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ABSTRACT
Independent Component Analysis (ICA) is a statistical method for expressing an ob-
served set of random vectors as a linear combination of statistically independent com-
ponents. This paper tackles the task of comparing two ICA algorithms, in terms of
their efficiency for compact representation of market securities. A recently developed
sequential blind signal extraction algorithm, SmoothICA, is contrasted to a classical
implementation of ICA, FastICA. SmoothICA uses an additional 2nd order constraint
aiming at identifying temporally smooth components in the data set. This paper demon-
strates the superiority of this novel smooth component extraction algorithm in terms of
global and local approximation capability, applied to a portfolio of 60 NASDAQ secu-
rities, by utilizing common ordering algorithms for financial signals.
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1 Introduction

The goal of Independent Component Analysis is to find a linear representation of non-
Gaussian variables. Finding such a representation provides an insight to the underlying
structure of many signal processing problems. The ICA problem is equivalent to estab-
lishing the following generating model for the data:

x = As (1)

where x and s are n-dimensional random vectors, and components s are assumed mutu-
ally independent. A is a constant n× n full rank matrix, denoting the unknown mixing
matrix. Relevant to our investigation is the formulation that x consists of a set of obser-
vation vectors generated in the financial markets, which are driven by the hidden under-
lying sources s. The driving mechanisms s are mixed and contaminated among others
by elements, such as news and expectations related to results of companies and sectors,
domestic and foreign politics that affect exchange and interest rates, consumer confi-
dence, unexpected events and even the weather that affects the commodities’ prices.
The transformation:

s = Wx (2)

can be defined, with W the demixing matrix and A = W−1. This method allows at
most one Gaussian component, concentrating all the signal innovations which cannot
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be accounted for by the original problem assumptions. In the case of signals originating
from the financial markets, this assumption can be considered valid for a great majority
of the cases, as purely gaussian financial signals are rarely generated.

The assumption of statistical independence of the source signals, can be assumed to
be valid in the scope of global economy and the hugely diverse micro- and macroeco-
nomic factors that affect financial processes. Unexplained noise, as well as the markets’
response to large trades can be also of significance to researchers and traders. How-
ever it is logical that the underlying driving sources’ independence assumption in the
financial markets can be debated, as every source might exert a small influence on all
others. A review of various contrast functions can be found in [1], as the sources s can
be separated using various interpretations of statistical independence.

In a recent paper, the authors in [2] proposed a sequential blind signal extraction
algorithm that incorporates a smoothness constraint based on the original FastICA al-
gorithm [3]. Along with the negentropy cost function, the added temporal constraint
seeks to find smooth orthogonal projections in the mixed data vector x. In [4], this al-
gorithm is referred to as SmoothICA and contrasted to the performance of FastICA,
in the search for temporal structure in the underlying sources that give rise to stock
evolutions. A portfolio of 20 NASDAQ securities was analyzed and possible advan-
tages of this novel approach were highlighted over FastICA, as it produced components
with smoother temporal structure. A small degree of correlation was present among the
components extracted, introduced by the balancing of the 4th and 2nd order temporal
constraint.

In Principal Component Analysis (PCA) the components that contribute most to the
mixtures can be easily ranked according to the eigenvalues of the source vectors. In ICA
the same task is not straightforward, as the corresponding projection vector consists of
normalized rows to unity [3]. This work uses common ordering algorithms for financial
signals and contrasts their error performance for approximating a given portfolio using
reduced numbers of components.

This text is organized in the following way. The next section contains an overview
of ICA ordering techniques for financial time series. Section 3 contains an overview
of the SmoothICA algorithm and Section 4 contains a detailed view of the ordering
algorithms that will be utilized in the experimental Section 5. An ordering method for
selecting a reduced number of components for reconstruction of a whole portfolio of
securities is considered (global approximation), as well as two methods for ordering
the components’ contributions of each security signal and reconstructing accordingly.
Finally, section 6 concludes this study.

2 History of Independent Component ordering in Finance

Several investigations of ICA with application to finance have been performed. The
most influential was done in [5], examining the portfolio returns of 28 Japanese stocks.
PCA and ICA performances were compared for such signals. From the operation of
ICA, the components produced have var(si) = 1. It is therefore assumed that any in-
formation about the contribution of each individual component, to a mixture’s variation
is engulfed in the mixing matrix A. The authors used the maximum norm L∞ to sort
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the rows of the A, and thus to determine which ICs have the maximum contribution to
a selected signal’s amplitude. Such a measure is applied in this research.

Cheung and Xu [6] presented a criterion for ordering source signals, according to
their contribution to the trend reservation of each observed signal. This algorithm uses
the MSE criterion and is named Testing-and-Acceptance (TnA), and when applied to
foreign exchange rates it produces superior results over the L∞ norm method. This is
the second method which will be used in this paper. The same authors have presented a
criterion to select the appropriate dimension for the source signal subset to approximate
a portfolio of foreign exchange rates in [8]. An algorithm using the Relative Hamming
Distance (RHD) instead, was proposed in [7].

A consequence of the increased interest in this type of component extraction and
its demonstrated superiority in terms of source separation over PCA, are applications
utilizing the ICA capabilities in econometrics and finance problems; from prediction
approaches [9] and Factor Model estimation [10] to the computation of the risk of a
portfolio of securities [11] and the application of ICA in the context of state space mod-
els for interbank foreign exchange rates to obtain a better separation of the observation
noise and the ”true” price [12]. It is worth focusing on [11] where the contribution of an
individual independent component to the variance of the whole portfolio of securities
is calculated. The ICs are ordered according to that contribution, and this operates as
a preprocessing step for dimensionality reduction before switching back to the prices’
space. This is the third method examined in the current paper, testing global approxi-
mation performance.

3 The SmoothICA algorithm

After an initial prewhitening step, SmoothICA solves the following inequality con-
strained optimization problem:

max
w

J1(w) (3)

subject to J2(w) ≤ 0 (4)
J3(w) = 0 (5)

where J1(·) is the approximated negentropy as proposed by Hyvarinen [3], J3(·) is the
unit-norm constraint and J2(w) = E{(wT ∆z)2} − ρE{(wT z)2} is the second-order
smoothness criterion and ρ ∈ [0, 1] defines the degree of smoothness[4]. Modifying the
inequality constraint to the equality constraint max(J2(w), 0) = 0, one can find the
desired optima using alternating unconstrained maximization of the Lagrangian func-
tion J1(w)+λ max(J2(w), 0)+κJ3(w), where λ, κ are the Lagrange multipliers. The
following Newton-step provides an update:

w+ ← w −
[

∂2J

∂w2

]−1
∂J

∂w
(6)

where, in this case, the gradient vector and the Hessian matrix are estimated using the
following updates :

∂J

∂w
= µE{zG′(wT z)}+ λ(E{(wT ∆z)∆z − ρ(wT z)z})(sgn(J2) + 1)
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∂2J

∂w2
= µE{G′′(wT z)}I + λ(C∆z − ρI)(sgn(J2) + 1)

where µ = sgn(E{G(u)}−E{G(v)}). After calculating the estimate for w, we calculate
estimates for λ via alternating optimization. The unit-norm constraint is then imposed
as a projection of the w estimate on the unit hypersphere, to ensure that rotation and not
scale deformation is performed:

w+ ← w+/‖w+‖ (7)

Subsequent smooth components are extracted using the orthogonal deflation procedure
used by Hyvarinen in [1].

4 Ordering Methods for Independent Component Analysis

In Finance dimensionality reduction is applied for various purposes. It is performed to
remove unwanted information and hence get a clearer picture of an underlying process,
allowing better modeling and understanding of its statistical nature. It it also applied to
represent a large set of assets by an appropriate subset that best defines it and reduce
memory requirements and computational burden. Unlike PCA, ICA is not constructed
to have an inherent ordering of the ICs. The methods below follow two notions; approx-
imation of a particular security using a few ICs (selected according to their contribution
to that particular security) and approximation of a whole portfolio of securities by se-
lecting an appropriate subset of independent components.

4.1 Global Approximation

In ICA the components produced are scaled to unit variance. This means that the addi-
tional information about individual contributions of the ICs to the observed signals lies
in the mixing matrix A [11]. The variance of the security i is σ2

i and the amount of total
variance Vj explained by each component sj can be derived from:

σ2
i =

∑

i

a2
ij and Vj =

∑
j a2

ij∑
i,j a2

ij

(8)

Thus by ordering the ICs according to their individual contributions to the whole
portfolio, we can approximate efficiently by selecting a reduced number of components.

4.2 Local Approximation

The L∞ norm: The weighted ICs, as given by (10) with the largest amplitudes are
defined to be the dominant ICs. This of course presents an ordering criterion, as these
ICs have the largest effect on the securities. The reconstruction of the ith security from
the estimates source signals from:

x̂i =
m∑

k=1

aiksk (9)
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where sk is the kth estimated IC and aik is the weight in the ith row, kth column of A.
The weighted ICs are therefore obtained from:

ŝik = aiksk k = 1..n (10)

The L∞ norm was used in [5] to order the weighted ICs for each particular stock, as
this measure reveals the magnitude contribution of each source signal to a particular
stock.

The Testing-and-Acceptance algorithm: The TnA algorithm in [6] aims at creating a
list Li, whose elements are the component subscripts decided for decreasing contribu-
tion to a specified security signal. Initially, the IC which introduces the minimum MSE
error of reconstruction of the selected security if omitted, is selected from the m compo-
nents. The reconstructed security, while the ith component is omitted, is {ŷj}m

j=1,j 6=r.
The subscript of this IC is put last in the list L. The next step of the iteration starts with
a subset of the ICs that do not include the previously selected component. It finds the
next component that, while omitted, causes minimum MSE error of approximation, and
puts it second to last in L, and so on. It is a suboptimal heuristic method compared with
the exhaustive search, however the TnA algorithm involves just m(m+1)

2 − 1 compared
to (m + 1)! steps.

The algorithm operates as follows:

1. Let the set of independent component subscripts Z = {j | 1 ≤ j ≤ m}, d = 0,
and the order list Li = ().

2. For each j ∈ Z and N being the signal’s length, let:

υij(t) =
∑

m 6=j,m∈Z

υ̂im(t) , 1 ≤ t ≤ N (11)

The β which will be stored as the dth element of Li and removed from the set Z,
is selected according to:

β =arg min
j∈Z

MSE(xi, υij) (12)

dnew =dold + 1

Then let: Lnew
i =Lold

i + β

Znew =Zold − {β}
3. If Z 6= {}, goto Step 2; otherwise stop. In order to make the list ordered according

to descending contribution, flip it.

5 Experiments

5.1 Description of the data

The experiments were performed with daily closing prices of a portfolio of 60 technol-
ogy stocks1 from the NASDAQ exchange, for the period ranging from 01/01/2002 to

1 The portfolio consists of the first 60 stocks (alphabetically) of the NASDAQ US Exchange.



05/04/2005. The portfolio of prices is centered and whitened so that uncorrelated, unit
variance signals are obtained. The SmoothICA algorithm is performed on the whitened
data as outlined in [2] and [4]. Flexibility is added with ρ starting at 0.05 and increasing
in case of non converging components. Using a large portfolio, the issue of low correla-
tion among the components extracted, as mentioned in [4], does not appear. Thus a high
number of mixtures is needed for this algorithm to properly converge, due to the added
smoothness constraint. The correlation matrix among the sources is now a proper iden-
tity matrix. The FastICA algorithm is also applied on the whitened data, which gives
the reference results for comparison in terms of approximation fitness for the all the
ranges of subset order possible.

5.2 Global Approximation Comparison

After obtaining successful convergence for both algorithms, the percentages of vari-
ance contribution of each of their components are calculated, using the expression for
Vj in (8). The result is presented on Figure 1. While in the FastICA case there is an
almost equal parsing of the variance contributions among the ICs, a significant amount
of variance is concentrated in approximately the first 20 ICs that SmoothICA extracts.
Indicatively, 35 FastICA ICs contain 70% of the portfolio’s variance, while by using the
additional smoothness temporal constraint only 12 components are required. This signi-
fies the great advantage in terms of dimensionality reduction and global approximation
using a smaller subset of signals. SmoothICA, as observed, produces components that
have an inherent ordering of the source signals and can provide a more efficient repre-
sentation of a portfolio of securities. It can be used among other tasks, as an alternative
to dimensionality reduction for simpler modeling or extraction of seasonal and struc-
tural variations (currently done during the pre-whitening step by PCA).
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(a) For the FastICA case.
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(b) For the SmoothICA case.

Fig. 1. Global approximation performance. Percentage variance contributions of each source sig-
nal.
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5.3 Local Approximation Comparison

The local approximation performances of both algorithms are compared using both
appropriate ordering methods found in the literature. The performance has been eval-
uated using four error criteria calculating a mean approximation error across all secu-
rities on the portfolio. On the x-axis lie the numbers of ICs used for approximation of
each security signal; from only 1 to all the ICs (60). The error criteria evaluated are
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Percentage Er-
ror (MPE) and Mean Absolute Percentage Error (MAPE). For economy of space only
MSE and MAPE are presented. The former is a commonly used fitness measure pe-
nalizing large deviations from observed security prices in a greater extent, while the
latter being an easily understood intuitive measure. The lists containing the ordered
contributions are calculated for both algorithms, using both L∞ norm measure and
TnA heuristic algorithm. The results on Figure 2 demonstrate a clearly superior local
approximation performance. Equally consistent results are obtained for the RMSE and
MPE approximation measures not presented here, using both ordering methods.
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(a) Mean MSE using L∞ norm ordering.

0 10 20 30 40 50 60
0

5

10

15

20

25

Components used for reconstruction

M
e
a
n
 A

b
so

lu
te

 P
e
rc

e
n
ta

g
e
 E

rr
o
r

using SmoothICA
using FastICA

(b) Mean MAPE using L∞ norm ordering.
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(c) Mean MSE using TnA algorithm.
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(d) Mean MAPE using TnA algorithm.

Fig. 2. Local approximation performance. SmoothICA is shown to be superior in terms of more
efficient representation of each source signal.
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6 Conclusions

Through the addition of the 2nd order temporal constraint, which seeks to identify tem-
porally smooth underlying sources, the SmoothICA algorithm is more efficient that the
FastICA in approximating a portfolio of securities from an appropriate subset of the
estimated sources (section 5.2). This novel algorithm estimates smoother underlying
sources that have an inherent ordering, as a high percentage of the portfolio’s variance
is contained in the first few components, compared to FastICA which has a significantly
higher variance spreading among its ICs. To contain 70% of the portfolio’s variance in
just 12 components, while the classical FastICA requires 35, and 90% of the variance
in just 21 contrasted to 49 components, is a significant improvement in terms of global
approximation. In the local approximation part of this paper (section 5.3), each security
in the portfolio is reconstructed by appropriate subsets of the source signals of dimen-
sions 1 to 60. For each dimension selected the mean MSE and MAPE approximation
error across the portfolio is plotted against the subset dimension. For both component
ordering methods examined, the errors calculated show consistent superiority of the
SmoothICA algorithm for efficient compact representation of a portfolio of securities.
Furthermore, the gradients in the plots of Figure 2 support the global case conclusions.
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