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Training image-analysis bases
improves ‘image fusion’
Nikolaos Mitianoudis and Tania Stathaki

Application of independent-component analysis boosts the performance
of current surveillance and defense systems.

Modern technology has enabled development of low-cost wire-
less imaging sensors of various modalities that can be deployed
for monitoring scenes. This advance has been strongly moti-
vated by both military and civilian applications, including those
related to health care, battlefield surveillance, and environmen-
tal monitoring. Multimodal sensors provide diverse degrada-
tion, thermal, and visual characteristics. Image fusion combines
visual information from various sources into a single repre-
sentation to facilitate processing by an operator or computer-
vision system. Fusion techniques can be divided into spatial
and transform-domain methods.1 The latter enable efficient
identification of an image’s salient features. Transformations
that have been suggested for image fusion include dual-tree
wavelet transforms and pyramid decomposition.1 We recently
proposed2, 3 an image-fusion framework—featuring improved
performance—that is based on image-analysis bases trained
using independent-component analysis (ICA).

Receptive fields of simple cells in the mammalian primary vi-
sual cortex are usually spatially localized, oriented, and band-
pass. Such filter responses can be derived from unsupervised
learning of independent visual features or sparse linear codes
for natural scenes.4 Basis training employing ICA4 for image de-
noising through sparse-code shrinkage improved performance
with respect to the use of wavelets. The bases were trained by
extracting a population of local patches from similar-content
images and then processed by the FastICA algorithm4 to esti-
mate the transformation and its inverse. ICA bases are closely
related to wavelets and Gabor functions because they repre-
sent localized-edge features. They have more degrees of freedom
than wavelets, however, because they adapt to arbitrary orienta-
tions. Discrete and dual-tree wavelet transforms have only two
and six distinct orientations, respectively.4 ICA bases do not
offer a multilevel representation—as do wavelets or pyramid
decomposition—nor are they shift invariant. This invariance can

Figure 1. Proposed image-fusion framework. T{ } and T−1{ }:
Independent-component analysis (ICA)-trained transformations and
their inverse. uk(t): Image coefficients in the ICA domain.

be tackled using the spin-cycling method, however.
Image fusion conveys information of interest from all input

sensors to a single composite ‘fused’ image. Since interesting in-
formation for image analysis usually implies edges or texture
data, fusion techniques often employ transformations that excel
in modeling edges.1. We proposed an ICA-based fusion frame-
work with significantly improved edge-modeling performance
(see Figure 1). Assume that the input sensor images are regis-
tered, and an ICA transformation has been trained. From each
input sensor image, every possible patch is isolated and normali-
zed to zero mean. The subtracted means are stored for eventual
fused-image reconstruction. The patches are transformed to the
ICA domain. (Optional de-noising—or sparse-code shrinkage—
can also be performed.4) The coefficients from each input
image in the ICA domain are combined to construct a fused
image using ‘fusion rules.’ The ‘max-abs’ rule conveys the
largest coefficients (in absolute value) to the fused image, the
‘mean’ rule averages the input coefficients, and the ‘weighted-
combination’ rule weighs the input data by its contribution to
the total patch energy. Application of a ‘regional rule’ segments
the scene into active/non-active areas and uses different rules
for each area. Finally, ‘adaptive rules’ estimate optimal weights

Continued on next page



10.1117/2.1200812.1443 Page 2/2

Figure 2. Improved fusion for the Octec and the MX-15 data set
provided by Waterfall Solutions and QinetiQ. The ICA framework
exhibits improved performance compared with the dual-tree wavelet-
transform (DT-WT) scheme in terms of the Piella index, Q. LWIR:
Long-wavelength infrared.

assuming sparse priors for the coefficients. The fused image is
then returned to the spatial domain using the inverse transfor-
mation and synthesized by spatially averaging the extracted im-
age patches. To estimate the optimal local-patch means (intensity
range) before averaging, we optimized the Piella fusion-quality
index5 using the stored means from the input sensor patches3

(see Figure 2).
Application of trained ICA bases improves the performance of

fusion algorithms compared with previous wavelet approaches
at a minimum additional computational cost. We intend to de-
velop and employ more sophisticated and detailed segmenta-
tion algorithms to fuse only selected areas using the most appro-
priate fusion rule.
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