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Batch and Online underdetermined source
separation using Laplacian Mixture Models
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Abstract— In this paper, we explore the problem of sound
source separation and identification from a two-sensor instan-
taneous mixture. The estimation of the mixing and the sources
is performed using Laplacian Mixture Models (LMM). The
proposed algorithm fits the model using batch processing of the
observed data and performs separation using either a hard or a
soft decision scheme. An extension of the algorithm to online
source separation, where the samples are arriving in a real-
time fashion, is also presented. The proposed scheme exhibits
good performance as far as separation quality and convergence
speed are concerned. The online version also demonstrates
several promising source separation possibilities in the case of
nonstationary mixing.

Index Terms— Overcomplete source separation, Laplacian
Mixture Models, Expectation Maximisation (EM), online process-
ing.

I. INTRODUCTION

LET a set of M sensors x(n) = [x1(n), . . . , xM (n)]T

observe a set of N sound sources s(n) =
[s1(n), . . . , sN (n)]T . We will consider the case of
instantaneous mixing, i.e. each sensor captures a scaled
version of each signal with no delay in transmission.
Moreover, the possible additive noise will be considered
negligible. The above instantaneous mixing model can be
expressed in mathematical terms, as follows:

x(n) = As(n) (1)

where A represents the mixing matrix and n the sample index.
The blind source separation problem provides an estimate
of the source signals s given the sensor signals x. Usually,
most separation approaches are semi-blind, which implies that
some general assumptions about the statistical structure of
the source signals are usually made. A number of algorithms
have been proposed to solve the overdetermined and complete
source separation problem (M ≥ N ) with great success. The
additional assumption of statistical independence between the
sources led to a whole group of source separation algorithms,
summarised under the general term Independent Component
Analysis (ICA). Starting from different interpretations of statis-
tical independence, most algorithms perform source separation
with great accuracy. An overview of current ICA and general
blind source separation algorithms can be found in tutorial
books on ICA by Hyvärinen et al. [1] and Cichocki-Amari [2].
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The underdetermined source separation problem (M ≤ N )
is more challenging, since in this case, the estimation of the
mixing matrix A is not sufficient for the estimation of the
source signals s. Assuming Gaussian distributions for the
sources, one could estimate the sources using the pseudo-
inverse of matrix A [3]. As the source signals are assumed
to be nonGaussian in our case, the above linear operation
is not sufficient to estimate the sources. Therefore, the un-
derdetermined source separation problem can be divided into
two sub-problems: i) estimating the mixing matrix A and ii)
estimating the source signals s.

The existence of a unique solution for the overcomplete
source separation problem is always under question, since it
is an ill-conditioned problem that has an infinite number of so-
lutions. Any linear system with less equations than unknowns
has infinite solutions [4]. However, according to Eriksson and
Koivunen [5], the linear generative model of (1) can have a
unique and identifiable solution for the overcomplete case, as
long i) there are no Gaussian sources present in the mixture, ii)
the mixing matrix A is of full column rank, i.e. rank(A) = M
and iii) none of the source variables has a characteristic
function featuring a component in the form exp(Q(u)), where
Q(u) is a polynomial of a degree of at least two. This implies
that this intractable problem may have a non-infinite number
of solutions, under several constraints and probabilistic criteria
for the sources.

One probabilistic profile that satisfies the assumptions set
above are sparse distributions. Sparsity is mainly used to
describe signals that are mostly close to zero with the ex-
ception of several large values. Common models that can
be used for approximating sparsity are minimum L0 or L1

norms [3], Mixture of Gaussians (MoG) [6], [7], [8] or
factorable Laplacian distributions [9]. The separation quality
for the underdetermined case seems to improve with sparsity,
as usually the performance of source separation algorithms is
closely connected with the nonGaussianity of the source sig-
nals [10]. However, in a lot of practical applications, the source
data are not sparse. For example, some musical instrument
signals tend to be less sparse than speech signals in the time-
domain. Speech contains a lot of silent segments that guaran-
tees sparsity, however, this might not be the case with many
instrument signals. Therefore, the assumed sparse models are
not accurate enough to describe the statistical properties of the
signals in the time-domain. However, many natural signals can
have sparser representations in other transform domains. Many
transforms have sparsifying properties, such as the Fourier
transform, the Wavelet transform and the Modified Discrete
Cosine Transform (MDCT). As long as the transformation is
linear, it is straightforward to estimate the generative model
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and the sources in the transform domain. There are also alter-
native methods, where one can generate sparse representations
for a specific dataset [11]. In the following analysis, MDCT
is employed to provide sparser representations.

The overcomplete source separation problem has been
covered extensively in the literature. Lewicki [3] provided
a complete Bayesian approach, assuming Laplacian source
priors to estimate both the mixing matrix and the sources
in the time domain. In [12], Lee et al. applied the previous
algorithm to the source separation problem. Girolami [9]
employed the factorable Laplacian distribution and variational
EM to estimate the mixing matrix and the sources. More
complete sparse source models, such as the Student-t distribu-
tion, were employed by Févotte et al. [13]. The parameters
of the model, the mixing matrix and the source signals
were estimated using either Markov Chains Monte Carlo
(MCMC) simulations [13] or a Variational Expectation Max-
imisation (EM) algorithm [14], featuring robust performance,
however, computationally expensive. Vincent and Rodet [15]
performed underdetermined source separation exploiting both
the spatial diversity of the sources in the mixing matrix and
more structured source priors in the form of trained Hidden
Markov Models (HMM). Clustering solutions were introduced
by Hyvärinen [16] and Zibulevsky et al. [17], also featuring
good results and lower computational complexity. In this case,
the mixing matrix and the source signals are estimated by
performing clustering in a sparser representation of the signals
in the transform domain. Bofill-Zibulevsky [18] presented a
shortest path algorithm based on L1 minimisation that could
estimate the mixing matrix and the sources. O’Grady and
Pearlmutter [19] proposed an algorithm to perform separation
via Oriented Lines Separation (LOST) using clustering along
lines (Hard-Lost) in a similar manner to Hyvärinen [16]. In
addition, they proposed a soft-thresholding technique using
an EM on a mixture of oriented lines to assign points to
more than one source [20]. Davies and Mitianoudis [6] em-
ployed two-state Gaussian Mixture Models (GMM) to model
the source densities in a sparse representation and also the
possible additive noise. An Expectation Maximization (EM)-
type algorithm was used to estimate the parameters of the two-
state models and perform the clustering of the coefficients. The
latter approach can be considered a joint Bayesian and clus-
tering approach. A two-sensor more-sources setup, modelling
also some delays between the sensors, was addressed using
the DUET algorithm [21] that can separate the sources, by
calculating amplitude differences (AD) and phase differences
(PD) between the sensors. An online version of the algorithm
was also proposed [22].

In this paper, the authors explore the overcomplete source
separation case of a two-sensor setup with no additive noise.
Exploiting the desired spatial diversity of the source signals,
the source separation problem can become a one-dimensional
(1D) optimal detection problem. Therefore, the phase differ-
ence between the two-sensor data, i.e. the direction of arrival
of sources, is mainly employed as the separation criterion.
A Laplacian Mixture Model (LMM) is fitted to the phase
difference between the two sensors, using an EM-type algo-
rithm. The LMM model is then used to perform separation

using either a soft or a hard threshold. A preliminary form of
this model was presented briefly in [23], however, the authors
have extended the proposed idea with more detailed analysis
and experiments. In addition, the proposed batch algorithm is
extended for online processing via a stochastic update of the
model’s parameters. The online system is also benchmarked in
the case of slowly-varying mixing, i.e. nonstationary mixing.

There are several potential applications of the two-sensor
instantaneous setup. The combination of several instruments
into a stereo mixture in a recording studio follows the in-
stantaneous mixing model of (1). Therefore, the proposed
approach can be used to decompose a studio recording into the
separate instruments that exist in the mixture for many possible
applications, such as music transcription, object-based audio
coding, audio remixing and other Music Information Retrieval
(MIR) tasks [24]. In addition, the mixing of the instrument in
a recording usually changes over time to emphasize the song’s
structure and progress, such as moving sources spatially and
changing the volume of several instruments for a soloing spot.

The paper is structured as follows: in Section II, we in-
troduce the two-sensor setup that is used in our analysis. In
Section III, we derive the training algorithm for the Laplacian
Mixture Models, both for batch and online operation. In
Section IV, the method to perform source separation using
LMM is presented in detail. In Section V, some results on
batch and real-time source separation are presented, using
the proposed schemes. The case of nonstationary mixing is
also examined. Finally, in Section VI we outline the main
contributions of this paper.

II. A TWO-SENSOR APPROACH

In this paper, we will assume a two sensor instantaneous
mixing approach. In Figure 1(a), one can see the scatter plot
of the two sensor signals, in the case of two sensors and
four sources. The four sources are 7 sec of speech, accordion,
piano and violin signals. In the time-domain representation,
no directions of the input sources are visible in the mixture.
Consequently, the separation problem seems very difficult to
solve. To get a sparser representation of the data, the Modified
Discrete Cosine Transform (MDCT) or the Short-Time Fourier
Transform (STFT) can be applied on the observed signals. The
MDCT is a linear, real transform that has excellent sparsifying
properties for most audio and speech signals. The harmonic
content of most speech and musical instrument signals can
be represented by harmonically related sinusoidals with great
accuracy (excluding transient and percussive parts in audio
and unvoiced segments in speech). Consequently, using a
transformation that projects the audio data into sinusoidal
bases will most probably result into a more compact and
sparse representation of the original data. The MDCT is more
preferable than the STFT, since it is real and retains all
the required sinusoidal signal structure. The need for sparser
representations in overcomplete source separation is discussed
more rigorously in [6]. When the sources are sparse, smaller
coefficients are more probable, whereas all the signal’s energy
is concentrated in few large values. Therefore, the density of
the data in the mixture space shows a tendency to cluster along
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Fig. 1. Scatter plot of a two-sensor four-sources mixture in the time domain
and in the sparse MDCT domain. The almost Gaussian-like structure of the
time-domain representation is enhanced using the MDCT and the four sources
can be clearly identified in the mixture.

the directions of the mixing matrix columns [17]. Observing
the scatter plot in Figure 1(b), it is clear that the phase
difference between the two sensors can be used to identify
and separate the sources in the mixture. That is to say, the
two-dimensional (2D) problem can be transformed to a one-
dimensional (1D) problem, as the main important parameter
is the angle θn of each point.

θn = atan
x2(n)
x1(n)

(2)

Using the phase difference information between the two sen-
sors is equivalent to mapping all the observed data points on
the unit-circle. This is equivalent to the concept of mapping
all the observed data points to the half-unit N -dimensional
sphere, as proposed by Zibulevsky et al. [17]. In Figure 2(a),
we plot the histogram of the observed data angle θn in the pre-
vious example. The strong superGaussian characteristics of the
individual components in the MDCT domain are preserved in
the angle representation θn. We can also define the amplitude
rn of each point x(n), as follows:

rn =
√

x1(n)2 + x2(n)2 (3)

As the points that are close to the origin have more Gaussian-
like structure and do not contribute to superGaussianity, we
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Fig. 2. Histograms of angle θn in the four sources example of Fig. 1. The
four sources are identifiable in the original histogram (a), however, keeping
only the most superGaussian components (b), we can facilitate the separation
process, as the directions of arrival are more clearly identifiable.

can use a “reduced” representation of the original data in order
to estimate the columns of the mixing matrix more accurately.
In Figure 2(b), we can see a histogram of those points n,
whose amplitude rn is above a threshold, e.g. rn > 0.1.
The four components are more clearly identifiable in this
reduced representation, which can facilitate the estimation of
the columns of the mixing matrix, i.e. the directions of arrival
for each source.

One can model the observed density p(θn) of the complete
data set, by fitting a Laplacian Mixture Model (LMM). Each
of the Laplacians in the mixture will represent each individual
source. Using the estimated Laplacians, source separation can
be performed by optimal detection schemes.

III. LAPLACIAN MIXTURE MODELLING

There are a number of probabilistic models that can be used
to represent sparsity. One model, that is commonly used in the
literature, is the Laplacian density function. The definition for
the Laplacian probability density function (pdf) is given by
the following expression:

L(θ, c, m) = ce−2c|θ−m| (4)

where m defines the mean and c > 0 controls the “width”
(approximate standard deviation) of the distribution. In a
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similar fashion to Gaussian Mixture Models (GMM), one can
employ Laplacian Mixture Models (LMM) in order to model a
mixture of “heavy-tailed signals”. A Laplacian Mixture Model
can thus be defined, as follows:

p(θ) =
N∑

i=1

αiL(θ, ci,mi) =
N∑

i=1

αicie
−2ci|θ−mi| (5)

where αi, mi, ci represent the weight, mean and width of each
Laplacian respectively and all weights should sum up to one,
i.e.

∑N
i=1 αi = 1. A common method that can be employed to

train a mixture model is the Expectation-Maximization (EM)
algorithm. A complete derivation of an EM algorithm was
presented by Dempster et al. [25] and has been employed to
fit a GMM on a training data set [26]. Similarly, the EM can
be employed to train a LMM using an EM algorithm over
a training set (batch-EM) or even adapt the parameters of a
LMM in a real-time fashion, as each data point is accessed by
the algorithm (Online-LMM).

A. Batch-EM

In this section, we derive the EM algorithm to train a
Laplacian Mixture Model, based on Bilmes’s analysis [26] for
the estimation of a GMM using the EM. Bilmes estimates
Maximum Likelihood mixture density parameters using the
EM [26]. Assuming K training samples for θn and Laplacian
Mixture densities (5), the log-likelihood of these training
samples takes the following form:

I(αi, ci,mi) =
K∑

n=1

log
N∑

i=1

αiL(θn, ci,mi) (6)

Introducing unobserved data items that can identify the com-
ponents that “generated” each data item, we can simplify the
log-likelihood of (6) for Laplacian Mixtures, as follows:

J(αi, ci,mi) =
K∑

n=1

N∑

i=1

(log αi +log ci−2ci|θn−mi|)p(i|θn)

(7)
where p(i|θn) represents the probability of sample θn belong-
ing to the ith Laplacian of the LMM. In a similar fashion to
Gaussian Mixture Models, the updates for p(i|θn) and αi can
be given by the following equations:

p(i|θn) =
αiL(θn, mi, ci)∑N
i=1 αiL(θn,mi, ci)

(8)

α+
i ← 1

K

K∑
n=1

p(i|θn) (9)

The updates for mi and ci are estimated by setting
∂J(αi, ci,mi)/∂mi = 0 and ∂J(αi, ci,mi)/∂ci = 0 respec-
tively. Following some derivation (see Appendix I), we get the
following update rules:

m+
i ←

∑K
n=1

θn

|θn−mi|p(i|θn)
∑K

n=1
1

|θn−mi|p(i|θn)
(10)

c+
i ←

∑K
n=1 p(i|θn)

2
∑K

n=1 |θn −mi|p(i|θn)
(11)

The four update rules are iterated until convergence. As
observed in the previous section, removing the data points
that are placed close to the origin and do not necessarily carry
enough information about the sources’ angles, the Laplacian
structure of the sources can be emphasised (see Figure 1(b)).
Enhancing the sparsity in the angle representation will increase
the convergence speed of the EM and will provide more
accurate estimates for the sources’ angles. Therefore, we train
the LMM with a subset consisting of those data points n
that satisfy r(n) =

√
x1(n)2 + x2(n)2 > B, where B is a

threshold. Once convergence is achieved, an adequate accuracy
is obtained for the means mi. However, to get more accurate
estimates for αi and ci, we need to run the EM for the
whole dataset. During the second stage of the adaptation, the
estimated mi are not updated.

Since the EM algorithm performs Maximum Likelihood
estimation, the LMM will be fitted around the median value of
each cluster but not the mean value. Thus, mi will represent
the median but not the mean of each cluster. However, since
audio data are nearly symmetrical in the transform domain,
the mean and the median should be relatively close and thus
this should not affect the source separation quality.

B. Online-LMM

A simple method for the stochastic estimation of the para-
meters of a GMM is outlined by Bishop [27]. In this section,
this concept is extended for the online training of a LMM.

In a real-time scenario, the cost function that is maximised,
is the same as in the offline case, but in this case the data points
are arriving at the processor one-by-one. Therefore, one can
look for a sequential update scheme for the parameters, so
that the new values are estimated based only on the previous
values of the parameters and the current sample. The notation
mK

i implies that the current value of mi was estimated using
K data points. The objective will be to derive an expression,
where the model’s parameters for the K + 1 data point are
calculated based on the parameters estimated for the previous
K data points and the current data point θK+1.

Given the already-trained model using the K-th sample,
the probability of the K + 1-th sample belonging to the i-
th Laplacian is similarly:

p(i|θK+1) =
αK

i cK
i e−2cK

i |θK+1−mK
i |

∑N
i=1 αK

i cK
i e−2cK

i |θK+1−mK
i |

(12)

In this online scheme, a “hard-thresholding” scheme will be
used only, since the “soft-thresholding” technique will simply
confuse the algorithm. Consequently, Eq. (12) can be used for
the classification of each incoming point to the Laplacian that
corresponds to the greatest p(i|θK+1). To update the weight
of each Laplacian, we just have to count the number of data
points that have been attributed to each Laplacian so far.
Normalising to the total number of points will give the actual
values for αK+1

i .
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Fig. 3. In the soft thresholding scheme, the points that satisfy p(θ) ≥
(1− q)αici are used to reconstruct the i-th source.

To find the updates for the mean mK+1
i and the width cK+1

i ,
one can derive an expression that involves the current sample
θK+1 and the previous parameters mK

i and the width cK
i (see

Appendix II). The following online update rules are obtained:

mK+1
i = mK

i +
1∑K+1

n=1
p(i|θn)

|θn−mK
i |

sgn(θK+1 −mK
i ) (13)

vK+1
i = vK

i +
1

K + 1
(
2|θK+1 −mK

i | − vK
i

)
(14)

where vi = 1/ci. Unfortunately, in the estimation of mK+1
i ,

it is not possible to derive an expression depending on the
model’s parameters and the current sample only. However, the
expression inside the summation needs to be calculated each
time a new sample arrives and add it to a variable that stores
the summation in memory. This variable needs to be reset to
zero, occasionally, as it will be discussed further on.

IV. OVERCOMPLETE SOURCE SEPARATION

Once the LMM is trained, optimal detection theory and
the estimated individual Laplacians can be applied on the
estimates of the sources. The centre of each Laplacian mi

should represent a column of the mixing matrix A in the
form of [cos(mi) sin(mi)]T . Each Laplacian should model
the statistics of each source in the transform domain. Thus,
using either a hard or a soft decision threshold, we can perform
overcomplete source separation.

A. Hard threshold - “Winner takes all”

The “Winner takes all” strategy attributes each point of
the scatter plot of Fig. 1(b) to only one of the sources. This
is performed by setting a hard threshold at the intersections
between the trained Laplacians. Consequently, the source
separation problem becomes an optimal decision problem.
The decision thresholds θopt

ij between the i-th and the j-th
neighbouring Laplacians are given by the following equation:

mopt
ij =

ln αici

αjcj
+ 2(cimi + cjmj)

2(ci + cj)
(15)
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(a) Hard Thresholding
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(b) Soft Thresholding

Fig. 4. A two-sensors four-sources scenario, separated using the batch-
EM and LMMs. In (a), the four trained Laplacians are depicted along with
the actual density function and the imposed hard thresholds. Applying soft
thresholds, the classification shown in (b) is achieved, which allows some
overlapping between adjacent sources.

Using these thresholds, the algorithm can attribute the points
with mopt

ij < θn < mopt
jk to source j, where i, j, k are

neighbouring Laplacians (sources). Figure 4(a) depicts the
fitted Laplacians using the batch EM-LMM algorithm, in a
two sensors - four audio sources (voice, piano, accordion and
violin) example and the hard thresholds imposed using the
above equation. The points that belong to each of the four
clusters, shown in Fig. 4(a), are attributed and are used to
reconstruct each source.

B. Soft threshold

Observing the histograms of Fig. 2, we can attribute points
that are distant from the centre of the 2D representation to
each source with great confidence. In contrast, points that
are closer to the centre (rn → 0) can not be attributed to
any of the sources with great confidence. These points may
belong to more than one source. One can then relax the hard
threshold strategy, by allowing points belonging to more than
one source simultaneously. A “soft-thresholding” strategy can
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attribute points that constitute a chosen ratio q (i.e. 0.7− 0.9)
of the density of each Laplacian to the corresponding source
(see Fig. 3). Hence, the ith source can be associated with those
points θn, for which p(θn) ≥ (1−q)αici, where p(θn) is given
by (5). A large value for q allows more points to belong to
more than one Laplacian. A small value for q imposes stricter
criteria for the points to belong to a Laplacian and essentially
becomes a hard thresholding approach. This scheme can be
effective, only if the estimated Laplacians are concentrated
around mi. In the opposite case, there will be components
that will dominate the pdf and therefore be attributed with
more points than it should and therefore they would contain
contamination from other sources. In Fig. 4(b), we can see the
four sources, as classified by the soft thresholding strategy.
The different colours represent different clusters, i.e. different
sources. We can see that several points are attributed to both
the first and the second sources and both the third and fourth
sources by the soft classification scheme.

C. Initialisation issues

There is an initialisation issue for all clustering algorithms.
First of all, the number of clusters (sources) N needs to
be known a priori. Depending on the initialisation of the
cluster centres mi, a clustering algorithm may create different
clusters, which may not be the optimal or the desired ones.
In other words, two different Laplacians may converge to
represent the same cluster, which is not the desired objective.
Hence, we must ensure that our LMM-EM will converge to
the clusters (sources) centered around the actual Direction Of
Arrival (DOA) to the sensor array. One can use a K-Means [27]
initialisation step to get an initial guess for the Laplacian
centres mi.

In this problem, the solution space is well-known. We
already assume that the overcomplete mixture should be
separable and identifiable in order to perform separation.
Therefore, the sources should be positioned in fairly distinct
and well separated angles. Hence, it seems reasonable to
initialise mi in equal intervals in the space (−90o, 90o). This
initialisation will spread the centres uniformly all over the
solution space and thus is more probable to cover most source
positions in the mixture.

D. Edge effects

The proposed approach is likely to be affected by some
“edge effects” in several cases. The Laplacian density, as
described in (4), is valid ∀ θ ∈ (−∞,+∞). However, the
range of θn is not only bounded to the (−90o, 90o) interval and
the two boundaries are actually connected, due to the atan(·)
function. Assume that you have a concentration of points close
to one of the boundaries. The EM algorithm will attempt to
fit a Laplacian around this cluster, however, assuming a linear
support on θ. As a result, the algorithm can not attribute points
that belong to the same cluster, but are on the other end of
θ, due to the assumed linear support. Therefore, the algorithm
will impose some bias in the estimation of mi that are close
to the edge boundaries.

Assuming that the Laplacians, describing the sources, are
quite concentrated around mi, we can propose the following
strategy to alleviate this problem. The algorithm is initialised
as previously. In each update, we check whether any of the
centres are closer to any of the boundaries (less than 20o

distance from ±90o). If this occurs, we estimate the distances
between the estimated centres mi. The next step is to rotate
all the data points and the estimated centres mi, so that the
affected boundary (−90o or 90o) is mapped to the middle
of the centres mi that feature the greatest distance. In other
words, all the data points and centres are rotated so that the
middle between the centres that are most apart is mapped to
either −90o or −90o. Finally, we map the parts that exist in
(−270o,−90o) or (90o, 270o) to (−90o, 90o), in order to form
the actual clusters.

To address this in a more eloquent manner, one could intro-
duce mixtures of Laplacian featuring a modulo-π wrapping,
as this is the periodicity of the atan(·) function. Although,
this solution seems very rational, we found it did not produce
satisfactory results in practice. Perhaps, the use of circular
statistics and distributions [28] might provide a more complete
solution to the problem.

E. Online source separation

There are certain issues concerning the online version of the
EM, compared to its batch version. First of all, it is rational to
let each sample update only the parameters of the Laplacian
it is attributed to by (12). Letting each sample update all the
parameters of the model is conceptually inappropriate and is
also found to cause instability in practice.

In the batch version of the algorithm, the update rule is
presented with the complete dataset, which implies that the
algorithm will be presented with samples from all the sources.
In a real-time scenario, the algorithm may temporarily deal
with statistics that correspond to some of the sources present
but not all of them. In this case, the Laplacians corresponding
to these sources may be overtrained and dominate the whole
density function, whilst others may disappear. Therefore, some
restrictions need to be imposed to guarantee that no Laplacian
disappears from the LMM and also no Laplacian dominates the
pdf. To achieve this, one may impose some upper and lower
bounds on the “width” of each Laplacian. The lower bound
cmin ensures that no Laplacian disappears from the mixture
and the upper bound cmax ensures that each source has limited
spatial range and does not dominate the whole pdf. Therefore,
after each update we must ensure that cK+1

i remains between
these limits:

cmin ≤ cK+1
i ≤ cmax (16)

The update term for the width ci in (14) includes a scaling
term 1/(K+1). Since K is constantly increasing, the influence
of the update term vanishes quickly. This might accelerate the
algorithm’s convergence, however, it will not be able to track
any probably changes or any sources that have not appeared
so far after the first couple of samples. Consequently, it might
be beneficial to replace 1/(K + 1) with a term, such as 1/(
mod (K, T1)+1). In this sense, the training procedure of these
parameters is reinitialised after a number of samples defined
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by T1. The same procedure is applied to the denominator that
scales the update in (13), as it is set to p(i|θn)/|θK+1−mK

i |
after T2 samples. This step will also enable the algorithm
to tackle non-stationary mixing, as it will be shown in the
following section.

V. EXPERIMENTS

In this section, we evaluate the algorithms proposed in
the previous sections. It is not our purpose to perform a
complete comparison with all state-of-the-art algorithms in the
field. We will use Hyvärinen’s clustering approach [16] and
O’Grady and Pearlmutter’s [19], [20] Soft and Hard LOST
algorithm’s (available online from [29]) to demonstrate several
trends using artificial mixtures or publicly available datasets.
All these algorithms belong to the same category of BSS
methods and address the problem modelled by (1) In order
to quantify the performance of the algorithms, we are using
the BSS EVAL Toolbox, as available by Févotte et al. [30].
In this toolbox, the authors decompose the separated signal
uj(n) into the following components for the noiseless case:

uj(n) = si(n) + einterf (n) + eartif (n) (17)

where uj is the algorithm’s estimation of source si, einterf

is an allowed deformation of the sources which accounts for
the interferences of the unwanted sources and eartif is an
“artifact” term that may correspond to artifacts or deformations
induced by the separation algorithm [30]. The Signal-to-
Distortion Ratio (SDR) can be evaluated, as follows:

SDRdB = 10 log
||si||2

||einterf + eartif ||2 (18)

where || · || is the L2-norm. The results are also compared
with the average SDR of the mixtures for each source, in
order to demonstrate the achieved improvement. In [30], two
other distortion measurements are proposed, which are not
evaluated, due to lack of space.

The experimental section is divided into a section testing
the batch-processing version of the LMM-EM algorithm and
two other sections testing the online version of the algorithm
for stationary and non-stationary mixing1.

A. Batch processing

For the first part of the experiment, a number of synthetic
instantaneous mixtures examples are created, using the follow-
ing form of stationary mixing matrix:

A =
[

cos(ψ1) cos(ψ2) . . . cos(ψN )
sin(ψ1) sin(ψ2) . . . sin(ψN )

]
(19)

The frame length for the MDCT analysis is set to 64msec for
the test signals sampled at 16KHz and to 46.4msec for those
at 44.1KHz. We initialise the parameters of the Batch-LMM,
as follows: αi = 1/N and ci = 0.001. Starting the width
of the Laplacians from a small value seemed to be a stable
choice for the majority of the experiments. The centres mi are

1All the experimental audio results, described in the following sections, are
available online at:
http://www.commsp.ee.ic.ac.uk/∼nikolao/lmm.htm

either randomly initialised in the parameter space (−90o, 90o)
or initialised using a K-means step. The initialisation of mi

is important, as if we choose two initial values for mi that
are really close, then it is very probable that the individual
Laplacians may not converge to different clusters. To provide a
more accurate estimation of mi, training is initially performed
using a “reduced” dataset, containing all points that satisfy
rn > 0.2, provided that the input signals are scaled to [−1, 1].
The second phase is to use the “complete” dataset to update
the values for αi and ci.

1) Five uncorrelated audio recordings: In this experiment,
we use 5 solo audio uncorrelated recordings (a saxophone, an
accordion, an acoustic guitar, a violin and a female voice)
of sampling frequency 16KHz and duration 8.19ms. We
examine the following two cases of source positioning in order
to evaluate the performance of the algorithm: in the first one
the sources are placed quite distinctly and in the middle of the
observed space (−90o, 90o), whereas in the second case one
source is placed quite at the left far end (−80o) and three of
them are placed rather closely.

ψ1 ψ2 ψ3 ψ4 ψ5

Case 1 −60 −30 0 30 60
Case 2 −80 −40 −20 10 60

The algorithm is initialised as previously mentioned, with
q = 0.7 for the LMM-EM Soft algorithm. In Fig. 5, we
observe the convergence of the training parameters mi, ci and
αi initially for the “reduced” and then for the “complete”
set for the mixing in Case 1. In Fig. 5 (a), the difference in
convergence speed using K-Means initialisation (dashed lines)
and a successful random initialisation (continuous lines) is
depicted. As previously, mentioned a random initialisation that
features distinct distributed initial centres is bound to converge
to the desired optimum of the likelihood, however, a random
initialisation with very localised centres may lead to local
optimum of the likelihood but not the desired one. Although,
the original K-means is not immune to initialisation, it served
as a valid starting point for the LMM in all our experiments.
Therefore, it has been used consequently employed for initial-
isation in the following runs of the Batch-LMM.

In Fig. 6, we depict the five fitted Laplacians and the two
separation schemes using “hard” and “soft” thresholding for
Case 2, that feature closed spaced sources and sources that
might be affected by the “Edge Effects”. We can see that the
algorithm managed to estimate the sources without bias, due
to the edge effects or the close distance of the three sources.

In Table I, we compare the performance of the two batch
schemes with Hyvärinen’s clustering approach and soft LOST
and hard LOST in terms of SDR [30] for these two cases.
Hyvärinen’s approach is also prone to initialisation, however,
the results in Table I are acquired using the best run of the
algorithm. To appreciate the results of this rather difficult
separation problem, as the achieved SDRs for all methods
seem rather low, we estimate the average SDR of the two input
signals, treating them as estimates of each input signal. Then,
the improvement performed by the method can be understood
more clearly. It seems that the proposed algorithms perform
similarly to Hyvärinen’s approach. This is fairly logical as
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the LMM-EM Hard and Hyvärinen’s algorithm attempt to
partition the solution space into the desired sources. All
three approaches outperformed both versions of the LOST
algorithm. In general, the Soft Lost algorithm managed to
separate the sources in most cases, however, there were
some audible artifacts and clicks that reduced the calculated
quality measure. The difference between the soft and the hard
thresholding schemes of the LMM approach is not really clear
in the SDR measurements, however, it is audible. The soft
thresholding scheme allows more audible interference from
neighbouring sources, since it attributes points with small rn

to multiple sources. The hard thresholding scheme does not
allow much interference from neighbouring sources, however,
more artifacts and “pipe” noise may be audible in the separated
sources.

TABLE I
SEPARATION RESULTS IN TERMS OF SDR (DB) FOR THE TWO CASES OF

FIVE UNCORRELATED SOURCES MIXTURE. THE PROPOSED LMM
APPROACHES (LMM-EM SOFT AND LMM-EM HARD) ARE COMPARED

WITH HYVÄRINEN’S, SOFT LOST, HARD LOST AND THE AVERAGE SDR
OF THE MIXTURES.

Case 1 s1 s2 s3 s4 s5

Mixed
Signals -6.00 -13.37 -26.26 -6.67 -6.81

LMM-EM soft 6.37 -1.29 7.60 3.59 5.52
LMM-EM hard 6.69 0.32 7.66 3.65 5.55
Hyvärinen 6.53 -1.16 7.60 4.14 5.79
hard LOST -2.87 - 0.07 -3.25 0.34
soft LOST 4.58 -4.01 5.09 1.67 3.93

Case 2 s1 s2 s3 s4 s5

Mixed
Signals -10.30 -13.09 -4.14 -10.85 -7.06

LMM-EM soft 4.89 -2.40 6.97 4.037 3.62
LMM-EM hard 6.10 -1.61 6.67 4.40 6.03
Hyvärinen 6.02 -1.72 7.25 4.87 5.86
hard LOST -0.60 - 2.66 -0.78 0.94
soft LOST 3.77 -3.40 6.84 3.11 2.56

2) Four correlated audio recordings: In this section, we
tested the two batch LMM approaches and the other three
approaches with some challenging source separation datasets,
available by the Blind Source Separation Database (BASS-
dB) [31]: the Latino 1, Latino 2 and Groove datasets, sampled
at 44.1KHz. In [31], we can also find the source signals
that will be used to quantify the separation results. The two
“Latino” mixtures contain actually five sources, i.e. the two
drums sources come in fact from the same source placed in
two different positions. As their linear combination is seen by
the algorithm as one source in a new position, we will regard
them as a single source and therefore, we will be looking for
4 sources. Both “Latino” mixtures feature very closely spaced
sources. The “Groove” dataset features four widely spaced
sources: bass (far left), distortion guitar (center left), clean
guitar (center right) and drums (far right).

The LMM-EM approaches were initialised as previously,
however, setting a q = 0.6 for the LMM-EM Soft approach.
The results for all five approaches are depicted in Table II.
Due to the K-means initialisation, the LMM-EM approaches
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Fig. 5. Convergence of the parameters of the LMM in the case of five
uncorrelated audio sources and the first mixing scenario. In (a), the difference
in convergence speed using K-Means initialisation (dashed lines) and random
initialisation (continuous lines) is shown.

are essentially producing similar results in each run, which
again is not the case for Hyvärinen’s algorithm and we picked
the best run for the evaluation. Both Soft and Hard LOST
approaches produced similar results in each run. We can
notice that the LMM-EM approaches managed to perform
reasonable separation, despite the small spacing of the sources
or the source being placed at the edges of the solution space.
This implies that the shifting solution proposed to tackle the
“edge effects” seems to be able to resolve these shortcomings.
The proposed approaches managed to perform reasonably
well, outperforming the Hyvarinen’s approach in the “Groove”
dataset. Unfortunately, the LOST algorithm did not manage to
perform reasonably good separation and in some cases the
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Fig. 6. Clustering results in the case of five uncorrelated audio sources and
the second mixing scenario, using hard thresholding (a) and soft thresholding
(b) for q = 0.4.

Hard LOST did not manage to separate one of the sources
(marked with “-”) or appears as a mixture with another source.

As far as computational complexity is concerned, the pro-
posed Batch-LMM algorithms seemed to be able to converge
in about 3 − 4minutes for 8secs of the input audio tested
on Pentium 4 2.4 MHz PC with 1 GB RAM using a non-
optimised implementation on MATLAB, which seems quite
reasonable for these kind of problems.

B. Online processing with stationary mixing

In the online version of the algorithm, some extra assump-
tions are necessary. First of all, we need to assume that the data
are arriving in a real-time fashion in the transform domain, i.e.
the MDCT domain. As the MDCT is actually a frame-based
transformation, we assume there is a pre-processing step that
estimates the transformation of each frame and provides the
data in a real-time fashion to the processor. A similar post-
processing step is used to estimate the inverse transformation.
In addition, as the input data arrive in a real-time basis, there
might not be equal contribution from all the sources. In other

TABLE II
SEPARATION RESULTS IN TERMS OF SDR (DB) FOR THE LATINO1,

LATINO2 AND GROOVE DATASETS [31]. THE PROPOSED LMM
APPROACHES (LMM-EM SOFT AND LMM-EM HARD) ARE COMPARED

WITH HYVÄRINEN’S, SOFT LOST AND HARD LOST.

Latino 1 s1 s2 s3 s4

Mixed Signals -3.84 -5.93 -3.27 -10.05
LMM-EM soft 7.32 0.55 7.70 2.59
LMM-EM hard 8.95 3.89 6.74 5.25
Hyvärinen 8.57 3.06 7.25 4.69
hard LOST 5.22 - 1.26 -3.19
soft LOST 10.16 0.91 3.68 1.74

Latino 2 s1 s2 s3 s4

Mixed Signals 0.06 -4.62 -16.89 -11.28
LMM-EM soft 6.55 1.54 -6.34 1.51
LMM-EM hard 7.05 1.89 -9.32 2.59
Hyvärinen 7.86 1.90 -9.98 1.39
hard LOST -0.61 -7.23 - -0.27
soft LOST 9.96 1.52 - 4.41

Groove s1 s2 s3 s4

Mixed Signals -30.02 -10.25 -6.14 -21.24
LMM-EM soft 4.21 -4.38 -1.99 -5.13
LMM-EM hard 2.85 -4.47 -0.86 3.28
Hyvärinen 3.79 -3.72 -1.13 1.49
hard LOST 2.20 - -1.53 4.07
soft LOST 4.54 -5.77 -1.74 3.62

words, at several time intervals we may encounter samples
from several but not all the sources. Therefore, we have to
ensure that none of the Laplacians disappears or dominates
the whole density function. This may be achieved by limiting
0.01 ≤ ci ≤ 1 at every step of the iteration. In addition,
in order to enhance the superGaussian nature of the signals
in the transform domain, samples that are close to the origin
in the scatter plot of x1, x2, i.e. rn < 0.1, are not processed
(again input signals are scaled to [−1,+1]). For these samples,
zeros are transmitted to all separated sources. This can also
be employed as a denoising step to remove possible additive
Gaussian noise of known variance that will determine a proper
value for the threshold. This is similar to denoising approaches
via sparse code shrinkage [32].

To compare the proposed Online-LMM, we adapted
Hyvärinen’s algorithm to work in a non-overlapping frame-by-
frame basis. To prevent different permutations at each frame,
two constraints were imposed: a) the mixing matrix estimated
at each frame is used as initialisation for the mixing matrix in
the next frame, b) after convergence, the inner product of the
columns of the estimated matrix with the previous matrix, in
order to ensure the correct permutation is chosen.

We used three solo recordings from three instruments
(piano, accordion, acoustic guitar) of sampling frequency
16KHz and duration 8.19ms and created two mixtures using
the mixing matrix in (19) for N = 3: Case 1 for distant spaced
sources and Case 2 for more closely spaced sources.

ψ1 ψ2 ψ3

Case 1 −60 10 60
Case 2 −30 10 40

The Online-LMM methodology, proposed in Section III-
B, and the frame-adapted Hyvärinen’s algorithm are used to
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tackle the separation problem of samples that arrive in a
real-time fashion. To cater for sources that do not appear
uniformly in all time slots, the estimation of ci is restarted
after 2000 samples and the estimation of mi after 200 samples
(sampling frequency 16KHz). The frame size for Hyvärinen’s
algorithm was 500 samples. These values were found to yield
promising results during the experiments and were used in
both online experiments. The initialisation of the means seems
quite important and the K-means can not be used in this
case. However, using a initialisation that spans the solution
space uniformly, such as −45, 0 and 45, seems to tackle
this indeterminacy in both cases. In Fig. 7, we can see the
convergence of the mean of the three Laplacians over time for
the two cases. The means seem to converge to the theoretical
means, however, we can see small disturbances caused by the
restarting of the mean, which is essential in order to avoid get-
ting trapped in local minima, due to the local signal statistics.
In the second case, we can see some perturbation between the
separated sources, which is also audible, that might be due
to the local statistics. The overall separation quality seems
to be quite good, as depicted in Table II. The Hyvärinen’s
algorithm, although not really online, managed to perform
reasonably well, however, there were some perturbations in
the order of the separated sources that were not resolved by
the two proposed steps. Consequently, its performance was
low compared to the Online-LMM. An average for the three
sources SDR measurement over time (blocks of 128 samples)
for the two methods and the two cases is depicted in Fig.
8. We can see that both algorithms follow the same trends,
apart from the parts that the Hyvärinen algorithm is on the
wrong permutations and is not “really” online. The Online-
LMM managed to retain the correct permutation of sources
for the cases examined. However, if the distance between the
sources becomes smaller, then we saw in experiments that
the online-LMM may also feature source permutation changes
along time.

C. Non-stationary mixing

In the third experiment, we applied the online source
separation scheme in the case of moving sources, i.e. the
mixing environment is non-stationary. Therefore, we created
two different instantaneous mixtures of the three sources that
were used in the previous experiment, using the mixing matrix
in (19) for N = 3, where ψ1, ψ2, ψ3 are now a function of
time. In the first case, we simulated a slowly-varying parallel
movement of the sources around their original position. The
maximum drift from the original position to either side is 11.25
degrees. In this case, all sources move quite distantly from
each other and in the same manner.

ψ1(n) = −π/2.5 + π cos(2πn/164000)/16
ψ2(n) = π/8 + π cos(2πn/164000)/16 (20)
ψ3(n) = π/3 + π cos(2πn/164000)/16

where n is the sample index. In the second case, we simulated
a different movement, where the sources move independently
and some of them may come closer to each other, but do
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Fig. 7. Convergence of the mean mi of the individual Laplacians for the
Online-LMM, in the case of two stationary mixings, featuring distant source
positions (a) and closer source positions (b). The dash lines show the real
DOA of the sources and the continuous lines show the adaptation of the
Laplacian means.
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not crossover. The following paths were used to simulate the
proposed movement.

ψ1(n) = −π/3 + πdst(n)/16
ψ2(n) = π/8 + π cos(2πn/164000)/16 (21)
ψ3(n) = π/3 + π sin(2πn/30000)/16

were dst(n) is one period of a saw-tooth signal with duration
equal to the duration of the signal and unit amplitude.

The online-LMM scheme and the adapted Hyvärinen algo-
rithm were employed to tackle these challenging source sep-
aration cases, using the same initialisation as in the previous
example. In Fig. 9, we can see the tracking attempt of the
LMM to capture the sources’ movement in both cases, denoted
with thick dash-dot lines. In Table III, the SDRs for the
estimated sources using the online-LMM and the Hyvärinen
algorithm is shown. An average for the three sources SDR
measurement over time (blocks) for the two methods and the
two cases is similarly depicted in Fig. 10. The LMM manages
to track the motion of the sources with quite good accuracy. In
general, we can say that the online-LMM managed to follow
the movement of the three sources in both cases. We notice
the perturbations that begin, when the direction of arrival for
two of the sources get closer. The algorithm managed to retain
a quite good quality of separation, however, this is not always
the case. Generally, we can say that the algorithm is able to
follow the movement of sources that remain quite distinct from
other sources in the solution space and their movement does
not crossover or gets closer to other sources. The Hyvärinen
algorithm again was prone to permutation changes over time
in both cases and therefore was not successful in separating
the sources. This can also be verified by Fig. 10, where
the Hyvärinen algorithm seems to be on wrong permutation
for the majority of the time, especially in Case 2. In the
other parts, the performance of the Online-LMM is similar
to Hyvärinen’s, which is important, as we are comparing
an online method with a frame-based method. The SDRs of
the complete waveforms in Table III also verify the above
conclusions.

As far as computational complexity is concerned, the online
version seems to be quite compact in terms of calculations,
with the only exception for the update for the mean. The algo-
rithm was tested again using a non-optimised implementation
on MATLAB, on the previous machine and required about
7−10secs for the online experiments described, that featured
segments of 8secs.

VI. CONCLUSION

In this paper, the use of Laplacian Mixture Model (LMM)
for overcomplete source separation is introduced. The pro-
posed method can be interpreted as either a Bayesian or a
clustering approach to the separation case, where there are less
observations than sources. The proposed approach was tested,
using a number of synthetic and publicly proposed source
separation datasets with promising results. Laplacian Mixture
Modelling was adapted to estimate the LMM parameters in a
real-time scenario, where the input data arrive in a sample-by-
sample basis. The algorithm is suited for a real-time processing
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Fig. 9. Tracking of the sources in the case of non-stationary mixing. The
dashed lines show that the actual movement of the sources, in terms of DOA,
and the continuous lines show the real-time adaptation of the three Laplacian
means mi for two scenarios: one of similar sinusoidal movement (a) and one
of independent source movement (b).

environment, as it estimates the model’s parameters using only
the current input sample, the previous model’s parameters and
a few stored variables. The proposed framework was tested
in the case of both stationary and non-stationary mixing with
promising results.

The experiments also demonstrated some of the limitations
of the proposed approach and of underdetermined source
separation in general. The algorithm, either in batch or online
mode, is not able to separate very closely spaced sources.
The required margin seems to be greater for online operation
than in batch. This can be a limitation of overcomplete source
separation that requires the columns of the mixing matrix to
be different. In the opposite case, the sources that correspond
to similar columns are considered as a single mixed source by
these type of approaches.

In addition, the proposed approach is able to track the
sources that are moving quite distinctively in the solution
space, without interfering and crossing the movement of
other sources in their path. Although, this is a significant
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mixing cases. The online LMM (blue) is compared with the frame-adapted
Hyvarinen’s algorithm (red).

assumption, the proposed approach seems to be a promising
step for tackling this challenging source separation case. This
assumption may also be quite reasonable in the case of real-
time separation of stereo recording where the sources usually
do not move considerably in the spatial image.

One has to note that the proposed algorithms are sensitive to
initialisation of the means, together with most basic clustering
approaches. The proposed algorithm should always start from
means that span the solution space uniformly. In the opposite
case that two or more centres start from quite neighbouring
points, it will be rather difficult for the algorithm to separate
them. There is also a similar assumption that the actual source
positions should be quite distinct for the separation problem to
be identifiable. The initialisation using K-means for the batch
version seemed to improve the stability of the algorithm.

Although the proposed solution seemed to be able to tackle
possible “edge effects”, for future work, the authors would like
to pursue the development of mixture models using circular
distributions, such as the von Mises distribution [28]. In this
case, the distribution is wrapped around (−90o, 90o) and might
give a more complete solution for sources that appear at the
edges of the solution space.

APPENDIX I
DERIVATION OF THE BATCH-EM ALGORITHM

To estimate the updates for mi and ci for each Laplacian
of the LMM model, we have to set the partial derivatives of
the cost function J(αi, ci,mi) to ci and mi (eq. (7)) equal to
zero and solve for the two unknowns. The derivation follows:

• Update for mi

The function J(αi, ci,mi) is not differentiable at mi = θn,
because of the term |mi−θn|. To calculate the derivative of this
term, we can express it more analytically and then calculate

TABLE III
SDR (DB) FOR THE FOUR ONLINE STATIONARY AND NON-STATIONARY

CASES. THE PROPOSED LMM APPROACH (LMM-EM HARD) ARE

COMPARED WITH HYVÄRINEN’S AND THE AVERAGE SDR OF THE

MIXTURES.

Online s1 s2 s3

Stat 1
Mixed Signals -4.8411 -10.0617 -0.5054
LMM-EM hard 9.5175 7.4534 10.9407
Hyvärinen -2.2500 -3.9986 -1.7068

Online s1 s2 s3

Stat 2
Mixed Signals -4.4535 -10.3890 1.4630
LMM-EM hard 8.6630 3.3047 9.0341
Hyvärinen 5.3501 0.5571 11.3578

Online s1 s2 s3

NonStat 1
Mixed Signals -6.8832 -5.7047 -0.4776
LMM-EM hard 6.3652 8.1873 12.3729
Hyvärinen -3.5182 -1.9740 -1.3002

Online s1 s2 s3

NonStat 2
Mixed Signals -3.8468 -6.4882 -0.4400
LMM-EM hard 3.2055 0.5667 12.0853
Hyvärinen -1.9140 -7.0309 3.9916

the derivative as follows:

G(mi) = |mi − θn| =
{

mi − θn , if mi ≥ θn

−mi + θn , if mi < θn
(22)

∂G

∂mi
=

{
1 , if mi > θn

−1 , if mi < θn
= sgn(mi − θn) (23)

Therefore, we can find an analytic expression for the derivative
of G(mi) that is not defined at mi = θn. In practice, this is not
a serious problem and it is quite common in all probabilistic
approaches that use Laplacian priors. One common solution is
to threshold points |θn−mi| < δ, where δ is a small constant
(∼ 0.001) to avoid possible ambiguities. Having clarified this
point, the estimation of mi can now be performed as follows:

∂J

∂mi
= 0 (24)

K∑
n=1

(−2ci
∂

∂mi
|θn −mi|)p(i|θn) = 0 (25)

K∑
n=1

2cisgn(θn −mi)p(i|θn) = 0 (26)

K∑
n=1

sgn(θn −mi)p(i|θn) = 0 (27)

An exact solution for θn can not be easily traced, because of
the non-separable sgn(·) function. However, we can estimate
a solution for mi, following a “fixed-point” optimisation
approach, by reformulating (27) into the form mi = F (mi).

K∑
n=1

sgn(θn −mi)p(i|θn) =
K∑

n=1

θn −mi

|θn −mi|p(i|θn) = 0 (28)
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K∑
n=1

θn

|θn −mi|p(i|θn) =
K∑

n=1

mi

|θn −mi|p(i|θn) (29)

mi = F (mi) =

∑K
n=1

θn

|θn−mi|p(i|θn)
∑K

n=1
1

|θn−mi|p(i|θn)
(30)

Consequently, we can estimate mi, by iterating m+
i = F (mi),

i.e.

m+
i ←

∑K
n=1

θn

|θn−mi|p(i|θn)
∑K

n=1
1

|θn−mi|p(i|θn)
(31)

The derivation of the above update rule is similar to the deriva-
tion of the update of the means for the K-Harmonic Means
(KHM) clustering method [33]. It is not straightforward, in
either case, to provide a proof that the function F (mi) satisfies
the Banach fixed-point theorem, however, it seems to converge
in all our experiments.
• Update for ci

∂J

∂ci
=

K∑
n=1

(
1
ci
− 2|θn −mi|

)
p(i|θn) = 0 (32)

1
ci

K∑
n=1

p(i|θn) =
K∑

n=1

2|θn −mi|p(i|θn) (33)

c+
i ←

∑K
n=1 p(i|θn)

2
∑K

n=1 |θn −mi|p(i|θn)
(34)

APPENDIX II
DERIVATION OF THE ONLINE-LMM ALGORITHM

Following a similar technique for calculating stochastic
updates for the parameters of a GMM [27], we can express
the parameters mK+1

i and cK+1
i for the K + 1 sample based

on the K + 1 sample θk+1 and the previous parameters mK
i

and cK
i . The derivations follow:

• Update for mK+1
i

Starting from Eq. (31), the following online expression can be
derived:

mK+1
i =

∑K+1
n=1

θn

|θn−mK
i |

p(i|θn)
∑K+1

n=1
1

|θn−mK
i |

p(i|θn)
(35)

=

∑K
n=1

θn

|θn−mK
i |

p(i|θn)
∑K+1

n=1
1

|θn−mK
i |

p(i|θn)
+

θK+1

|θK+1−mK
i |

p(i|θK+1)
∑K+1

n=1
1

|θn−mK
i |

p(i|θn)

=

∑K
n=1

1
|θn−mK

i |
p(i|θn)

∑K+1
n=1

1
|θn−mK

i |
p(i|θn)

mK
i +

θK+1

|θK+1−mK
i |

p(i|θK+1)
∑K+1

n=1
1

|θn−mK
i |

p(i|θn)

= mK
i −

1
|θK+1−mK

i |
p(i|θK+1)

∑K+1
n=1

1
|θn−mK

i |
p(i|θn)

mK
i +

θK+1

|θK+1−mK
i |

p(i|θK+1)
∑K+1

n=1
1

|θn−mK
i |

p(i|θn)

= mK
i +

p(i|θK+1)

|θK+1−mK
i |∑K+1

n=1
1

|θn−mK
i |

p(i|θn)
(θK+1 −mK

i )

= mK
i +

p(i|θK+1)∑K+1
n=1

1
|θn−mK

i |
p(i|θn)

sgn(θK+1 −mK
i ) (36)

• Update for cK+1
i

Let vK+1
i = 1/cK+1

i . Starting from eq. (34), the following
online expression can be derived:

vK+1
i =

2
∑K+1

n=1 |θn −mi|p(i|θn)∑K+1
n=1 p(i|θn)

(37)

=
2

∑K
n=1 |θn −mi|p(i|θn)∑K+1

n=1 p(i|θn)
+

2|θK+1 −mi|p(i|θK+1)∑K+1
n=1 p(i|θn)

=
∑K

n=1 p(i|θn)∑K+1
n=1 p(i|θn)

vK
i +

2|θK+1 −mi|p(i|θK+1)∑K+1
n=1 p(i|θn)

= vK
i − p(i|θK+1)∑K+1

n=1 p(i|θn)
vK

i +
2|θK+1 −mi|p(i|θK+1)∑K+1

n=1 p(i|θn)

= vK
i +

p(i|θK+1)∑K+1
n=1 p(i|θn)

(2|θK+1 −mi| − vK
i ) (38)

In the batch version, we usually set αK+1
i =

1
K+1

∑K+1
n=1 p(i|θn). However, if we assume no knowledge

of the past and use only the current sample θK+1, then
conceptually αK+1

i ≈ p(i|θK+1). Consequently, the update
for vK+1

i can be estimated as follows:

vK+1
i ≈ vK

i +
1

K + 1
(2|θK+1 −mi| − vK

i ) (39)

ACKNOWLEDGMENT

The authors would like to thank Dr. Laurent Daudet for
providing the code for the MDCT. The authors would like to
thank the anonymous reviewers for their kind suggestions and
corrections that helped to improve the quality of the paper.

REFERENCES

[1] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component
Analysis, John Wiley, New York, 2001, 481+xxii pages.

[2] A. Cichocki and S.I. Amari, Adaptive Blind Signal and Image Process-
ing, John Wiley and Sons, 2002.

[3] M. Lewicki and T.J. Sejnowski, “Learning overcomplete representa-
tions,” Neural Computation, vol. 12, pp. 337–365, 2000.

[4] E. Kreyszig, Advanced Engineering Mathematics, Wiley, 1998.
[5] J. Eriksson and V. Koivunen, “Identifiability and seperability of linear

ICA models revisited,” in Proc. Int. Workshop on Independent Com-
ponent Analysis and Blind Signal Separation (ICA2003), Nara, Japan,
2003, pp. 23–27.

[6] M. Davies and N. Mitianoudis, “A simple mixture model for sparse
overcomplete ICA,” IEE proceedings in Vision, Image and Signal
Processing, vol. 151, no. 1, pp. 35–43, 2004.

[7] E. Moulines, J.-F. Cardoso, and E. Gassiat, “Maximum likelihood
for blind separation and deconvolution of noisy signals using mixture
models,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP’97), Munich, Germany, 1997, pp. 3617–3620.

[8] H. Attias, “Independent factor analysis,” Neural Computation, vol. 11,
no. 4, pp. 803–851, 1999.

[9] M. Girolami, “A variational method for learning sparse and overcom-
plete representations,” Neural Computation, vol. 13, no. 11, pp. 2517–
2532, 2001.

[10] J.-F. Cardoso, “Blind signal separation: statistical principles,” Proceed-
ings of the IEEE, vol. 9, no. 10, pp. 2009–2025, 1998.

[11] M. Davies and L. Daudet, “Sparsifying subband decompositions,” in
Proc. Int. IEEE WASPAA, New Paltz, New York, 2003, pp. 107–110.



IEEE TRANSACTIONS ON AUDIO, SPEECH & LANGUAGE PROCESSING 14

[12] T.-W. Lee, M.S. Lewicki, M. Girolami, and T.J. Sejnowski, “Blind
source separation of more sources than mixtures using overcomplete
representations,” IEEE Signal Processing Letters, vol. 4, no. 5, 1999.

[13] C. Févotte, S.J. Godsill, and P.J. Wolfe, “Bayesian approach for blind
separation of underdetermined mixtures of sparse sources,” in Proc. 5th
International Conference on Independent Component Analysis and Blind
Source Separation (ICA 2004), Granada, Spain, 2004, pp. 398 –405.

[14] A.T. Cemgil, C. Févotte, and S.J. Godsill, “Blind separation of
sparse sources using variational EM,” in Proc. 13th European Signal
Processing Conference (EUSIPCO05), Antakya, Turkey, 2005.

[15] E. Vincent and X. Rodet, “Underdetermined source separation with
structured source priors,” in Proc. 5th International Conference on
Independent Component Analysis and Blind Source Separation (ICA
2004), Granada, Spain, 2004, pp. 1197–1204.

[16] A. Hyvärinen, “Independent component analysis in the presence of
gaussian noise by maximizing joint likelihood,” Neurocomputing, vol.
22, pp. 49–67, 1998.

[17] M. Zibulevsky, P. Kisilev, Y.Y. Zeevi, and B.A. Pearlmutter, “Blind
source separation via multinode sparse representation,” Advances in
Neural Information Processing Systems, vol. 14, pp. 1049–1056, 2002.

[18] P. Bofill and M. Zibulevsky, “Underdetermined blind source separation
using sparse representations,” Signal Processing, vol. 81, no. 11, pp.
2353–2362, 2001.

[19] P.D. O’Grady and B.A. Pearlmutter, “Soft-LOST: EM on a mixture
of oriented lines,” in Proc. International Conference on Independent
Component Analysis 2004, Granada, Spain, 2004, pp. 428–435.

[20] P.D. O’Grady and B.A. Pearlmutter, “Hard-LOST: Modified K-Means
for oriented lines,” in Proceedings of the Irish Signals and Systems
Conference, Ireland, 2004, pp. 247–252.

[21] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures via
time-frequency masking,” IEEE Trans. Signal Processing, vol. 52, no.
7, pp. 1830–1847, 2004.

[22] S. Rickard, R. Balan, and J. Rosca, “Real-time time-frequency based
blind source separation,” in Proc. ICA2003, San Diego, CA, 2001, pp.
651–656.

[23] N. Mitianoudis and T. Stathaki, “Overcomplete source separation using
laplacian mixture models,” IEEE Signal Processing Letters, vol. 18, no.
4, pp. 277–280, 2004.

[24] S.J. Downie, “Music information retrieval (chapter 7),” Annual Review
of Information Science and Technology, vol. 37, pp. 295–340, 2003.

[25] A. P. Dempster, N. Laird, and D. Rubin, “Maximum likelihood for
incomplete data via the EM algorithm,” J. of the Royal Statistical
Society, ser. B, vol. 39, pp. 1–38, 1977.

[26] J.A. Bilmes, “A gentle tutorial of the EM algorithm and its application
to parameter estimation for Gaussian Mixture and Hidden Mixture Mod-
els,” Tech. Rep., Department of Electrical Engineering and Computer
Science, U.C. Berkeley, California, 1998.

[27] C. M. Bishop, Neural Networks for Pattern Recognition, Clarendon
Press, 1995.

[28] N.I. Fisher, Statistical Analysis of Circular Data, Cambridge University
Press, 1993.

[29] P.D. O’Grady, “Code for soft and hard LOST,” Available at
http://www.hamilton.ie/paul/.

[30] C. Févotte, R. Gribonval, and E. Vincent, “BSS EVAL Toolbox User
Guide,” Tech. Rep., IRISA Technical Report 1706, Rennes, France,
April 2005, http://www.irisa.fr/metiss/bss eval/.

[31] E. Vincent, R. Gribonval, C. Fevotte, A. Nesbit, M.D.
Plumbley, M.E. Davies, and L. Daudet, “BASS-dB: the
blind audio source separation evaluation database,” Available at
http://bass-db.gforge.inria.fr/BASS-dB/.

[32] A. Hyvärinen, P. O. Hoyer, and E. Oja, “Image denoising by sparse code
shrinkage,” in Intelligent Signal Processing, S. Haykin and B. Kosko,
Eds. IEEE Press, 2001.

[33] B. Zhang, M. Hsu, and U. Dayal, “K-Harmonic Means: A spatial
clustering algorithm with boosting,” in Proceedings of the First In-
ternational Workshop on Temporal, Spatial, and Spatio-Temporal Data
Mining, Lyon, France, 2000, pp. 31–45.

Nikolaos Mitianoudis received the diploma in Elec-
tronic and Computer Engineering from the Aris-
totle University of Thessaloniki, Greece in 1998.
He received a MSc in Communications and Signal
Processing from Imperial College London, UK in
2000 and the PhD in Audio Source Separation using
Independent Component Analysis from Queen Mary,
University of London, UK in 2004. Currently, he is
working as a Research Associate at Imperial College
London, UK. His research interests include Indepen-
dent Component Analysis, audio signal processing,

image fusion and computer vision.

Tania Stathaki was born in Athens, Hellas. In
September 1991 she received the Masters degree in
Electronics and Computer Engineering from the De-
partment of Electrical and Computer Engineering of
the National Technical University of Athens (NTUA)
and the Advanced Diploma in Classical Piano Per-
formance from the Orfeion Athens College of Music.
She received the Ph.D. degree in Signal Processing
from Imperial College in September 1994. She is
currently a Senior Lecturer in the Department of
Electrical and Electronic Engineering of Imperial

College and the Image Processing Group leader of the same department.
Previously, she was Lecturer in the Department of Information Systems and
Computing of Brunel University in UK, Visiting Lecturer in the Electrical
Engineering Department of Mahanakorn University in Thailand and Assistant
Professor in the Department of Technology Education and Digital Systems of
the University of Pireus in Greece. Her current research interests lie in the
areas of image processing, data fusion, non-linear signal processing, signal
modelling and biomedical engineering. Dr. Stathaki is the author of 90 journal
and conference papers.


