modular.

The instrument recognition module is totally independent to the source sep-

aration module. Any instrument recognition setup will work in the proposed

framework without any modification. Therefore, we may change the recog-

niser according to our accuracy needs. In addition, any source separation

module can be used, according to our needs.

One of the drawbacks is that the proposed framework is effectively a post-

separation recognition task. This implies that in the search of an individual

source, we would have to make an estimate of all the present sources and

test them all using the instrument classifier. Although this might not be a

problem for 3 − 4 sources, it can be quite computationally expensive and

not very efficient in the case of many sources.
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Figure 5.5: Fast convergence of the intelligent FastICA scheme. The stars

on the unit circle denote the algorithm’s iterations.

5.4.2 Bayesian Approach

Our first task for the Bayesian approach was to verify the principle that one

can perform intelligent source separation optimising the posterior likelihood

of the observed signal given the desired model. We will formulate 2× 2 and

3 × 3 examples to evaluate the nature of the likelihood function and the

validity of the arguments above, therefore, the general N ×N case will not

be examined.

We used the two sources - two sensors scenario to demonstrate this prin-

ciple. The observations are initially prewhitened. Once prewhitened, all our

solutions w lie on the unit circle and as a result the desired signal can be

separated using an orthogonal projection in the form:

udes = wT z =
[

cos θ sin θ
]
z (5.17)

where θ represents the “direction” of the desired source. Hence, in the 2



5.4 Experiments 159

sources 2 sensors case, we can express G(w) = G(θ) (see (5.14)) and optimise

it in terms of θ rather than w. As a result, the problem has dropped to a

one-dimensional optimisation problem.

In figure 5.6, we plot the function G(θ) = log p(v|x, λ) for two trained

instruments (accordeon, acoustic guitar) that are present in the auditory

scene for various values of θ ∈ [0, π]. The following observations were made:

First of all, G(θ) is a smooth function that will be easy to optimise, even

using numerical optimisation, as described earlier. This might be due to the

smoothness of the Gaussian Mixtures model and the instantaneous mixing

of the sources.

The “direction” of the sources can easily be depicted from the graph

and they are orthogonal to each other, as expected due to prewhitening.

However, we should expect to see a clear peak at the direction of the de-

sired instrument and at the same time a minimum at the direction of the

unwanted instrument. In figure 5.6, we can see that this is true for the case

of one instrument (i.e. G1(θ) = log p(v|x, λ1) ), however, we do not get a

clear peak in the case of the second instrument (i.e. G2(θ) = log p(v|x, λ2)).

This is mainly due to the recogniser’s sensitivity to noise, as described in

the previous section. As a result, the recogniser may consider a linear mix-

ture of the desired source with slight contamination from the other sources

more probable than the original source. This can cause inaccuracy in the

estimation procedure.

In addition, this is an attempt to identify a specific source in a mixture,

using a model only for the source of interest and not for the other sources.

This is a difficult task as the estimator does not have any profile for the

sources it needs to reject. This may also explain the interdeterminacies

shown in figure 5.6. Comparing information about the other instruments in

the auditory scene might enhance performance.

To rectify this inaccuracy, we can use cohort normalisation. In figure

5.7, we plot the cohort normalised function G(θ), as described in eq. 5.16.

In this case, we spot clear peaks and nulls for each instrument in either case.
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Figure 5.6: Plot of G(w) (eq. 5.11), as a function of θ for the two instruments

(accordeon (up) and acoustic guitar (bottom)).

As a result, cohort normalisation can indeed rectify some misclassifications,

introduced by Maximum Likelihood estimation.

The numerical optimisation of the cohort normalised function can achieve

successful intelligent separation of the sources, due to the smoothness of the

cost function. However, the speed of the optimisation varies due to the

numerical calculation of the gradient and the learning rate choice. The al-

gorithm’s convergence was tested for any of the trained instruments with

success. In figure 5.10, we can see the algorithm’s slow convergence, opti-

mising the cohort normalised likelihood for the accordeon.

The effectivess of cohort normalisation can also be observed in figures

5.8, 5.9, where we can perform “intelligent ICA” between piano and violin.

Again, we can see the multiple peaks in the case of the single model plot,

whereas the cohort normalised plot can give global solutions.

Another point that needs to be clarified is the following: In the Intelligent

FastICA approach, we used the nonGaussianity along with inference from
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Figure 5.7: Plot of cohort normalised G(w) (eq. 5.16), as a function of θ for

the two instruments (accordeon and acoustic guitar).
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Figure 5.8: Plot of G(w) (eq. 5.11), as a function of θ for the two instruments

(violin (up) and piano (below)).

G(w) = log p(v|x, λ) (non-normalised version). However, we do not get the

same interdeterminancy in that case. This is because we always compare

the likelihood of estimates orthogonal to each other. In the 2× 2 case, this

implies that we will compare G(θ) with G(θ + 90◦), as we optimise θ with

the nonGaussianity algorithm. Observing figure 5.6, we can see that this

comparison can always direct us to the desired source. The nonGaussianity

algorithm will then ensure the accurate estimation of the desired source.

We also performed some tests in the 3×3 case, using accordeon, acoustic

guitar and violin. Once prewhitened, the desired signal can be separated

using an orthogonal projection in the following form, as all solutions lie in

the 3-D unit sphere. This transforms the problem to a two-dimensional

optimisation problem G(θ1, θ2).

udes = wT z =
[

cosθ1 cos θ2 cos θ1 sin θ2 sin θ1

]
z (5.18)

In figures 5.11, 5.12, 5.13, we can see the cohort normalised version of the
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Figure 5.9: Plot of cohort normalised G(w) (eq. 5.16), as a function of θ for

the two instruments (violin and piano).
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Figure 5.10: Slow convergence of the numerical optimisation of the cohort

normalised likelihood. The stars on the unit circle denote the algorithm’s

iterations.
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Figure 5.11: Plot of the cohort normalised G(w) (eq. 5.11), as a function of

θ1, θ2 in the 3× 3 case for the acoustic guitar case.

G(θ1, θ2) for the acoustic guitar, accordeon and violin respectively. We can

see that generally the cohort normalised likelihood can give robust global so-

lutions for the source separation problem, even in higher dimensional cases,

however, problems similar to the unnormalised likelihood have been seen to

occur (see figure 5.12).

In contrast to the Intelligent FastICA approach, another advantage of the

proposed Bayesian framework is that we estimate only the source of interest

and not all the sources that are present in the auditory scene. Instead, in the

proposed Bayesian framework, we use models of the other sources, rather

than actual sources’ estimates. This might be a benefit in the case of many

sources.
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Figure 5.12: Plot of the cohort normalised G(w) (eq. 5.11), as a function of

θ1, θ2 in the 3× 3 case for the accordeon case.
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Figure 5.13: Plot of the cohort normalised G(w) (eq. 5.11), as a function of

θ1, θ2 in the 3× 3 case for the violin case.
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5.5 Conclusion

In this chapter, we explored the idea of performing “intelligent” source sep-

aration. In other words, we investigated the idea of separating a desired

source of interest from the auditory scene. We explored the problem in the

instantaneous mixtures case, combining current developments in the area

of instrument recognition and source separation. A feasibility study was

conducted to demonstrate that “intelligent” source separation is possible.

Two methods were proposed to support this argument. One combining

a nonGaussianity ICA algorithm and inference from a simple instrument

recognition system. Another approach to intelligent source separation is by

maximising of the cohort-normalised posterior likelihood with good results

but difficult optimisation.

An improvement to the cohort normalisation scheme might be to train

a global “noise” model, using samples from all the instruments. Hence, in

the cohort normalisation step we would have to compare the likelihood of

the desired instrument model against the likelihood of the “noise” model,

instead of averaging over the likelihoods of the other instrument models.

This might reduce the computational complexity as well.

The results presented in this chapter highlight a fundamental weakness

of these traditional instrument/speaker recognisers. So far, all modelling

efforts have concentrated on optimising the performance of various feature

sets and statistical models for instrument/speaker recognisers. In this chap-

ter, we extended the use of these models in the slightly different framework

of source separation and we observed that these models can be sensitive to

noise and linear mixtures with other sources. In other words, the robust

performance of these models is limited outside the area they were designed

for. As a result, we need better models that will be able to characterise

and recognise instruments/speakers despite the presence of noise or other

instruments.

Another improvement might be to replace Gaussian Mixtures modelling

with Hidden Markov modelling as proposed recently by Reyes et al [RRE03]
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for source separation. Hidden Markov Models have been widely used in the

speaker/instrument recognition community with great success [CLY96], the

only disadvantage being their computational complexity.

A possible extension of the ideas presented in this chapter will be to

adapt the concept of “intelligent” source separation to the overcomplete

ICA case. The knowledge of an instrument model might be an extra tool

for the case of more sources than sensors. Although, the presence of reverb

will deteriorate the performance of an instrument recognition system, the

idea of “intelligent” source separation should be expanded to the case of

convolutive mixtures.



Chapter 6

Conclusions-Future Work

6.1 Summary and Conclusions

In this text, we have covered many aspects in the field of Audio Source

Separation using Independent Component Analysis (ICA). This section will

summarise the main issues of the problem, giving specific emphasis on the

observations and improvements introduced in this text.

Audio source separation is the problem of decomposing an auditory scene

into its audio components (objects). This is a natural task for humans, how-

ever, many issues need to be addressed when it comes to implement such a

system using a computer and a set of sensors, capturing the auditory scene.

There are methods, which try to emulate human perception, using a set of

grouping rules for several features of the spectrogram, in order to perform

separation (Computational Auditory Scene Analysis). We mainly investi-

gated methods that observe the signals’ statistics and separate the sources

looking for components with specific statistical profile. The directivity of

these audio signals towards the sensor array was also employed.

We decomposed the source separation problem into three subproblems,

each of them trying to deal with a specific aspect of the problem. Alto-

gether, they can form a consistent model for the real audio source separation

problem. More specifically, we firstly reviewed current solutions in source
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separation of instantaneous mixtures of equal number of sources and sen-

sors. The problem consists of estimating the unmixing matrix. The general

ICA framework was introduced assuming statistical independence between

the audio components. Many possible ways of interpreting statistical inde-

pendence produced a couple of ICA algorithms to estimate the unmixing

matrix. We examined some of them, such as the Bell and Sejnowski, the

natural gradient, the FastICA and the JADE algorithm. All these algorithm

have very good performance and tend to have similar update rules, although

they were derived from different principles. The subproblem of more sources

than sensors was then examined. The overcomplete ICA problem is slightly

different, as there are two outstanding issues: a) estimate the mixing matrix

and b) estimate the components given the estimated mixing matrix. Many

solutions proposed based on a Bayesian framework (Lewicki, Attias) and

some others based on clustering approaches (Hyvärinen, Zibulevski). As

this is an “ill-determined problem”, the separated outputs usually feature

no crosstalk between the sources, but they seem to be slightly distorted,

compared to the original sources. Finally, the subproblem of source separa-

tion of real world recordings was investigated in the case of equal number of

sources and sensors. We introduced the “convolutive mixtures” model, where

the sensors capture convolutions of each source with FIR filters that model

the room transfer function between each sensor and source. Based on the

general ICA framework, a couple of time-domain methods and frequency-

domain methods were discussed, estimating the unmixing filter or the audio

sources either in the time or in the frequency domain (Lee, Smaragdis, Parra

etc). Choosing the domain to perform these tasks can have several advan-

tages and disadvantages.

Estimating the unmixing filter in the time-domain can have limited per-

formance due to the computational cost of the convolution and the speed of

the adaptation. As a result, unmixing in the frequency domain seems to be

an obvious choice. For each frequency bin, we can apply an instantaneous

mixtures ICA algorithm to perform separation. The question is where to ap-
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ply the source model for the ICA algorithm. Modelling in the time-domain

has the advantage that the inherent permutation ambiguity does not seem

to exist, however, we need to perform continuous mappings to and from the

frequency domain. To avoid this, we can model the sources in the frequency

domain. We can run independent instantaneous mixtures ICA algorithms

for each frequency bin, assuming that the source models in each case are

statistically independent. This causes a source ordering ambiguity between

the frequency bins, known as the permutation ambiguity. Along with the

permutation ambiguity, the frequency-domain framework features a scale

ambiguity, that is inherent to the ICA algorithm.

To deal with the scale ambiguity, we proposed to map the separated

sources, back to the observation space. As Cardoso initially pointed out,

this can rectify any arbitrary scaling, performed by the ICA algorithm. We

showed that the scale ambiguity can be removed even with the permutation

ambiguity existing. A number of solutions were proposed for the permu-

tation ambiguity. Smaragdis proposed to couple the filters of neighbouring

bins and Parra proposed to impose a smooth filter constraint (channel mod-

elling approaches). Lee proposed to model the signals in the time-domain

(source modelling approach). To solve the permutation problem, we imposed

a time-frequency model that could be used in any Maximum Likelihood ICA

approach. Together with a Likelihood ratio jump, we can couple the fre-

quency bins that bear the same energy bursts along time (average energy

envelop along time). This solution seemed to be robust, even in the case

of real room recordings. One concern is that it can be computationally

expensive in the case of more than two sources.

All proposed frequency-domain ICA frameworks used the natural gra-

dient algorithm to perform separation. Gradient-type algorithms may be

generally robust for optimisation, however, they have certain drawbacks: a)

they converge relatively slowly, b) their stability depends on the choice of

the learning rate. As a result, we replaced the natural gradient algorithm

with a faster and more robust algorithm. Based on Hyvärinen’s work on
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Maximum Likelihood FastICA algorithms for instantaneous mixtures, we

adapted these algorithms into the frequency-domain ICA framework, fitting

the time-frequency model plus Likelihood Ratio solution for the permuta-

tion problem. The result was a Fast Frequency-domain framework, which

featured robust performance even with real room recordings.

We also explored several general aspects of the proposed frequency-

domain framework. One can interpret the Short-Time Fourier transform

as a filterbank with poor performance. As a result, the proposed unmixing

framework introduces aliasing between the neighbouring frequency bins. We

demonstrated that this aliasing can have minor effects using oversampling,

i.e. greater overlap ratio. Another solution might be the substitution of

the FFT with a more efficient filterbank. Then, we revised the benefits of

source modelling in a sparser domain than the time-domain. However, we

explored the effects of the frame size in the frequency domain framework for

real room acoustics. We demonstrated that even in the frequency domain,

the nonGaussianity of the signal can drop in the case of long frame sizes,

that are used to model real room acoustics. As a result, the performance of

the source separation estimator deteriorates.

In the next section, we explored some channel modelling solutions for the

permutation problem using beamforming. The ICA setup can be regarded

as an array and therefore knowledge from array signal processing can be

used as a channel modelling approach to solve the permutation problem.

Assuming that there is a strong direct path in the room transfer functions,

one can align the permutations matching the main Directions of Arrival (due

to the direct path) of the signals along frequency (Saruwatari et al, Ikram

and Morgan, Parra and Alvino). We explored the possibility of using array

signal processing to solve the permutation ambiguity. We also saw that the

multipath environment causes a slight drift of ±3◦ degrees around the main

DOA (introduced by the direct path) along frequency. We saw that the

directivity patterns tend to feature multiple nulls increasing with frequency.

We showed that the frequency that the multiple nulls start to appear at is a
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function of the distance between the microphones. The multiple nulls hin-

der the alignment of the beampatterns as the frequency increases. Keeping

the distance between the microphones small, we can shift this phenomenon

to the higher frequencies, however, we deteriorate the quality of the sepa-

ration, as the sensor signals become more correlated and the Signal-Noise

Ratio will drop. We proposed a mechanism for DOA estimation, averaging

over the directivity patterns of the lower frequencies. We then tried to align

the permutations around the estimated DOA with relative success. One

improvement over this scheme was to use directivity patterns created with

the MuSIC algorithm. As the MuSIC algorithm implies a more sensors than

sources setup, it is not applicable in our case. However, having separated

the signals using an ICA algorithm, we can map the sources back to the

sensor space, and have an observation of each source at each microphone.

This will enable us to use the MuSIC algorithm for more efficient DOA esti-

mation and permutation alignment along frequency. Last but not least, we

made a preliminary investigation of the sensitivity of the proposed frequency

domain framework to movement. We observed that a slight movement of

one source will not greatly affect the lower frequencies, however the mid-

higher frequencies may render the old unmixing filters useless. As a result,

the distortion introduced by movement is a function of frequency. We also

demonstrated with a real room example that in the case of one source mov-

ing, the old unmixing filters will separate the moving source with a little

more reverb. On the other hand, they will not separate the source that did

not move, due to incorrect beamforming of the array.

Finally, we introduced the idea of “intelligent” Independent Component

Analysis. Effectively, our brain does not separate all the sources at the

same time, but instead focuses only on the one, we are interested in. Con-

sequently, ‘intelligent” ICA tried to separating a specific source of interest

out of the auditory scene. This can be achieved by incorporating knowl-

edge from instrument recognition. Instrument models are trained before

separation, and we demonstrated that the probabilistic inference from the
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instrument model can separate the desired instrument. We used a simple

instrument recognition setup consisting of 16 Gaussian Mixtures and 18

Mel-Cepstrum coefficients and instantaneous mixtures. We demonstrated

that “intelligent ICA” can be performed either as a post-processing step af-

ter a common ICA rule, or simply by optimising the posterior likelihood of

the model. Optimising the difference between the probability of the desired

model and that of the unwanted models seemed to get more robust sepa-

ration. In addition, we highlighted a fundamental weakness of traditional

recognisers to additive noise and small perturbations of sources.

6.2 Open problems

In this thesis, we have discussed several aspects of the general audio source

separation problem and proposed some solutions on open problems in this

field or some thoughts and considerations on some other problems. However,

there is a large number of open problems in the field that we did not have

time to address in this text. To conclude the overview of the audio source

separation problem, we would like to use this last section to briefly outline

some of the most important outstanding issues in the audio source separation

problem. Research in these issues might enhance the performance of current

source separation systems in the future.

6.2.1 Additive noise

A very small number of the present approaches for convolutive mixtures tend

to remove possible additive noise, during the separation. The additive noise

is still a very difficult and open problem for the Blind Source Separation

framework. The impact of noise on the estimator’s performance depends

on the type and level of noise. Cardoso [Car98a] has pointed out that the

benefits of noise modelling for Blind Source Separation are not so clear. In

cases of high SNR, the bias on estimates for A are small and some noise

reduction can be achieved using robust denoising techniques as a pre- or
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post-separation task. In cases of low SNR, the problem is very difficult to

solve anyway.

The main argument is that denoising can always be a post-processing

task, as the fourth-order statistics usually employed by the ICA algorithm

are theoretically immune to possible additive Gaussian noise, as for ex-

ample kurt{As + ε} = kurt{As}, where ε models the noise. For other

fourth-order measures, there are some bias removal techniques proposed by

Hyvärinen [Hyv98, Hyv99b]. Therefore, the estimator of the mixing matrix

A is effectively not influenced by the additive noise. However, the estimates

for the sources contain some additive noise, as you can always formulate the

mixtures, as follows:

x = As + ε = A(s + ε1) (6.1)

As a result, we can always perform post-denoising of the noisy esti-

mated components, using common denoising techniques, as explained by

Godsill et al [GRC98], or even perform sparse code shrinkage, as proposed

by Hyvärinen [Hyv98, Hyv99b].

In addition, there are some overcomplete ICA approaches that perform

denoising along with the separation [Att99, DM04]. It would be nice to have

a denoising module in the audio source separation framework, making it a

general audio enhancement tool as well.

6.2.2 Dereverberation

All convolutive source separation algorithms aim to estimate the indepen-

dent components present in the auditory scene. Although most of these

algorithms are inspired by blind deconvolution, they do not aim to derever-

berate (deconvolve) the input data but simply identify the audio sources

present in the auditory scene. The main reason behind that is that the

cost function we optimise for convolutive source separation tries to isolate

the independent components rather than dereverb the actual signals. As a

result, after separation we get the independent sources , as they would be

captured by the sensors, if they were alone in the room.
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Again, dereverberation can be a post- or even a pre- processing task.

There are many blind deconvolution methods that can enhance the separated

audio objects [GFM01]. However, if we perform deverberation along with

the source separation task, we might enhance the performance of the source

separating system. In section 3.7, we explored the effect of the frame size

plus the effect of reverb on the fourth-order statistics of the signal and

more specifically on kurtosis. We saw that reverberation renders the signal

more Gaussian, even in the frequency domain. However, we know that the

Cramer-Rao bound of the source separation estimator depends mainly on

the nonGaussianity of the signal. As a result, if we perform deverberation

alongside source separation, we will make the signals more nonGaussian to

the benefit of the source separation algorithm.

A possible deverberation approach that might be appropriate for the

source separation environment is using Linear Predictive modeling as ex-

plored by Gillespie et al [GFM01] and Kokkinakis et al [KZN03]. One of the

benefits is that Linear Predictive analysis will not be too computationally

expensive for the audio source separation framework.

6.2.3 More sources than sensors in a convolutive environ-

ment

A possible extension of the proposed framework in this thesis is to adapt

strategies for the case of more sources than sensors in the convolutive case.

In Chapter 2, we have reviewed a couple of techniques for tackling the “over-

complete” instantaneous mixtures problem. However, there is not so much

work done on the “overcomplete” convolutive mixtures problem.

The best known example of such a method is the DUET algorithm, as

presented by Rickard et al [JRY00, RBR01]. The DUET algorithm assumes

a specific delayed model, that is mainly applicable in audio source separa-

tion cases with small delays, such as hearing aids etc. Using a two-sensor

model, the DUET algorithm can separate the sources, by calculating ampli-

tude differences (AD) and phase differences (PD) between the sensors. The
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sources tend to be fairly localised in a AD vs PD plot, thus enabling effi-

cient separation. Several improvements on the DUET algorithm have been

proposed to enhance its performance [VE03, BZ03]. However, such systems

are limited to work in a “friendly” environment. Their performance in real

reverbant rooms is very limited.

Ideally, we would have to convert some of the overcomplete strategies to

work into the frequency domain for convolutive mixtures. A proper Max-

imum Likelihood solution, as proposed by e.g. Lewicki [LS98], in the fre-

quency domain together with a solution for the permutation problem would

be computationally heavy. Based on Attias’ general Gaussian Mixtures

strategy [Att99], Davies and Mitianoudis [DM04] proposed a simplified two-

state Gaussian mixtures model together with an Expectation-Maximization

algorithm as a fast separation and denoising solution for the instantaneous

overcomplete problem. Perhaps, a generalisation of this idea in the com-

plex domain might give a viable solution for the overcomplete convolutive

problem.

6.2.4 Real-time implementation

One of the concerns when proposing an algorithm or a framework is whether

this algorithm can work online (real-time implementation). However, as the

processing power of computers and DSP chips keeps increasing, it might

be possible that very computationally expensive algorithms will be imple-

mented in real-time in a couple of years.

Aside from this fact, a vital research point for all the proposed au-

dio source separation algorithms is whether they can be implemented in

real-time. The stochastic gradient algorithm, as proposed by Bell and Se-

jnowski [BS95], is an online version of the natural gradient algorithm for

instantaneous mixtures, aiming to follow the gradient while getting new

data. Parra and Spence [PS00a] proposed an online version of their non-

stationarity frequency-domain algorithm for convolutive mixtures, by em-

ploying the stochastic gradient idea, with promising results. In addition, the
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DUET algorithm was implemented real time with a lot of variations [RBR01,

BZ03].

Another approach is to work in a mixed block-based and real-time ap-

proach (i.e. a block LMS-type structure), where some data are stored in a

local buffer for processing and the result is output in blocks. The problem

is to find an optimal size for this buffer, so that the source separation algo-

rithm has enough data to accurately estimate the signals statistics and the

real-time processor is able of handling the computational cost without audi-

ble interruption. The systems we have tested in this thesis work efficiently

with around ∼ 9− 10 secs of input data, which is far from real-time imple-

mentation. Of course, we refer to real room recordings. If we assume that

the room is not so echoic, then we might be able to use smaller windows and

therefore less data will be needed for efficient separation. Optimising these

systems for real-time operation would increase the number of applications

for these algorithms. Perhaps, adapting the system to work in a stochastic

gradient framework might enable real-time implementation.

6.2.5 Non-stationary mixing

Most of the systems proposed hitherto for audio source separation assume

that the mixing environment is stationary, i.e. the sources do not move in

the auditory scene. This might be valid in applications like source separation

from concert recordings, however, in all other cases there is bound to be some

kind of source movement. Hence, in order to approach the real audio source

separation, one may have to come up with a solution for non-stationary

mixing.

In section 4.7.2, we performed some preliminary research on how robust

a source separation system can be to movement and got an idea of current

systems’ limitations. There is not so much work done on this field for source

separation, however, there is considerable amount of research performed in

array signal processing, in terms of tracking moving audio objects [HBE01].

Perhaps, one could borrow ideas and import techniques from array signal
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processing to deal with the problem in the context of audio source separation.

A possible approach might be to assume that the sources change posi-

tion after specific intervals. During these intervals, we can assume that the

mixing is stationary and therefore we can apply the present techniques to

perform separation. Again, we have to define the length of this interval.

It should be long enough for the source separation to have enough data

and short enough for the mixing environment to be considered stationary.

This is a similar problem to the real-time implementation using blocks of

data. Therefore, finding an optimal block length might solve both prob-

lems at once. In addition, a stochastic gradient approach might be able to

adapt to non-stationary mixing, however, current experience shows that its

adaptation is too slow.
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